JP4408011B2 - レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法 - Google Patents

レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法 Download PDF

Info

Publication number
JP4408011B2
JP4408011B2 JP2002174158A JP2002174158A JP4408011B2 JP 4408011 B2 JP4408011 B2 JP 4408011B2 JP 2002174158 A JP2002174158 A JP 2002174158A JP 2002174158 A JP2002174158 A JP 2002174158A JP 4408011 B2 JP4408011 B2 JP 4408011B2
Authority
JP
Japan
Prior art keywords
laser
laser beam
substrate
film
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002174158A
Other languages
English (en)
Other versions
JP2003068668A (ja
JP2003068668A5 (ja
Inventor
幸一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002174158A priority Critical patent/JP4408011B2/ja
Publication of JP2003068668A publication Critical patent/JP2003068668A/ja
Publication of JP2003068668A5 publication Critical patent/JP2003068668A5/ja
Application granted granted Critical
Publication of JP4408011B2 publication Critical patent/JP4408011B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザビームが照射される照射面の形状を特定するためのステージに関する。また、レーザビームのエネルギー分布をある特定の領域で均一化するレーザ照射装置に関する。また、エネルギー分布の均一化の方法および前記均一化を実現する光学系に関する。また、レーザビームのエネルギー分布をある特定の領域で均一化し、前記レーザビームを用いた半導体膜のアニール(以下、レーザアニールと言う。)の方法に関する。また、本発明は、レーザアニールを工程に含んで薄膜トランジスタ(以下、TFTという)で構成された回路を有する半導体装置を作製する方法に関する。
【0002】
【従来の技術】
近年、ガラス等の絶縁基板上に形成された非晶質半導体膜や結晶性半導体膜(単結晶でない、多結晶、微結晶等の結晶性を有する半導体膜)、すなわち、非単結晶半導体膜に対しレーザアニールを行い結晶化させる技術、或いは結晶性を向上させる技術が広く研究されている。
【0003】
レーザは基板の温度をあまり変えずに非単結晶半導体膜にのみ高いエネルギーを与えることができるので、融点の低いガラス基板(一般に販売されているガラス基板のひずみ点温度は600℃程度)に成膜された半導体膜のアニールに適している。
【0004】
レーザアニールにより形成された結晶性半導体膜は高い移動度を有するため、この結晶性半導体膜を用いて、一枚のガラス基板上に画素駆動用と駆動回路用のTFTを作製する、アクティブマトリクス型の液晶電気光学装置を作製することを可能としている。結晶性半導体膜は多くの結晶粒からできているため、多結晶半導体膜とも呼ばれる。
【0005】
レーザアニールには、エキシマレーザ等の出力の大きいパルス発振式のレーザビームを照射面において数cm角の四角いスポットや長さ10cm以上の線状となるように光学系にて成形し、レーザビームを走査させて(レーザビームの照射位置を照射面に対し相対的に移動させて)行う方法が、生産性が良く工業的に優れている。
【0006】
特に、線状のレーザビーム(以下、線状ビームという)を用いると、前後左右の走査が必要なスポット状のレーザビームを用いた場合とは異なり、線状ビームの線方向に直角な方向だけの走査で照射面全体にレーザビームを照射することができるため、高い生産性が得られる。線方向に直角な方向に走査するのは、それが最も効率のよい走査方向であるからである。この高い生産性により、レーザアニールの工程には、適当な光学系で成形した線状ビームを使用することが主流になりつつある。
【0007】
図2に、照射面においてレーザビームの形状を線状に成形する光学系の例を示す。光学系は、照射面におけるレーザビームの形状を線状に変換するだけでなく、同時に、前記レーザビームのエネルギー分布の均一化を果たすものである。一般にビームのエネルギー分布の均一化を行う光学系を、ビームホモジナイザと呼ぶ。図2に示した光学系もビームホモジナイザの一種である。
【0008】
紫外光であるエキシマレーザを光源に使用するならば、上記光学系の母材は例えばすべて合成石英製とするとよい。なぜならば、高い透過率が得られるからである。また、コーティングは、使用するエキシマレーザの波長に対する透過率が99%以上得られるものを使用するとよい。
【0009】
まず、図2の側面図について説明する。ここで側面図の紙面に平行で、光軸を含む面を子午面、子午面に垂直で光軸を含む面を球欠面とする。ここで、光学系のレイアウトの都合などで、光路をミラーなどで折る必要が生じた場合、光軸の方向が変化するが、このときは子午面や球欠面も変化するとする。レーザ発振器1201から出たレーザビームは、シリンドリカルレンズアレイ1202aと1202bにより、球欠面に垂直な方向に分割される。この構成では、シリンドリカルレンズアレイ1202aに含まれるシリンドリカルレンズの数が4つなので、4分割となっている。シリンドリカルレンズアレイ1202bに含まれるシリンドリカルレンズの数も4つとする。これらの分割されたレーザビームは、シリンドリカルレンズ1204により、ある平面において互いに重ね合わされる。シリンドリカルレンズアレイ1202a、1202bは必ずしも2つ用いる必要はなく、1つだけ使用してもよい。2つ使う利点は、線状ビームのサイズを可変にできることと、線状ビームの幅方向の長さをより短くできることにある。
【0010】
再び分離したレーザビームはミラー1207により直角に曲げられ、その後、ダブレットシリンドリカルレンズ1208により、照射面1209にて再び互いに重ね合わされる。ダブレットシリンドリカルレンズとは、2枚のシリンドリカルレンズで構成されているレンズのことをいう。これにより、線状ビームの幅方向におけるエネルギー分布の均一化が成され、線状ビームの幅方向の長さが決定される。ミラー1207は照射面を水平にするために設けられたものであり、必ずしも必要なものではない。
【0011】
次に、上面図について説明する。レーザ発振器1201から出たレーザビームは、シリンドリカルレンズアレイ1203により、子午面に垂直な方向に分割される。この構成では、シリンドリカルレンズアレイ1203に含まれるシリンドリカルレンズは7つあるため、7分割となっている。シリンドリカルレンズアレイ1203は、線状ビームの線方向の長さを可変とするため、2つ用いても良い。その後、シリンドリカルレンズ1205にて、レーザビームは照射面1209にて1つに重ね合わされる。ミラー1207以降が破線で示されているが、その破線はミラー1207を配置しなかった場合の正確な光路とレンズや照射面の位置を示している。これにより、線状ビームの線方向におけるエネルギー分布の均一化が成され、線状ビームの線方向の長さが決定される。
【0012】
線状ビームの長さLを決定する要素は、シリンドリカルレンズアレイ1203に含まれるシリンドリカルレンズの幅dと、シリンドリカルレンズの焦点距離f1と、シリンドリカルレンズ1205の焦点距離f2とで決定される。このことを図3に沿って説明する。シリンドリカルレンズアレイ1301は幅dのシリンドリカルレンズにて構成される。シリンドリカルレンズアレイ1301に入射したレーザビームは焦点距離f1の位置にて複数個所に集光される。その後、レーザビームは広がりながらシリンドリカルレンズ1302に入射する。シリンドリカルレンズ1302は凸レンズであるため、図中の2つの平行光束の集合をシリンドリカルレンズ1302の後方、距離f2の位置にてそれぞれ集光させる。前記f2はシリンドリカルレンズ1302の焦点距離にあたる。これにより、シリンドリカルレンズアレイ1301のそれぞれに入射したレーザビームがそれぞれ次式で導かれる長さLの線状ビームに変換される。
【0013】
【数1】
Figure 0004408011
【0014】
上述のように、シリンドリカルレンズアレイ1202aとシリンドリカルレンズアレイ1202bとシリンドリカルレンズアレイ1203とがレーザビームを分割するレンズとなる。これらの分割数により、得られるレーザビームの均一性が決まる。上記の構成では、4分割×7分割なので、28分割したことになる。
【0015】
上記の構成により成形された線状ビームをその幅方向に徐々にずらしながら重ねて照射することにより、例えば非単結晶珪素膜全面に対しレーザアニールを行い結晶化させたり結晶性を向上させることができる。
【0016】
エキシマレーザの射出するレーザビームの形状は一般的に長方形状であり、アスペクト比で表現すると、1〜5位の範囲に入る。レーザビームの強度は、レーザビームの中央ほど強いガウシアンの分布を示す。前記レーザビームのサイズは、図2に示した光学系により、例えば、エネルギー分布の均一な300mm×0.4mmの線状ビームに変換できる。
【0017】
本発明者の実験によると、半導体膜に対しパルス発振の線状ビームを照射する場合、重ね合わせのピッチは線状ビームの幅方向の長さの1/10前後が最も適当であった。すなわち、線状ビームの幅方向の長さが0.4mmの場合、レーザビームが1パルス発光してから再び1パルス発光されるまでの時間に、半導体膜を線状ビームの幅方向に0.04mmずつずらしながらレーザアニールを行うとよい。これにより、半導体膜におけるレーザアニールの均一性が向上した。これまで述べた方法は線状ビームを使って半導体膜をレーザアニールするために用いられる極めて一般的なものである。
【0018】
【発明が解決しようとする課題】
近年レーザ発振器の大出力化により、300mmを超える長さの線状ビームの形成も可能となっている。一方、液晶表示装置の生産ラインでは、600mm×720mmとか1000×1200mmといったサイズのマザーガラスの採用が計画されており、1回の走査で基板全面を処理するには長さが300mm程度の線状ビームでは不充分となりつつある。長さ300mmの線状ビームを使って、例えば600mm×720mmの基板に成膜された半導体膜をアニールする場合を考えると、線状ビームの線方向と基板の短辺(長さ600mmの方)とを平行に配置し、基板の長辺の方向に基板を線状ビームに対して相対的に720mm走査させることで基板の半面をレーザアニールすることができる。残りの半面を同様の方法によりレーザアニールすれば、基板全面がレーザアニールされる。
【0019】
このような方法でレーザアニールすると、基板(または線状ビーム)を2回以上走査させなくてはならないことや、基板(または線状ビーム)を前後左右に動かさねばならない点で、スループットやフットプリントに悪影響を及ぼす。また、線状ビームを使って基板の半面ずつレーザアニールすると前記半面に成膜された半導体膜は一様にレーザアニールされるが、他の半面との境界線辺りの半導体膜の一様性は失われており、この部分に半導体素子を形成することは難しい。以上のような問題点を鑑みると、線状ビームの線方向の長さは少なくとも基板の短辺の長さと同程度であることが好ましいことは明らかである。
【0020】
しかしながら、長い線状ビームを形成するためには、光学系の光路長を長くする必要がある。例えば、長さ300mmの線状ビームを図2で説明した従来の光学系で構成するには、光路長が5000mm程度必要となり、長さ1000mmの線状ビームになると光路長は10000mmを超えてしまう。
【0021】
本発明は上記問題点に鑑みなされたものであり、光路長を長大化することなく、エネルギー分布の均一な線状ビームを形成することが可能な技術を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明は、基板を曲率(あるいは少なくとも1つの曲率)を有する形状とすることで、基板上にエネルギー分布の均一なレーザビームを形成することを特徴としている。つまり、本発明は、被照射物である基板に、レーザ光を線状に集光する光学系で用いるシリンドリカルと同等の曲率を付けることにより、線状ビームのピント位置を調整し、よりエネルギー分布の均一な線状ビームを照射することを可能とする。一辺が1000mmを越える大面積のガラス基板はたわみ易く、当該基板を固定するステージに曲率を付加する機能を持たせることで、容易に実現することができる。
【0023】
本発明のレーザ照射用ステージに関する構成は、被照射物を載置することが可能なレーザ照射用ステージであって、被照射面を曲面とし、当該曲面は、該被照射面に入射するレーザビームの光軸の中心軸に対して直交する第1の方向であって、該レーザビームの光軸に対して凹面とすることを特徴としている。
【0024】
本発明のレーザ照射光学系に関する構成は、ビームを一方向に広げる手段1と、一方向に広げられたビームの照射面を設置する手段2とを有し、手段2は照射面を一方向と平行な方向に曲率を有する形状とすることを特徴としている。
【0025】
上記本発明の構成において、手段1または手段2は、シリンドリカルレンズアレイまたはシリンドリカルレンズを含むことを特徴としている。シリンドリカルレンズアレイは、レーザビームを一方向において広げたり、均一化したり、あるいはこれら両方の作用を及ぼすことができる。また、シリンドリカルレンズは、レーザビームを一方向において集光することが出来る。これら2つのレンズを組み合わせて、レーザビームを一方向において、広げ、均一化し、集光することも出来るし、直角方向に配置することで、レーザビームを直交する2方向においてそれぞれ広げ、均一化し、集光することができる。
【0026】
本発明のレーザ照射装置に関する構成は、レーザ発振器と、レーザ発振器から射出するレーザビームの断面形状を該レーザビームの光軸に対して交差する第1の方向に広げる第1手段と、第1手段を通過したレーザビームを第1の方向に直交する第2の方向に集光する第2手段と、第2手段と通過したレーザビームの照射面において、被照射物を前記第1の方向と平行な方向に曲率を有する形状とする第3手段とを有することを特徴としている。または、前記第2手段と通過したレーザビームの照射面において、被照射物を前記第1の方向と平行な方向に曲率を有する形状とし、前記レーザビームに対し相対的に前記第2の方向に移動させる第3手段とを有することを特徴としている。また、当該曲率を有する形状は、レーザビームの光軸に対して凹面を形成する形状とすることが望ましい。
【0027】
上記発明の構成において、第1手段に、前記第1の方向において前記レーザビームのエネルギー分布を均一化する手段が付加されていても良い。また、第2手段に、前記第2の方向において前記レーザビームのエネルギー分布を均一化する手段が付加されていても良い。
【0028】
上記本発明の構成において、レーザ発振器は、大出力でかつ半導体膜によく吸収される波長域が好ましい。半導体膜として珪素膜を用いた場合、吸収率を考慮し、用いるレーザ発振器の射出するレーザビームの波長は600nm以下であることが好ましい。このようなレーザビームを出すレーザ発振器には、例えば、エキシマレーザ、YAGレーザ(高調波)、ガラスレーザ(高調波)がある。
【0029】
また、珪素膜の結晶化に適当な波長域にあるレーザ発振器として、例えば、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ、Arレーザ、Krレーザ、CO2レーザ、ヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザ等がある。さらに、本発明はパルス発振型のレーザだけでなく、連続発振型のレーザ発振器の出力が大きくなれば、連続発振型のレーザ発振器を用いて適用することができる。
【0030】
上記構成において、手段1または手段2は、シリンドリカルレンズアレイまたはシリンドリカルレンズを含むことを特徴としている。
【0031】
本発明のレーザ照射方法に関する構成は、レーザ発振器から放射されたレーザビームの断面形状を該レーザビームの光軸に対して交差する第1の方向に広げ、該レーザビームを前記第1の方向と直交する前記第2の方向に集光し、該集光されたレーザビームを被処理物に照射するレーザ照射方法であって、照射面において被照射物を前記第1の方向と平行な方向に曲率を有する形状とし、当該レーザビームと被照射物を第2の方向に相対的移動させながら照射することを特徴としている。
【0032】
上記発明の構成において、レーザ発振器から放射されたレーザビームの断面形状を該レーザビームの光軸に対して交差する第1の方向に広げ、かつ、前記レーザビームのエネルギー分布を均一化した後照射するようにしても良い。また、第1の方向に広げたレーザビームを第1の方向と直交する前記第2の方向に集光し、かつ、エネルギー分布を均一化して照射しても良い。
【0033】
上記本発明の構成において、レーザ発振器の射出するレーザビームの波長は600nm以下であることが好ましい。このようなレーザビームを出すレーザ発振器には、例えば、エキシマレーザ、YAGレーザ、ガラスレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ、Arレーザ、Krレーザ、CO2レーザ、ヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザ等がある。さらに、本発明はパルス発振型のレーザだけでなく、連続発振型のレーザ発振器を適用することができる。
【0034】
また、半導体装置の作製方法に関する発明の構成は、レーザ発振器から放射されたレーザビームの断面形状を該レーザビームの光軸に対して交差する第1の方向に広げ、該レーザビームを前記第1の方向と直交する前記第2の方向に集光し、該集光されたレーザビームを半導体層に照射するレーザ照射方法であって、照射面において前記半導体層を第1の方向と平行な方向に曲率を有する形状とし、当該レーザビームと被照射物を第2の方向に相対的移動させながら照射することを特徴としている。
【0035】
上記発明の構成において、レーザビームと被照射物とを第2の方向に相対的移動させながら照射することにより結晶化することができる。レーザビームと被照射物とを第2の方向に相対的移動させながら照射することにより結晶性を向上させることができる。レーザビームと被照射物を前記第2の方向に相対的移動させながら照射することにより半導体層に添加した一導電型不純物元素を活性化することができる。
【0036】
上記構成において、レーザ発振器の射出するレーザビームの波長は600nm以下であることが好ましい。このようなレーザビームを出すレーザ発振器には、例えば、エキシマレーザ、YAGレーザ、ガラスレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ、Arレーザ、Krレーザ、CO2レーザ、ヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザ等がある。さらに、本発明はパルス発振型のレーザだけでなく連続発振型のレーザ発振器を適用することができる。
【0037】
本発明を適用することで、照射面において均一であってより長いレーザビーム(特に線状ビーム)を成形することが可能となる。さらに、このようなレーザビームを形成するための光学系はフットプリントの小さいレーザ照射装置であるため大型化せず、特に単位面積辺りのコストの高いクリーンルームに設置する場合に有効である。そして、このようなレーザビームを用いて作製された半導体膜の物性は一様なものとなり、TFTの電気的特性、延いては半導体装置の動作特性をも向上し、半導体装置の製造コストの低減も実現し得る。
【0038】
なお、本発明においていう半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置に含まれる。例えば、液晶表示装置に代表される電気光学装置およびその様な電気光学装置を部品として搭載した電子機器は半導体装置に含まれる。
【0039】
【発明の実施の形態】
本発明の実施形態について図5を用いて説明する。なお、以下の説明において、線状ビームの長い辺の方向を線方向と呼び、短い辺の方向を幅方向と呼ぶ。
【0040】
図5に基板の曲率の方向と光学系との位置関係を簡単に示す。図5(a)において、1501はレーザビームを一方向に引き伸ばすための光学系であり、光学系1501により長く引き伸ばされたレーザビーム(図中破線の矢印ABCにて示した)は、シリンドリカルレンズ1502により、細く線状に成形される。基板1503は線状ビームの線方向に曲率を持たされており、基板の端に近付くほど、シリンドリカルレンズ1502に近付くようにする。つまり、曲率は基板をレーザビームの進行方向に対して負の方向、即ち曲率半径の中心が基板よりレーザ発振器側に位置するようにつけるとよい。これにより、線状ビーム1504は基板の曲率に沿った形状となる。今回本発明者が行ったシミュレーションでは、曲率半径は10000〜100000mm程度が適当である。
【0041】
なお、本発明では表現をわかりやすくするため、曲率半径という語で曲率を数値化しているが、緩やかな曲率であるため、必ずしも真円上に基板がある必要はない。
【0042】
曲率半径は光学系の構成に大きく依存するため、光学系の設計と合わせて決定する必要がある。基板に曲率半径で数万mmの曲率を付けた場合、基板の端と基板の中央の高低差は数mmと非常に緩やかな曲面となるため、基板に全く負担をかけず曲率をつけることが可能である。基板の厚さは通常1mm程度、もしくはそれ以下で、大面積基板であればあるほど容易に曲率をつけることが可能である。曲率をつける方法は、予め曲率のついたステージに基板を配置する方法や、基板をピンで支持し、ピンの高さを基板の端に近付くに従って高くする方法などが考えられる。いずれにしても非常に容易に基板の曲率をつけることが可能である。
【0043】
図5(b)に沿って、シリンドリカルレンズ1502のピント位置の説明をする。図5(b)は図5(a)の矢印の方向からみた図面である。シリンドリカルレンズ1502に広がりつつ入射するレーザビームのピント位置(シリンドリカルレンズ1502によるレーザビームの焦点の位置)の集合は曲線1505のように曲率をもっている。即ち、レーザビームAやCのように斜めからシリンドリカルレンズ1502に入射するものの焦点位置は、レーザビームBのようにシリンドリカルレンズ1502に真直ぐに入射するものの焦点位置と比較して、ピント位置が上方に(シリンドリカルレンズ1502側に)ずれる。本発明はこのずれを補正するものである。このピント位置のずれは非常にエネルギー分布の均一な矩形のビームを線状ビームに変形するときも生じるため、本発明はエネルギー分布の均一なビームをただ線状ビームに成形する光学系にも適用できる。
【0044】
このように本発明は、基板に曲率を付けることで、照射面におけるレーザビームのピントのずれを補正することが可能となる。さらに本発明は照射面における所望の形状のレーザビーム(例えば線状ビーム)を形成するための光学系の光路長を短くすることができる。そして、このような光学系を有するレーザ照射装置のフットプリントは小さくなるため、単位面積辺りの単価の非常に高いクリーンルームに設置する場合に特に有効である。
【0045】
【実施例】
[実施例1]
図1を用いて本実施例を説明する。まず、サイズが1000mm×1200mm×0.7mmのガラス基板を用意する。ガラス基板の片面に公知の方法(スパッタ法、プラズマCVD法、減圧CVD法等)により絶縁膜を形成する。ガラス基板として、バリウムホウケイ酸ガラス、またはアルミノシリケートガラスなどのガラスからなる基板が挙げられる。絶縁膜として、酸化珪素膜等を用い、膜厚を200nm程度とするとよい。絶縁膜はガラス基板から非晶質珪素膜にアルカリ金属などの半導体素子にとって有害な物質が流入しないようにブロッキング層として機能する。なお、ガラス基板の他にも石英基板やシリコン基板、プラスチック基板、金属基板、ステンレス基板、可撓性基板などを用いることができる。また、可撓性基板とは、PET、PES、PEN、アクリルなどからなるフィルム状の基板のことであり、可撓性基板を用いて半導体装置を作製すれば、軽量化が見込まれる。可撓性基板の表面、または表面および裏面にアルミ膜(AlON、AlN、AlOなど)、炭素膜(DLC(ダイヤモンドライクカーボン)など)、SiNなどのバリア層を単層または多層にして形成すれば、耐久性などが向上するので望ましい。
【0046】
続いて、絶縁膜上に公知の方法により非単結晶半導体膜を形成する。本実施形態では、非単結晶半導体膜として非晶質珪素膜を55nmの厚さに成膜する。なお、本発明は他の非単結晶半導体にも適用できることが容易に推測できる。例えば、非単結晶半導体膜に非晶質珪素ゲルマニウム膜などの非晶質構造を有する化合物半導体膜を使用しても良い。あるいは、後の実施例にて作製方法の例を示すが、非単結晶半導体膜に多結晶珪素膜を使用してもよい。
【0047】
そして、非単結晶半導体膜が形成された基板を窒素雰囲気中にて450℃で1時間の熱処理をする。本工程は非晶質珪素膜中の水素濃度を減らすための工程である。非晶質珪素膜中の水素が多すぎると膜がレーザエネルギーに対して耐えきれないので本工程をいれる。非晶質珪素膜内の水素の濃度は1020/cm程度が適当である。本工程は、RTA(Rapid Thermal Anneal)法にてごく短時間で行うことも可能である。RTA法は光源や、処理の方法により最適条件が大きく異なるため条件は実施者が適宜決定しなくてはならない。
【0048】
本実施例では、例えばレーザ発振器に発振波長が308nmのパルス発振式のXeClエキシマレーザを使う。エキシマレーザの最大出力が1パルスあたり3J程度であると、サイズ1000mm×0.4mmの線状ビームを成形することで、非晶質珪素膜を十分に結晶化することが可能である。
【0049】
図1に本実施例にて使用するレーザ照射装置の例を示す。レーザ発振器1101から射出するレーザビームは、光学系に入射する前に、ビームエキスパンダ1102により所望の形状に変換される。ビームエキスパンダは通常ガリレオ式の望遠鏡が用いられるが、これによりレーザビームのエネルギー密度を下げて光学系への負担を小さくする。あるいは、光学系へ入射するレーザビームの形状を最適化する役割を持たせても良い。すなわち、あまりに小さいスポットのレーザビームが光学系に入射するとレーザビームの分割数が少なくなり、エネルギー分布の均一化の程度が落ちる。一方で、あまりにスポットの大きいレーザビームが入射すると光学系の有効径を超えてしまいエネルギーをロスしてしまう。以上のことを考慮し、ビームエキスパンダの倍率を決めればよい。ビームエキスパンダは、シリンドリカルレンズにて構成してもよいし、球面レンズにて構成してもよい。レーザビームを縦横に等倍に拡大する場合は球面レンズにて構成してよいが、縦横の倍率を異なるようにするには、シリンドリカルレンズにて構成する。縦横に異なる倍率でレーザビームを拡大したい場合は、シリンドリカルレンズにて構成されるビームエキスパンダを2組使うとよい。
【0050】
本実施例の場合、レーザ発振器から射出されるレーザビームのサイズは13mm×35mmとする。前記サイズは典型的な大出力のエキシマレーザのものである。レーザビームのエネルギー密度を少しでも下げるため、例えば球面レンズで構成されるビームエキスパンダにて1.8倍に拡大する。すなわち、レーザビームのサイズは、23mm×63mmとなる。本光学系において、レーザビームの光軸を含みレーザビームの幅方向の長さ(幅23mm)と平行な面を子午面、レーザビームの光軸を含み線方向の長さ(幅63mm)と平行な面を球欠面と定義する。なお光路中にミラーが配置された場合は、ミラーによる光軸の変更に伴い、子午面、球欠面それぞれも変
ビームエキスパンダ1102により所望の倍率に変換されたレーザビームはシリンドリカルレンズアレイ1103に入射する。シリンドリカルレンズアレイ1103を構成するシリンドリカルレンズは長さ60mm、幅2mm、厚さ5mm、曲率半径4mmの平凸レンズである。レーザビームは凸の面から入射させると屈折のパワーが分散化されるのでよい。なお、本明細書中において曲率半径はすべて幅方向に付けることにする。シリンドリカルレンズはアレイ状に35個並べられ、サイズ60mm×70mm×5mmのシリンドリカルレンズアレイ1103を形成する。なお、図1では簡単のため7本のシリンドリカルレンズにて図示した。シリンドリカルレンズアレイ1103の幅方向は球欠面と平行に配置する。これにより、レーザビームは多数に分割され、それらの各々が大きく引き伸ばされる。
【0051】
シリンドリカルレンズアレイ1103を射出したレーザビームは120mm間を開けてシリンドリカルレンズ1104に入射する。シリンドリカルレンズ1104は、長さ60mm、幅150mm、厚さ20mm、曲率半径2140mmの平凸レンズである。レーザビームは凸の面から入射させる。前記幅方向と球欠面とを平行に配置する。これにより、シリンドリカルレンズアレイ1103で分割されたレーザビームはある面にて互いに重ね合わされる。シリンドリカルレンズアレイ1103とシリンドリカルレンズ1104の組み合わせは図3で説明した光学系と同様のものである。
【0052】
シリンドリカルレンズ1104を射出したレーザビームは395mm間を開けてシリンドリカルレンズアレイ1105aに入射する。シリンドリカルレンズアレイ1105aは、長さ150mm、幅2mm、厚さ5mm、曲率半径100mmである16本の平凸のシリンドリカルレンズをアレイ状に並べたものである。すなわち、シリンドリカルレンズアレイ1105aはサイズ150mm×32mm×5mmのレンズとなる。前記幅方向と子午面とは平行に配置する。引き続きシリンドリカルレンズアレイ1105aを射出したレーザビームは65mm間を開けてシリンドリカルレンズアレイ1105bに入射する。シリンドリカルレンズアレイ1105bは、長さ150mm、幅2mm、厚さ5mm、曲率半径80mmである16本の平凹のシリンドリカルレンズをアレイ状に並べたものである。すなわち、シリンドリカルレンズアレイ1105bはサイズ150mm×32mm×5mmのレンズとなる。前記幅方向と子午面とは平行に配置する。また、シリンドリカルレンズアレイ1105aにより16分割されるレーザビームは、シリンドリカルレンズアレイ1105bの16本のシリンドリカルレンズに、それぞれ1対1で入射するようにレンズを配置する。なお、図1では簡単のため4本ずつ2組のシリンドリカルレンズにて図示した。
【0053】
続いて、シリンドリカルレンズアレイ1105bの後方1600mmの位置にシリンドリカルレンズ1106を配置する。シリンドリカルレンズ1106は、長さ550mm、幅60mm、厚さ20mm、曲率半径486mmの平凸のシリンドリカルレンズである。レーザビームの入射面は平面とする。前記幅方向と子午面とは平行に配置する。これにより、シリンドリカルレンズ1106の後方1000mmに位置する平面にて、レーザビームはいったん幅2mm程度の線状ビームに変換される。
【0054】
シリンドリカルレンズ1106の後方2050mmの位置にダブレットシリンドリカルレンズ1108を配置する。本実施形態では、シリンドリカルレンズ1106とダブレットシリンドリカルレンズ1108との間に90°折り返しミラー1107を設け、半導体膜が設置されるステージ1109が水平面とほぼ平行になるようにする。ダブレットシリンドリカルレンズ1108は、2枚のシリンドリカルレンズで構成されるため、レーザビームの入射面から射出面に向かって、第1面、第2面、第3面、第4面と名付けると、第1面の曲率半径125mm、第2面の曲率半径77mm、第3面の曲率半径97mm、第4面の曲率半径−200mm、である。ここで、符号が正のものはレーザビームの射出側に、曲率半径の中心がくるものとし、符合が負のものはレーザビームの入射側に、曲率半径の中心がくるものとする。第1面と第2面との中心距離は10mm、第2面と第3面との中心距離は5.5mm、第3面と第4面との中心距離は20mmである。ダブレットシリンドリカルレンズのサイズは、長さ1000mm、幅70mm、厚さ35.5mmである。幅方向と子午面とは平行に配置する。ステージ1109は、ダブレットシリンドリカルレンズの後方約238mmの位置に配置する。ステージ1109の位置は、非常に精密に決定されなければならない。なぜならば、本光学系の焦点深度が0.5mm程度しかないからである。上記のすべての光学系は曲率半径にて定義したが、それらの数値はレンズの母材の屈折率が1.4856であるとしたときのものである。よって、母材の屈折率が異なれば、上記すべての数値に関し補正を考えねばならないことは言うまでもない。
【0055】
ステージ1109には半導体膜が形成された基板1111を設置する。ステージ1109には、わずかに凹のシリンドリカル状に曲率が付けられ、その曲率半径は40000mmである。曲率半径の中心はレーザビームの入射側にあり、曲率の方向は球欠面と平行である。ステージ1109は、線状ビーム1110(図中斜線部分)と直角の方向に動作し、該動作中にレーザビームを照射し続けることで、半導体膜全体にレーザビームを照射する。ステージ1109により付けられた曲率により、基板の中央と基板の両端とで最大3mmの高低差ができる。これは、線状ビームの焦点深度(通常0.5mm程度)よりも大きくステージ1109に曲率を与える効果は絶大であることがわかる。また、長さ1m程度の辺を持ち、厚さが1mm程度の基板は極めて曲がりやすく、わずか3mm程度のたわみであれば容易に与えることが可能である。レーザビームの照射が終了後、ステージから基板を離せば与えられた基板のたわみは解消される。
【0056】
線状ビームの照射は例えば、図1に示したステージ1109を矢印の方向に走査させながら行う。このとき、半導体膜上における線状ビームのエネルギー密度や、ステージの速度は、実施者が適宜決めればよい。だいたいの目安を述べると、エネルギー密度は100mJ/cm2〜1000mJ/cm2の範囲である。ステージの速度は、線状ビームの幅方向の長さが90%程度もしくはそれ以上で互いに重なり合う範囲で適当なものを選ぶと、半導体膜において一様なレーザアニールを行える可能性が高い。最適なステージの速度は、レーザ発振器の周波数に比例すると考えてよい。図1の例は、ステージを線状ビームに対して動作させるものであるが、ステージを固定し線状ビームの方を動作させるものとしてもよい。この動作は相対的に行われれば良い。また、連続発振のレーザを用いるのであれば、0.5〜2000cm/s程度の速度でレーザビームに対して相対的にステージを動かして照射すればよい。
【0057】
こうして、レーザアニール工程が終了する。上記工程を繰り返すことにより、多数の基板を処理できる。
【0058】
本発明を利用すれば、エネルギー分布の極めて均一な長さ500mmを超える線状ビームを成形することができるので、大量生産のラインに組み込むのに適している。レーザ発振器は、線状ビームを線方向に伸ばしてもエネルギー密度が十分確保できる大出力のものを使う。必要な出力は線状ビームの幅方向の長さやレーザビームの波長にもよるが、1パルスあたり、1J以上はある方がよい。
【0059】
上記の例ではレーザ発振器にエキシマレーザを用いたが、それ以外にYAGレーザの高調波やガラスレーザの高調波を用いても同様な大出力が得られ、かつ珪素膜にレーザビームのエネルギーが良く吸収されるので好ましい。その他、珪素膜の結晶化に適当なレーザ発振器として、YVOレーザまたはYLFレーザ、Arレーザなどがある。YVOレーザまたはYLFレーザを適用する場合にはその第2または第3高調波を適用する。
【0060】
なお、本実施例では基板の全面に半導体膜が形成されている状態で、レーザビームによるアニールを行っているが、半導体膜にパターニングを行って、所望の形状としてから行っても良い。
[実施例2]
本発明を適用する場合としない場合の照射面におけるレーザビームのエネルギー分布を比較した結果について示す。
【0061】
線状ビームの線方向の長さLを長くするためには、(1)式からf2/f1を大きくすればよいことがわかる(各変数は図3参照)。シリンドリカルレンズアレイに含まれるシリンドリカルレンズの幅dを大きくすることでも可能であるが、それではレーザビームの分割数が少なくなるため、線状ビームのエネルギー分布の均一性が損なわれるので好ましくない。また、f2を大きくするとLが大きくなるが、それではレンズと照射面との距離が増加するため、フットプリントが大きくなり不経済である。よって、線状ビームの線方向の長さLを長くするためには、f1を小さくすることが最も好ましいことが分かる。
【0062】
図1で示す光学系を用いて照射面におけるエネルギー分布についてシミュレーションを行った。光学系の詳細は実施例1にて示した通りである。但し、ビームエキスパンダ1102は、第1面の曲率−220mm、厚さ7mmの平凹レンズと、前記平凹レンズから353mm離れて設置された第2面の曲率400mm、厚さ12mmの平凸レンズにより構成される。そして、ビームエキスパンダ1102から50mm離れてシリンドリカルレンズアレイ1103を設置した。他のレンズの曲率やレンズ間の距離は実施例1に記載の通りである。なお、図1で示す光学系の構成と図2で示す光学系の構成は異なっているが、図2の構成によっても照射面において図1と同様の形状のレーザビームが得られる。
【0063】
図1で示すレーザ発振器から照射面までの光路長が約5mの光学系において1103の曲率半径を14mmとすると、照射面において形成される線状ビームのサイズは300mm×0.4mmとなる。この線状ビームのエネルギー分布のシミュレーション結果の例を図4(a)に示す。縦軸がレーザビームの線方向、横軸がレーザビームの幅方向にあたり、結果を見やすくするため縦横で縮尺を変えている。以後、同様の図面は同様の規則に従って示す。図中の濃淡がレーザビームのエネルギー密度に対応する。図4(a)より、非常に均一なエネルギー分布が得られていることがわかる。ところが、この光学系において単純にシリンドリカルレンズアレイ1103(図2の構成の光学系を用いるのであれば、シリンドリカルレンズアレイ1203)の曲率半径を小さくして4mmとし、照射面における線状ビームの線方向の長さを1000mm程度と長くしたところ、線状ビームの線方向においてレーザビームのエネルギー分布の均一性が著しく損なわれた。(図4(b)参照。)なお、線状ビームの幅方向の長さは0.4mmのままである。
【0064】
本発明者は線状ビームの線方向の長さが長く伸ばされたことによりレーザビームの広がる角度が著しく大きくなったことがエネルギーの不均一を生んだと考え、線状ビームの中央付近と線状ビームの線方向における両端では、ピントの位置が異なっているのではないかと推測した。そこで光学設計ソフトにおいて、照射面における基板の形状を平面からシリンドリカルの曲面に変換して、基板の中央と基板の両端とで基板の高さが異なるような形状を想定し、再度シミュレーションを行ったところ、線状ビームのエネルギー分布の均一性が著しく向上した。
【0065】
基板に曲率をつけサイズ1000mm×0.4mmの線状ビームを成形した場合のシミュレーション結果を図6に示す。線状ビームのエネルギー分布が図4(b)の場合と比較し、著しく改善されたことが分かる。以上のシミュレーション結果から、本発明の有効性が示された。
[実施例3]
本実施例では、実施例1または実施例2に記載した光学系とは別の光学系の例を挙げる。具体的には、線状ビームの長さを変えて、半導体膜に持たせなくてはならない曲率がどのように変化するかを説明する。
【0066】
図1に示した光学系において、シリンドリカルレンズアレイ1103の焦点距離を変化させることにより、線状ビームの長さを変化させることができる。具体的に数値を列挙すると、線状ビームの長さを300mmとするときは、シリンドリカルレンズアレイ1103の曲率半径を14mm、線状ビームの長さを600mmとするときは、前記曲率半径を7mmとすればよい。即ち、前記曲率半径と線状ビームの長さは反比例の関係にあると考えてよい。
【0067】
図7に線状ビームの長さを600mmとしたときの照射面における線状ビームのエネルギー分布のシミュレーション結果を示す。図7(a)に示すものが、半導体膜の曲率がない、即ち平面としたときのものである。図7(b)に示すものが、半導体膜に曲率を与えたもので、前記半導体膜の曲率半径は実施例1に示したものと同じ40000mmとした。半導体膜に曲率を与えることにより、大きく線状ビームのエネルギー分布の均一性が向上したことが見て取れる。
【0068】
図8に線状ビームの長さを300mmとしたときの照射面における線状ビームのエネルギー分布のシミュレーション結果を示す。図8(a)に示すものが、半導体膜の曲率がない、即ち照射面を平面としたときのものである。図8(b)に示すものが、半導体膜に曲率を与えたもので、半導体膜の曲率半径は実施例1に示したものと同じ40000mmとした。図8(a)、図8(b)の両者で優位差は無く、本発明は比較的長い線状ビームに適応するとよいことが分かる。
【0069】
本実施例にて例示した長さ600mmの線状ビームの光学系は、基板のサイズが600mm×720mmのものに適用するとよい。このとき基板に持たせる曲率半径は実施例1に示したものと同様に40000mmとする。
【0070】
本実施例で示した光学系を利用して、例えば実施例1で示した方法に従って、半導体膜のレーザアニールを行う。前記半導体膜を利用して例えばアクティブマトリクス型の液晶ディスプレイを作製することができる。前記作製は、実施者が所定の方法に従って行えばよい。
[実施例4]
本実施例では、実施例1乃至3に記載した光学系とは別の光学系の例を挙げる。具体的には、光学系の光路長を変えて、半導体膜に持たせなくてはならない曲率がどのように変化するかを説明する。
【0071】
線状ビームの長さを変えずに光学系の光路長のみを変えるためには、図3におけるシリンドリカルレンズアレイ1301の焦点距離f1とシリンドリカルレンズ1302の焦点距離f2の比を変えずに、f1とf2の値を変化させればよい。特に焦点距離f2はシリンドリカルレンズ1302と照射面との距離とほぼ等しいため、光学系の光路長と強い相関がある。
【0072】
実施例1において焦点距離f2をもつシリンドリカルレンズに相当するものは、シリンドリカルレンズ1104である。シリンドリカルレンズ1104の焦点距離f2は、4400mm程度である。線状ビームの長さを変えずにf2を変化させ、即ち、f1とf2の焦点距離の比を変えずにf2を変化させて(ただし、f1とf2の比を変えないため、f1も変化する)実施例1に示す光学系を用いてシミュレーションにより照射面におけるエネルギー分布を調べ、均一なエネルギー分布を得るための基板に持たせるべき曲率半径の範囲を決定した。このようにして得られたf2に対する基板に持たせるべき曲率半径の範囲を表1に、f2と基板に持たせるべき曲率半径の範囲との相関のグラフを図9に示す。ただし、f2の焦点距離が2200mm、3600mmの時は、基板に持たせるべき曲率半径の範囲が比較的狭いため最適値のみ記載した。
【0073】
【表1】
Figure 0004408011
【0074】
また、図9における2つの式は、f2を変化させた時の基板に持たせるべき曲率半径の最小値の近似式
【0075】
【数2】
Figure 0004408011
【0076】
と、最大値の近似式
【0077】
【数3】
Figure 0004408011
【0078】
である。つまり、f2に対する基板の曲率半径をこれら2つの式の範囲内にある曲率半径とすれば、基板上においてエネルギー分布が均一なレーザビームが得られる。
【0079】
図9は、縦軸にシリンドリカルレンズ1104の焦点距離f2の値、横軸に基板に持たせるべき曲率半径をとった。シリンドリカルレンズ1104は、その役割から線状ビームの線方向のエネルギー分布を均一化する集光レンズということができる。このグラフから、f2が大きくなるにつれて基板に持たせるべき曲率半径が増大することが分かる。f2が8800mm即ち実施例1で示した光学系のものの2倍となったとき、前記曲率半径の最適値は150000mmとなる。しかしながら、この位になると前記曲率半径を無限大、即ち基板を平面とした場合の線状ビームのエネルギー分布と曲率半径を150000mmとした場合の線状ビームのエネルギー分布とは、ほとんど同じである。このとき、f2が8800mmであるため、光学系の光路長は10m程度となった。
【0080】
焦点距離f2を6600mmとした場合、前記曲率半径を60000mm程度とすると最も線状ビームのエネルギー分布が均一になる。この場合は、基板を平面とした場合とは明らかに有意差があり、本発明の効果がでる範囲となる。同様にして、焦点距離f2を5500mmとした場合は、前記曲率半径を50000mmに、焦点距離f2を3600mmとした場合は、前記曲率半径を20000mmに、焦点距離f2を2200mmとした場合は、前記曲率半径を9000mmとすれば良かった。これ以上、焦点距離f2を小さくすると線状ビームの変形が激しくなりエネルギー分布の均一性が損なわれた。また、基板に与える曲率半径も小さくなり基板への負担が増大した。曲率半径9000mmに曲げられた幅1mの基板の中央部分と端部分との高低差は14mmである。無論基板の材質によって、基板に与えられる曲率半径は変化するが、ガラス基板に与える曲率はこの辺りが限度であろう。
【0081】
本実施例で示した光学系を利用して、例えば実施例1で示した方法に従って、半導体膜のレーザアニールを行う。前記半導体膜を利用して例えばアクティブマトリクス型の液晶ディスプレイを作製することができる。前記作製は、実施者が所定の方法に従って行えばよい。
[実施例5]
本実施例では、多結晶珪素膜をガラス基板上に作製する方法を示す。
【0082】
まず、ガラス基板の一方の面に厚さ200nmの酸化珪素膜と、厚さ50nmの非晶質珪素膜を順に成膜する。成膜方法は、プラズマCVD法や、スパッタ法等にて行えばよい。その後、熱アニール法にて非晶質珪素膜を結晶化させる。熱アニールは、例えば600℃の窒素雰囲気で非晶質珪素膜を24時間程度の熱処理である。あるいは、RTA法などで結晶化させてもよい。また、特開平7-130652号公報に記載の方法で、非晶質珪素膜を結晶化させてもよい。その場合の例を以下に説明する。
【0083】
まず、ガラス基板の片面に下地膜(例えば厚さ200nmの酸化珪素膜)を、続いて非晶質半導体膜を25〜100nmの厚さで形成する。非晶質半導体膜は非晶質珪素膜、非晶質珪素・ゲルマニウム(a−SiGe)膜、非晶質炭化珪素(a−SiC)膜,非晶質珪素・スズ(a−SiSn)膜などが適用できる。これらの非晶質半導体膜は水素を前記非晶質半導体膜に含まれる全原子数の0.1〜40%程度含有するようにして形成すると良い。例えば、非晶質珪素膜を55nmの厚さで形成する。そして、重量換算で10ppmの金属元素を含む溶液をスピナーで基板を回転させて塗布するスピンコート法で金属元素を含有する層を形成する。金属元素にはニッケル(Ni)、ゲルマニウム(Ge)、鉄(Fe)、パラジウム(Pd)、スズ(Sn)、鉛(Pb)、コバルト(Co)、白金(Pt)、銅(Cu)、金(Au)などを用いる。この金属元素を含有する層は、スピンコート法の他に印刷法やスプレー法、バーコーター法、或いはスパッタ法や真空蒸着法によって上記金属元素の層を1〜5nmの厚さに形成しても良い。
【0084】
結晶化の工程では、まず窒素雰囲気にて400〜500℃で1時間程度の熱処理を行い、非晶質珪素膜の含有水素量を前記非晶質珪素膜に含まれる全原子数の5%以下にするのが好ましい。非晶質珪素膜の含有水素量が成膜後において最初からこの値である場合にはこの熱処理は必ずしも必要でない。そして、ファーネスアニール炉を用い、550〜600℃の窒素雰囲気中で1〜8時間の熱処理を行う。以上の工程により多結晶珪素膜から成る多結晶半導体膜を得ることができる。しかし、この熱アニールによって作製された多結晶半導体膜は、光学顕微鏡観察により観察すると局所的に非晶質領域が残存していることが観察されることがあり、このような場合、同様にラマン分光法では480cm-1にブロードなピークを持つ非晶質成分が観測される。そのため、熱アニールの後に本実施例が開示するレーザアニール法で前記多結晶半導体膜を処理してその結晶性を高めることは有効な手段として適用できる。前記結晶化の工程はRTA法にて行ってもよい。
【0085】
本実施例で作製例を示した結晶性半導体膜は、非晶質半導体膜とは吸収係数の波長依存性が異なる。特に可視光線の領域にて両者の差は大きく、例えば、YAGレーザの第2高調波やガラスレーザの第2高調波の波長における結晶性珪素膜の吸収係数は、非晶質珪素膜のものよりも1桁小さい。よって、レーザ発振器に可視光線のものを使用するときは線状ビームのエネルギー密度を非晶質半導体膜と結晶性半導体膜とで異なるようにする方が好ましい。一方、レーザ発振器にエキシマレーザや、YAGレーザの第3高調波などを用いるときは、非晶質珪素膜と結晶性珪素膜とで吸収係数がほとんど変わらないため、レーザアニールに最適な線状ビームのエネルギー密度は両者でほとんど変わらない。
[実施例6]
本実施例ではアクティブマトリクス基板の作製方法について図10〜図13を用いて説明する。本明細書ではCMOS回路、及び駆動回路と、画素TFT、保持容量とを有する画素部を同一基板上に形成された基板を、便宜上アクティブマトリクス基板と呼ぶ。
【0086】
まず、本実施例ではバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板350を用いる。なお、基板350としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。
【0087】
次いで、基板350上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜351を形成する。本実施例では下地膜351として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。下地膜351の一層目としては、プラズマCVD法を用い、SiH4、NH3、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜351aを10〜200nm(好ましくは50〜100nm)形成する。本実施例では、膜厚50nmの酸化窒化珪素膜351a(組成比Si=32%、O=27%、N=24%、H=17%)を形成した。次いで、下地膜351のニ層目としては、プラズマCVD法を用い、SiH4、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜351bを50〜200nm(好ましくは100〜150nm)の厚さに積層形成する。本実施例では、膜厚100nmの酸化窒化珪素膜351b(組成比Si=32%、O=59%、N=7%、H=2%)を形成する。
【0088】
次いで、下地膜上に半導体層402〜406を形成する。半導体層402〜406として、非晶質構造を有する半導体膜352を公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により25〜80nm(好ましくは30〜60nm)の厚さで成膜し、本発明を用いてレーザ結晶化法により、結晶化を行う。レーザ結晶化法で結晶質半導体膜を作製する場合には、パルス発振型または連続発光型の固体レーザまたは気体レーザまたは金属レーザが望ましい。前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザ、CO2レーザ等があり、金属レーザとしてはヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザが挙げられる。これらのレーザを用いる場合には、レーザ発振器から放射されたレーザビームを光学系で線状に集光し半導体膜に照射する方法を用いると良い。結晶化の条件は実施者が適宣選択するものであるが、エキシマレーザを用いる場合はパルス発振周波数300Hzとし、レーザエネルギー密度を100〜1200mJ/cm2好ましくは100〜700mJ/cm2(代表的には200〜500mJ/cm2)とする。また、YAGレーザを用いる場合にはその第2高調波を用いパルス発振周波数1〜10000Hz、代表的には1〜300Hzとし、レーザエネルギー密度を200〜1800mJ/cm2好ましくは300〜1000mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅10〜1000μm、代表的には100〜1000μm、例えば400μmで線状に集光したレーザ光を基板全面に渡って照射し、この時の線状ビームの重ね合わせ率(オーバーラップ率)を50〜98%として行ってもよい。また、連続発振のレーザ発振器をもちいるのであれば、エネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、0.5〜2000cm/s程度の速度でレーザ光に対して相対的にステージを動かして照射し、結晶性半導体膜を形成する。
【0089】
なお、他の公知の結晶化法(RTAやファーネスアニール炉を用いた熱結晶化法、結晶化を助長する金属元素を用いた熱結晶化法等)とレーザ結晶化法とを組み合わせて結晶化を行っても良い。
【0090】
そして、得られた結晶質半導体膜を所望の形状にパターニングして半導体層402〜406を形成する。前記半導体膜352としては、非晶質半導体膜や微結晶半導体膜、結晶質半導体膜などがあり、非晶質珪素ゲルマニウム膜などの非晶質構造を有する化合物半導体膜を適用しても良い。本実施例では、プラズマCVD法を用い、55nmの非晶質珪素膜を成膜する。そして、エキシマレーザにより半導体膜を結晶化させて結晶質珪素膜を形成する。続いて、フォトリソグラフィ法を用いたパターニング処理によって半導体層402〜406を形成する。
【0091】
また、半導体層402〜406を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。
【0092】
次いで、半導体層402〜406を覆うゲート絶縁膜407を形成する。ゲート絶縁膜407はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0093】
次いで、ゲート絶縁膜407上に膜厚20〜100nmの第1の導電膜408と、膜厚100〜400nmの第2の導電膜409とを積層形成する。本実施例では、膜厚30nmのTaN膜からなる第1の導電膜408と、膜厚370nmのW膜からなる第2の導電膜409を積層形成した。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒素を含む雰囲気内でスパッタした。また、W膜は、Wのターゲットを用いたスパッタ法で形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。
【0094】
なお、本実施例では、第1の導電膜408をTaN、第2の導電膜409をWとしたが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、AgPdCu合金を用いてもよい。また、第1の導電膜をタンタル(Ta)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化チタン(TiN)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をAl膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜とする組み合わせとしてもよい。
【0095】
次に、フォトリソグラフィ法を用いてレジストからなるマスク410〜415を形成し、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。(図10(C))本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF4とCl2とOとを用い、それぞれのガス流量比を25/25/10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行った。基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。
【0096】
この後、レジストからなるマスク410〜415を除去せずに第2のエッチング条件に変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30/30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。
【0097】
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜45°となる。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層417〜422(第1の導電層417a〜422aと第2の導電層417b〜422b)を形成する。416はゲート絶縁膜であり、第1の形状の導電層417〜422で覆われない領域は20〜50nm程度エッチングされ薄くなった領域が形成される。
【0098】
次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行う(図10(D))。ここでは、エッチングガスにCF4とCl2とOとを用い、W膜を選択的にエッチングする。この時、第2のエッチング処理により第2の導電層428b〜433bを形成する。一方、第1の導電層417a〜422aは、ほとんどエッチングされず、第2の形状の導電層428〜433を形成する。
【0099】
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を低濃度に添加する。ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2とし、加速電圧を40〜80keVとして行う。本実施例ではドーズ量を1.5×10 3/cm2とし、加速電圧を60keVとして行う。n型を付与する不純物元素としてリン(P)を用いる。この場合、導電層428〜433がn型を付与する不純物元素に対するマスクとなり、自己整合的に不純物領域423〜427が形成される。不純物領域423〜427には1×1018〜1×1020/cm3の濃度範囲でn型を付与する不純物元素を添加する。
レジストからなるマスクを除去した後、新たにレジストからなるマスク434a〜434cを形成して第1のドーピング処理よりも高い加速電圧で第2のドーピング処理を行う。イオンドープ法の条件はドーズ量を1×1013〜1×1015/cm2とし、加速電圧を60〜120keVとして行う。ドーピング処理は第2の導電層428b〜432bを不純物元素に対するマスクとして用い、第1の導電層のテーパー部の下方の半導体層に不純物元素が添加されるようにドーピングする。続いて、第2のドーピング処理より加速電圧を下げて第3のドーピング処理を行って図11(A)の状態を得る。イオンドープ法の条件はドーズ量を1×1015〜1×1017/cm2とし、加速電圧を50〜100keVとして行う。第2のドーピング処理および第3のドーピング処理により、第1の導電層と重なる低濃度不純物領域436、442、448には1×1018〜5×1019/cm3の濃度範囲でn型を付与する不純物元素を添加され、高濃度不純物領域435、438、441、444、447には1×1019〜5×1021/cm3の濃度範囲でn型を付与する不純物元素を添加される。
【0100】
もちろん、適当な加速電圧にすることで、第2のドーピング処理および第3のドーピング処理は1回のドーピング処理で、低濃度不純物領域および高濃度不純物領域を形成することも可能である。
【0101】
次いで、レジストからなるマスクを除去した後、新たにレジストからなるマスク450a〜450cを形成して第4のドーピング処理を行う。この第4のドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域453〜456、459、460を形成する。第2の導電層428a〜432aを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加して自己整合的に不純物領域を形成する。本実施例では、不純物領域453〜456、459、460はジボラン(B26)を用いたイオンドープ法で形成する(図11(B))。この第4のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジストからなるマスク450a〜450cで覆われている。第1〜3のドーピング処理によって、不純物領域438、439にはそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を1×1019〜5×1021/cm3となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0102】
以上までの工程で、それぞれの半導体層に不純物領域が形成される。
【0103】
次いで、レジストからなるマスク450a〜450cを除去して第1の層間絶縁膜461を形成する。この第1の層間絶縁膜461としては、プラズマCVD法またはスパッタ法を用い、厚さを100〜200nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により膜厚150nmの酸化窒化珪素膜を形成した。
【0104】
次いで、図11(C)に示すように、加熱処理を行って、半導体層の結晶性の回復、それぞれの半導体層に添加された一導電型の不純物元素の活性化を行う。レーザアニール法により活性化するには、本発明で開示したレーザ照射装置を用いる。このとき用いるレーザは、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザが望ましい。連続発振のレーザを用いるのであれば、レーザ光のエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.01〜10MW/cm2)が必要であり、レーザ光に対して相対的に基板を0.5〜2000cm/sの速度で移動させる。また、パルス発振のレーザを用いるのであれば、周波数300Hzとし、レーザエネルギー密度を50〜1000mJ/cm2(代表的には50〜700mJ/cm2)とするのが望ましい。このとき、レーザ光を50〜98%オーバーラップさせても良い。
【0105】
また、第1の層間絶縁膜を形成する前に加熱処理を行っても良い。ただし、用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護するため層間絶縁膜(珪素を主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活性化処理を行うことが好ましい。
【0106】
そして、加熱処理(300〜550℃で1〜12時間の熱処理)を行うと水素化を行うことができる。この工程は第1の層間絶縁膜461に含まれる水素により半導体層のダングリングボンドを終端する工程である。第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)や、3〜100%の水素を含む雰囲気中で300〜450℃で1〜12時間の加熱処理を行っても良い。
【0107】
次いで、第1の層間絶縁膜461上に無機絶縁膜材料または有機絶縁物材料から成る第2の層間絶縁膜462を形成する。第2の層間絶縁膜462として表面が平坦化する膜を用いてもよい。その場合は、画素電極を形成した後、公知のサンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させることが好ましい。
【0108】
そして、駆動回路506において、各不純物領域とそれぞれ電気的に接続する配線464〜468を形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングして形成する。もちろん、二層構造に限らず、単層構造でもよいし、三層以上の積層構造にしてもよい。また、配線の材料としては、AlとTiに限らない。例えば、TaN膜上にAlやCuを形成し、さらにTi膜を形成した積層膜をパターニングして配線を形成してもよい(図12)。
【0109】
また、画素部507においては、画素電極470、ゲート配線469、接続電極468を形成する。この接続電極468によりソース配線(443aと443bの積層)は、画素TFTと電気的な接続が形成される。また、ゲート配線469は、画素TFTのゲート電極と電気的な接続が形成される。また、画素電極470は、画素TFTのドレイン領域442と電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能する半導体層458と電気的な接続が形成される。また、画素電極471としては、AlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いることが望ましい。
【0110】
以上の様にして、nチャネル型TFT501とpチャネル型TFT502からなるCMOS回路、及びnチャネル型TFT503を有する駆動回路506と、画素TFT504、保持容量505とを有する画素部507を同一基板上に形成することができる。こうして、アクティブマトリクス基板が完成する。
【0111】
駆動回路506のnチャネル型TFT501はチャネル形成領域437、ゲート電極の一部を構成する第1の導電層428aと重なる低濃度不純物領域436(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域452と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域451を有している。このnチャネル型TFT501と電極466で接続してCMOS回路を形成するpチャネル型TFT502にはチャネル形成領域440、ソース領域またはドレイン領域として機能する高濃度不純物領域454と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域453を有している。また、nチャネル型TFT503にはチャネル形成領域443、ゲート電極の一部を構成する第1の導電層430aと重なる低濃度不純物領域442(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域456と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域455を有している。
【0112】
画素部の画素TFT504にはチャネル形成領域446、ゲート電極の外側に形成される低濃度不純物領域445(LDD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域458と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域457を有している。また、保持容量505の一方の電極として機能する半導体層には、n型を付与する不純物元素およびp型を付与する不純物元素が添加されている。保持容量505は、絶縁膜416を誘電体として、電極(432aと432bの積層)と、半導体層とで形成している。
【0113】
また、本実施例で作製するアクティブマトリクス基板の画素部の上面図を図13に示す。なお、図10〜図13に対応する部分には同じ符号を用いている。図12中の鎖線A−A’は図13中の鎖線A―A’で切断した断面図に対応している。また、図12中の鎖線B−B’は図13中の鎖線B―B’で切断した断面図に対応している。
【0114】
なお、本実施例は実施例1乃至5のいずれか一と自由に組み合わせることが可能である。
[実施例7]
本実施例では、実施例6で作製したアクティブマトリクス基板から、反射型液晶表示装置を作製する工程を以下に説明する。説明には図14を用いる。本実施例では本発明の記載がないが、実施例6で作製されるアクティブマトリクス基板を用いているため、本発明を適用していると言える。
【0115】
まず、実施例6に従い、図12の状態のアクティブマトリクス基板を得た後、図12のアクティブマトリクス基板上、少なくとも画素電極470上に配向膜567を形成しラビング処理を行う。なお、本実施例では配向膜567を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサ572を所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0116】
次いで、対向基板569を用意する。次いで、対向基板569上に着色層570、571、平坦化膜573を形成する。赤色の着色層570と青色の着色層571とを重ねて、遮光部を形成する。また、赤色の着色層と緑色の着色層とを一部重ねて、遮光部を形成してもよい。
【0117】
本実施例では、実施例6に示す基板を用いている。従って、実施例6の画素部の上面図を示す図13では、少なくともゲート配線469と画素電極470の間隙と、ゲート配線469と接続電極468の間隙と、接続電極468と画素電極470の間隙を遮光する必要がある。本実施例では、それらの遮光すべき位置に着色層の積層からなる遮光部が重なるように各着色層を配置して、対向基板を貼り合わせた。
【0118】
このように、ブラックマスク等の遮光層を形成することなく、各画素間の隙間を着色層の積層からなる遮光部で遮光することによって工程数の低減を可能とした。
【0119】
次いで、平坦化膜573上に透明導電膜からなる対向電極576を少なくとも画素部に形成し、対向基板の全面に配向膜574を形成し、ラビング処理を施した。
【0120】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材568で貼り合わせる。シール材568にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料575を注入し、封止剤(図示せず)によって完全に封止する。液晶材料575には公知の液晶材料を用いれば良い。このようにして図14に示す反射型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、対向基板のみに偏光板(図示しない)を貼りつけた。そして、公知の技術を用いてFPCを貼りつけた。
【0121】
以上のようにして作製される液晶表示装置は、本発明のレーザアニールを適用することにより一様に結晶化された半導体膜が用いられており、液晶表示装置の十分な信頼性を確保することが可能となる。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
なお、本実施例は実施例1乃至6のいずれか一と自由に組み合わせることが可能である。
[実施例8]
本実施例では、本発明を用いて発光装置を作製した例について説明する。本実施例では本発明の記載がないが、実施例6で作製されるアクティブマトリクス基板を用いているため、本発明を適用していると言える。発光装置とは、基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにICを実装した表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(発光層)と陽極層と、陰極層とを有する。また、有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含む。
【0122】
なお、有機発光層とは、発光素子において陽極と陰極の間に形成された全ての層と定義する。有機発光層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極層、発光層、陰極層が順に積層された構造を有しており、この構造に加えて、陽極層、正孔注入層、発光層、陰極層や、陽極層、正孔注入層、発光層、電子輸送層、陰極層等の順に積層した構造を有していることもある。
【0123】
図15は本実施例の発光装置の断面図である。図15において、基板700上に設けられたスイッチングTFT603は図12のnチャネル型TFT503を用いて形成される。したがって、構造の説明はnチャネル型TFT503の説明を参照すれば良い。
【0124】
なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0125】
基板700上に設けられた駆動回路は図12のCMOS回路を用いて形成される。従って、構造の説明はnチャネル型TFT501とpチャネル型TFT502の説明を参照すれば良い。
【0126】
また、配線701、703はCMOS回路のソース配線、702はドレイン配線として機能する。また、配線704はソース配線708とスイッチングTFTのソース領域とを電気的に接続する配線として機能し、配線705はドレイン配線709とスイッチングTFTのドレイン領域とを電気的に接続する配線として機能する。
【0127】
なお、電流制御TFT604は図12のpチャネル型TFT502を用いて形成される。従って、構造の説明はpチャネル型TFT502の説明を参照すれば良い。
【0128】
また、配線706は電流制御TFTのソース配線(電流供給線に相当する)であり、707は電流制御TFTの画素電極711上に重ねることで画素電極711と電気的に接続する電極である。
【0129】
なお、711は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。画素電極711は、上記配線を形成する前に平坦な層間絶縁膜710上に形成する。本実施例においては、樹脂からなる平坦化膜710を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。
【0130】
画素電極711を形成後、図15に示すようにバンク712を形成する。バンク712は100〜400nmの珪素を含む絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。
【0131】
なお、バンク712は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例ではバンク712の材料となる絶縁膜中にカーボン粒子や金属粒子を添加して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は1×106〜1×1012Ωm(好ましくは1×108〜1×1010Ωm)となるようにカーボン粒子や金属粒子の添加量を調節すれば良い。
【0132】
画素電極711の上には発光層713が形成される。なお、図15では一画素しか図示していないが、本実施例ではR(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けている。また、本実施例では蒸着法により低分子系有機発光材料を形成している。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として70nm厚のトリス−8−キノリノラトアルミニウム錯体(Alq3)膜を設けた積層構造としている。Alq3にキナクリドン、ペリレンもしくはDCM1といった蛍光色素を添加することで発光色を制御することができる。
【0133】
但し、以上の例は発光層として用いることのできる有機発光材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせて発光層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例では低分子系有機発光材料を発光層として用いる例を示したが、中分子系有機発光材料や高分子系有機発光材料を用いても良い。なお、昇華性や溶解性を有さない有機化合物の凝集体、または、連鎖する分子の長さが5μm以下(好ましくは0.05μm以下)の有機発光材料を中分子系有機発光材料とする。また、高分子系有機発光材料を用いる例として、正孔注入層として20nmのポリチオフェン(PEDOT)膜をスピン塗布法により設け、その上に発光層として100nm程度のパラフェニレンビニレン(PPV)膜を設けた積層構造としても良い。なお、PPVのπ共役系高分子を用いると、赤色から青色まで発光波長を選択できる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材料を用いることができる。
【0134】
次に、発光層713の上には導電膜からなる陰極714が設けられる。本実施例の場合、導電膜としてアルミニウムとリチウムとの合金膜を用いる。勿論、公知のMgAg膜(マグネシウムと銀との合金膜)を用いても良い。陰極材料としては、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0135】
この陰極714まで形成された時点で発光素子715が完成する。なお、ここでいう発光素子715は、画素電極(陽極)711、発光層713及び陰極714で形成されたダイオードを指す。
【0136】
発光素子715を完全に覆うようにしてパッシベーション膜716を設けることは有効である。パッシベーション膜716としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC(ダイヤモンドライクカーボン)膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層713の上方にも容易に成膜することができる。また、DLC膜は酸素に対するブロッキング効果が高く、発光層713の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に発光層713が酸化するといった問題を防止できる。
【0137】
さらに、パッシベーション膜716上に封止材717を設け、カバー材718を貼り合わせる。封止材717としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、カバー材718はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0138】
こうして図15に示すような構造の発光装置が完成する。なお、バンク712を形成した後、パッシベーション膜716を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材718を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。
【0139】
こうして、基板700上にnチャネル型TFT601、602、スイッチングTFT(nチャネル型TFT)603および電流制御TFT(nチャネル型TFT)604が形成される。
【0140】
さらに、図15を用いて説明したように、ゲート電極に絶縁膜を介して重なる不純物領域を設けることによりホットキャリア効果に起因する劣化に強いnチャネル型TFTを形成することができる。そのため、信頼性の高い発光装置を実現できる。
【0141】
また、本実施例では画素部と駆動回路の構成のみ示しているが、本実施例の製造工程に従えば、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。
【0142】
さらに、発光素子を保護するための封止(または封入)工程まで行った後の本実施例の発光装置について図16を用いて説明する。なお、必要に応じて図15で用いた符号を引用する。
【0143】
図16(A)は、発光素子の封止までを行った状態を示す上面図、図16(B)は図16(A)をC−C’で切断した断面図である。点線で示された801はソース側駆動回路、806は画素部、807はゲート側駆動回路である。また、901はカバー材、902は第1シール材、903は第2シール材であり、第1シール材902で囲まれた内側には封止材907が設けられる。
【0144】
なお、904はソース側駆動回路801及びゲート側駆動回路807に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)905からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
【0145】
次に、断面構造について図16(B)を用いて説明する。基板700の上方には画素部806、ゲート側駆動回路807が形成されており、画素部806は電流制御TFT604とそのドレインに電気的に接続された画素電極711を含む複数の画素により形成される。また、ゲート側駆動回路807はnチャネル型TFT601とpチャネル型TFT602とを組み合わせたCMOS回路(図14参照)を用いて形成される。
【0146】
画素電極711は発光素子の陽極として機能する。また、画素電極711の両端にはバンク712が形成され、画素電極711上には発光層713および発光素子の陰極714が形成される。
【0147】
陰極714は全画素に共通の配線としても機能し、接続配線904を経由してFPC905に電気的に接続されている。さらに、画素部806及びゲート側駆動回路807に含まれる素子は全て陰極714およびパッシベーション膜567で覆われている。
【0148】
また、第1シール材902によりカバー材901が貼り合わされている。なお、カバー材901と発光素子との間隔を確保するために樹脂膜からなるスペーサを設けても良い。そして、第1シール材902の内側には封止材907が充填されている。なお、第1シール材902、封止材907としてはエポキシ系樹脂を用いるのが好ましい。また、第1シール材902はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、封止材907の内部に吸湿効果をもつ物質や酸化防止効果をもつ物質を含有させても良い。
【0149】
発光素子を覆うようにして設けられた封止材907はカバー材901を接着するための接着剤としても機能する。また、本実施例ではカバー材901を構成するプラスチック基板の材料としてFRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリルを用いることができる。
【0150】
また、封止材907を用いてカバー材901を接着した後、封止材907の側面(露呈面)を覆うように第2シール材903を設ける。第2シール材903は第1シール材902と同じ材料を用いることができる。
【0151】
以上のような構造で発光素子を封止材907に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素等の発光層の酸化による劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置が得られる。
【0152】
以上のようにして作製される発光装置は、本発明のレーザアニールを適用することにより一様に結晶化された半導体膜が用いられており、発光装置の十分な信頼性を確保することが可能となる。そして、このような発光装置は各種電子機器の表示部として用いることができる。
【0153】
なお、本実施例は実施例1乃至6のいずれか一と自由に組み合わせることが可能である。
[実施例9]
本発明を適用して、様々な電気光学装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型発光装置、アクティブマトリクス型EC表示装置)を作製することができる。即ち、それら電気光学装置を表示部に組み込んださまざまな電子機器に本発明を適用できる。
【0154】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの例を図17、図18及び図19に示す。
【0155】
図17(A)はパーソナルコンピュータであり、本体3001、画像入力部3002、表示部3003、キーボード3004等を含む。本発明を表示部3003に適用することができる。
【0156】
図17(B)はビデオカメラであり、本体3101、表示部3102、音声入力部3103、操作スイッチ3104、バッテリー3105、受像部3106等を含む。本発明を表示部3102に適用することができる。
【0157】
図17(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体3201、カメラ部3202、受像部3203、操作スイッチ3204、表示部3205等を含む。本発明は表示部3205に適用できる。
【0158】
図17(D)はゴーグル型ディスプレイであり、本体3301、表示部3302、アーム部3303等を含む。本発明は表示部3302に適用することができる。
【0159】
図17(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体3401、表示部3402、スピーカ部3403、記録媒体3404、操作スイッチ3405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明は表示部3402に適用することができる。
【0160】
図17(F)はデジタルカメラであり、本体3501、表示部3502、接眼部3503、操作スイッチ3504、受像部(図示しない)等を含む。本発明を表示部3502に適用することができる。
【0161】
図18(A)はフロント型プロジェクターであり、投射装置3601、スクリーン3602等を含む。本発明は投射装置3601の一部を構成する液晶表示装置3808やその他の駆動回路に適用することができる。
【0162】
図18(B)はリア型プロジェクターであり、本体3701、投射装置3702、ミラー3703、スクリーン3704等を含む。本発明は投射装置3702の一部を構成する液晶表示装置3808やその他の駆動回路に適用することができる。
【0163】
なお、図18(C)は、図18(A)及び図18(B)中における投射装置3601、3702の構造の一例を示した図である。投射装置3601、3702は、光源光学系3801、ミラー3802、3804〜3806、ダイクロイックミラー3803、プリズム3807、液晶表示装置3808、位相差板3809、投射光学系3810で構成される。投射光学系3810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図18(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0164】
また、図18(D)は、図18(C)中における光源光学系3801の構造の一例を示した図である。本実施例では、光源光学系3801は、リフレクター3811、光源3812、レンズアレイ3813、3814、偏光変換素子3815、集光レンズ3816で構成される。なお、図18(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。
【0165】
ただし、図18に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及び発光装置での適用例は図示していない。
【0166】
図19(A)は携帯電話であり、本体3901、音声出力部3902、音声入力部3903、表示部3904、操作スイッチ3905、アンテナ3906等を含む。本発明を表示部3904に適用することができる。
【0167】
図19(B)は携帯書籍(電子書籍)であり、本体4001、表示部4002、4003、記憶媒体4004、操作スイッチ4005、アンテナ4006等を含む。本発明は表示部4002、4003に適用することができる。
【0168】
図19(C)はディスプレイであり、本体4101、支持台4102、表示部4103等を含む。本発明は表示部4103に適用することができる。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。
【0169】
以上の様に、本発明の適用範囲は極めて広く、さまざま分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1〜7または8のどのような組み合わせからなる構成を用いても実現することができる。
【0170】
【発明の効果】
本発明により、より出力の高いレーザ発振器を用いてより長い線状ビームを成形するときの光路長の短い光学系、延いてはフットプリントの小さいレーザ照射装置を実現することが可能となる。
【0171】
具体的には、本発明により、長さ300mmを超える長い線状ビームの光路長を著しく短くすることができる。特に、線状ビームの長さが1m程度となる場合に、従来の方法にて線状ビームを成形すると光路長が10m程度となりフットプリントが著しく大きくなる。ところが、本発明を適用すると前記光路長はわずか半分の5mで済む。もちろん、従来の線状ビームや従来より短い線状ビームを形成するための光学系の光路長を、従来より短くすることも可能である。本発明は特に半導体膜のアニール工程に適用すると好ましいが、通常半導体装置の作製ラインは単位面積当たりのコストが非常に高いクリーンルームの中に設置されるため、フットプリントの低減はコスト削減に絶大な効果を発揮する。
【図面の簡単な説明】
【図1】 実施の形態を説明する図。
【図2】 従来の光学系を説明する図。
【図3】 光学系を説明する図。
【図4】 線状ビームのエネルギー分布を示す図。
【図5】 線状ビームのピントの位置を示す図。
【図6】 線状ビームのエネルギー分布を示す図。
【図7】 線状ビームのエネルギー分布を示す図。
【図8】 線状ビームのエネルギー分布を示す図。
【図9】 線状ビームの線方向のエネルギー分布を均一化する集光レンズの焦点距離と照射面に与える曲率半径の関係を示す図。
【図10】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図11】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図12】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図13】 画素TFTの構成を示す上面図。
【図14】 アクティブマトリクス型液晶表示装置の作製工程を示す断面図。
【図15】 発光装置の駆動回路及び画素部の断面図。
【図16】 (A)発光装置の上面図。
(B)発光装置の駆動回路及び画素部の断面図。
【図17】 半導体装置の例を示す図。
【図18】 半導体装置の例を示す図。
【図19】 半導体装置の例を示す図。

Claims (20)

  1. レーザ発振器と、
    前記レーザ発振器から射出するレーザビームの断面形状を当該レーザビームの光軸に対して交差する第1の方向に広げる第1手段と、
    前記第1手段を通過したレーザビームを前記第1の方向に直交する第2の方向に集光する第2手段と、
    前記第1の方向と平行な方向に曲率を有するステージとを有し、
    前記ステージは、前記第2手段を通過したレーザビームの光軸に対して凹面を有する形状であることを特徴とするレーザ照射装置。
  2. レーザ発振器と、
    前記レーザ発振器から射出するレーザビームの断面形状を当該レーザビームの光軸に対して交差する第1の方向に広げる第1手段と、
    前記第1手段を通過したレーザビームを前記第1の方向に直交する第2の方向に集光する第2手段と、
    前記第1の方向と平行な方向に曲率を有し、
    前記ステージは、前記第2手段を通過したレーザビームの光軸に対して凹面を有する形状であり、
    前記第2の方向に移動させることが可能なステージとを有することを特徴とするレーザ照射装置。
  3. 請求項またはにおいて、前記第1手段に、前記第1の方向において前記レーザビームのエネルギー分布を均一化する手段が付加されていることを特徴とするレーザ照射装置。
  4. 請求項乃至のいずれか一項において、前記第2手段に、前記第2の方向において前記レーザビームのエネルギー分布を均一化する手段が付加されていることを特徴とするレーザ照射装置。
  5. 請求項乃至のいずれか一項において、前記レーザ発振器は、エキシマレーザ、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザまたはガラスレーザであることを特徴とするレーザ照射装置。
  6. 請求項乃至のいずれか一項において、前記第2手段を通過したレーザビームは線状ビームであり、前記線状ビームの長辺は、500mmを越えることを特徴とするレーザ照射装置。
  7. 請求項乃至のいずれか一項において、前記曲率の半径は、10000〜100000mmであることを特徴とするレーザ照射装置。
  8. レーザ発振器から放射されたレーザビームの断面形状を当該レーザビームの光軸に対して交差する第1の方向に広げ、
    前記第1の方向に広げられたレーザビームを当該第1の方向と直交する第2の方向に集光し、
    前記集光されたレーザビームを、前記第1の方向と平行な方向に曲率を有し且つ前記集光されたレーザビームの光軸に対して凹面を有する形状のステージ上に設置された被照射物に対し、前記第2の方向に相対的に移動させながら照射することを特徴とするレーザ照射方法。
  9. 請求項において、前記第1の方向に広げられたレーザビームは、エネルギー分布が均一であることを特徴とするレーザ照射方法。
  10. 請求項またはにおいて、前記集光されたレーザビームは、エネルギー分布が均一であることを特徴とするレーザ照射方法。
  11. 請求項乃至10のいずれか一項において、前記レーザビームは、エキシマレーザ、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザまたはガラスレーザを光源とすることを特徴とするレーザ照射方法。
  12. 請求項乃至10のいずれか一項において、前記レーザビームは、波長が600nm以下であることを特徴とするレーザ照射方法。
  13. レーザ発振器から放射されたレーザビームの断面形状を当該レーザビームの光軸に対して交差する第1の方向に広げ、
    前記第1の方向に広げられたレーザビームを前記第1の方向と直交する第2の方向に集光し、
    前記集光されたレーザビームを、前記第1の方向と平行な方向に曲率を有し且つ前記集光されたレーザビームの光軸に対して凹面を有する形状のステージ上に設置された半導体膜が形成された基板に対し、前記第2の方向に相対的に移動させながら照射することを特徴とする半導体装置の作製方法。
  14. 請求項13において、前記集光されたレーザビームを前記半導体膜が形成された基板に対し、前記第2の方向に相対的に移動させながら照射することにより結晶化することを特徴とする半導体装置の作製方法。
  15. 請求項13において、前記集光されたレーザビームを前記半導体膜が形成された基板に対し、前記第2の方向に相対的に移動させながら照射することにより結晶性を向上させることを特徴とする半導体装置の作製方法。
  16. 請求項13において、前記集光されたレーザビームを前記半導体膜が形成された基板に対し、前記第2の方向に相対的に移動させながら照射することにより前記半導体膜に添加した一導電型不純物元素を活性化することを特徴とする半導体装置の作製方法。
  17. 請求項13乃至16のいずれか一項において、前記レーザビームは、エキシマレーザ、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザまたはガラスレーザを光源とすることを特徴とする半導体装置の作製方法。
  18. 請求項13乃至16のいずれか一項において、前記レーザビームは、波長600nm以下であることを特徴とする半導体装置の作製方法。
  19. レーザビームを第1の方向に広げ、
    前記第1の方向に広げられたレーザビームを、前記第1の方向と直交する第2の方向に集光し、
    前記第1の方向と平行な方向に曲率を有し且つ前記集光されたレーザビームの光軸に対して凹面を有する形状になるように曲げた被照射物に、前記集光されたレーザービームを照射するとともに、
    前記集光されたレーザービーム又は前記被照射物を、前記第2の方向と平行な方向に移動させることを特徴とするレーザ照射方法。
  20. レーザビームを第1の方向に広げ、
    前記第1の方向に広げられたレーザビームを、前記第1の方向と直交する第2の方向に集光し、
    前記第1の方向と平行な方向に曲率を有し且つ前記集光されたレーザビームの光軸に対して凹面を有する形状になるようにに曲げた半導体膜が形成された基板に、前記集光されたレーザービームを照射するとともに、
    前記集光されたレーザービーム又は前記半導体膜が形成された基板を、前記第2の方向と平行な方向に移動させることを特徴とする半導体装置の作製方法。
JP2002174158A 2001-06-15 2002-06-14 レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法 Expired - Fee Related JP4408011B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174158A JP4408011B2 (ja) 2001-06-15 2002-06-14 レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-181065 2001-06-15
JP2001181065 2001-06-15
JP2002174158A JP4408011B2 (ja) 2001-06-15 2002-06-14 レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2003068668A JP2003068668A (ja) 2003-03-07
JP2003068668A5 JP2003068668A5 (ja) 2005-10-13
JP4408011B2 true JP4408011B2 (ja) 2010-02-03

Family

ID=26616952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174158A Expired - Fee Related JP4408011B2 (ja) 2001-06-15 2002-06-14 レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4408011B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI295380B (en) * 2005-05-26 2008-04-01 Cymer Inc Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
JP4680850B2 (ja) * 2005-11-16 2011-05-11 三星モバイルディスプレイ株式會社 薄膜トランジスタ及びその製造方法
JP2009252796A (ja) * 2008-04-01 2009-10-29 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
KR102215364B1 (ko) 2013-12-02 2021-02-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
WO2019220666A1 (ja) * 2018-05-17 2019-11-21 信越エンジニアリング株式会社 ワーク分離装置及びワーク分離方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966923B2 (ja) * 1995-07-31 2007-08-29 株式会社半導体エネルギー研究所 半導体作製方法および半導体装置の作製方法
JP3865803B2 (ja) * 1995-08-29 2007-01-10 株式会社半導体エネルギー研究所 光処理方法および半導体装置の作製方法
JPH09217173A (ja) * 1996-02-14 1997-08-19 Nissin Electric Co Ltd 基板保持装置およびそれへの基板装着方法

Also Published As

Publication number Publication date
JP2003068668A (ja) 2003-03-07

Similar Documents

Publication Publication Date Title
JP4397571B2 (ja) レーザ照射方法およびレーザ照射装置、並びに半導体装置の作製方法
JP3949564B2 (ja) レーザ照射装置及び半導体装置の作製方法
JP5205431B2 (ja) レーザ照射装置
JP3977038B2 (ja) レーザ照射装置およびレーザ照射方法
JP5227900B2 (ja) 半導体装置の作製方法
US6707614B2 (en) Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP5078205B2 (ja) レーザ照射装置
JP2004179389A6 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
KR101065660B1 (ko) 레이저 조사방법, 레이저 조사장치 및 반도체장치의제조방법
JP3973882B2 (ja) レーザ照射装置およびレーザ照射方法
JP4408011B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4515473B2 (ja) 半導体装置の作製方法
JP3908153B2 (ja) 半導体装置の作製方法
JP3910524B2 (ja) レーザ照射方法および半導体装置の作製方法
JP3883935B2 (ja) レーザ照射装置
JP4579217B2 (ja) 半導体装置の作製方法
JP3871993B2 (ja) レーザ照射装置
JP4515088B2 (ja) 半導体装置の作製方法
JP3910523B2 (ja) レーザ照射装置
JP4397582B2 (ja) 半導体装置の作製方法
JP3883936B2 (ja) レーザ照射方法および半導体装置の作製方法
JP3949709B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4637816B2 (ja) レーザ照射装置および半導体装置の作製方法
JP4762121B2 (ja) レーザ照射方法、及び半導体装置の作製方法
JP4159858B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees