JP4423230B2 - X線検出器の不感時間の測定方法 - Google Patents

X線検出器の不感時間の測定方法 Download PDF

Info

Publication number
JP4423230B2
JP4423230B2 JP2005148039A JP2005148039A JP4423230B2 JP 4423230 B2 JP4423230 B2 JP 4423230B2 JP 2005148039 A JP2005148039 A JP 2005148039A JP 2005148039 A JP2005148039 A JP 2005148039A JP 4423230 B2 JP4423230 B2 JP 4423230B2
Authority
JP
Japan
Prior art keywords
ray
condition
ray intensity
intensity
setting state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005148039A
Other languages
English (en)
Other versions
JP2006322885A (ja
Inventor
智康 上田
義泰 伊藤
和彦 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2005148039A priority Critical patent/JP4423230B2/ja
Priority to US11/435,237 priority patent/US7342997B2/en
Priority to EP06010412A priority patent/EP1724610B1/en
Publication of JP2006322885A publication Critical patent/JP2006322885A/ja
Application granted granted Critical
Publication of JP4423230B2 publication Critical patent/JP4423230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/171Compensation of dead-time counting losses

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、パルス型のX線検出器における不感時間の測定方法に関するものである。
パルス型のX線検出器,例えば,比例計数管,シンチレーションカウンタ,半導体検出器(例えば,アバランシェ・フォト・ダイオード)などは,X線強度をX線の光子(粒子)の数としてカウントするものであり,原理上,有限の不感時間に基づく数え落としが生じる。二つのX線光子が所定の時間よりも短い時間間隔でパルス型のX線検出器に入射すると,それらは分離して測定することが不可能になり,1個以下のX線光子としてカウントされる。上述の所定の時間を不感時間(dead time)と呼ぶ。不感時間には,検出器固有のものと,波高分析器などの電子回路に由来するものがあるが,この出願では,X線検出器の最終的な出力から見た不感時間(検出器全体として見た場合の不感時間)を対象としている。
次に,不感時間を考慮したX線検出強度の補正式を説明する。図1の(1)式は,増幅回路を使用した窒息型検出器におけるX線検出強度の補正式である。この式において,IobsはX線検出器で実際に記録されたX線強度,ItruはX線検出器に入射した真のX線強度,τは不感時間である。X線強度の単位は単位時間当たりのカウント数(例えば,cps)である。図2は,(1)式をグラフに示したものである。横軸がItru,縦軸がIobsである。直線10は,IobsがItruに等しいときのグラフであり,数え落としがない場合(すなわち,不感時間がゼロの場合)の理想的な状態である。有限の不感時間τがある場合は,上述の(1)式の形は山形の曲線となり,Itru=1/τにおいてIobsが最大値となる。
(1)式を,Itruが左辺になるように書き換えると,図1の(2)式のようになる。この(2)式は,記録X線強度Iobsと不感時間τとを用いて,真のX線強度Itruを求める式となる。(2)式におけるexpの入れ子は無限に続いている。現実の計算においては,入れ子の数を所定数のところで打ち切ることになるが,所定数を十分大きくすれば,十分な精度で,真のX線強度を求めることができる。入れ子の数を3個で打ち切ったときの形を,(3)式として例示する。
図3は,(2)式における入れ子の数に応じて,(2)式の計算値,すなわち,真のX線強度の計算値Itru,がどのように変化するかを示したグラフである。この場合,記録X線強度Iobsを20万cps,不感時間τを「8×10のマイナス7乗」秒として計算している。入れ子の数を増やしていくと計算値は収束していくが,図3から明らかなように,入れ子の数を10程度にすれば,入れ子の数を無限大にした場合とほぼ同じ計算結果が得られることが分かる。
したがって,入れ子の数を十分に大きくすれば,上述の(2)式に基づいて,記録X線強度Iobsと不感時間τを用いて,真のX線強度Itruを十分な精度で求めることができる。
上述のように,不感時間τが分かれば,記録X線強度Iobsから真のX線強度を計算できるので,数え落としの補正をするには,不感時間τを正しく求めることが重要になる。不感時間の求め方の従来方法は,例えば,次の二つの公知文献に記載されている。
新版X線回折要論,カリティ著,松村源太郎訳,株式会社アグネ,1980年,181頁 実験物理学講座20・X線回折,高良和武責任編集,共立出版株式会社,1988年,147−148頁
非特許文献1では,均一な厚さの金属箔を複数枚重ねて,これをX線光路に挿入し,金属箔を1枚ずつ取り除きながら,X線強度を記録している。取り除かれた金属箔の数を横軸にとり,記録したX線強度(cps)を対数目盛りの縦軸にとると,取り除いた金属箔の数が少ないところでは(すなわち,X線強度が小さくて数え落としの少ないところでは),取り除いた金属箔の数と,記録したX線強度の対数とが比例関係になる。一方,取り除いた金属箔の数が多くなると(すなわち,X線強度が大きくなって数え落としが増えてくると),取り除いた金属箔の数と,記録したX線強度の対数とは,比例関係から外れてくる。このようなグラフから,X線強度がどの程度になったら数え落としの影響が増大するのかを判断することができる。また,X線強度が小さいときの上述の比例関係を延長していけば,X線強度が大きいときの真のX線強度を推定することができて,その推定X線強度と,記録したX線強度とを用いて,上述の(1)式に基づいて,不感時間を求めることも可能である。
金属箔の枚数によってX線強度を変える代わりに,X線管の管電流を変える方法も知られている。これを説明すると,X線管のX線強度は管電流に比例するので,管電流の小さいところでX線強度を測定し(このときは,記録X線強度と真のX線強度とはほぼ等しい),次に,数え落としが生じるほどに管電流を大きくしてからX線強度を測定して,そのときの記録X線強度と,推定した真のX線強度(管電流に比例するものとして計算する)とから,不感時間を求めることができる。
また,非特許文献2では,不感時間を実験的に決定する方法として,2線源法の文献を紹介している。
不感時間を実験的に求めるためには,真のX線強度を何らかの手法で推定する必要がある。上述のように管電流に基づいて真のX線強度を推定すると,次の問題がある。まず,管電流を変えてからX線強度が安定するまでに30分程度の時間がかかる。また,管電流と,X線検出器に入射するX線強度とが本当に比例するかどうかが,必ずしも保証されていない。例えば,管電流が変わることによってターゲット上のフォーカス位置が変わるので,X線検出器に到達した時点でのX線強度は,必ずしも管電流に比例しない。特にX線源とX線検出器の間に多層膜ミラーなどの光学素子が挿入されると,管電流とX線検出器の入射X線強度とは全く比例しなくなる。また,真のX線強度を推定するためには,管電流値が小さいところで検出したX線強度を使うことになるので,推定された高いX線強度そのものの精度があまり良くない。
管電流を使わない場合でも,真のX線強度を何らかの手法で推定して不感時間を求めれば,不感時間の測定精度は,真のX線強度の推定手法の精度に依存することになる。
本発明は,上述の問題点を解決するためになされたものであり,その目的は,真のX線強度を推定することなく,きわめて短時間で,かつ,高精度に不感時間を測定できるような不感時間の測定方法を提供することにある。
本発明は,パルス型のX線検出器の不感時間の測定方法であって,次の各段階を備えている。(ア)X線源から前記X線検出器に至るX線光路の状態を変更できる第1条件と第2条件であって,それらの条件の設定状態を変更することで前記X線検出器に入射する入射X線強度が変化するような第1条件と第2条件を選定する段階であり,前記第1条件は前記X線光路に配置されたスリットの状態であり,前記第2条件は前記X線光路に配置されたスリットの開口高さの制限である,段階。(イ)前記第1条件について,少なくとも3個の設定状態を選定する段階。(ウ)前記第2条件について,第1の設定状態における前記入射X線強度と第2の設定状態における前記入射X線強度とが互いに異なるように,かつ,前記第1条件の前記少なくとも3個の設定状態のいずれにおいても,前記第1の設定状態における前記入射X線強度と前記第2の設定状態における前記入射X線強度との比率が一定になるように,前記第1の設定状態と前記第2の設定状態を選定する段階。(エ)前記第2条件を前記第1の設定状態に設定する段階。(オ)前記第1条件の前記少なくとも3個の設定状態のそれぞれに対して,前記X線源から前記X線光路を経由して前記X線検出器にX線を入射して,そのときの前記X線検出器の出力を第1記録X線強度として記録する第1の記録段階。(カ)前記第2条件を前記第1の設定状態から前記第2の設定状態に変更する段階。(キ)前記第1条件の前記少なくとも3個の設定状態のそれぞれに対して,前記X線源から前記X線光路を経由して前記X線検出器にX線を入射して,そのときの前記X線検出器の出力を第2記録X線強度として記録する第2の記録段階。(ク)前記第1条件の前記少なくとも3個の設定状態のそれぞれについて,前記第1記録X線強度と前記第2記録X線強度と前記比率と前記不感時間との関係を定める関係式を作成し,前記第1記録X線強度と前記第2記録X線強度を既知数とし,前記比率と前記不感時間を未知数として,前記関係式が最も満足されるように,前記比率と前記不感時間を決定する段階。
上述の(ク)の段階において,前記比率が既知の場合は,不感時間だけを未知数として,不感時間を決定することもできる。
第1条件は,滑らかなスキャンができて良好な再現性を有する変化量であることが好ましい。また,第2条件は,第1条件における状態変化のいずれにおいても,第1設定状態におけるX線検出器への入射X線強度と第2設定状態における入射X線検出強度との比率が一定になるようなものを選定する。そして,第1条件と第2条件の組み合わせのうち,すくなくともどこかの部分では,パルスの数え落としが生じるような大きなX線強度が得られることも大切である。
第1条件の設定状態の数は3個以上である。この設定状態の数を多くすればするほど,不感時間の決定精度が向上する。発明者らの実験によれば,第1条件の設定状態を3個にした場合でも,本発明に従って最小二乗法で決定した記録X線強度と,実際の記録X線強度との誤差は,5%の範囲内に収まっている。したがって,第1条件の設定状態の数は3個でも,本発明は有効に機能する。ただし,不感時間の精密化のためには,第1条件の設定状態の数はもっと多くするのが好ましく,できれば10個以上,より好ましくは100個以上とする。
第1条件は,X線光路に配置されたスリットの状態であるが,このスリットの状態変化としては,例えば,受光スリットのスリット幅を変化させること,幅一定の受光スリットをX線光路に垂直な方向に移動させること,発散スリットのスリット幅を変化させること,幅一定の発散スリットをX線光路に垂直な方向に移動させること,などを採用できる。
本発明によれば,第1条件の少なくとも三つの設定状態と,第2条件の二つの設定状態との組み合わせを用いて,比較的多くの記録X線強度を求めて,所定の関係式に基づいて,例えば最小二乗法によるフィッティングによる最適化を行うことで,不感時間を精密に決定している。これにより,真のX線強度を推定することなく,短時間で,かつ,高精度に不感時間を測定することができる。
以下,図面を参照して本発明の実施例を詳しく説明する。まず,本発明の理論を説明する。図1の(1)式は,既に述べたように,増幅回路を使用した窒息型検出器におけるX線検出強度の補正式である。これを書き換えたものが(2)式である。(2)式は,記録X線強度Iobsと不感時間τとを用いて,真のX線強度Itruを求める式である。(2)式の右辺は,記録X線強度Iobsと不感時間τの関数であるから,その関数形をfで表すと,(2)式は(4)式のように表現できる。
本発明は,不感時間を求めるためにX線検出器を用いてX線強度を記録しているが,そのときに,第1条件と第2条件とを用いている。第1条件は,少なくとも3個,好ましくは10個以上,できれば100個程度の設定状態を用いる。一方,第2条件は,二つの設定状態を用いる。第2条件が第1の設定状態にあるときの記録X線強度を,第1記録X線強度と呼ぶことにし,これをIobs1で表す。また,第2条件が第2の設定状態にあるときの記録X線強度を第2記録X線強度と呼ぶことにし,これをIobs2で表す。第1記録X線強度Iobs1に対応する第1の真のX線強度をItru1で表し,第2記録X線強度Iobs2に対応する第2の真のX線強度をItru2で表す。第1記録X線強度Iobs1と,第1の真のX線強度Itru1との間には,(1)式と同様に,(5)式の関係が成立する。同様に,第2記録X線強度Iobs2と,第2の真のX線強度Itru2との間には,(6)式の関係が成立する。
そして,第2の真のX線強度Itru2は,(7)式に示すように,第1の真のX線強度Itru1に比例し,後者に対する前者の比率はkである。この比率kは,第1条件のいずれの設定状態においても一定である。言い換えれば,そのように一定になるように,第2条件の二つの設定状態を選んでいるものである。この点が本発明の重要なポイントである。
(7)式を(6)式に代入すると,第2の真のX線強度Itru2が消えて,(6)式は(8)式のようになる。さらに,(4)式を使って,第1の真のX線強度Itru1を第1記録X線強度Iobs1で書き換えると,(8)式は(9)式のようになる。この(9)式が,本発明で用いる所定の関係式である。この(9)式は,第1記録X線強度Iobs1,第2記録X線強度Iobs2,比率k,不感時間τの四者の間の関係を定める関係式である。このうち,第1記録X線強度Iobs1と第2記録X線強度Iobs2は実際に記録される値であり,既知数である。一方,比率kと不感時間τが未知数であり,これは以下に述べる手順によって,同時に求めることができ,その結果として,不感時間τを精密に決定することができる。
図4は,第1条件の変化及び第2条件の変化と,それに伴うX線強度の変化を,概略的に示したグラフである。第2条件を第1の設定状態にして,第1条件を変化させながらX線検出器でX線強度を記録すると,第1記録X線強度Iobs1と,それに対応する第1の真のX線強度Itru1は,例えば,図4のグラフに示すように変化する。次に,第2条件を第1の設定状態から第2の設定状態に変更して,第1の設定状態のときと同様に,第1条件を変化させながらX線検出器でX線強度を記録すると,第2記録X線強度Iobs2が得られ,その第2記録X線強度Iobs2と,それに対応する第2の真のX線強度Itru2は,例えば,図4のグラフに示すように変化する。第2条件の第2の設定状態の方が第1の設定状態よりも,X線強度が大きいので,第2記録X線強度Iobs2の方が,数え落としの影響が強く出て,第2の真のX線強度Itru2から,より大きく離れている。本発明を実施するに当たっては,図4のグラフに示すように,少なくとも,第1条件と第2条件の組み合わせのどこかの部分では,数え落としの影響が顕著に生じるような大きなX線強度を記録することが大切である。
次に,第1条件と第2条件を具体化して,本発明を実施するための光学系の例を説明する。図5は本発明を実施するための一例としてのX線光学系の平面図である。この光学系では,第条件として吸収板の有無を採用し,第条件として受光スリットのスリット幅の変化を採用している。図5(A)に示すように,この光学系は,X線源12とX線検出器14の間に,発散スリット16と,吸収板18と,受光スリット20が配置されている。発散スリット16は,X線源12からのX線ビーム19の発散角を制限するとともに,不要な散乱X線がX線検出系に入るのを防ぐ。吸収板18はX線光路に挿入したり,X線光路から取り除いたりすることができる。受光スリット20は,二つのスリット片22,24からなり,それぞれのスリット片22,24はX線光路に対して垂直な方向に(図5における上下方向に)移動可能である。二つのスリット片22,24の間隔がスリット幅Wである。この光学系では,二つのスリット片22,24を逆方向に連動させることで,スリット幅Wを対称的に広げたり狭めたりことができる。スリット幅Wの変化が本発明における第1条件の設定状態の変化に相当する。吸収板18をX線光路に挿入した状態,すなわち,図5(A)の状態が,第2条件の第1の設定状態に相当し,吸収板18をX線光路から取り除いた状態,すなわち,図5(B)の状態が,第2条件の第2の設定状態に相当する。吸収板18をX線光路に挿入すると,X線は吸収板18に所定量だけ吸収されて,X線強度は減衰する。吸収板18を通過することで,X線強度は1/kに減衰する。ここで,kは,本発明における「第1の設定状態における入射X線強度と第2の設定状態における入射X線強度との比率」に相当する。
図5(A)において,吸収板18をX線光路に挿入して,X線検出器14で第1記録X線強度Iobs1を次のように記録する。スリット幅Wを,W1〜Wnまで,ΔW刻みで変化させて,n個のスリット幅について,第1記録X線強度Iobs11〜Iobs1nを記録する。次に,図5(B)に示すように,吸収板18をX線光路から取り除いて,X線検出器14で第2記録X線強度Iobs2を次のように記録する。第1記録段階と同様に,スリット幅Wを,W1〜Wnまで,ΔW刻みで変化させて,n個のスリット幅について,第2記録X線強度Iobs21〜Iobs2nを記録する。このような記録処理を図6のグラフに模式的に示す。横軸はスリット幅Wの変化であり,W1,W2,W3,……,Wnと変化する(実際の測定ではスリット幅Wは連続的に変化していて,X線強度の記録を所定のΔWの刻みで実施している)。縦軸は記録X線強度である。第1記録X線強度Iobs1として,Iobs11,Iobs12,Iobs13,……,Iobs1nが得られる。また,第2記録X線強度Iobs2として,Iobs21,Iobs22,Iobs23,……,Iobs2nが得られる。
図6において,スリット幅Wの制御の再現性は大切である。例えば,Iobs11を記録したときのスリット幅W1と,Iobs21を記録したときのスリット幅W1は,同じであることが前提である。これについて,本発明で使用したX線回折装置では,受光スリットのスリット幅の最小分解能は0.5μmであり,制御の再現性も,少なくとも最小分解能と同等に保たれている。
このようにして記録した記録X線強度について,図7の(10)式に示すように,n個の関係式を作ることができる。そして,この(10)式を最も満足するように,比率kと不感時間τを決定する。そして,この(10)式に基づいて,最小二乗法を用いることで,最も確からしいkとτを決定することができる。すなわち,試行錯誤的にkとτを仮定し,そのときの(10)式の各関係式の右辺と左辺の差を求めて,その差を二乗して,それを合計して,その合計値が最小になるように,kとτを決定する。
図8は,第1記録X線強度Iobs1と第2記録X線強度Iobs2を実測したグラフである。このグラフは次のような条件で測定したものである。基本的には,図5に示した光学系を利用した。ただし,X線源12と発散スリット16の間に,多層膜ミラーと,Ge(220)結晶を用いた4結晶モノクロメータとを挿入した。X線源12としてはCuKα線を用いている。吸収板18は厚さ0.1mmのアルミニウム板である。X線検出器14はシンチレーションカウンタである。第1条件としては,受光スリット20のスリット幅Wの変化ではなくて,受光スリット20の位置の変化(横方向の移動)を選定した。すなわち,受光スリット20の中心位置(スリット幅Wの中心位置)が0〜1mmの範囲で変化するように,受光スリット20の全体を,図5(A)の下から上に向かって,連続的に移動させた。所要時間は1分間である。受光スリット20の中心位置の原点は,X線検出器14による検出強度がほぼゼロになる位置とした。受光スリット20の移動距離の4μm刻みごとにX線強度を測定して,約240点のX線強度を記録した。その後,図7の(10)式に示すように約240個の関係式を作成し,最小二乗法を用いて,図8のグラフに最も合致するように,比率kと不感時間τを精密に決定した。最小二乗法によるフィッティングに要するコンピュータの計算時間は1秒程度である。なお,図1の(2)式のexpの入れ子の数は20個で打ち切って計算をした。このフィッティングで得られた比率kは10.32であり,不感時間τは「7.7×10のマイナス7乗」秒である。最適にフィッティングされた状態での,記録X線強度と計算値との誤差は,各測定点において,1%未満に収まっている。このように,最小二乗法によるフィッティングを用いることで,不感時間を精密に決定できると同時に,フィッティングによる誤差も把握できるので不感時間の正しさも検証できる。
この測定例から明らかなように,第1記録強度を約240個測定するのに約1分間で済み,第2記録強度についても同様に約1分間で済む。したがって,管電流に基づいて真のX線強度を推定する従来方法(管電流が安定するまでに約30分かかる)と比較すると,きわめて短時間で,不感時間を精密に決定することができる。このように,多数の記録X線強度に基づいて最小二乗法でフィッティングをするので,1点当たりの記録X線強度の正確性は,測定結果にほとんど影響を及ぼさない。ゆえに,上述のように約240点のX線強度を1分間で記録しても,不感時間を高精度に決定できる。
これまでの説明では,第条件として吸収板の有無を,第条件として受光スリットのスリット幅の変化または受光スリットの横移動を採用したが,本発明は,これに限らず,さまざまな条件設定が可能である。以下に,条件設定の変更例を説明する。
図9(A)は標準的なX線ディフラクトメーターのX線光学系の平面図である。この図は,X線源12からのX線ビーム19を,直接,X線検出器14で検出するときの状態を示している。X線源12から出射されたX線ビーム19は,発散スリット16と入射側ソーラスリット28と受光側ソーラスリット30と受光スリット20を経て,X線検出器14に到達する。X線検出器14と受光側ソーラスリット30と受光スリット20は,2θ回転台32と共に2θ回転する。X線検出器14を2θ=ゼロの位置に持ってくると,X線源12からのダイレクトビームを検出することができる。この状態で,受光スリット20の入射側に吸収板18を挿入したり取り外したりすれば,上述の図5の光学系を実現できる。この場合,第2条件は,吸収板18の挿入状態と取り外し状態(吸収板の有無)であり,第1条件は受光スリット20のスリット幅の変化である。
第2条件を吸収板の有無とした場合における,第1条件の変更例としては,図8の測定例のところで説明した受光スリットの横移動のほかに,次のものが考えられる。受光スリット20の状態は一定にして,発散スリット16の状態を変えることが考えられる。すなわち,発散スリット16のスリット幅を変化させるか,あるいは,発散スリット16のスリット幅を一定にして,発散スリット16をX線光路を横切る方向に移動させる。さらには,第1条件として,スリット類の状態は変えずに,2θ回転台32の2θ回転の角度を変化させてもよい。この場合,2θ回転の角度が変化することによって,X線ビーム19に対する受光スリット20とX線検出器14の位置が変化し,それによってX線検出強度が変化する。
第2条件の変更例としては,吸収板の有無の代わりに,スリット類の開口高さを制限することができる。例えば,入射側ソーラスリット28や受光側ソーラスリット30の高さ方向(紙面に垂直な方向)の一部を遮蔽したり開放したりすることができる。あるいは,発散スリット16や受光スリット20の開口高さを制限してもよい。このような開口高さ制限を用いる場合には,X線ビーム19の断面は,図5において紙面に垂直な方向に細長く延びていることを想定している。スリット類の開口高さ制限を第2条件として選定した場合に,第1条件としては,上述のすべての変更事例と組み合わせることができる。これらの組み合わせの一覧を,図10(A)に示す。直線で相互に結んだものが,可能な組み合わせである。
本発明の方法は,完全結晶の回折ピークのロッキングカーブを利用することもできる。図9(B)は,完全結晶の試料34を試料台36に取り付けて,試料34のロッキングカーブの測定を実施する状態を示した平面図である。このような回折測定を用いても,本発明の不感時間の測定が可能である。完全結晶の試料34からの特定の回折ピークがX線検出器14で検出できるように,試料台36の回転角度ωと,2θ回転台32の回転角度2θとを設定してから,2θ回転台32の回転角度2θをスキャンすると,完全結晶の回折ピークのロッキングカーブに応じてX線検出強度が変化する。このような2θスキャンを本発明における第1条件として採用することができる。第2条件としては,吸収板18の有無,または,スリット類の高さ制限を採用できる。2θスキャンの代わりに,試料台36のωスキャン,または,2θ回転台32と試料台36の2θ/ω連動スキャン(2θ:ω=2:1)を採用してもよい。これらの組み合わせの一覧を,図10(B)に示す。
図9の例から明らかなように,本発明の測定方法は,通常使われているX線回折装置のX線光学系にほとんど手を加えることなく,スリットの移動軸やゴニオメータの回転軸をそのまま使って,不感時間を求めることができる。
上述の実施例では,比率kを未知数として,比率kと不感時間τを求めているが,本発明は,比率kが既知であると仮定しても,有効である。例えば,第2条件として吸収板の有無を採用する場合に,使用するX線波長と,吸収板の材質及び厚さが分かっていれば,吸収板によるX線強度の減衰率はかなりの精度で計算することができる。したがって,そのような減衰率の逆数を比率kとおくことができる。その場合は,最小二乗法において,不感時間τだけを決定すれば足りる。吸収板の代わりに,スリット類の高さ制限をする場合でも,上述の比率kが分かっていれば,比率kを既知として,不感時間τを決定することができる。
上述の実施例では,数え落としが生じるときのX線検出強度の補正式を(1)式のような関数形としているが,本発明は,このような関数形に限定されない。どのような関数形であっても,不感時間τと記録X線強度Iobsとから真のX線強度Itruが求まるようなものであれば,本発明に用いることができる。
本発明の理論を説明するための(1)式〜(9)式を示すものである。 (1)式のグラフである。 (2)式における入れ子の数を変化させたときの真のX線強度の計算値の変化を示すグラフである。 第1条件の変化及び第2条件の変化と,それに伴うX線強度の変化を,概略的に示したグラフである。 本発明の方法を実施するためのX線光学系の平面図である。 第1条件と第2条件を変化させたときのX線の記録処理を模式的に示すグラフである。 本発明の理論を説明するための(10)式を示すものである。 第1記録X線強度Iobs1と第2記録X線強度Iobs2を実測したグラフである。 X線ディフラクトメーターのX線光学系の平面図である。 第1条件と第2条件の組み合わせを示すものである。
符号の説明
10 直線
12 X線源
14 X線検出器
16 発散スリット
18 吸収板
19 X線ビーム
20 受光スリット
22,24 スリット片
28 入射側ソーラスリット
30 受光側ソーラスリット
32 2θ回転台
34 試料
36 試料台

Claims (3)

  1. パルス型のX線検出器の不感時間の測定方法において,次の段階を備える測定方法。
    (ア)X線源から前記X線検出器に至るX線光路の状態を変更できる第1条件と第2条件であって,それらの条件の設定状態を変更することで前記X線検出器に入射する入射X線強度が変化するような第1条件と第2条件を選定する段階であり,前記第1条件は前記X線光路に配置されたスリットの状態であり,前記第2条件は前記X線光路に配置されたスリットの開口高さの制限である,段階。
    (イ)前記第1条件について,少なくとも3個の設定状態を選定する段階。
    (ウ)前記第2条件について,第1の設定状態における前記入射X線強度と第2の設定状態における前記入射X線強度とが互いに異なるように,かつ,前記第1条件の前記少なくとも3個の設定状態のいずれにおいても,前記第1の設定状態における前記入射X線強度と前記第2の設定状態における前記入射X線強度との比率が一定になるように,前記第1の設定状態と前記第2の設定状態を選定する段階。
    (エ)前記第2条件を前記第1の設定状態に設定する段階。
    (オ)前記第1条件の前記少なくとも3個の設定状態のそれぞれに対して,前記X線源から前記X線光路を経由して前記X線検出器にX線を入射して,そのときの前記X線検出器の出力を第1記録X線強度として記録する第1の記録段階。
    (カ)前記第2条件を前記第1の設定状態から前記第2の設定状態に変更する段階。
    (キ)前記第1条件の前記少なくとも3個の設定状態のそれぞれに対して,前記X線源から前記X線光路を経由して前記X線検出器にX線を入射して,そのときの前記X線検出器の出力を第2記録X線強度として記録する第2の記録段階。
    (ク)前記第1条件の前記少なくとも3個の設定状態のそれぞれについて,前記第1記録X線強度と前記第2記録X線強度と前記比率と前記不感時間との関係を定める関係式を作成し,前記第1記録X線強度と前記第2記録X線強度を既知数とし,前記比率と前記不感時間を未知数として,前記関係式が最も満足されるように,前記比率と前記不感時間を決定する段階。
  2. パルス型のX線検出器の不感時間の測定方法において,次の段階を備える測定方法。
    (ア)X線源から前記X線検出器に至るX線光路の状態を変更できる第1条件と第2条件であって,それらの条件の設定状態を変更することで前記X線検出器に入射する入射X線強度が変化するような第1条件と第2条件を選定する段階であり,前記第1条件は前記X線光路に配置されたスリットの状態であり,前記第2条件は前記X線光路に配置されたスリットの開口高さの制限である,段階。
    (イ)前記第1条件について,少なくとも3個の設定状態を選定する段階。
    (ウ)前記第2条件について,第1の設定状態における前記入射X線強度と第2の設定状態における前記入射X線強度とが互いに異なるように,かつ,前記第1条件の前記少なくとも3個の設定状態のいずれにおいても,前記第1の設定状態における前記入射X線強度と前記第2の設定状態における前記入射X線強度との比率が一定になるように,前記第1の設定状態と前記第2の設定状態を選定する段階。
    (エ)前記第2条件を前記第1の設定状態に設定する段階。
    (オ)前記第1条件の前記少なくとも3個の設定状態のそれぞれに対して,前記X線源から前記X線光路を経由して前記X線検出器にX線を入射して,そのときの前記X線検出器の出力を第1記録X線強度として記録する第1の記録段階。
    (カ)前記第2条件を前記第1の設定状態から前記第2の設定状態に変更する段階。
    (キ)前記第1条件の前記少なくとも3個の設定状態のそれぞれに対して,前記X線源から前記X線光路を経由して前記X線検出器にX線を入射して,そのときの前記X線検出器の出力を第2記録X線強度として記録する第2の記録段階。
    (ク)前記第1条件の前記少なくとも3個の設定状態のそれぞれについて,前記第1記録X線強度と前記第2記録X線強度と前記比率と前記不感時間との関係を定める関係式を作成し,前記第1記録X線強度と前記第2記録X線強度と前記比率を既知数とし,前記不感時間を未知数として,前記関係式が最も満足されるように,前記不感時間を決定する段階。
  3. 請求項1または2に記載の測定方法において,前記第1条件についての前記少なくとも3個の設定状態は,少なくとも10個であることを特徴とする測定方法。
JP2005148039A 2005-05-20 2005-05-20 X線検出器の不感時間の測定方法 Active JP4423230B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005148039A JP4423230B2 (ja) 2005-05-20 2005-05-20 X線検出器の不感時間の測定方法
US11/435,237 US7342997B2 (en) 2005-05-20 2006-05-16 Method for measuring dead time of X-ray detector
EP06010412A EP1724610B1 (en) 2005-05-20 2006-05-19 Method for measuring dead time of x-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148039A JP4423230B2 (ja) 2005-05-20 2005-05-20 X線検出器の不感時間の測定方法

Publications (2)

Publication Number Publication Date
JP2006322885A JP2006322885A (ja) 2006-11-30
JP4423230B2 true JP4423230B2 (ja) 2010-03-03

Family

ID=36717130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148039A Active JP4423230B2 (ja) 2005-05-20 2005-05-20 X線検出器の不感時間の測定方法

Country Status (3)

Country Link
US (1) US7342997B2 (ja)
EP (1) EP1724610B1 (ja)
JP (1) JP4423230B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831689B2 (ja) * 2007-02-06 2011-12-07 独立行政法人産業技術総合研究所 光子又は粒子の計数方法
US7848483B2 (en) * 2008-03-07 2010-12-07 Rigaku Innovative Technologies Magnesium silicide-based multilayer x-ray fluorescence analyzers
JP5517584B2 (ja) * 2009-12-08 2014-06-11 株式会社日立ハイテクノロジーズ 電子顕微鏡
JP5076012B1 (ja) * 2011-05-20 2012-11-21 株式会社リガク 波長分散型蛍光x線分析装置

Also Published As

Publication number Publication date
EP1724610A1 (en) 2006-11-22
US20060285642A1 (en) 2006-12-21
US7342997B2 (en) 2008-03-11
JP2006322885A (ja) 2006-11-30
EP1724610B1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
Brouwer Theory of XRF
KR102638543B1 (ko) 엑스선 산란계를 위한 방법 및 장치
US11112371B2 (en) X-ray spectrometer
US10514346B2 (en) X-ray fluorescence spectrometer
CN106164618A (zh) 使用多角度x射线反射散射测量(XRS)用于测量周期结构的方法和系统
JP2007024894A (ja) 試料の検査方法および装置
JP4423230B2 (ja) X線検出器の不感時間の測定方法
JP3284198B2 (ja) 蛍光x線分析装置
JP5713357B2 (ja) X線応力測定方法とその装置
JP6564572B2 (ja) X線装置
JP5959057B2 (ja) X線分析装置
CN109791116B (zh) 波长色散型荧光x射线分析装置
JP6322628B2 (ja) 1d及び2dビームを提供するx線ビームシステム
JP2010038722A (ja) X線回折装置およびx線回折方法
JP4677217B2 (ja) サンプル検査方法、サンプル検査装置、マイクロエレクトロニックデバイス製造用クラスタツール、マイクロエレクトロニックデバイス製造用装置
JP3968350B2 (ja) X線回折装置及び方法
JP5018132B2 (ja) 試料分析装置及び試料分析方法
JPH01227050A (ja) 物体の密度等の測定方法と装置
JP2000275113A (ja) X線応力測定方法および測定装置
JPH08128975A (ja) X線分析装置
JP2008064541A (ja) 放射性廃棄物の放射能測定方法及び放射能測定装置
JP3903184B2 (ja) X線反射率測定装置およびx線反射率測定方法
JP6673135B2 (ja) X線検出システム
RU161079U1 (ru) Устройство для контрастного анализа элементного состава вещества с помощью рентгеновского излучения
JP2019184294A (ja) X線分析装置及びx線分析方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4423230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250