JP4432290B2 - 過給機付火花点火式直噴エンジン - Google Patents

過給機付火花点火式直噴エンジン Download PDF

Info

Publication number
JP4432290B2
JP4432290B2 JP2001216479A JP2001216479A JP4432290B2 JP 4432290 B2 JP4432290 B2 JP 4432290B2 JP 2001216479 A JP2001216479 A JP 2001216479A JP 2001216479 A JP2001216479 A JP 2001216479A JP 4432290 B2 JP4432290 B2 JP 4432290B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel
flow
engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001216479A
Other languages
English (en)
Other versions
JP2003027978A (ja
Inventor
和明 梅園
浩康 内田
幹公 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2001216479A priority Critical patent/JP4432290B2/ja
Priority to US10/195,306 priority patent/US6550445B2/en
Priority to DE60200744T priority patent/DE60200744T2/de
Priority to EP02015639A priority patent/EP1277943B1/en
Publication of JP2003027978A publication Critical patent/JP2003027978A/ja
Application granted granted Critical
Publication of JP4432290B2 publication Critical patent/JP4432290B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸気を過給する過給機を備えるとともに、気筒内の燃焼室に直接噴射した燃料を点火プラグの電極周りに成層化して燃焼させるようにした過給機付火花点火式直噴エンジンに関し、特に、高速高負荷側の特定の領域における燃焼制御の技術分野に属する。
【0002】
【従来の技術】
従来より、この種の過給機付火花点火式直噴エンジンとして、例えば特開2000−274278号公報に開示されるように、成層燃焼状態で過給機を停止させる一方、均質燃焼状態では過給により気筒内流動を強化するようにしたものがある。すなわち、成層燃焼状態となる低速低負荷時には過給機による吸気の過給を停止又は抑制して、気筒内流動を相対的に弱い状態とすることで、燃焼室における混合気の拡散を抑制して、適切な成層化を実現する。一方、均質燃焼状態となる高速高負荷時には過給により気筒内流動を強化することで、吸気行程で燃焼室に噴射した多量の燃料を吸気と十分に混合して、良好な均質混合気を形成するものである。
【0003】
尚、一般的に、エンジンの過給機は、吸気の過給圧を所定値(最高過給圧)以下に維持するように構成されており、前記従来例のターボ過給機でも、エンジンが高速高負荷の運転状態にあるときには、排気の一部が過給機をバイパスして排気管の下流側に流れるようになっている。
【0004】
【発明が解決しようとする課題】
ところで、エンジンの気筒内燃焼室に燃料を直接、噴射するという火花点火式直噴エンジンの構成上、1回の燃焼サイクルにおいて燃料噴射が可能な期間は気筒の吸気及び圧縮行程に限られる。このため、燃料噴射量の多くなる高負荷側ではその燃料を気筒の点火時点までに十分に気化霧化させることが難しくなり、燃料の一部が蒸し焼き状態になって、ディーゼルエンジンのような浮遊粒子状物質(パティキュレートマター、以下、PMという)が排出されやすいという問題がある。
【0005】
特に、エンジンが高速高負荷の運転状態にあるときには燃料の噴射量が多くなる一方で、それを噴射可能な時間間隔がエンジン回転速度の上昇に反比例して短くなり、自ずと燃料噴射の終了時期が遅角側に移動することになるから、燃料の噴射から点火までの時間が一層、短くなって、気化霧化がさらに困難になる。また、気筒の圧縮行程では吸気行程に比べて気筒内流動が減衰しているので、燃料噴射の終了時期が気筒の圧縮行程にまで遅角すると、この圧縮行程で噴射された燃料と吸気との混合が促進されにくく、このことによっても燃料の気化霧化が阻害されることになる。
【0006】
加えて、一般的に、火花点火式エンジンでは、排気系の信頼性を考慮して、高速ないし高負荷側の特定の領域において空燃比を理論空燃比よりもリッチになるように制御して、排気温度の上昇を抑えるようにしており、このため、その特定領域においてはたとえ前記従来例のように過給機により吸気を過給して、気筒内流動を強化したとしても、それ以上に多量の燃料が供給されることになるから、前記したPMの問題がさらに顕著なものとなる。
【0007】
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、過給機を備えた火花点火式直噴エンジンにおいて、従来、エンジンの高速高負荷側において排気エネルギの一部が捨てられていることに着目し、特にそのうちの特定の領域における過給圧等の制御等に工夫を凝らして、エンジンの最高出力と排気系の信頼性とを確保しながら、排気中のPMの低減を図ることにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明の解決手段では、高速高負荷側の特定領域において、従来までは捨てていた排気エネルギの一部を回収し、これを有効利用して気筒内流動を最大限に強化するようにした。
【0009】
具体的に、請求項1の発明では、図1に一例を示すように、気筒への吸気を過給する過給機Aと、該気筒内の燃焼室に燃料を直接、噴射供給する燃料噴射弁Bとを備え、少なくとも高速高負荷側の過給領域において前記燃料噴射弁Bにより燃料を気筒の吸気行程で噴射させて均一燃焼状態とするようにした火花点火式4サイクル直噴エンジンCを前提とする。
【0010】
そして、前記気筒内への吸気の流れを絞って気筒内流動を強化する流動強化手段Dと、前記過給機Aによる吸気の過給圧を調整する過給圧調整手段Eと、前記過給領域内の高速高負荷側に設定した特定領域において、気筒内の空燃比A/FをA/F≦13となるように制御する空燃比制御手段Fと、前記特定領域において、該特定領域の低負荷側に隣接する領域に比べて、同じエンジン回転速度であっても気筒内流動が相対的に強くなるように、前記流動強化手段Dによる吸気の絞り度合いを大きくする流動制御手段Gと、前記特定領域において、該特定領域の低速側に隣接する領域に比べて、過給圧力を一定に抑える目標過給圧が相対的に高くなるように前記過給圧調整手段Eを制御する過給圧制御手段Hとを備える構成とする。
【0011】
前記の構成により、エンジンCが高速高負荷側の特定領域にあるときには、まず、空燃比制御手段FによりエンジンCの気筒内の空燃比がリッチ化されて、多量の燃料の気化潜熱により排気温度の過度の上昇が抑制される。また、過給圧制御手段Hにより過給圧調整手段Eの制御が行われて、過給圧が高められるとともに、流動制御手段Gによる流動強化手段Dの制御が行われて、吸気の絞り度合いが大きくされ、それらの相乗的な作用によって気筒内流動が可及的に強化されて、燃料の気化霧化が十分に促進される。
【0012】
つまり、高速高負荷側の特定領域において、従来までは捨てていた排気エネルギを利用して過給機Aにより吸気をさらに過給するとともに、その吸気を敢えて絞ることによって、気筒内流動を最大限に強化することができ、このことで、多量の噴射燃料を十分に気化霧化させて、排気中のPMを低減できるとともに、その多量の燃料の気化潜熱により排気温度の上昇を抑制できる。尚、吸気を絞ることに伴う吸気効率の低下は過給圧の上昇によって補われることになるので、エンジンCの最高出力は十分に確保できる。
【0013】
請求項2の発明では、過給圧制御手段を、流動制御手段による流動強化手段の制御が行われて、吸気の絞り度合いが大きくなったとき、このことによる吸気充填量の低下を補完するように過給圧を高めるものとする。
【0014】
このことで、エンジンが高速高負荷側の特定領域にあって、流動強化手段による吸気の絞り度合いが大きくされ、そのことにより気筒の吸気効率が低下したときでも、その分、過給圧が高められることで、気筒の吸気充填量の低下が補完される。これにより、エンジンの最高出力を確実に維持できるとともに、エンジンの運転状態が前記特定領域とそれ以外の領域との間で遷移するときの出力の変動を抑制できる。
【0015】
請求項3の発明では、流動制御手段を、少なくとも、特定領域を除く過給領域において流動強化手段による吸気の絞り度合いを最小とするものとする。こうすることで、前記特定領域以外で、少なくとも過給領域においては吸気の絞りに伴う吸気効率の低下が最小となり、ポンプ損失の低減によって燃費の改善が図られる。尚、前記特定領域以外では吸気を敢えて絞らなくても、過給によって十分な気筒内流動が得られるから、PMの排出が問題になることはない。
【0016】
請求項4の発明では、流動強化手段として、気筒への吸気通路に配設された開閉弁、及びその開閉弁の開度を調整するアクチュエータを備え、流動制御手段を、前記アクチュエータの作動によって開閉弁の開度を制御するものとする。このことで、流動強化手段の構成が具体的に特定され、流動制御手段により開閉弁を閉じて吸気を絞ることにより、気筒内流動を確実に強化することができる。
【0017】
請求項5の発明では、請求項4の発明において、開閉弁をその開度の減少により気筒内流動としてのタンブル流を強化するものとし、燃料噴射弁は気筒の圧縮行程で当該気筒内の燃焼室を流れるタンブル流に対向するように配置する。そして、低速低負荷側の所定領域において、前記燃料噴射弁により噴射した燃料が気筒の点火時期に可燃混合気となって点火プラグの電極付近に滞留するように、該燃料噴射弁により燃料を当該気筒の圧縮行程でタンブル流に向かって噴射させる燃料噴射制御手段を設けるとともに、流動制御手段を、前記所定領域及び特定領域においてそれぞれ前記開閉弁を閉じるものとする。
【0018】
この構成では、エンジンが低速低負荷側の所定領域にあるときに、流動制御手段により開閉弁が閉じられて気筒内のタンブル流が強化され、このタンブル流に向かって所定のタイミングで噴射された燃料がタンブル流により減速されて、当該気筒の点火時期に点火プラグ電極の周りに成層化されるようになる。つまり、本来、吸気流速の低いエンジンの低速域において、タンブル流を強化して燃料噴霧の貫徹力とバランスさせることで、混合気の適切な成層化が実現される。
【0019】
一方、エンジンが高速高負荷側の特定領域にあるときには、前記流動制御手段により開閉弁を閉じることで、気筒内のタンブル流を確実に強化できる。つまり、低速低負荷時に適切な成層燃焼を実現するために必要な開閉弁を、高速高負荷時にも有効利用することで、コストの増大や構造の複雑化を招くことなく、請求項4の発明の作用効果を十分に得ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基いて説明する。
【0021】
図2は、本発明の実施形態に係る筒内噴射式エンジン1の全体的な構成を示す。このエンジン1は、複数の気筒2,2,…(1つのみ図示する)が直列に並ぶように設けられたシリンダブロック3を有し、このシリンダブロック3上にシリンダヘッド4が配置されるとともに、各気筒2内にはピストン5が上下方向に往復動可能に嵌挿されていて、そのピストン5の冠面とシリンダヘッド4の下面との間の気筒2内に燃焼室6が区画形成されている。また、前記気筒2,2,…を囲むシリンダブロック3の側壁部には、図示しないがウオータジャケットが形成されており、さらに、該シリンダブロック3の下側部分には、気筒2,2,…に連通するようにクランク室7が形成され、ここにクランク軸8が収容されている。このクランク軸8の一端側にはその回転角度を検出するための電磁式のクランク角センサ9が配設されている。
【0022】
前記各気筒2について図3に拡大して示すように、燃焼室6の天井部には互いに差し掛けられた屋根のような形状をなす2つの傾斜面が形成されており、その2つの傾斜面にそれぞれ吸気ポート10及び排気ポート11が2つずつ開口していて、その各開口端に吸気及び排気弁12,12,13,13が配置されている。前記2つの吸気ポート10,10はそれぞれ燃焼室6から斜め上方に向かって直線的に延びていて、エンジン1の一側面(図2の右側面)に互いに独立して開口しており、一方、前記2つの排気ポート11,11は途中で1つに合流して略水平に延び、エンジン1の他側面(図2の左側面)に開口している。
【0023】
前記吸気弁12及び排気弁13は、それぞれ、シリンダヘッド4に配設された2本のカム軸14,14(図2にのみ示す)がタイミングベルトを介して前記クランク軸8により回転駆動されることで、各気筒2毎に所定のタイミングで開閉作動されるようになっている。また、吸気側のカム軸14には、クランク軸8に対する回転位相を所定の角度範囲において連続的に変化させる公知の可変動弁機構15が付設されていて、この可変動弁機構15により前記吸気弁12の開閉作動時期が変更されるようになっている。
【0024】
また、各気筒2毎の燃焼室6の上方には、前記4つの吸排気弁12,13に取り囲まれるように、点火プラグ16が配設されている。この点火プラグ16の先端の電極は、エンジン1が成層燃焼状態のときに燃焼室6の略中央位置に滞留する混合気に対して確実に点火できるよう、該燃焼室6の天井部から所定距離だけ突出した位置にある(図12参照)。一方、該点火プラグ16の基端部には点火回路17(図2にのみ示す)が接続されていて、各気筒2毎に所定の点火タイミングで点火プラグ16に通電するようになっている。
【0025】
一方、前記燃焼室6の底部に相当するピストン5の冠面には、その略中央部において吸気側の周縁部から排気側の周縁部に亘ってレモン型の凹部5aが形成されており、詳しくは後述するが、気筒2の吸気行程で生成されたタンブル流Tが該凹部5aに沿ってスムーズに流れ、当該気筒2の圧縮行程中期まで保持されるとともに、インジェクタ18からの燃料噴霧を包み込むように該インジェクタ18に向かって安定して流れるようになる(図11参照)。
【0026】
また、前記燃焼室6の吸気側の周縁部には、2つの吸気ポート10,10の下方においてそれらに挟まれるようにインジェクタ(燃料噴射弁)18が配設されている。このインジェクタ18は、先端部の噴孔から燃料を旋回流として噴出させて、インジェクタ18の軸心の方向に沿うようにホローコーン状に噴射する公知のスワールインジェクタであり、気筒2の燃料噴射時点においてピストン5冠面の凹部5aに沿って流れるタンブル流Tに対し、燃料噴霧を略正対させて衝突させるような向きに配置されている(図11参照)。
【0027】
前記した点火プラグ16やインジェクタ18の配置構成により、エンジン1が低速低負荷の運転状態のときには、各気筒2の圧縮行程でインジェクタ18から噴射される燃料噴霧の挙動をタンブル流Tにより制御して、点火プラグ16の電極近傍に適切に成層化させ、良好な成層燃焼状態とすることができる。つまり、このエンジン1は、燃料噴霧を気筒内流動により成層化させるようにしたいわゆるエアーガイド方式の直噴エンジンである。
【0028】
前記の如く各気筒2毎に配設されたインジェクタ18,18,…は、全ての気筒2,2,…に共通の燃料分配管19に接続されていて、燃料供給系20から供給される高圧の燃料が該燃料分配管19により各気筒2に分配されるようになっている。この燃料供給系20は、図示しないが、燃料ポンプや燃圧レギュレータ等を備え、燃料タンクからの燃料を前記燃料分配管19に供給するとともに、その燃料の圧力状態(燃圧)をエンジン1の運転状態に応じて調整するようになっている。また、前記燃料分配管19にはその内部の燃圧を検出するための燃圧センサ21が配設されている。
【0029】
前記図2に示すように、エンジン1の一側面には、各気筒2の吸気ポート10,10にそれぞれ連通する吸気通路23が接続されている。この吸気通路23は、エンジン1の燃焼室6に対し図外のエアクリーナで濾過した吸気を供給するものであり、その上流側から下流側に向かって順に、エンジン1に吸入される空気の流量を検出するホットワイヤ式エアフローセンサ24と、後述のタービン37により駆動されて吸気を圧縮するコンプレッサ25と、このコンプレッサ25により圧縮した吸気を冷却するインタークーラ26と、バタフライバルブからなり、吸気通路23を絞る電気式スロットル弁27と、サージタンク28とがそれぞれ配設されている。前記電気式スロットル弁27は、図外のアクセルペダルに対し機械的には連結されておらず、図示しない電動モータにより駆動されて、アクセプペダルの操作量(アクセル開度)に対応する適切な開度となるように開閉される。
【0030】
また、前記サージタンク28よりも下流側の吸気通路23は、各気筒2毎に分岐する独立通路とされ、これらの各独立通路の下流端部がさらに2つに分岐してそれぞれ吸気ポート10,10に連通している。この2つの吸気ポート10,10の双方の上流側には、前記図3にも示すように燃焼室6のタンブル流Tやスワールの強さを調節するための開閉弁30,30(Tumble Swirl Controk Valve:以下、TSCVと略称する)が配設され、例えばステッピングモータ31等のアクチュエータによって開閉作動されるようになっている。このTSCV30は、円形のバタフライバルブの弁軸30aよりも下側の部分を切り欠いており、全閉状態でも吸気が前記切り欠き部分から流通して、燃焼室6に強いタンブル流Tを生成する。一方、TSCV30が開かれると、吸気は切り欠き部分以外からも流通するようになり、タンブル流Tの強さは徐々に低下する。
【0031】
尚、前記吸気ポート10やTSCV30の形状は上述したものに限られず、例えば、バタフライバルブの弁軸よりも上側の部分を切り欠いたものでもよい。また、吸気ポートは、上流側で1つに合流されたいわゆるコモンポートであってもよく、この場合には、TSCVとして、コモンポートの断面形状に対応する形状のバタフライバルブの一部分を切り欠いたものとすればよい。
【0032】
前記図2に示すように、エンジン1の他側面には、燃焼室6から既燃ガス(排気)を排出する排気通路33が接続されている。この排気通路33の上流端は、各気筒2毎に分岐して排気ポート11に連通する排気マニホルド34により構成され、該排気マニホルド34の集合部には排気中の酸素濃度を検出するリニアO2センサ35が配設されている。このリニアO2センサ35は排気中の酸素濃度に基づいて空燃比を検出するために用いられるもので、理論空燃比を含む所定の空燃比範囲において酸素濃度に対しリニアな出力が得られるものである。
【0033】
また、前記排気マニホルド34の集合部よりも下流側の排気通路33には、排気流を受けて回転されるタービン37と、排気管36とが接続されていて、この排気管36の上流側から下流側に向かって順に、略理論空燃比近傍の排気中のHC、CO、NOxを浄化する三元触媒38と、理論空燃比よりもリーンな排気中のNOxを浄化可能ないわゆるリーンNOx触媒39とが配設されている。
【0034】
前記タービン37は、吸気通路23のコンプレッサ25と共にターボ過給機40を構成するものであり、排気流によりタービン37が回転されると、このタービン37と一体に回転するコンプレッサ25が吸気を圧縮して過給する。また、このターボ過給機40には、前記タービン37をバイパスして排気管36の上流側から下流側へ排気を流通させるウエストゲート通路41と、このウエストゲート通路41を流通する排気の流量を調整するウエストゲート弁42とが設けられている。ウエストゲート弁42は、図示しないが、吸気通路23からパイロット通路により導かれる過給圧とコイルバネの付勢力と電磁ソレノイドの発生する駆動力とのバランスによりスプールの開度が調整されて、吸気通路23の過給圧を予め設定した最高過給圧(インターセプト点:図9参照)以下に維持するとともに、その電磁ソレノイドの駆動力を変更することで、最高過給圧をリニアに変更調整可能なものである。前記ウエストゲート通路41及びウエストゲート弁42により、ターボ過給機40による吸気の過給圧を調整する過給圧調整手段が構成されている。
【0035】
尚、図2に示す符号43は、三元触媒38の劣化状態を判定するためにその下流側に配設されたラムダO2センサである。また、図示は省略するが、前記排気通路33におけるタービン37よりも上流側の部位には、排気の一部を吸気側に還流させるEGR通路のの上流端が分岐接続されている。このEGR通路の下流端は前記サージタンク28に接続され、その近傍には開度調節可能な電気式のEGR弁が配設されていて、EGR通路による排気の還流量を調節できるようになっている。
【0036】
(エンジンの燃焼状態の制御)
前記可変動弁機構15、点火回路17、インジェクタ18、燃料供給系20、電気式スロットル弁27、TSCV30等は、いずれもエンジンコントロールユニット50(以下、ECUという)によって作動制御される。一方、このECU50には、少なくとも、前記クランク角センサ9、燃圧センサ21、エアフローセンサ24等からの各出力信号が入力されるとともに、シリンダブロック3のウオータジャケットに臨んで冷却水の温度(エンジン水温)を検出する水温センサ47からの出力信号が入力され、さらに、アクセル開度を検出するアクセル開度センサ48からの出力信号と、エンジン1の回転速度(クランク軸8の回転速度)を検出する回転速度センサ49からの出力信号とが入力されるようになっている。
【0037】
すなわち、前記ECU50は、各センサから入力される信号に基づいて、吸排気弁12,13の開閉作動時期、点火プラグ16による点火時期、インジェクタ18による燃料噴射量、噴射時期及び噴射圧力、スロットル弁27により調節される吸入空気量、TSCV30により調節されるタンブル流Tの強さ等をそれぞれエンジン1の運転状態に応じて制御する。
【0038】
具体的には、例えば図4に一例を示すように、温間のエンジン1では低速低負荷側の所定領域(イ)が成層燃焼領域とされていて、この成層燃焼領域(イ)において図5(a)に模式的に示すように、インジェクタ18により気筒2の圧縮行程で燃料を噴射させて、点火プラグ16の電極付近に混合気が層状に偏在する状態で燃焼させる成層燃焼状態となる。また、この領域(イ)ではエンジン1のポンプ損失を低減するために、スロットル弁27の開度を相対的に大きくするようにしており、このときの燃焼室6の平均的な空燃比は理論空燃比(A/F≒14.7)よりも大幅にリーンな状態になる。
【0039】
一方、前記成層燃料領域(イ)以外はいわゆる均一燃焼領域であり、図5(b)に模式的に示すように、インジェクタ18により気筒2の吸気行程で燃料を噴射させて、燃焼室6に均一な混合気を形成した上で燃焼させる状態になる。この均一燃焼領域の大部分はλ=1領域(ロ)であり、このλ=1領域(ロ)においては、気筒2の混合気の空燃比が略理論空燃比になるように燃料噴射量やスロットル開度等を制御する。また、低速全負荷ないし高速高負荷のエンリッチ領域(ハ)では、空燃比をいわゆるパワー空燃比(A/F≒13)かそれよりもリッチな状態にして、高負荷に対応した大出力を得られるようにしている。
【0040】
特に、前記エンリッチ領域(ハ)における高速側(例えば4000rpm以上)の特定領域では、本発明の特徴部分であるが、高速側ないし高負荷側になるほど、混合気の空燃比をリッチ化させて、余剰の燃料の気化潜熱によって排気温度の上昇を抑えるようにしている(図7参照)。また、この特定領域では、そのように多量に噴射供給する燃料を良好に燃焼させるべく、後述の如くターボ過給機40の最高過給圧を高めるとともに、TSCV30を閉じて、タンブル流Tを最大限に強化するようにしている。
【0041】
尚、前記成層燃焼領域(イ)の高負荷側(例えば1500rpm以上)からλ=1領域(ロ)及びエンリッチ領域(ハ)にかけては、排気流量がある程度以上、多くなってターボ過給機40により実質的に吸気の過給が行われる過給領域となっている。
【0042】
以下、前記ECU50による制御の手順を具体的に説明すると、図6のフローチャート図に示すように、まず、スタート後のステップSA1では、クランク角センサ9、エアフローセンサ24、水温センサ47、アクセル開度センサ48、回転速度センサ49等からの出力信号を入力する。続いて、ステップSA2において、回転速度センサ52により検出されたエンジン回転速度neとアクセル開度センサ51により検出されたアクセル開度とに基づいて、エンジン1の目標負荷Peを演算し、この演算した目標負荷Peとエンジン回転速度neとに基づいて、前記図4に示すような制御マップからエンジン1の運転モードを読み出すことにより、運転モードを演算する。
【0043】
尚、前記目標負荷Peは、アクセル開度とエンジン回転速度neとに対応する最適値が予め実験的に求められてマップとして記録されており、このマップをECU50のメモリに電子的に格納しておいて、現在のアクセル開度とエンジン回転速度neとに対応する値を該マップから読み出すようにすればよい。
【0044】
続いて、ステップSA3以降の各ステップにおいて、前記ステップSA2において設定した運転モード別に制御パラメータを演算して、この演算結果に基づいて点火回路17、インジェクタ18、スロットル弁27、TSCV30等の作動制御を行う。すなわち、ステップSA3においてエンジン1が成層燃焼モードにないNOと判定すれば、後述のステップSA7に進む一方、成層燃焼モードにあるYESと判定すれば、このときにはステップSA4〜SA6に進んで、成層燃焼モードの制御を行う。
【0045】
詳しくは、成層燃焼モードの場合、まずステップSA4において、前記ステップSA2で求めた目標負荷Peとエンジン回転速度neとに基づいて、エンジン1の目標空燃比A/Fを演算する。すなわち、目標空燃比A/Fの値は、目標負荷Peとエンジン回転速度neとに対応する最適値が予め実験的に求められて、図7に一例を示すような空燃比マップとして記録されており、このマップがECU50のメモリに電子的に格納されている。そして、現在の目標負荷Peとエンジン回転速度neとに基づいて、前記空燃比マップから現在の目標負荷Peとエンジン回転速度neとに対応する値を読み出す。
【0046】
続いて、ステップSA5において、エンジン1が成層燃焼状態となるように、インジェクタ18やスロットル弁27等を制御する。すなわち、前記ステップSA4で求めた目標空燃比A/Fと吸気充填効率ceとに基づいて、目標燃料噴射量を演算し、この目標燃料噴射量と現在の燃圧とに基づいて、インジェクタ18の開弁時間間隔(パルス幅)を演算する。ここで、吸気充填効率ceは、例えばエアフローセンサ24からの出力とエンジン回転速度neとに基づいて演算すればよい。
【0047】
また、目標負荷Peとエンジン回転速度neとに基づいて、インジェクタ18の開弁開始タイミング(燃料噴射時期)や点火プラグ13による点火のタイミング(点火時期)等を演算し、さらに、前記目標空燃比A/Fとエンジン回転速度neとに基づいてスロットル弁27の目標開度を演算し、エンジン回転速度neに基づいて目標燃圧を演算する。そして、ECU50から点火回路17、インジェクタ18、燃料供給系20、スロットル弁27等にそれぞれ作動指令となる信号を出力する。
【0048】
尚、前記各制御パラメータの演算には、目標負荷Pe、目標空燃比A/F、回転速度ne等、エンジン1の運転状態を表すパラメータに対応付けて、各制御パラメータの最適値を実験的に設定して記録したマップを予め作成し、このマップをECU50のメモリに電子的に格納しておいて、このマップから現在のエンジン1の運転状態に対応する各制御パラメータの値を読み出すようにすればよい。例えば、目標燃圧については、燃焼室6におけるタンブル流Tの強さがエンジン回転速度neに応じて変化することを考慮して、エンジン回転速度neの上昇に伴うタンブル流速の増大に見合うように、その回転速度neに応じて燃圧を高め、燃料噴霧の貫徹力を増大させるようにしている。
【0049】
続いて、ステップSA6において、目標負荷Peとエンジン回転速度neとに基づいて、TSCV30の目標開度(TSCV開度)を演算する。すなわち、TSCV開度についても、目標負荷Peとエンジン回転速度neとに対応する最適値が予め実験的に求められて、図8に一例を示すようなTSCVマップとして記録されていて、このマップがECU50のメモリに電子的に格納されており、現在の目標負荷Peとエンジン回転速度neとに対応する値をマップから読み出すようにする。このTSCVマップによれば、成層燃焼領域(イ)においてはTSCV開度は略全閉となっており、このことで、本来、吸気の流速が低いエンジン1の低速域においても吸気を絞ってタンブル流Tを強化し、燃料噴霧とバランスさせることができる。そして、ECU50からTSCV30に作動指令となる信号を出力して、しかる後にリターンする。
【0050】
以上、要するに、成層燃焼モードでは、まず、要求される出力が得られるような仮の燃料噴射量を決定し、これに対して空燃比を決定し、この空燃比になるようにスロットル開度を制御して必要な吸入空気量を得るとともに、実際の吸入空気量に応じて最終的に燃料噴射量を制御するようにしている。これにより、排気状態の悪化を招くことなく、優れたドライバビリティと燃費性能を得ることができる。
【0051】
これに対し、前記ステップSA3において成層燃焼モードでないNOと判定して進んだステップSA7では、今度はエンリッチモードかどうか判定し、この判定がYESであれば、後述のステップSA11に進む一方、判定がNOならばλ=1モードであるから、ステップSA8に進み、エンジン1の目標空燃比A/Fを理論空燃比とする。続いて、ステップSA9において前記ステップSA5と同様に目標燃料噴射量とインジェクタ18のパルス幅とを演算し、また、エンジン回転速度neに基づいて目標燃圧を演算するとともに、吸気充填効率ceとエンジン回転速度neとに基づいて燃料噴射時期及び点火時期を演算し、さらに、アクセル開度に基づいてスロットル弁27の目標開度を演算する。そして、ECU50から点火回路17、インジェクタ18、燃料供給系20、スロットル弁27等にそれぞれ作動指令となる信号を出力する。
【0052】
続いて、ステップSA10において、前記ステップSA6と同様に、目標負荷Peとエンジン回転速度neとに基づいて、TSCVマップからTSCV開度を読み込んで、作動指令となる信号をTSCV30に出力し、その後、リターンする。前記のマップによれば、λ=1領域(ロ)においてはTSCV開度は略全開とするようになっており、このことで、吸気効率の低下を最小限に留めて、ポンプ損失を低減することができ、λ=1領域(ロ)における燃費の低減が図られる。
【0053】
以上、要するに、λ=1モードでは、混合気を略理論空燃比とすることを前提とし、要求される出力、即ち混合気の量が得られるようにスロットル開度を制御するとともに、実際の吸入空気量に応じて燃料噴射量を制御するようにしており、これにより、十分な出力と優れたドライバビリティを得ながら、三元触媒38により排気を略完全に浄化することができる。
【0054】
そして、本願発明の特徴は、以下に述べるようなエンリッチモードでの制御にある。すなわち、前記ステップSA7においてエンリッチモードであるYESと判定してステップSA11に進んだ場合、まず、このステップSA11において、前記ステップSA4と同様に、目標負荷Peとエンジン回転速度neとに基づいて、空燃比マップからエンジン1の目標空燃比A/Fを読み込む。ここで、該空燃比マップによれば、エンリッチ領域(ハ)の低速側(図例では4000rpm以下)では、目標空燃比A/Fは、均一燃焼の場合に最も高い出力の得られるいわゆるパワー空燃比(A/F≒13)とされている。
【0055】
一方、エンリッチ領域(ハ)の高速側の特定領域(図例では4000rpmよりも高い領域)においては、目標空燃比A/Fは、A/F≒10〜13の範囲で高速側ないし高負荷側ほどリッチな値になるように設定されている。このことで、エンジン1が前記特定領域にあるときには、各気筒2内の混合気の空燃比A/FはA/F≦13とされて、高負荷に対応する十分な高出力が得られるとともに、その中でも高速側ないし高負荷側になるほど空燃比が徐々にリッチ側に変更されて、吸入空気量に対する燃料噴射量の割合が多くなり、そのように多量に噴射供給される燃料の気化潜熱によって、排気温度の上昇が抑制されることになる。
【0056】
続いて、ステップSA12において、前記目標空燃比A/Fと吸気充填効率ceとに基づいて目標燃料噴射量を演算し、この目標燃料噴射量と現在の燃圧とに基づいてインジェクタ18のパルス幅を演算する。また、エンジン回転速度neに基づいて目標燃圧を演算するとともに、吸気充填効率ceとエンジン回転速度neとに基づいて燃料噴射時期及び点火時期を演算し、さらに、アクセル開度に基づいてスロットル弁27の目標開度を演算する。そして、ECU50から点火回路17、インジェクタ18、燃料供給系20、スロットル弁27等にそれぞれ作動指令となる信号を出力する。
【0057】
続いて、ステップSA13において、前記ステップSA6,SA10と同様に、目標負荷Peとエンジン回転速度neとに基づいて、TSCVマップからTSCV開度を読み込んで、作動指令となる信号をTSCV30に出力する。そのTSCVマップによれば、エンリッチ領域(ハ)の低速側では、TSCV30が略半分、閉じられるように設定されており一方、エンリッチ領域(ハ)の高速側の特定領域においては、TSCV開度は、略全開から全閉までの範囲で高速側ないし高負荷側ほど開度が小さくなるように設定されている。このことで、TSCV開度は、前記特定領域においてその低負荷側に隣接するλ=1領域に比べて、同じエンジン回転速度neであっても相対的に吸気の絞り度合いが大きくなる。
【0058】
続いて、ステップSA14において、ターボ過給機40の最高過給圧の設定値を高くなるように変更する。すなわち、図9に一例を示すように、ECU50には、TSCV開度の全閉から全開までに亘って、その開度が小さくなるほど最高過給圧が徐々に高くなるようにウエストゲート弁42の開度を設定した過給圧テーブルが電子的に格納されている。言い換えると、該過給圧テーブルでは、TSCV30が閉じられて吸気の絞り度合いが大きくなったときに、そのことによる吸気効率の低下を相殺して、気筒2の吸気充填量を維持できるような過給圧が得られるように、ウエストゲート弁42の開度が実験的に求められて設定されている。そして、前記ステップSA13で求めたTSCV開度に基づいて、前記過給圧テーブルから過給圧を読み込み、この過給圧に対応する開度となるようにウエストゲート弁42の電磁ソレノイドに制御信号を出力して、しかる後にリターンする。
【0059】
このことで、前記特定領域では、その低速側に隣接するλ=1領域に比べて、ターボ過給機40による吸気の最高過給圧が高くなる。また、エンジン1の運転状態が前記特定領域とそれ以外の領域との間で遷移するときには、TSCV30やターボ過給機40のウエストゲート弁42の制御がなされるが、その際に気筒2の吸気充填量が急変することがなく、エンジン出力の変動が抑制される。
【0060】
以上、要するに、エンジン1がエンリッチ領域(ハ)にあるときには、空燃比をいわゆるパワー空燃比として高出力を得ながら、基本的には前記λ=1モードと同様の燃焼制御が行われるのであるが、特に高速高負荷側の特定領域においては空燃比をさらにリッチ化して、排気温度の上昇を抑制するとともに、このために噴射される極めて多くの燃料を十分に気化霧化させて良好に燃焼させるために、ターボ過給機40による吸気の過給圧を高め、かつTSCV30を閉じて、敢えて吸気を絞ることにより、燃焼室6のタンブル流Tを最大限に強化するようにしたものである。
【0061】
尚、前記フローのステップSA14では、図9に示すようにターボ過給機40の最高過給圧をTSCV開度に対応付けて設定するようにしているが、これに限るものではなく、同図のような特性が得られるように、最高過給圧を例えば目標負荷Peやエンジン回転速度ne等に対応するマップとして設定記録しておき、このマップに基づいてウエストゲート弁42の開度を制御するようにしてもよい。また、TSCV30による吸気の絞り度合いには個体差があるので、上述した成層燃焼モードの定常運転時等においてTSCV開度と実際の吸気充填量ceとの相関関係を学習し、この学習結果に基づいて前記過給圧のテーブル(図9参照)を補正するようにしてもよい。反対に、必ずしもTSCV開度の変化に応じて吸気充填量を維持するように最高過給圧を変更する必要はなく、単に特定領域において最高過給圧を高めるようにするだけでもよい。
【0062】
前記図6に示すフローチャート図において、ステップSA5により、低速低負荷側の成層燃焼領域(イ)において、インジェクタ18により噴射した燃料が気筒2の点火時期に可燃混合気となって点火プラグ16の電極付近に滞留するように、該インジェクタ18により燃料を当該気筒2の圧縮行程でタンブル流Tに向かって噴射させる燃料噴射制御手段50aが構成されている。
【0063】
また、ステップSA11により、高速高負荷側のエンリッチ領域(ハ)に設定した特定領域において、気筒2内の空燃比A/FをA/F≦13になるように制御する空燃比制御手段50bが構成されている。
【0064】
また、ステップSA13により、前記特定領域においてその低負荷側に隣接するλ=1領域(ロ)に比べて、同じエンジン回転速度neであってもタンブル流Tが相対的に強くなるように、TSCV30による吸気の絞り度合いを大きくする流動制御手段50cが構成されている。
【0065】
さらに、ステップSA14により、前記特定領域においてその低速側に隣接するλ=1領域(ロ)に比べて、過給圧力を一定に抑える目標過給圧(最高過給圧)が高くなるようにターボ過給機40のウエストゲート弁42の開度を制御する過給圧制御手段50dが構成されている。
【0066】
(エンジン1の運転動作)
以下、この実施形態に係るエンジン1の運転動作について詳細に説明する。
【0067】
まず、エンジン1が成層燃焼領域(イ)にあるとき、図10に示すように、気筒2の吸気行程において吸気ポート10,10から燃焼室6に流入する吸気により、タンブル流Tが生成される。このタンブル流Tは、図11に示すように、当該気筒2の圧縮行程中期以降まで保存され、ピストン5冠面の凹部5aに沿ってインジェクタ18に向かって流れるようになる。この際、圧縮行程におけるピストン5の上昇に伴いタンブル流Tは徐々に潰されてコンパクトになり、その流速も低下することになるが、ペントルーフ型燃焼室6の天井部とピストン5冠面の凹部5aとの間に適切な形状の空間が残されているため、タンブル流Tは当該気筒2の圧縮行程中期以降まで崩壊することがない。
【0068】
そして、同図に示すように、インジェクタ18により燃料が噴射されると、この燃料噴霧の大部分は、ピストン5冠面の凹部5aに沿って流れるタンブル流Tの流れの強いところに略正対するように衝突する。これにより、燃料液滴の気化霧化や周囲の空気との混合が促進されるとともに、その燃料噴霧がタンブル流Tを押し退けるように進みながら、徐々に減速されて、図12に示す当該気筒2の点火時期において同図に斜線を入れて示すように可燃混合気となって、点火プラグ16の電極付近に滞留するようになる。この状態で該点火プラグ16に通電されることよって、可燃混合気層に点火される。
【0069】
つまり、低速低負荷側の成層燃焼領域(イ)では、インジェクタ18による燃料噴霧の貫徹力を対向するタンブル流Tの流速に対応するように調節し、かつ気筒2の点火時期から逆算した所定のタイミングで燃料を噴射させることにより、燃料噴霧貫徹力とタンブル流速とをバランスさせて、点火プラグ16の電極周りに混合気を適切にかつ安定的に成層化させることができ、もって、良好な成層燃焼を実現できる。
【0070】
一方、エンジン1がλ=1領域(ロ)又はエンリッチ領域(ハ)にあるときには、気筒2の吸気行程においてタンブル流Tが生成されるとともに、インジェクタ18により燃料の噴射が行われる。この噴射噴霧は、圧縮行程に比べて低圧の燃焼室6内において相対的に大きく拡がるとともに、ピストン5の下降移動に伴う燃焼室6の容積の増大によって拡散しながら、タンブル流Tによって吸気と十分に混合されかつ十分に気化霧化して、燃焼室6全体に略均一な可燃混合気を形成する。そして、その後の点火時期において点火プラグ16の電極に通電されると、その近傍にて生成された火炎核が急速に成長して、良好な均一燃焼状態となる。
【0071】
特に、エンリッチ領域(ハ)における高速側の特定領域においては、ウエストゲート弁42の制御によりターボ過給機40の最高過給圧が高められ、これにより最大限の過給が行われて気筒2への吸入空気量が極めて多くなるとともに、当該気筒2の混合気の空燃比A/FがA/F≦13となるよう、インジェクタ18から多量の燃料が噴射される。この際、エンジン回転速度neの上昇に伴い燃料を噴射可能な時間間隔が自ずと短くなり、燃料噴射終了時期が遅角側に移動するから、燃料の気化霧化には極めて不利な条件となるが、前記のように最大限の過給が行われているにもかかわらず、TSCV30が閉じられて吸気が絞られることで、高い過給圧との相乗的な作用により、燃焼室6のタンブル流Tが可及的に強化され、これにより、多量の噴射燃料が十分に気化霧化されることになるので、燃焼に伴うPMの生成は十分に抑制される。
【0072】
その際、前記したように、TSCV30を閉じることによる吸気充填量の低下を補完するように、ターボ過給機40の最高過給圧を高めるようにしているので、エンジン1の最高出力が維持されるとともに、エンジン1の運転状態が前記特定領域とそれ以外の領域との間で相互に移行したときにも、出力の変動を招くことがない。
【0073】
図14は、この実施形態のような過給機付直噴エンジンを用い、高速高負荷側の特定領域において従来までのように単に混合気の空燃比をリッチ化させたものと(従来例)、そのときの燃料噴射量を控えめにしてPMの生成を抑制すべく、混合気の空燃比A/FをA/F=10.5としてややリーン側に変更したものと(比較例)、上述したように、過給圧を最大限に高めるとともに敢えて吸気を絞ったものと(実施例)について、排気中のPMの排出量やエンジン出力等とを対比した実験結果を示す。
【0074】
同図によれば、従来例のものでは十分に高い出力が得られる一方で、PMの排出量も多いことが分かる。また、比較例のものでは空燃比A/Fをややリーン化したことで、PMの排出量をかなり減らせるものであるが、同時に、出力も低下してしまうことが分かる。尚、比較例のもので過給圧が僅かに低下しているのは排気温度の過度の上昇を防止するためであり、仮に過給圧を従来例と同等にしたとしても、出力の低下は避けられない。
【0075】
そのような従来例及び比較例に対し、本願発明の実施例では、上述の如く、ターボ過給機40の最高過給圧を高めるとともに、これにより増大する吸気を敢えてTSCV30により絞って、タンブル流を可及的に強化することによって、燃料の気化霧化を十分に促進することができ、これにより、図示の如くPMの排出量が圧倒的に少なくなることが分かる。しかも、その際に、TSCVが閉じられることによって吸気効率の低下する分を、過給圧を高めることによって補うようにしているので、従来例と同等の高出力を得られることが分かる。
【0076】
したがって、この実施形態に係る過給機付火花点火式直噴エンジン1によると、エンジン1が高速高負荷側の特定領域にあるときに、気筒2の混合気の空燃比を高速側ないし高負荷側ほどリッチになるようにして、燃料の気化潜熱により排気温度の上昇を抑制し、もって排気系の信頼性を確保できる。
【0077】
その際、従来までは捨てていた排気エネルギを利用して、ターボ過給機40により吸気をさらに過給するとともに、その吸気を敢えて絞ることによって、燃焼室6のタンブル流Tを可及的に強化することができ、これにより、多量の燃料の気化霧化を十分に促進して、PMの排出を低減できる。
【0078】
また、そのようにTSCV30を閉じて吸気を絞ることによって、吸気効率は低下することになるが、同時に、気筒2への吸気充填量は低下しないように過給圧を高めるようにしているので、エンジン1の最高出力を確実に維持することができ、さらに、エンジン1の運転状態が該特定領域とそれ以外の領域との間で相互に移行したときにも出力の変動を招くことがない。
【0079】
さらに、この実施形態のエンジン1の場合、エアーガイド方式の適切な成層燃焼を実現するためにTSCV30を設けることが必要であり、このTSCV30を用いて前記のような作用が得られるものであるから、新たなハードウエアを追加する必要もなく、コストの増大や構成の複雑化を招かずに、上述の効果を十分に得ることができる。
【0080】
(他の実施形態)
本願発明の構成は、前記実施形態のものに限定されることはなく、その他の種々の構成を包含するものである。すなわち、前記実施形態では、気筒内流動として特にタンブル流Tに注目しており、吸気通路23に設けたTSCV30とステッピングモータ31とにより、気筒2内への吸気の流れを絞ってタンブル流Tを強化するようにしているが、これに限らず、例えば、2以上の吸気弁を備えたエンジンにおいて、それらの内の少なくとも1つの吸気弁のリフト量を強制的に減少させるような機構を設けたり、或いは、1つないし2つの吸気弁の開作動を強制的に停止させるような機構を設け、これらの機構の作動によって、気筒2への吸気を絞ることにより、タンブル流Tやスワール流等の気筒内流動を強化するようにしてもよい。
【0081】
また、前記実施形態では、ターボ過給機40の最高過給圧を調整するウエストゲート通路41及びウエストゲート弁42により、過給圧調整手段を構成しているが、これに限るものではなく、例えば、タービンへの排気を絞ってその流速を変更することにより、過給効率を可変とした可変ターボ過給機を用いるようにしてもよい。
【0082】
さらに、過給機としてターボ過給機に限らず、例えば、エンジン1のクランク軸8や電動モータにより駆動する機械式過給機を用いるようにしてもよく、この場合には、過給圧を逃がすリリーフ弁や過給機の駆動力を調整する調整機構によって、過給圧調整手段を構成すればよい。
【0083】
さらにまた、前記実施形態では、本願発明をいわゆるエアーガイド方式の直噴エンジンに適用しているが、これに限らず、インジェクタにより燃焼室内に直接噴射した燃料をピストン冠面の凹部内壁により案内して点火プラグの電極周りに成層化させるようにした、いわゆるウオールガイド方式の直噴エンジンにも同様に適用することができる。
【0084】
【発明の効果】
以上、説明したように、請求項1の発明に係る過給機付火花点火式直噴エンジンによると、少なくとも高速高負荷側の過給領域において燃料噴射弁により燃料を気筒の吸気行程で噴射させて、均一燃焼状態とする場合に、その内の特定領域においては空燃比制御手段によりエンジンの気筒内の空燃比をリッチ化させて、排気温度の過度の上昇を抑制しながら、過給機により吸気をさらに過給し、かつその吸気を敢えて絞ることによって、気筒内流動を最大限に強化することにより、エンジンの最高出力を確保しながら、多量の燃料を十分に気化霧化させて、排気中のPMを低減することができる。
【0085】
請求項2の発明によると、特定領域において吸気絞りによる吸気充填量の低下を補完するように過給圧を高めることで、エンジンの最高出力を維持できるとともに、エンジン出力の変動を抑制できる。
【0086】
請求項3の発明によると、少なくとも、特定領域を除く過給領域において吸気の絞り度合いを最小とすることで、当該領域におけるポンプ損失の低減によって、燃費の改善が図られる。
【0087】
請求項4の発明によると、気筒への吸気通路に配設した開閉弁を閉じて吸気を絞ることにより、気筒内流動を確実に強化することができる。
【0088】
請求項5の発明によると、成層燃焼時にタンブル流を強化するために開閉弁を必要とするいわゆるエアーガイド方式の直噴エンジンにおいて、その開閉弁を有効利用して、コスト増大や構造の複雑化を招かずに、請求項4の発明の効果を十分に得ることができる。
【図面の簡単な説明】
【図1】本発明の過給機付火花点火式直噴エンジンの概略構成を示す模式図である。
【図2】実施形態に係るエンジンの全体構成図である。
【図3】ピストン冠面、吸気ポート、点火プラグ及びインジェクタの配置構成を示す斜視図である。
【図4】エンジンの運転モードを設定した制御マップの一例を示す図である。
【図5】インジェクタによる燃料噴射時期を模式的に示すタイムチャート図である。
【図6】エンジンの基本的な制御手順を示すフローチャート図である。
【図7】目標負荷及びエンジン回転速度に対応する適切な目標空燃比の値を設定して記録した空燃比マップの一例を示す図である。
【図8】目標負荷及びエンジン回転速度に対応する適切なTSCV開度を設定して記録したTSCVマップの一例を示す図である。
【図9】TSCV開度に対応する適切な最高過給圧を設定したテーブルの一例を示す図である。
【図10】気筒の吸気行程において燃焼室に生成されるタンブル流の様子を示す図である。
【図11】気筒の燃料噴射時期においてタンブル流に衝突するように噴射された燃料噴霧の様子を示す図である。
【図12】気筒の点火時期において点火プラグの電極付近に滞留する混合気の様子を示す説明図である。
【図13】気筒の吸気行程において燃焼室に生成されるタンブル流やインジェクタからの燃料噴霧の様子を示す図である。
【図14】高速高負荷側の特定領域におけるターボ過給圧、PMの排出量及びエンジン出力を、従来例や比較例と対比して示す実験結果のグラフ図である。
【符号の説明】
1 過給機付火花点火式直噴エンジン
2 気筒
6 燃焼室
16 点火プラグ
18 インジェクタ(燃料噴射弁)
30 TSCV(開閉弁)
31 アクチュエータ
40 ターボ過給機(過給機)
41 ウエストゲート通路(過給圧調整手段)
42 ウエストゲート弁(過給圧調整手段)
50 ECU
50a 燃料噴射制御手段
50b 空燃比制御手段
50c 流動制御手段
50d 過給圧制御手段
T タンブル流(気筒内流動)

Claims (5)

  1. 気筒への吸気を過給する過給機と、該気筒内の燃焼室に燃料を直接、噴射供給する燃料噴射弁とを備え、少なくとも高速高負荷側の過給領域において前記燃料噴射弁により燃料を気筒の吸気行程で噴射させて均一燃焼状態とするようにした火花点火式4サイクル直噴エンジンにおいて、
    前記気筒内への吸気の流れを絞って気筒内流動を強化する流動強化手段と、
    前記過給機による吸気の過給圧を調整する過給圧調整手段と、
    前記過給領域内の高速高負荷側に設定した特定領域において、気筒内の空燃比A/FをA/F≦13になるように制御する空燃比制御手段と、
    前記特定領域において、該特定領域の低負荷側に隣接する領域に比べて、同じエンジン回転速度であっても気筒内流動が相対的に強くなるように、前記流動強化手段による吸気の絞り度合いを大きくする流動制御手段と、
    前記特定領域において、該特定領域の低速側に隣接する領域に比べて、過給圧力を一定に抑える目標過給圧が相対的に高くなるように前記過給圧調整手段を制御する過給圧制御手段とを備えることを特徴とする過給機付火花点火式直噴エンジン。
  2. 請求項1において、
    過給圧制御手段は、流動制御手段による流動強化手段の制御が行われて、吸気の絞り度合いが大きくなったとき、このことによる吸気充填量の低下を補完するように過給圧を高めるものであることを特徴とする過給機付火花点火式直噴エンジン。
  3. 請求項1又は2のいずれかにおいて、
    流動制御手段は、少なくとも、特定領域を除く過給領域において流動強化手段による吸気の絞り度合いを最小とするように構成されていることを特徴とする過給機付火花点火式直噴エンジン。
  4. 請求項1において、
    流動強化手段は、気筒への吸気通路に配設された開閉弁と、この開閉弁の開度を調整するアクチュエータとを備え、
    流動制御手段は、前記アクチュエータの作動によって開閉弁の開度を制御するように構成されていることを特徴とする過給機付火花点火式直噴エンジン。
  5. 請求項4において、
    開閉弁は、その開度の減少により気筒内流動としてのタンブル流を強化するものであり、
    燃料噴射弁は、気筒の圧縮行程で当該気筒内の燃焼室を流れるタンブル流に対向するように配置され、
    低速低負荷側の所定領域において、前記燃料噴射弁により噴射した燃料が気筒の点火時期に可燃混合気となって点火プラグの電極付近に滞留するように、該燃料噴射弁により燃料を当該気筒の圧縮行程でタンブル流に向かって噴射させる燃料噴射制御手段が設けられ、
    流動制御手段は、前記所定領域及び特定領域においてそれぞれ前記開閉弁を閉じるように構成されていることを特徴とする過給機付火花点火式直噴エンジン。
JP2001216479A 2001-07-17 2001-07-17 過給機付火花点火式直噴エンジン Expired - Fee Related JP4432290B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001216479A JP4432290B2 (ja) 2001-07-17 2001-07-17 過給機付火花点火式直噴エンジン
US10/195,306 US6550445B2 (en) 2001-07-17 2002-07-16 Spark-ignition direct injection engine with supercharger
DE60200744T DE60200744T2 (de) 2001-07-17 2002-07-16 Funkgezündete Brennkraftmaschine mit Direkt-Einspritzung und Turbolader
EP02015639A EP1277943B1 (en) 2001-07-17 2002-07-16 Spark ignition direct injection engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216479A JP4432290B2 (ja) 2001-07-17 2001-07-17 過給機付火花点火式直噴エンジン

Publications (2)

Publication Number Publication Date
JP2003027978A JP2003027978A (ja) 2003-01-29
JP4432290B2 true JP4432290B2 (ja) 2010-03-17

Family

ID=19050949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216479A Expired - Fee Related JP4432290B2 (ja) 2001-07-17 2001-07-17 過給機付火花点火式直噴エンジン

Country Status (4)

Country Link
US (1) US6550445B2 (ja)
EP (1) EP1277943B1 (ja)
JP (1) JP4432290B2 (ja)
DE (1) DE60200744T2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208327A1 (de) * 2002-02-27 2003-09-11 Bosch Gmbh Robert Verfahren und Motorsteuereinheit zum schadstoffemissionsarmen Magerbetrieb eines Ottomotors
US7047741B2 (en) * 2002-08-08 2006-05-23 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods for low emission, controlled temperature combustion in engines which utilize late direct cylinder injection of fuel
DE102006030213A1 (de) * 2006-06-30 2008-01-03 Fev Motorentechnik Gmbh Homogenisiertes Einspritzverfahren
WO2008015536A1 (en) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Direct injection spark ignition internal combustion engine and fuel injection method for same
DE102006037413B4 (de) * 2006-08-10 2008-05-29 Ford Global Technologies, LLC, Dearborn Direkteinspritzende fremdgezündete Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP2348213B1 (en) * 2008-11-19 2018-04-25 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5834829B2 (ja) 2011-11-28 2015-12-24 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP5243637B1 (ja) * 2012-03-29 2013-07-24 三菱電機株式会社 内燃機関システム
US9014947B2 (en) 2012-10-25 2015-04-21 Ford Global Technologies, Llc Exhaust-gas regeneration under rich conditions to improve fuel economy
JP6323684B2 (ja) 2015-06-03 2018-05-16 マツダ株式会社 エンジンの制御装置
JP6323683B2 (ja) * 2015-06-03 2018-05-16 マツダ株式会社 エンジンの制御装置
KR20170041321A (ko) * 2015-10-06 2017-04-17 현대자동차주식회사 수퍼차저의 제어방법
JP6337872B2 (ja) * 2015-11-24 2018-06-06 トヨタ自動車株式会社 内燃機関の制御装置
US9982610B2 (en) * 2015-11-30 2018-05-29 Hyundai Motor Company Control method of boosting apparatus
JP6848840B2 (ja) * 2017-11-30 2021-03-24 トヨタ自動車株式会社 ウェイストゲートバルブの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611568A (en) * 1984-05-16 1986-09-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with by-pass control system for supercharger
KR910002898B1 (ko) * 1986-11-27 1991-05-09 마쯔다 가부시기가이샤 과급기부착엔진
JPH01318728A (ja) * 1988-06-16 1989-12-25 Mazda Motor Corp 過給機付エンジンの燃料供給装置
US5239960A (en) 1991-07-30 1993-08-31 Mazda Motor Corporation Engine induction system provided with a mechanical supercharger
JPH07293304A (ja) 1994-04-20 1995-11-07 Fuji Heavy Ind Ltd 燃料噴射式エンジンのタンブル制御装置
JP4035859B2 (ja) * 1997-03-31 2008-01-23 マツダ株式会社 過給機付筒内噴射式エンジン
JP2000274278A (ja) 1999-03-25 2000-10-03 Toyota Motor Corp 筒内噴射式火花点火内燃機関
US6279551B1 (en) * 1999-04-05 2001-08-28 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine with supercharging device

Also Published As

Publication number Publication date
EP1277943B1 (en) 2004-07-14
EP1277943A1 (en) 2003-01-22
US6550445B2 (en) 2003-04-22
DE60200744D1 (de) 2004-08-19
JP2003027978A (ja) 2003-01-29
DE60200744T2 (de) 2005-07-21
US20030024499A1 (en) 2003-02-06

Similar Documents

Publication Publication Date Title
CN109931175B (zh) 压燃式发动机的控制装置
CN109931176B (zh) 压燃式发动机的控制装置
US6725829B2 (en) Combustion control apparatus of diesel engine
US10641193B2 (en) Control system for compression-ignition engine
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
US6668792B2 (en) Control system for in-cylinder direct injection engine
US5937821A (en) Control apparatus for an in-cylinder injection type internal combustion engine
CN109931170B (zh) 压燃式发动机的控制装置
US10641192B2 (en) Control system for compression-ignition engine
JP4432290B2 (ja) 過給機付火花点火式直噴エンジン
US10704523B2 (en) Control system of compression-ignition engine
JP5071718B2 (ja) 筒内噴射型内燃機関の制御装置
US10704524B2 (en) Control system of compression-ignition engine
JP2002188474A (ja) ターボ過給機付きディーゼルエンジンの制御装置
JP4186344B2 (ja) 火花点火式直噴エンジンの制御装置
JP2003262132A (ja) 火花点火式直噴エンジンの吸気装置
JP4032762B2 (ja) 火花点火式直噴エンジン
JP2003106177A (ja) 火花点火式直噴エンジン
JP2003027977A (ja) 過給機付火花点火式直噴エンジン
JP2003222049A (ja) 火花点火式直噴エンジン
JP5472628B2 (ja) 内燃機関
JPH06147022A (ja) 筒内噴射型内燃機関
JP2002332849A (ja) 火花点火式直噴エンジンの制御装置
JP2003106180A (ja) 過給機付火花点火式直噴エンジン
JP2003254070A (ja) 火花点火式直噴エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees