JP4432968B2 - 共振子型sawフィルタ - Google Patents

共振子型sawフィルタ Download PDF

Info

Publication number
JP4432968B2
JP4432968B2 JP2006528988A JP2006528988A JP4432968B2 JP 4432968 B2 JP4432968 B2 JP 4432968B2 JP 2006528988 A JP2006528988 A JP 2006528988A JP 2006528988 A JP2006528988 A JP 2006528988A JP 4432968 B2 JP4432968 B2 JP 4432968B2
Authority
JP
Japan
Prior art keywords
electrode
interdigital
surface acoustic
acoustic wave
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006528988A
Other languages
English (en)
Other versions
JPWO2006004199A1 (ja
Inventor
道明 ▲高▼木
克朗 米谷
政宏 押尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JPWO2006004199A1 publication Critical patent/JPWO2006004199A1/ja
Application granted granted Critical
Publication of JP4432968B2 publication Critical patent/JP4432968B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0033Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only
    • H03H9/0042Balance-unbalance or balance-balance networks using surface acoustic wave devices having one acoustic track only the balanced terminals being on opposite sides of the track
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02842Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14588Horizontally-split transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、圧電体平板上に入力側および出力側すだれ状電極とその両側に一対の反射器を形成し、レイリー波またはSTW(Surface Transversal Wave)あるいはSSBW(Surface Skimming Bulk Acoustic Wave)、SH波、ラブ波、セザワ波等の弾性表面波を利用して実現する縦多重モード型等の共振子型SAWフィルタに関する。
従来、共振子型SAWフィルタの基板として、圧電体である水晶STWカット基板が使われてきた。前記基板は弾性表面波(STWあるいはSSBW)の速度が5100m/secと速く、GHz帯域のSAWデバイスとして1979年の早くから研究され、また使用されて来た。
前記の水晶STWカット基板は、すでによく知られているものであり、水晶結晶の基本軸である電気軸X、機械軸Y、光軸Zからなる直交座標系において、機械軸Yに直交するY板を電気軸Xの回りにθ度(特に零温度係数が得られるθ=33度から47度)回転した基板である。この基板を用いたSAWデバイスは、Y板の回転後の光軸Z´方向に伝播するSTWあるいはSSBW型弾性表面波を利用したものである(非特許文献1参照)。
前記の水晶STWカット基板を利用して、縦2重モード型または縦3重モード型等の共振子型SAWフィルタを構成すると、1GHzから3GHz帯域のSAWデバイスが実現できる。前記共振子型SAWフィルタの従来技術の例として、たとえば特許文献1、特許文献2及び特許文献3をあげることができる。また、従来の技術により実現された共振子型SAWフィルタの例として、非特許文献2をあげることができる。
特開昭62−188512号公報 WO00/13316 米国特許第5220234号明細書 T.NISHIKAWA et al:"SH−TYPE SURFACE ACOUSTIC WAVES ON ROTATED Y−CUT QUARTZ",Proc.34th Ann.Freq.Control Symposium,pp.286−291(May 1980) Hiromi Yatsuda:"SAW Device Assenbly Technology",International Symposium on Acoustic Wave Device for Future Mobile Communication Systems,Chiba University pp.189−194(5th March 2001)
しかしながら、前述の従来技術を使用し共振子型SAWフィルタを構成した場合には、通過比帯域幅が500ppm程度の極めて狭い帯域なものしか実現できないという第1の課題が存在した(非特許文献2参照)。ちなみに、通過比帯域幅とは3dB帯域幅をフィルタ中心周波数で割った値である。
そこで本願の発明は、この通過比帯域幅が狭い原因を究明して、解決策を見出したものである。本発明において用いた技術的および理論的手段は、周期的構造を有する制御用すだれ状電極の新規導入と、発明者の考案による“周波数ポテンシャル設計手法”を活用して、このような問題点を解決するものである。前記“周波数ポテンシャル設計手法”を簡単に言えば、周波数ポテンシャル関数FTP(X)、弾性表面波の速度Vs、素子の空間波長2P(X)の関係式 FTP(X)=Vs/{2P(X)} を弾性波動の伝搬制御に利用するものである。ただし、Xは弾性表面波の位相進行方向の位置座標である。
また本願の発明は、前記の発明によって発生し、ノイズの発生原因となる側帯波成分(第2の課題)を改善するための解決策を提供するものである。
本発明の目的とするところは、挿入損失が低く、比帯域幅が広い縦多重モード型の共振子型SAWフィルタを実現することにある。例えば、零温度係数を有して周波数温度特性に優れ弾性表面波の速度が速い水晶STWカット基板と、λ/4電極(伝搬する弾性表面波の波長をλとして、すだれ状電極の電極指の幅をλ/4の寸法とするもの)を使用し、低挿入損失かつ比帯域幅が2000から4000ppmの広帯域幅で安定な縦多重モード型の共振子型SAWフィルタを実現することにある。
本発明の共振子型SAWフィルタは、圧電体平板上に、弾性表面波を励振する入力側すだれ状電極と、前記入力側すだれ状電極により励振された弾性表面波を受信する出力側すだれ状電極と、前記入力側すだれ状電極と出力側すだれ状電極の間に弾性表面波の状態を制御するための制御用すだれ状電極と、さらに前記入力側すだれ状電極と出力側すだれ状電極の両側に設けられた1対の反射器と、が前記弾性表面波の伝搬する方向にそれぞれ配置された共振子型SAWフィルタであって、前記入力側すだれ状電極と前記出力側すだれ状電極および前記制御用すだれ状電極は、交互に配置された2種類の異なる区間Cと区間E内にそれぞれ設けられた電極指から構成され、前記電極指の幅Lが、前記弾性表面波の波長をλとしてほぼλ/4の寸法で構成され、前記電極指の幅Lと電極指間の寸法Sの和である電極周期長PをP=L+Sとした場合に、前記区間Cにおける電極周期長PがPCかつ前記電極指の対数MCが1対であり、前記区間Eにおける前記電極周期長PがPEかつ前記電極指の対数MEが1対であり、前記区間Cと区間Eの電極周期長の比PE/PCが、0.8<PE/PC<1の範囲内であり、かつ前記区間Cと区間Eに設けられた前記電極指はいずれも給電導体に接続されたことを特徴とする。
本発明によれば、区間Cと区間Eの各電極指からの反射波の総和が相互に相殺して減少するために、電極指1本の持つ実効的な反射係数を低減して広帯域幅の縦2重モード型および縦3重モード型等の共振子型SAWフィルタが容易に実現できる。また区間Cと区間Eの電極指が電気的に接続されており、弾性波が励振されて途切れないために側帯波成分を十分に小さくできる。さらに、この第1の発明においては、弾性表面波の速度が5100m/secと高速で、従って高周波数動作が可能な水晶STWカットのもつ電気機械結合係数Kが0.002と小さな基板において、電極膜厚を著しく薄くしなくても、通過比帯域幅が3000から4000ppmの縦3重型の共振子型SAWフィルタが実現できる。例えば、1.5GHzにおいて膜厚み約100nmのλ/4電極を形成して、前記通過比帯域幅の特性をもつ共振子型SAWフィルタが実現できるという効果がある。
また、本発明は、前記圧電体平板と前記すだれ状電極が形成する前記電極指1本が示す弾性表面波の反射係数γが0.03から0.10の範囲であることが望ましい。
この構成によれば、弾性表面波の速度が5100m/secと高速な、従って高周波数動作が可能な水晶STWカット基板、または、速度が10000m/secのダイヤモンドを用いた基板などの、高速であるが反射係数γの大きな基板の利用が可能である。さらに前記の基板を用いて1〜3GHzの周波数をもつ共振子型SAWフィルタにおいて、膜厚を増加することによる反射係数γの増加に煩わされずに、十分に厚い膜厚(約100nm)のλ/4電極を形成して信頼性のある共振子型SAWフィルタを形成できる。
また、本発明は、利用する共振モードが基本波対称モードS0と基本波斜対称モードA0と1次対称モードS1との共振現象から合成される縦3重モードであり、かつ前記電極周期長PCおよびPEとを交互に配置してなるすだれ状電極全体が有する前記電極指1本が示す弾性表面波の等価な反射係数γceが0.01から0.025の範囲であることが望ましい。
この構成によれば、基本波の対称モードS0と基本波の斜対称モードA0から構成される縦2重モード型の2000ppmの帯域幅に対して、縦3重モード型とすることで約4000ppmとより広帯域幅である共振子型SAWフィルタが実現できるため、素子の周波数調整が容易であり、低コスト化が可能という効果がある。
また、本発明は、前記圧電体平板が水晶STWカット基板であり、前記すだれ状電極はアルミニウム金属により形成されて電極指1本が示す弾性表面波の反射係数γが0.05±0.02であり、かつ前記電極周期長の比PE/PCが0.9±0.02であり、前記制御用すだれ状電極の電極指の対数MKが10対から30対の範囲であり、かつ前記入力側すだれ状電極と出力側すだれ状電極の電極指の和Mが80±10対であり、かつ前記電極指の電極指交差幅WCが50〜80λであり、前記反射器の導体本数は30〜100本であることが望ましい。
このような構成の共振子型SAWフィルタであれば、1.57GHz動作のGPS装置用途のRFフィルタが実現できる。また、通過帯域幅が約3MHzであるため、従来のLiTaO基板を用いた30MHz幅のものに対して、約1/10の狭帯域幅であり、受信信号に関して約10倍のS/N比の改善ができるという効果がある。
本発明の共振子型SAWフィルタは、圧電体平板上に、弾性表面波を励振する入力側すだれ状電極と、前記入力側すだれ状電極により励振された弾性表面波を受信する出力側すだれ状電極と、前記入力側すだれ状電極と出力側すだれ状電極の間に弾性表面波の状態を制御するための制御用すだれ状電極と、さらに前記入力側すだれ状電極と出力側すだれ状電極の両側に設けられた1対の反射器と、が前記弾性表面波の伝搬する方向にそれぞれ配置された共振子型SAWフィルタであって、前記の入力側すだれ状電極と前記出力側すだれ状電極および前記制御用すだれ状電極は、交互に配置された2種類の異なる区間Gと区間H内にそれぞれ設けられた電極指から構成され、前記電極指の幅Lが、前記弾性表面波の波長をλとしてほぼλ/4の寸法で構成され、前記電極指の幅Lと電極指間の寸法Sの和である電極周期長PをP=L+Sとした場合に、前記区間Gにおける前記電極周期長PがPGかつ前記電極指の本数NGが1本であり、前記区間Hにおける前記電極周期長PがPHかつ前記電極指の本数NHが1本であり、前記区間Gと区間Hの電極周期長の比PH/PGが、0.8<PH/PG<1の範囲内であり、かつ区間Gと区間Hの前記電極指を各々異なる極性の給電導体に接続されたことを特徴とする。
本発明によれば、区間Gと区間Hの各電極指からの反射波の総和が相互に相殺して減少するために、電極指1本の持つ実効的な反射係数を低減して広帯域幅の縦2重モード型および縦3重モード型等の共振子型SAWフィルタが容易に実現できる。また区間Gと区間Hの電極指が電気的に接続されており、弾性波が励振されて途切れないために側帯波成分を完全に除去できる。さらに、この第2の発明においては、弾性表面波の速度が5100m/secと高速で、従って高周波数動作が可能な水晶STWカットのもつ電気機械結合係数Kが0.002と小さな基板において、電極膜厚を著しく薄くしなくても、通過比帯域幅が3000から4000ppmの縦3重型の共振子型SAWフィルタが実現できる。例えば、1.5GHzにおいて膜厚み約100nmのλ/4電極を形成して、前記通過比帯域幅の特性をもつ共振子型SAWフィルタが実現できるという効果がある。
また、本発明は、前記圧電体平板と前記すだれ状電極が形成する前記電極指1本が示す弾性表面波の反射係数γが0.03から0.10の範囲であることが望ましい。
このような条件であれば、弾性表面波の速度が5100m/secと高速な、従って高周波数動作が可能な水晶STWカット基板、または、速度が10000m/secのダイヤモンドを用いた基板などの、高速であるが反射係数γの大きな基板の利用が可能である。さらに前記の基板を用いて1〜3GHzの周波数をもつ共振子型SAWフィルタにおいて、膜厚を増加することによる反射係数γの増加に煩わされずに、十分に厚い膜厚(約100nm)のλ/4電極を形成して信頼性のある共振子型SAWフィルタを形成できる。
また、本発明において、利用する共振モードが基本波対称モードS0と基本波斜対称モードA0と1次対称モードS1との共振現象から合成される縦3重モードであり、かつ前記電極周期長PGおよびPHとを交互に配置してなるすだれ状電極全体が有する前記電極指1本が示す等価な反射係数γghが0.01から0.025の範囲であることが望ましい。
このような条件であれば、基本波の対称モードS0と基本波の斜対称モードA0から構成される縦2重モード型の2000ppmの帯域幅に対して、縦3重モード型とすることで約4000ppmとより広帯域幅である共振子型SAWフィルタが実現できるため、素子の周波数調整が容易であり、低コスト化が可能という効果がある。
また、本発明は、前記圧電体平板が水晶STWカット基板であり、前記すだれ状電極はアルミニウム金属により形成されて電極指1本が示す弾性表面波の反射係数γが0.05±0.02であり、かつ前記電極周期長の比PH/PGが0.9±0.02であり、前記制御用すだれ状電極の電極指の対数MKが10対から30対の範囲であり、かつ前記入力側すだれ状電極および出力側すだれ状電極の対数の和Mが40±10対であり、かつ前記電極指の電極指交差幅WCが50〜80λであり、前記反射器の導体本数は30〜100本であることが望ましい。
このような構成の共振子型SAWフィルタであれば、1.57GHz動作のGPS装置用途のRFフィルタが実現できる。また、通過帯域幅が約3MHzであるため、従来のLiTaO基板を用いた30MHz幅のものに対して、約1/10の狭帯域幅であり、受信信号に関して約10倍のS/N比の改善ができるという効果がある。
また、本発明では、前記反射器の中心周波数f(Ref)と、前記電極周期長PEまたはPHのすだれ状電極が発生する周波数f(IDT)を一致させたことが望ましい。
このような構成とすれば、反射器が有する反射特性の最大値が利用できるため、反射器の導体本数が少なくでき、共振子型SAWフィルタの小型化ができるという効果がある。
また、本発明では、前記水晶STWカット基板は、水晶Y板を電気軸(X軸)の回り反時計方向にθ=35度から38度回転した水晶平板であることが望ましい。
このような構成とすれば、基板のもつ周波数温度係数が零温度係数であり、かつ2次温度係数βが−6.4×10−8/℃であるから、使用温度範囲−45から85℃において、素子自身の周波数変動が270ppm程度と小さく安定であり、従って受信信号のジッタ(時刻精度バラツキ)への影響が小さいという効果がある。
本発明の共振子型SAWフィルタの具体的な用途を考えてみる。
水晶STWカット基板等を利用して、1.57GHzのRFフィルタを製作した場合の特徴を列記すると、
(1)周波数温度特性が零温度係数をもち安定である(約−45〜85℃の範囲において、周波数変動量が270ppmと小さい)。
(2)材料のQ値が優れ、1.5GHzにおいて共振子のQ値が6000程度と高いため、2dB程度の低損失フィルタが実現できる。
(3)区間Cおよび区間Eまたは区間Gおよび区間Hを周期的に構成しIDTの有する反射係数を低減させて、通過比帯域幅3000ppm程度のフィルタが実現でき、この帯域幅は3MHzの通過帯域幅となって、必要十分にGPS装置に利用される信号の周波数成分範囲2MHzをカバーできる。
(4)通過帯域幅内の振幅リップルが小さい50Ωフィルタができる。
本発明になる共振子型のSAWフィルタをGPS装置用のRFフィルタに用いれば、1.57GHzにおいて約3MHzの通過帯域幅が確保でき、従来のLiTaO基板を用いて作られる通過帯域幅が30MHz程のフィルタに対して、装置が受信する雑音レベルが約1/10に低減できる。また、温度の変化に対して周波数変動が小さいために、位相変動が少なく低ジッタかつ低位相ノイズであるデジタル信号が受信でき、測地精度にバラツキが無く、位置を高精度に計測可能なGPS装置を市場に提供できる。
さらに昨今は、3〜10GHz帯にて使用するUWB(Ultra Wide Band)等の微弱近距離無線が商品化段階にある他、GPS装置とUWBあるいは他の通信装置との近接使用などの手段も研究中であり、今後ますます電磁的雑音の増加が心配されるため、本発明の共振子型SAWフィルタをこれらの分野において使用すれば、測地精度の維持のために益々有益な素子となることが考えられる。
本発明の実施例1における共振子型SAWフィルタの電極パターンを示す模式平面図。 本発明に係るすだれ状電極の要素を定義する概説図。 本発明の共振子型SAWフィルタの一実施例が有する電極周期長を示す図。 本発明に係る共振子型SAWフィルタの周期構造を説明する概説図。 本発明に係る共振子型SAWフィルタの周期構造が有する反射特性を示す特性図。 本発明に係る共振子型SAWフィルタの動作原理を説明する概説図。 本発明に係る共振子型SAWフィルタにおいて使用するSTWカット基板が示す反射係数γ特性図。 本発明に係る共振子型SAWフィルタが有する振動変位の状態を示す図。 従来の技術による共振子型SAWフィルタの伝送特性図。 従来の技術による共振子型SAWフィルタの他の伝送特性図。 本発明の共振子型SAWフィルタの一実施例が示す伝送特性図。 本発明の2段縦続接続共振子型SAWフィルタの一実施例が示す他の伝送特性図。 共振子型SAWフィルタを2段縦続接続したときの側帯波成分を示す伝送特性図。 本発明に係る共振子型SAWフィルタを2段縦続接続したときの側帯波成分を示す伝送特性図。 本発明の実施例2における共振子型SAWフィルタの電極パターンを示す模式平面図。 本発明に係る共振子型SAWフィルタを2段縦続接続したときの側帯波成分を示す伝送特性図。
以下、本発明の共振子型SAWフィルタの実施形態について、まず理解を容易ならしめるために、図1によって具体的な実施例の構成を説明した後、図2、図3、図4、図5、図6、図8を用いて基本的動作原理を説明し、図9、図10、図13に従来品の特性を示し、図7、図11、図12、図14において本発明の共振子型SAWフィルタが有する特性を詳細に説明する。
図1は本発明に係る共振子型SAWフィルタ(以下略して素子と称すことがある)の一実施例を説明するための、圧電体平板上に形成した電極パターンを図示した模式平面図である。
図1の各部位の名称は、100は水晶、LiTaO等からなる圧電体平板、101および102は反射器、103は入力側すだれ状電極、104は出力側すだれ状電極、105は制御用すだれ状電極である(以下、“すだれ状電極”を略してIDT(Interdigital Transducer)と称す)。また、106Aおよび106Bは反射器を構成する導体ストリップ、107は給電導体(バスバー)に接続された入力側IDTの正極側の電極指、108は給電導体(バスバー)に接続された入力側IDTの負極側の電極指、109は給電導体(バスバー)に接続された出力側IDTの正極側の電極指、110は給電導体(バスバー)に接続された出力側IDTの負極側の電極指である。また、111等は制御用IDTの電極指、112と113は各々正極側と負極側の入力側給電導体(バスバー)、114と115は各々正極側と負極側の出力側給電導体(バスバー)である。さらに、123は利用する弾性表面波の位相伝搬方向であるX軸、121は本素子を駆動するための信号源、122は本素子の負荷となるインピーダンスZLである。
116は区間Cに対応する出力側IDT104の部分、117は区間Eに対応する出力側IDT104の部分、119は区間Cに対応する入力側IDT103の部分、120は区間Eに対応する入力側IDT103の部分である。118Aと118Bはそれぞれ区間C、区間Eに対応する制御用IDT105の部分である。
実際の素子においては、入力側IDT103は区間Cと区間Eを交互に連続配置して構成されており、出力側IDT104も、区間Cと区間Eを交互に連続配置して構成されている。制御用IDT105も同様に区間Cと区間Eを交互に連続配置して構成する。このように構成された入力側IDT103と出力側IDT104の前記X軸方向の両側に1対の反射器101,102が配置されている。反射器101,102は無くても良い場合があるが、付加すると素子の特性を著しく向上できる。
ここで、IDTにおける要素について定義する。図2は、IDTの部分平面図である。IDT130は、例えば正極側の電極指131と負極側の電極指132がお互いに噛み合うように配置されている。電極指131,132の幅をLとし、電極指間の寸法をSとして、電極周期長PをP=L+Sと定義する。そして、区間CにおけるIDTの電極周期長をPC、区間EにおけるIDTの電極周期長をPEとする。同様に反射器における導体ストリップの電極周期長をPRとする。
また、1本ずつの正負の電極指を合わせて1対と呼び、入力側と出力側IDT全体における電極指の対数の和をMとする。そして、区間Cにおける電極指の対数をMC、区間Eにおける電極指の対数をME、制御用IDTにおける電極指の対数をMKとする。さらに、正極側の電極指131と負極側の電極指132が交差している幅を電極指交差幅WCとし、この電極指交差幅WCを弾性表面波の波長λに対しての倍数で表現する。
さらに本実施例を説明すると、区間CはIDTの電極指の対数MCが1対であり、一方、区間Eは電極指の対数MEが1対であり、区間Cと区間Eの電極指はいずれも給電導体に接続している。この給電導体に接続した状態は、電気的な接続がなされていることを意味する。また、各電極指の幅Lは伝搬する弾性表面波の波長をλとして、λ/4の寸法に設定している。さらに、区間Cと区間Eの電極周期長の比PE/PCについて、0.8<PE/PC<1の範囲内に設定する。
このように本実施例の共振子型SAWフィルタは、水晶などの圧電体材料から圧電体平板100を切り出して、その表面を鏡面研磨した後、レイリー型あるいはSSBW型等の弾性表面波の位相伝搬方向に対して直交して、例えば金属アルミニウムからなる多数の平行導体の電極指を周期的に配置した入力側IDT103および出力側IDT104を構成する。さらに入力側IDT103と出力側IDT104の間に弾性表面波の状態を制御するための制御用IDT105を設け、前記のIDT103,104,105は2種類の異なる区間Cと区間Eとを交互に配置してなり、入力側IDT103と出力側IDT104の両側に1対の反射器101,102を形成して、縦3重モード型の共振子型SAWフィルタを構成している。
さらに、反射器101,102の中心周波数f(Ref)と、区間EのIDTにより発生する周波数f(IDT)は、区間CのIDTおよび区間EのIDTの電極周期長PCとPEの組み合わせと、反射器101,102の電極周期長PRの関係を適切に調整して、f(Ref)=f(IDT)と設定する。
以上に述べた図1の構成全体で、入力側IDT103で発生した弾性表面波は1対の反射器101,102で反射して定在波振動状態を形成して利用すべき固有共振モードを発生する。これら固有モードはX軸方向に振動変位が変わる基本波対称モードS0と基本波斜対称モードA0、さらに1次対称モードS1の3つの共振状態であり、前記3つの共振現象を結合して縦3重モード型のSAWフィルタを構成している。ただし、従来の技術と異なる点は、区間Cと区間Eとを交互に配置してなるIDT全体が有する等価な電極指1本が示す弾性表面波の反射係数γceが0.01から0.025の範囲であることである。ここで、反射係数γceを等価な反射係数と呼ぶ理由は、前述の区間Cと区間Eの電極周期長の異なる電極指の配列構造によって発生するIDT全体のなす反射係数をIDTの全電極本数で割った換算値とするためである。
さらに構成条件として、前記圧電体平板100と前記IDT(103,104,105等)の電極指1本が示す弾性表面波の反射係数γが0..03から0.1の範囲である場合において、本発明の手段は特に有効である。
さらに、詳細な構成条件をあげると、圧電体平板100が水晶STWカット基板であり、前記IDTはアルミニウム金属により形成されて電極指1本が示す弾性表面波の反射係数γが0.05±0.02であり、かつ区間C、区間Eにおける電極指の対数MCとMEがそれぞれ1対であり、制御用IDT105における電極指111の対数MKが10対から30対の範囲である。そして、区間Cおよび区間Eの電極指を給電導体112,113,114,115に接続し、かつ入力側IDT103と出力側IDT104における電極指の和Mが80±10対である。特にMK=20対の場合には、入力側および出力側のIDTにおける電極指の対数はそれぞれ40対である。さらに前記IDTの電極指交差幅WCが50〜80λであり、反射器101,102の導体本数はそれぞれ30〜100本である。以上の場合において、本素子は特に良好な特性が得られる。なお、水晶STWカット基板は水晶Y板を電気軸(X軸)の回り反時計方向に35度から38度回転した水晶平板であり、オイラー角(φ,θ,φ)表示で、(0°,125〜128°,90°)のものである。そして、弾性表面波の伝搬方向がこの水晶Y板の回転後の光軸Z´方向になるように各IDTを配列している。
この構成条件に対応する前記電極周期長P(X)の詳細設定の一例を図3に示す。図3において、横軸は素子のX座標位置、縦軸は区間Cの電極周期長PCに対するP(X)の比P(X)/PCである。これらの値は、反射器において0.968、入力側IDTと出力側IDTおよび制御用IDTの区間Cにおいて1.0、区間Eにおいて0.91の値に設定してある。
つぎに、図4において本実施例の素子の構造と動作について説明する。
図4は図1のような区間Cと区間Eからなる周期的構造を取るIDTを“周波数ポテンシャル設計手法”を活用して表示したものである。図4の、200と202は前述の区間Cからなるブロックであり、201と203は区間Eからなるブロックである。また、図4の4つの特性曲線209等は、弾性表面波の伝搬状態である伝搬帯(斜線で示す領域)および、弾性表面波が伝搬できずに減衰する状態である非伝搬帯(ストップバンドとも呼ばれる白い部分で示す領域)の特性全体を示す特性曲線であり、波数分散曲線と呼ばれている。波数分散曲線は横軸が波数k=2π/λ(1/m)であり、縦軸は周波数FTP(Hz)で表示した。FTPは本発明において活用する“周波数ポテンシャル”の略称である。FTPは利用する弾性表面波の速度をVsとすれば、前述の電極周期長Pと、FTP=Vs/(2×P)の関係にある。さらに、基準周波数をFTP0として、周波数差分量D=(FTP−FTP0)/FTP0で表現することが効率的である。分散曲線上の白丸印204等はIDTによって発生する弾性表面波の動作点を示すもので、208の矢印にて示される右進行波、左進行波が生じている。また206で示される周波数差分量Dは前記の周波数変化率表示であり、区間Cと区間Eの周波数ポテンシャル差である。すなわち、区間C周波数ポテンシャルFTPCは、およそFTPC=Vs/(2×PC)、区間Eの周波数ポテンシャルFTPEは、およそFTPE=Vs/(2×PE)であり、周波数差分量D=FTPC−FTPEの関係にある。さらに、205の破線で囲む領域は、図1の構成により発生した反射係数γce=0〜0.025をもつ伝搬帯領域である。ちなみに、それぞれの区間C、区間EにおけるIDTの電極指の対数MP(=MC=ME)は検討の結果、1対以上の数対で構成できることがわかった。
つぎに図5は、電極指1本が示す反射係数γ=0.05であり、前述の図4の周期的構造をとるIDTを用いて構成した正規型のトランスバーサルフィルタの特性から得られるIDTがもつ挿入損失Γと電極周期長の比PE/PCの関係である。ちなみに正規型のトランスバーサルフィルタとは、図1において反射器101と102が存在しない構成の素子である。また図5は、図4のようなIDTが周期的構造を有する、弾性表面波の反射現象について物理的な特徴を示すものである。図5の特性曲線400から、PE/PCが0.78±0.02付近(Q点)となると、前記の挿入損失Γがほぼゼロとなっている。また、PE/PC=0.9付近(R点)では、従来品の挿入損失に対して約6dBの減少が認められる。これは、電極指1本が示す反射係数γを0.05とすると、約半分の0.025程度となったことが推定できる。
つぎに図6は、前述のQ点である反射係数γce=0をもつ伝搬帯領域の発生メカニズムについて図示したものである。図中の縦軸は周波数軸Fであり、この周波数軸Fの右側半面に位置する横軸は、反射係数γの大きさを表し、左側半面に位置した横軸は、前記反射係数γの位相角θであり、反射波の位相角θに相当する。図中の特性曲線500は前述の区間Cにおける反射係数γcの振幅特性であり、502は反射係数γcの位相特性である。位相が0度の場合は、反射波は入射波と同位相状態であり、位相が180度の場合には入射波と反射波は逆位相状態であることを意味する。一方、特性曲線500から上方に周波数変化率にして+0.22シフトした特性曲線501は、前記区間Eのもつ反射係数γeの振幅特性である。また503は反射係数γeの位相特性である。区間Cと区間Eの電極指はいずれも給電導体に接続しており弾性表面波を励振している。特性曲線500は電極周期長PCの区間Cの電極指対数MCが4対で、電極指1本が示す反射係数γが0.05の場合について計算したものである(図5に対応)。前記特性曲線500において反射係数γ=0となる周波数は弾性表面波が通過すること示すものであり、入射波は反射せずに区間Cを通過する。下側の伝搬点と上側の伝搬点の幅であるストップバンド幅BWは、この場合0.25(25%)の大きな幅となっている。これは電極指の有する反射係数γが大きくかつ、対数MPが4対と極めて小さいことによる。特性曲線501は、電極周期長PEの区間Eの電極指対数MEが4対で、電極指1本当りの反射係数γが0.05の場合につき同様に計算したものである。特性曲線501は特性曲線500を0.22(22%)上昇させたもので、これは電極周期長PEがPCの78%に設定されていることによる。特性曲線501のストップバンド幅BWは0.25(25%)であり、区間Cと同一である。前記の励起された弾性表面波は、おおむね振幅動作点B1と位相動作点B2の近傍の周波数成分を持ち、この発生した弾性表面波は、区間Cに至り同一周波数の振幅動作点A1と位相動作点A2で動作する。位相動作点A2とB2は位相がほぼ反転するような配置であり、区間Cと区間Eからの反射波は合成され、相殺されて全体の反射波がゼロとなるため、反射係数γce=0が実現する。従って、前記動作点B1,B2のつくる近傍の周波数は無反射の伝搬帯となるわけである。以上が本発明の基礎となる現象の説明である。また、周波数上昇量が0から+0.22の範囲であれば、前記区間Cと区間Eの多数繰り返しが作るトータルな反射係数は1から0の間の値を取ることになる。前述の図5の特性はこの状態を示していると解釈できる。なお、上記の説明では電極指の対数MP=4対として説明したがMP=1〜10対の間でも同様である。
また区間Eは動作点B1に対応する周波数の弾性表面波を励振して本発明の素子のフィルタ特性を形成する。
本発明は以上の動作原理にもとづき、区間Cと区間EのIDT全体が有する等価な電極指1本が示す反射係数γceが0.01から0.025の範囲である状態を実現し、基本波対称モードS0と基本波斜対称モードA0、一次対称モードS1の3つの共振状態を利用して、共振子型のSAWフィルタを実現するものである。
つぎに、図1の構成における共振子型SAWフィルタが示す、フィルタ特性について説明する。
図7は、水晶STWカットにおける電極指1本が示す反射係数γの特性図である。この特性図におけるSTWカットはオイラー角(φ,θ,ψ)表示で、(0°,127±1°,90°)のものであり、前述の表面集中型のSH波あるいはSSBW弾性表面波と呼ばれる弾性波により動作する。図7の横軸は、電極指の導体幅Lと電極周期長Pとの比である線幅比η=L/Pであり、縦軸は電極指1本が示す反射係数γの値を%表示したものである。図中の特性曲線600は電極膜厚Hに対する弾性表面波の波長λの比H/=0.03の場合であり、特性曲線601はH/λ=0.05の場合である。例えば素子の動作周波数が1.5GHzの場合、波長λはSSBW弾性表面波の速度が約5100(m/sec)であるから、λ=5100/1.5×109=3.4×10−6mであり、このときの電極膜厚Hは、H/λ=0.03において102nm、H/λ=0.05において170nmとなる。電極膜の安定な形成においては、少なくとも100nm程度の膜厚みが必要であり、この状態における反射係数γは約5〜6%程度となる。
つぎに、図8は圧電体平板上に前述の反射係数γを有する電極指を用い、本実施例の縦3重モード型のSAW共振子を構成した状態を示す概念図である。図中の700は圧電体平板、701と702は反射器、703と704は入力および出力側のIDTであり、705は制御用IDTの領域である。これらは区間Cと区間Eを交互に配置して構成してある。この状態において、前記素子の709のX軸位置に対応して、前記素子において利用する固有の共振モードの振動変位分布U(X)の相対値を図示した。図中の706は弾性表面波が伝搬する方向Xの中央位置に対してほぼ対称な振動変位分布を有する基本波対称モードS0であり、707は前記中央位置に対してほぼ斜対称な振動変位分布を有する基本波斜対称モードA0である。また、708は振動変位分布に2つの節を有し前記中央位置に対してほぼ対称な1次対称モードS1である。ちなみに、横軸のX座標は1/2波長単位で記述した。
ここで、本実施例におけるフィルタの特性の理解を容易ならしめるために、従来技術によって得られるフィルタ特性について説明しておく。
図9は、本実施例において定義した設計変数が、H/λ=0.03、電極指1本の反射係数γ=0.05の状態で、従来技術の条件である区間Cと区間Eの電極周期長PCとPEを等しくした場合(PE/PC=1)である。また1区間の電極指の対数MP=4対、入力側と出力側IDT全体における電極指の対数の和Mは120対、制御用IDTの対数MKは20対、反射器の導体本数は80本、電極指の電極指交差幅WCは50λの場合である。同図の横軸は、周波数変化率df/f(ppm)であり、縦軸はフィルタの動作伝送量SB(f)をデシベル(dB)表示したものである。ちなみに、fは周波数である。特性曲線800においてピークを示す801がフィルタの通過帯域幅を示すものであり、このように、単峰性の狭い帯域特性を有していることがわかる。本発明はこのような単峰性特性状態を改善して、広い通過帯域幅をもたせる手段を提供する。
つぎに、図10は従来の設計条件の場合(PE/PC=1)であり、電極指1本が示す反射係数γの値を変えた場合のフィルタの伝送特性を計算したものである。図10(a)は反射係数γ=0.05の場合であり、入力側と出力側IDT全体の電極指の対数M=80対、電極指交差幅WC=100λ、反射器の導体本数N=80本、1区間の電極指の対数MP=4対である。この場合、特性曲線901がフィルタの伝送特性を示し、通過帯の比帯域幅は1200ppmである。
また、図10(b)は反射係数γ=0.015の場合であり、入力側と出力側IDT全体における電極指の対数の和M=160対と倍に設定し、電極指交差幅WC=50λ、反射器の導体本数N=80本、1区間の電極指の対数MP=4対である。この場合、特性曲線902がフィルタの伝送特性を示し、通過帯の比帯域幅は約1000ppmである。図10が示す意味は、入力側と出力側IDT全体における電極指の対数の和Mを小さくすれば通過帯域幅を広げることができること、および反射係数γを小さくすれば、入力側と出力側IDT全体における電極指の対数の和Mが大きくても、通過帯域幅を広くできることを意味している。本発明は上記の結論である入力側と出力側IDT全体における電極指の対数の和Mを小さくすることと、反射係数γを小さくすることを利用して1〜3GHz帯で動作する通過比帯域幅4000ppmの共振子型SAWフィルタを実現したものである。従来の技術ではすでに述べた通り通過比帯域幅約500ppmが限界であった。原因は実用的な電極膜厚みにあっては、電極指1本が示す反射係数γが5〜10%に至るからである。
つぎに図1の実施例が示すフィルタ特性について説明する。
図11はフィルタの伝送特性1001を上段に示し、下段には本素子を構成する反射器の反射特性1002を図示したものである。本発明においては、反射器の中心周波数f(Ref)とフィルタの通過帯域幅の中心周波数f(IDT)を一致させている。このような状態では、区間EのIDTが放射する弾性表面波を完全に反射できるため、反射器の導体本数を少なくできる。このために、反射器の電極周期長PRを0.968PCとした。他の条件は、PE/PC=0.91であり、入力側と出力側のIDT対数が各々40対、反射器の導体本数N=100本、電極指交差幅WC=60λ、区間Cおよび区間Eにおける電極指の対数MC=ME=1対、制御用IDTの電極指は20対、電極指1本が示す反射係数γは0.05である。
つぎに図12は、図11の縦3重モード型SAWフィルタを2段縦続接続した場合のフィルタの動作伝送量SB(f)をデシベル表示で示したものである。横軸は周波数変化率df/f(ppm)であり、縦軸はフィルタの動作伝送量SB(f)である。本素子はフィルタのインピーダンスが50Ωとなるように設計されている。本素子の動作周波数は1.5GHzとしてある。この場合において伝送特性は図12(a)の特性曲線1100のようになり、挿入損失の最小値は約2.0dBであり、通過帯域である平坦領域の幅(比帯域幅)は約4000ppmが得られている。また、1101はフィルタの影像インピーダンスZ(f)(Ω)である。特性曲線1100の周波数9000ppm付近が1次対称モードS1であり、12000ppm付近が基本波斜対称モードA0であり、14000ppm付近が基本波対称モードS0である。図12(b)は周波数範囲を広げて図示した場合のフィルタ特性1102である。帯域外の抑圧特性は一部に狭い周波数を除き50dB程確保されており、良好な特性が得られていることがわかる。また、1103は反射器のもつ反射特性であり、反射量を100倍にして相対位置がわかるようにあわせて図示した。
以上が第1の課題に対する本実施例の説明である。この実施例によって発生する側帯波成分の発生(第2の課題)に対する改善結果をつぎに説明する。この側帯波の発生原因につき解析した結果、発生原因には2つの要因があることがわかった。発生原因の第1は、入力側IDTの区間Cと区間Eにおいて弾性表面波の励振の有無に起因する振幅変調によるものと、第2は区間Cと区間Eの電極周期長PC,PEが異なることに起因する周波数変調によるものである。これら側帯波成分の発生原因の観点から、図13の状況を説明する。
図13は、区間Eの電極指を給電導体に接続し、区間Cの電極指を給電導体に接続しない場合で、かつ区間Cと区間Eの電極指本数NPMを変化させた場合の側帯波の発生状況である。図13(a)はNPM=2本の場合であり、図13(b)はNPM=6本の場合であり、図13(c)はNPM=8本の場合である。図中の1200は所望の通過帯域であり、1201,1202,1203の各ピークは、各電極指本数NPMに対応する側帯波の成分である。これらの振幅の大きさは62dBから30dBと大きく問題である。また、NPMの値は偶数値のものを示したが、奇数値でも同様な側帯波の成分の値を示した。図13において、NPMが2本または6本のときに側帯波の成分が小さく、62dBとなっている。さらにNPM=2本、すなわちMC=ME=1対のときには、側帯波の成分が所望の通過帯域1200から大きく遠ざかっており、NPM=6本、NPM=8本の場合と比べて実用上有利な特性となっている。
そこでつぎに、側帯波成分の発生原因である第1の原因を取り除いてみた。すなわち、区間Cの電極指を給電導体に接続してみた。その結果、NPM=2において、図14の特性曲線1300に示すフィルタ特性が得られた。図中の1301は所望の通過帯域であり、1302が側帯波の成分である。その大きさは90dBとなって通常のノイズレベルであり使用可能な大きさに改善されているのがわかる。
このように、本実施例によれば、区間Cと区間Eの各電極指からの反射波の総和が相互に相殺して減少するために、電極指1本が示す実効的な反射係数を低減して広い帯域幅の縦3重モード型の共振子型SAWフィルタが容易に実現できる。また、区間Cと区間Eの電極指がそれぞれ電気的に接続されて弾性表面波を励振して途切れないことから、ノイズの発生原因となる側帯波成分を十分に小さくできる。
つぎに本発明に係る共振子型SAWフィルタの他の実施例について説明する。
図15は本発明に係わる共振子型SAWフィルタの一実施例について、圧電体平板上に形成した電極パターンを図示した模式平面図である。
図15の各部位の名称は、150は水晶、LiTaO等からなる圧電体平板、151および152は反射器、153は入力側IDT、154は出力側IDT、155は制御用IDT、156Aおよび156Bは反射器を構成する導体ストリップ、157は給電導体(バスバー)に接続された入力側IDTの正極側の電極指、158は給電導体(バスバー)に接続された入力側IDTの負極側の電極指、159は給電導体(バスバー)に接続された出力側IDTの正極側の電極指、160は給電導体(バスバー)に接続された出力側IDTの負極側の電極指である。また、161等は制御用IDTの電極指、162と163は各々正極側と負極側の入力側給電導体(バスバー)、164と165は各々正極側と負極側の出力側給電導体(バスバー)である。さらに、圧電体平板上の173は利用する弾性表面波の位相伝搬方向であるX軸、171は本素子を駆動するための信号源、172は本素子の負荷となるインピーダンスZLである。
さらに説明すると、166は区間Gに対応する出力側IDTの部分、167は区間Hに対応する出力側IDTの部分、169は区間Gに対応する入力側IDTの部分、170は区間Hに対応する入力側IDT部分である。168Aと168Bの区間は各々電極周期長PGとPHを有する制御用IDTの区間である。
実際の素子においては、入力側IDT153は区間Gと区間Hを交互に連続配置して構成されており、出力側IDT154も、区間Gと区間Hを交互に連続配置して構成されている。制御用IDT155も同様に区間Gと区間Hを交互に連続配置して構成する。このように構成された入力側IDT153と出力側IDT154の前記X軸方向の両側に1対の反射器151,152が配置されている。反射器151,152は無くても良い場合があるが、付加すると素子の特性を著しく向上できる。
さらに説明すると、前記区間GはIDTを構成する正負極性の内いずれかの電極指の本数NGが1本からなり、一方、前記区間Hは区間Gと異なる極性の電極指の本数NHが1本からなり、かつ区間Gと区間Hの電極指はいずれも給電導体に接続している。また、前記区間Gは、電極幅寸法Lと電極間寸法Sの和である電極周期長PをP=L+Sとした場合に、電極周期長PがPGであり、前記区間Hは、電極周期長PがPHであるとする。また前記電極周期長については、前記区間Gと区間Hの電極周期長の比PH/PGについて、0.8<PH/PG<1範囲に設定する。
さらに、前記反射器151,152の中心周波数f(Ref)と、前記区間HのIDTが発生する周波数f(IDT)を一致させており、両周波数は区間GのIDTおよび区間HのIDTの電極周期長PGとPHの組み合わせと、反射器151と152の電極周期長PRの関係を適切に設定して、前記f(Ref)=f(IDT)と設定する。
以上に述べた図15の構成全体で、入力側のIDTで発生した弾性表面波は1対の反射器151と152で反射して定在波振動状態を形成して利用すべき固有共振モードを発生する。これら固有モードはX軸方向に振動変位が変わる基本波対称モードS0と基本波斜対称モードA0、さらに1次対称モードS1の3個の共振状態であり、前記3個の共振現象を結合して縦3重モード型のSAWフィルタを構成している。
ただし、従来の技術と異なる点は、区間Gと区間Hとを交互に配置してなるIDT全体が有する等価な電極指1本が示す反射係数γghが0.01から0.025の範囲であることである。
さらに構成条件として、前記圧電体平板150と前記IDT(153,154,155等)の電極指1本が示す弾性表面波の反射係数γが0.03から0.1の範囲である場合において、本発明の手段は特に有効である。
さらにまた、詳細な構成条件をあげると、前記圧電体平板が水晶STWカット基板であり、前記IDTはアルミニウム金属により形成されて電極指1本が示す弾性表面波の反射係数γが0.05±0.02であり、かつ区間G、区間Hにおける電極指の本数NGとNHが1本であり、制御用IDT155における電極指161の対数MKが10対から30対の範囲である。そして、区間Gおよび区間Hの電極指を給電導体に接続し、かつ前記入力側IDTおよび出力側IDTの電極指の和Mが40±10対である。特にMK=20対の場合には、入力および出力側のIDTは40対であり、IDTの交差指幅WCが50〜80λであり、前記反射器の導体本数は30〜100本である場合において特に良好な特性が得られる。なお、水晶STWカット基板は水晶Y板を電気軸(X軸)回り反時計方向に35度から38度回転した水晶平板であり、オイラー角(φ,θ,ψ)表示で、(0°,125〜128°,90°)のものである。そして、弾性表面波の伝搬方向がこの水晶Y板の回転後の光軸Z´方向になるように各IDTを配列している。
以上の構成からなる共振子型SAWフィルタの基本的動作原理は実施例1の図2、図3、図4、図5、図6、図8で説明したのと同様であり説明を省略する。また、本実施例では、図7、図11、図12で説明したフィルタ特性についても同様の結果を有する。
ここで、実施例1と実施例2での相違点は、IDTの区間G、区間Hを構成する電極指の本数に違いがある。実施例1では1区間(区間C、区間E)における電極指の本数を2本(NPM=2)、すなわち1対で構成し、実施例2では1区間(区間G、区間H)における電極指の本数を1本(NPM=1)としている。
1区間における電極指を1対としたときには、図14で説明したように、フィルタ特性に90dBの側帯波の成分が残留する。そこでさらに検討を重ねた結果、1区間の電極指を1対でなく、1本(NPM=1)とした場合において側帯波の成分が消滅することがわかった。これが図15の構成に対応し、図16にこの共振子型SAWフィルタを2段縦続接続したときの伝送特性を示す。図16において、1400は所望の通過帯域であり、1401が伝送特性曲線である。みてのとおり側帯波の成分が消滅していることがわかる。
このように、本実施例によれば、区間Gと区間Hの各電極指からの反射波の総和が相互に相殺して減少するために、電極指1本が示す実効的な反射係数を低減して広い帯域幅の縦3重モード型の共振子型SAWフィルタが容易に実現できる。また、区間Gと区間Hの電極指がそれぞれ電気的に接続されて弾性表面波を励振して途切れないことから、ノイズの発生原因となる側帯波成分を完全に除去できる。
以上のとおり、水晶のみからなる基板について、STW型の弾性表面波を利用した弾性表面波フィルタの構成および特性につき説明したが、前記基板が水晶以外の材料、例えばダイヤモンド基板からなるものでも、また基板表面にSiO、ZnO等の薄膜が本素子の特性を損なわない程度に形成されても、本発明の構成条件が満足される範囲であれば有効であることをつけくわえる。
なお、上記実施例では縦3重モード型の共振子型SAWフィルタを例にとり説明したが、縦2重モード型の共振子型SAWフィルタとして実施することも可能である。

Claims (10)

  1. 圧電体平板上に、弾性表面波を励振する入力側すだれ状電極と、前記入力側すだれ状電極により励振された弾性表面波を受信する出力側すだれ状電極と、前記入力側すだれ状電極と出力側すだれ状電極の間に弾性表面波の状態を制御するための制御用すだれ状電極と、さらに前記入力側すだれ状電極と出力側すだれ状電極の両側に設けられた1対の反射器と、が前記弾性表面波の伝搬する方向にそれぞれ配置された共振子型SAWフィルタであって、
    前記入力側すだれ状電極と前記出力側すだれ状電極および前記制御用すだれ状電極は、交互に配置された2種類の異なる区間Cと区間E内にそれぞれ設けられた電極指から構成され、
    前記電極指の幅Lが、前記弾性表面波の波長をλとしてほぼλ/4の寸法で構成され、
    前記電極指の幅Lと電極指間の寸法Sの和である電極周期長PをP=L+Sとした場合に、
    前記区間Cにおける電極周期長PがPCかつ前記電極指の対数MCが1対であり、
    前記区間Eにおける前記電極周期長PがPEかつ前記電極指の対数MEが1対であり、
    前記区間Cと区間Eの電極周期長の比PE/PCが、0.8<PE/PC<1の範囲内であり、かつ前記区間Cと区間Eに設けられた前記電極指はいずれも給電導体に接続されたことを特徴とする共振子型SAWフィルタ。
  2. 前記圧電体平板と前記すだれ状電極が形成する前記電極指1本が示す弾性表面波の反射係数γが0.03から0.10の範囲であることを特徴とする請求項1に記載の共振子型SAWフィルタ。
  3. 前記共振子型SAWフィルタにおいて、利用する共振モードが基本波対称モードS0と基本波斜対称モードA0と1次対称モードS1との共振現象から合成される縦3重モードであり、かつ前記電極周期長PCおよびPEとを交互に配置してなるすだれ状電極全体が有する前記電極指1本が示す弾性表面波の等価な反射係数γceが0.01から0.025の範囲であることを特徴とする請求項1に記載の共振子型SAWフィルタ。
  4. 前記圧電体平板が水晶STWカット基板であり、前記すだれ状電極はアルミニウム金属により形成されて電極指1本が示す弾性表面波の反射係数γが0.05±0.02であり、かつ前記電極周期長の比PE/PCが0.9±0.02であり、前記制御用すだれ状電極の電極指の対数MKが10対から30対の範囲であり、かつ前記入力側すだれ状電極と出力側すだれ状電極の電極指の和Mが80±10対であり、かつ前記電極指の電極指交差幅WCが50〜80λであり、前記反射器の導体本数は30〜100本であることを特徴とする請求項1に記載の共振子型SAWフィルタ。
  5. 圧電体平板上に、弾性表面波を励振する入力側すだれ状電極と、前記入力側すだれ状電極により励振された弾性表面波を受信する出力側すだれ状電極と、前記入力側すだれ状電極と出力側すだれ状電極の間に弾性表面波の状態を制御するための制御用すだれ状電極と、さらに前記入力側すだれ状電極と出力側すだれ状電極の両側に設けられた1対の反射器と、が前記弾性表面波の伝搬する方向にそれぞれ配置された共振子型SAWフィルタであって、
    前記の入力側すだれ状電極と前記出力側すだれ状電極および前記制御用すだれ状電極は、交互に配置された2種類の異なる区間Gと区間H内にそれぞれ設けられた電極指から構成され、
    前記電極指の幅Lが、前記弾性表面波の波長をλとしてほぼλ/4の寸法で構成され、
    前記電極指の幅Lと電極指間の寸法Sの和である電極周期長PをP=L+Sとした場合に、
    前記区間Gにおける前記電極周期長PがPGかつ前記電極指の本数NGが1本であり、
    前記区間Hにおける前記電極周期長PがPHかつ前記電極指の本数NHが1本であり、
    前記区間Gと区間Hの電極周期長の比PH/PGが、0.8<PH/PG<1の範囲内であり、かつ区間Gと区間Hの前記電極指を各々異なる極性の給電導体に接続されたことを特徴とする共振子型SAWフィルタ。
  6. 前記圧電体平板と前記すだれ状電極が形成する前記電極指1本が示す弾性表面波の反射係数γが0.03から0.10の範囲であることを特徴とする請求項5に記載の共振子型SAWフィルタ。
  7. 前記共振子型SAWフィルタにおいて、利用する共振モードが基本波対称モードS0と基本波斜対称モードA0と1次対称モードS1との共振現象から合成される縦3重モードであり、かつ前記電極周期長PGおよびPHとを交互に配置してなるすだれ状電極全体が有する前記電極指1本が示す等価な反射係数γghが0.01から0.025の範囲であることを特徴とする請求項5に記載の共振子型SAWフィルタ。
  8. 前記圧電体平板が水晶STWカット基板であり、前記すだれ状電極はアルミニウム金属により形成されて電極指1本が示す弾性表面波の反射係数γが0.05±0.02であり、かつ前記電極周期長の比PH/PGが0.9±0.02であり、前記制御用すだれ状電極の電極指の対数MKが10対から30対の範囲であり、かつ前記入力側すだれ状電極および出力側すだれ状電極の対数の和Mが40±10対であり、かつ前記電極指の電極指交差幅WCが50〜80λであり、前記反射器の導体本数は30〜100本であることを特徴とする請求項5に記載の共振子型SAWフィルタ。
  9. 前記反射器の中心周波数f(Ref)と、前記電極周期長PEまたはPHのすだれ状電極が発生する周波数f(IDT)を一致させたことを特徴とする請求項1または5に記載の共振子型SAWフィルタ。
  10. 前記水晶STWカット基板は、水晶Y板を電気軸(X軸)の回り反時計方向にθ=35度から38度回転した水晶平板であることを特徴とする請求項4または8に記載の共振子型SAWフィルタ。
JP2006528988A 2004-07-06 2005-07-01 共振子型sawフィルタ Expired - Fee Related JP4432968B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004199425 2004-07-06
JP2004199425 2004-07-06
JP2004238059 2004-08-18
JP2004238059 2004-08-18
PCT/JP2005/012634 WO2006004199A1 (ja) 2004-07-06 2005-07-01 共振子型sawフィルタ

Publications (2)

Publication Number Publication Date
JPWO2006004199A1 JPWO2006004199A1 (ja) 2008-04-24
JP4432968B2 true JP4432968B2 (ja) 2010-03-17

Family

ID=35782994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006528988A Expired - Fee Related JP4432968B2 (ja) 2004-07-06 2005-07-01 共振子型sawフィルタ

Country Status (4)

Country Link
US (1) US7579932B2 (ja)
JP (1) JP4432968B2 (ja)
CN (1) CN1981434B (ja)
WO (1) WO2006004199A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652606B2 (ja) * 2010-12-03 2015-01-14 セイコーエプソン株式会社 弾性表面波共振子、弾性表面波発振器、及び電子機器
US10389391B2 (en) * 2016-01-29 2019-08-20 Kyocera Corporation Acoustic wave resonator, acoustic wave filter, multiplexer, and communication apparatus
JP7095745B2 (ja) * 2018-10-18 2022-07-05 株式会社村田製作所 弾性波装置、帯域通過型フィルタ、デュプレクサ及びマルチプレクサ
CN114337583B (zh) * 2021-12-03 2024-03-29 中国科学院上海微系统与信息技术研究所 一种声表面波谐振器
TWI829483B (zh) * 2022-01-07 2024-01-11 三友電子股份有限公司 具有不同週期或柵欄間距之表面聲波共振裝置及其濾波器
CN116405003B (zh) * 2023-03-15 2023-12-26 北京航天微电科技有限公司 镜像换能器电极宽度确定方法、装置、设备及滤波器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616197A (en) 1985-12-05 1986-10-07 R. F. Monolithics, Inc. Resonator
JPH04132409A (ja) 1990-09-25 1992-05-06 Hitachi Ltd 弾性表面波共振器
US5220234A (en) 1992-03-02 1993-06-15 Hewlett-Packard Company Shear transverse wave device having selective trapping of wave energy
JP3366477B2 (ja) 1995-01-20 2003-01-14 東洋通信機株式会社 縦型複合4重モードsawフィルタ
JP3310132B2 (ja) * 1995-04-27 2002-07-29 株式会社日立製作所 弾性表面波装置及びそれを用いたアンテナ分波器
JPH09321567A (ja) * 1996-05-28 1997-12-12 Showa Electric Wire & Cable Co Ltd 共振器型sawフィルタ
US6259336B1 (en) * 1998-05-27 2001-07-10 Kabushiki Kaisha Toshiba Surface acoustic wave filter device
US6335667B1 (en) 1998-08-28 2002-01-01 Seiko Epson Corporation Multi-longitudinal mode coupled saw filter
AU1709100A (en) 1998-10-26 2000-05-15 Emc Automation, Inc. Broadband antenna incorporating both electric and magnetic dipole radiators
DE19849782B4 (de) 1998-10-28 2004-09-30 Epcos Ag Oberflächenwellenanordnung mit zumindest zwei Oberflächenwellen-Strukturen
JP3391346B2 (ja) * 2000-04-18 2003-03-31 株式会社村田製作所 縦結合共振子型弾性表面波フィルタ
JPWO2003003574A1 (ja) * 2001-06-29 2004-10-21 松下電器産業株式会社 弾性表面波フィルタ
EP1276235A1 (en) * 2001-07-13 2003-01-15 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and communication device using the filter
JP2003179461A (ja) 2001-09-28 2003-06-27 Seiko Epson Corp 縦多重モード型sawフィルタ
JP4090250B2 (ja) * 2001-12-10 2008-05-28 富士通メディアデバイス株式会社 弾性表面波フィルタ

Also Published As

Publication number Publication date
US7579932B2 (en) 2009-08-25
JPWO2006004199A1 (ja) 2008-04-24
CN1981434B (zh) 2011-10-26
CN1981434A (zh) 2007-06-13
WO2006004199A1 (ja) 2006-01-12
US20080018416A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4148294B2 (ja) 弾性表面波デバイスとこれを用いたモジュール装置又は発振回路
US6329888B1 (en) Reflection inversion surface acoustic wave transducer and filter
JP4432968B2 (ja) 共振子型sawフィルタ
JPH08288788A (ja) 弾性表面波素子
WO2000013316A1 (fr) Filtre d'ondes de surface a plusieurs modes longitudinaux
JPWO2007004661A1 (ja) 弾性表面波デバイス
US6160339A (en) Two-port saw resonator
JP4582150B2 (ja) 弾性表面波デバイスとこれを用いたモジュール装置又は発振回路
JPS63285018A (ja) 弾性表面波多重モ−ドフィルタ
JP2002204142A (ja) 端面反射型表面波装置
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
JP2005303893A (ja) 共振子型sawフィルタ
JP2005204042A (ja) 弾性表面波共振子および弾性表面波フィルタ
JP2006014165A (ja) 共振子型sawフィルタ
JP2004260402A (ja) 弾性表面波装置およびそれを有する通信装置
JP2004247927A (ja) 縦2重モード型sawフィルタ
JP3307284B2 (ja) 2ポートsaw共振子
JP2005223721A (ja) 縦3重モードsawフィルタ
JPS61252704A (ja) 弾性表面波フイルタ
JP2003298383A (ja) 表面弾性波素子
JP2009027671A (ja) Sh型バルク波共振子
JP2011171887A (ja) ラム波型共振子および発振器
JP3597483B2 (ja) 弾性表面波装置
JP2006165746A (ja) 弾性表面波デバイス
JP2003179461A (ja) 縦多重モード型sawフィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees