JP4395576B2 - 電源制御装置 - Google Patents

電源制御装置 Download PDF

Info

Publication number
JP4395576B2
JP4395576B2 JP2008073493A JP2008073493A JP4395576B2 JP 4395576 B2 JP4395576 B2 JP 4395576B2 JP 2008073493 A JP2008073493 A JP 2008073493A JP 2008073493 A JP2008073493 A JP 2008073493A JP 4395576 B2 JP4395576 B2 JP 4395576B2
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
state
electrical machine
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008073493A
Other languages
English (en)
Other versions
JP2009232543A (ja
Inventor
只一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008073493A priority Critical patent/JP4395576B2/ja
Priority to PCT/JP2009/054035 priority patent/WO2009116392A1/ja
Priority to CN2009801102334A priority patent/CN101977790B/zh
Priority to DE112009000599.3T priority patent/DE112009000599B4/de
Priority to US12/933,267 priority patent/US8476862B2/en
Publication of JP2009232543A publication Critical patent/JP2009232543A/ja
Application granted granted Critical
Publication of JP4395576B2 publication Critical patent/JP4395576B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電源制御装置に係り、特に、回転電機がロック状態になるときの電源作動制御を行う電源制御装置に関する。
回転電機は、その出力と負荷とのバランスの兼ね合いによって、回転が停止するロック状態となることが生じえる。例えば、車両を駆動する回転電機の制御装置において、登坂路上の車両が自重による後退とモータのトルクによる前進とのバランスがとれたとき、回転電機がロック状態あるいはストール状態となることがある。回転電機が多相駆動型であるとき、ロック状態になると、多相コイルの作動状態が固定されるので、例えば、ロック状態で多相コイルのいずれかが最大電流であると、その最大電流状態が継続される。そして、場合によってはその最大電流が流れるコイル、そのコイルに接続されるスイッチング素子等が損傷することが生じえる。
例えば、特許文献1には、モータ駆動装置として、モータのロック時において昇圧コンバータの昇圧比を大きいままとするとインバータの特定スイッチ素子が電流集中のため損傷し、一方、昇圧比を一律に低下させるとモータのトルク不足になるので、この2つを考慮する必要があることが述べられている。ここでは、トルクを同等に維持し、かつモータ駆動電圧がより低くできる動作点に、昇圧コンバータの昇圧比を設定することが開示されている。
また、本発明の構成に関連して、特許文献2には、電気自動車において、電源装置と、電源装置から電力が供給される負荷として高圧補機と、駆動インバータを介して電源装置に接続される駆動モータを備え、電源装置と負荷との間には配線が設けられ、この配線を介して電源装置と負荷との間で電源がやり取りされる構成が述べられている。ここで、電源装置は、燃料電池と、キャパシタと、2次電池と、DC/DCコンバータとが配線にそれぞれ接続され、また、配線には燃料電池の接続状態を入り切りするスイッチが設けられることが述べられている。
特開2007−124746号公報 特開2003−187816号公報
特許文献1には、回転電機がロック状態となるときの昇圧制御が述べられており、特許文献2には、燃料電池を含む電源装置が述べられている。これらの文献はそれぞれ別々の従来技術が述べられているが、燃料電池と回転電機を含むシステムにおいて、回転電機がロック状態になったときに、スイッチング素子の損傷を防止できる燃料電池を含む電源装置の制御については述べられていない。
本発明の目的は、燃料電池と回転電機を含むシステムにおいて、回転電機がロック状態になったときに、スイッチング素子の損傷を防止できる電源制御装置を提供することである。
本発明に係る一態様の電源制御装置は、回転電機に接続されるインバータと、インバータの正極側母線と負極側母線とを一対の電力配線として、一対の電力配線に対して並列に配置接続される燃料電池と、一対の電力配線に対し並列に配置接続される2次電池と、一対の電力配線に対し並列に配置接続され、燃料電池と2次電池との間に配置接続される電圧変換器と、燃料電池の出力側の一対の電力配線に設けられ、燃料電池とインバータとの間、および燃料電池と電圧変換器との間を接続または遮断するリレー手段と、制御部と、を備え、制御部は、回転電機がロック状態にあるか否かを取得するロック状態取得手段と、回転電機がロック状態になったときに、燃料電池の出力電圧を、回転電機がロック状態にないときの通常制御電圧状態から予め定めた所定低電圧となるように変更する燃料電池制御手段と、回転電機がロック状態になったときに、電圧変換器の作動制御によって、一対の電力配線の間の電圧であるインバータ入力電圧について、回転電機がロック状態にないときの通常制御電圧状態から予め定めた低電圧に低下させる所定低電圧状態に変更する電圧変換器制御手段と、回転電機がロック状態にない状態からロック状態になったときに、リレー手段を接続状態から遮断状態に変更し、インバータ入力電圧が低下しても燃料電池の容量成分による放出電流が生じないようにするリレー状態変更手段と、を有することを特徴とする。
発明に係る電源制御装置において、リレー状態変更手段は、回転電機がロック状態からロック状態にない状態に戻り、さらに、燃料電池が通常供給状態に戻り、これにより、燃料電池の開放出力電圧が予め定めた所定開放出力電圧となったときに、リレー手段を接続状態に戻すことが好ましい。
本発明に係る別態様の電源制御装置は、回転電機に接続されるインバータと、インバータの正極側母線と負極側母線とを一対の電力配線として、一対の電力配線に対して並列に配置接続される燃料電池と、一対の電力配線に対し並列に配置接続される2次電池と、一対の電力配線に対し並列に配置接続され、燃料電池と2次電池との間に配置接続される電圧変換器と、制御部と、を備え、制御部は、回転電機がロック状態にあるか否かを取得するロック状態取得手段と、回転電機がロック状態になったときに、燃料電池の出力電圧を、回転電機がロック状態にないときの通常制御電圧状態から予め定めた所定低電圧となるように変更するとともに、燃料電池の酸化ガスまたは燃料ガスの少なくとも一方の供給について回転電機がロック状態にないときの通常供給状態から供給量を制限する制限供給状態に変更する燃料電池制御手段と、回転電機がロック状態になったときに、燃料電池の酸化ガスまたは燃料ガスの少なくとも一方の供給の制限によって燃料電池の出力電圧が所定低電圧レベルに低下するまでの低下期間について、電圧変換器の作動を停止し、燃料電池の出力電圧の低下に応じたインバータ入力電圧の低下に伴って生じる燃料電池の容量成分による放出電流をインバータによって吸収させ、低下期間経過後に電圧変換器の停止を解除する電圧変換器制御手段と、を有することを特徴とする。

また、本発明に係る電源制御装置において、回転電機は、車両に搭載され、車両の駆動用回転電機であることが好ましい。
上記構成により、電源制御装置は、インバータと、燃料電池と、2次電池と、電圧変換器と、制御部とを備えて構成される。そして、制御部は、回転電機がロック状態になったときに、燃料電池の出力電圧を、回転電機がロック状態にないときの通常制御電圧状態から予め定めた所定低電圧となるように変更する。燃料電池の出力電圧の低下によってインバータ入力電圧が低下し、ロック状態にある回転電機のスイッチング素子の電力損失を低下させる。このように、燃料電池の作動制御によって、ロック状態にある回転電機のスイッチング素子の損傷を防止することができる。
また、電源制御装置において、回転電機がロック状態になったときに、燃料電池の酸化ガスまたは燃料ガスの少なくとも一方の供給について、回転電機がロック状態にないときの通常供給状態から供給量を制限する。これにより、いわゆる低効率発電を行わせ、出力電流をそのままにして出力電圧を低下させることができる。これによって、回転電機がロック状態になっても、回転電機のトルクの低下を抑制しながらスイッチング素子の電力損失を低下させることができる。
また、電源制御装置において、燃料電池とインバータとの間、および燃料電池と電圧変換器との間を接続または遮断するリレー手段が設けられ、回転電機がロック状態にない状態からロック状態になったときに、リレー手段を接続状態から遮断状態に変更する。このとき、インバータ入力電圧について、回転電機がロック状態にないときの通常制御電圧状態から予め定めた低電圧に低下させる所定低電圧状態に変更する。これによって、回転電機がロック状態になったとき、インバータ入力電圧が低下し、ロック状態にある回転電機のスイッチング素子の電力損失を低下させる。また、リレー手段が接続状態であると、インバータ入力電圧が低下することによって、燃料電池がキャパシタとして働いて、インバータ入力電圧の低下を補償するように電流を放出することが生じ、インバータ電圧の低下に制限がかかることがあり得るが、リレー手段を遮断するので、放出電流の影響を生じなくすることができる。
また、電源制御装置において、リレー状態変更手段は、回転電機がロック状態にない状態からロック状態に戻り、さらに、燃料電池が通常供給状態に戻り、これにより、燃料電池の開放出力電圧が予め定めた所定開放出力電圧となったときに、リレー手段を接続状態に戻す。これによって、燃料電池の通常の制御を順調に行うことができる。
また、電源制御装置において、制御部は、回転電機がロック状態になったときに、燃料電池の酸化ガスまたは燃料ガスの少なくとも一方の供給の制限によって燃料電池の出力電圧が所定低電圧レベルに低下するまでの低下期間について、電圧変換器の作動を停止し、燃料電池の出力電圧の低下に応じたインバータ入力電圧の低下に伴って生じる燃料電池の容量成分による放出電流をインバータによって吸収させ、低下期間経過後に電圧変換器の停止を解除する。このように、燃料電池がキャパシタとして働いて、インバータ入力電圧の低下を補償するように電流を放出することが生じても、インバータのロック時電流に吸収させる。その間に、燃料電池の出力電圧は低下してゆくので、放出電流の吸収後に、電圧変換器の作動を再開し、その低下した出力電圧をインバータに供給する制御を行う。これによって、放出電流の影響を少なくしながら、回転電機がロック状態にあるときのスイッチング素子の電力損失を低下させ、その損傷を抑制できる。
また、電源制御装置において、回転電機は、車両に搭載され、車両の駆動用回転電機であるので、車両搭載回転電機が坂道等でロック状態になっても、インバータのスイッチング素子の損傷を抑制することができる。
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、回転電機が車両に搭載されるものとして説明するが、車両用以外の用途に用いられる回転電機、例えば、据付型の回転電機であってもよい。また、以下では、燃料電池搭載車両として、1台の回転電機を備えるものを説明するが、回転電機は複数であってもよい。また、回転電機として、モータとしての機能と発電機としての機能とを有するモータ・ジェネレータを説明するが、モータのみの機能を有するものであってもよく、モータと発電機とを個別に有する車両であってもよい。
また、以下では、電源回路として、高電圧の蓄電装置、燃料電池、電圧変換器、高電圧作動のインバータを含む構成を説明するが、これ以外の要素を含むものとしてもよい。例えば、平滑用コンデンサ、低電圧バッテリ、低電圧作動のDC/DCコンバータ等を含むものとできる。また、以下で用いる各電力値等の値は、説明のための一例であって、勿論、これら以外の値であってもよい。
図1は、回転電機を備える燃料電池搭載車両における電源制御装置10の構成を示す図である。この電源制御装置10は、燃料電池12、高電圧の2次電池14、燃料電池側リレー16、2次電池側リレー17、電圧変換器18、高電圧作動のインバータ20、制御部50を含んで構成される。
なお、電源制御装置10の構成要素ではないが、回転電機8が図示されている。ここで、回転電機8は、車両に搭載されるモータ・ジェネレータ(M/G)であって、電力が供給されるときはモータとして機能し、制動時には発電機として機能する三相同期型回転電機である。なお、回転電機8の回転数は、適当な検出手段によって検出され、その検出値は制御部50に伝送され、特にここでは回転電機8のロック状態の判定に用いられる。
ここで、燃料電池12以外の要素の説明を先に行い、その後に燃料電池12の構成について述べる。
2次電池14は、充放電可能な高電圧の蓄電装置であって、電圧変換器18を介して燃料電池12との間で電力の融通を行い、回転電機8、後述する燃料電池用の各種補機等の負荷の変動に対応する機能を有する。かかる2次電池14としては、例えば、約200Vから約300Vの端子電圧を有するリチウムイオン組電池あるいはニッケル水素組電池、またはキャパシタ等を用いることができる。
燃料電池側リレー16と2次電池側リレー17は、電圧変換器18、インバータ20に対する高電圧の電力の供給を必要に応じ行い、また必要に応じ遮断する機能を有する高電圧用遮断器、すなわちリレー手段である。これらの作動は、制御部50によって制御される。
電圧変換器18は、2次電池14の側の高電圧と、燃料電池12の側の高電圧との間の電圧差に応じて、電力のやり取りを行う機能を有する回路である。例えば、インバータ20、回転電機8の側に電力を供給するときには、2次電池14の側から燃料電池12の側へ高電圧電力が供給され、逆に、2次電池14を充電するときには、燃料電池12の側から2次電池14の側へ高電圧電力が供給される。かかる電圧変換器18としては、リアクトルを含む双方向型コンバータを用いることができる。電圧変換器18の作動は制御部50によって制御することができる。
インバータ20は、制御部50の制御の下で、高電圧直流電力を交流三相駆動電力に変換し、回転電機8に供給する機能と、逆に回転電機8からの交流三相回生電力を高電圧直流充電電力に変換する機能とを有する回路である。インバータ20は図1に示すように、スイッチング素子とダイオード等を含む回路で構成することができる。スイッチング素子としては、IGBT(Insulated Gate Bipolar Transister)等を用いることができる。
インバータ20には、その正極側母線と負極側母線とが一対の電力配線として設けられ、この一対の電力配線に、燃料電池12、2次電池14から高圧電力が供給される。この一対の電力配線の間の電圧は、インバータ入力電圧であり、図1では、VINVとして示されている。
なお、回転電機8を車両の駆動用に用いるときは、例えば、登坂路上の車両において、車両の自重による後退と、回転電機8の出力トルクによる前進とのバランスがとれたとき、回転電機8がロック状態あるいはストール状態となることがある。回転電機8がロック状態になると、回転電機8の多相コイルの作動状態が固定され、ロック状態で多相コイルのいずれかが最大電流であると、その最大電流状態が継続される。
したがって、インバータ20においても、その最大電流の相に対応するスイッチング素子に継続的に最大電流が流れることになり、そのままでは損傷に至ることが生じえる。これを防止するため、回転電機8がロック状態になるときは、インバータ入力電圧VINVを低下させる処理が実行されるが、その詳細な内容については後述する。
次に燃料電池12について説明する。燃料電池12は、燃料電池セルが複数積層されて燃料電池スタック22と呼ばれる燃料電池本体及び、燃料電池スタック22のアノード側に配置される燃料ガス供給用の各要素と、カソード側に配置される酸化ガス供給用の各要素を含んで構成される。なお、燃料電池は、FC(Fuel Cell)と単に呼ばれることもある。
燃料電池スタック22は、電解質膜の両側に触媒電極層を配置したMEA(Membrane Electrode Assembly)の両外側にセパレータを配置して挟持した単電池を複数個組み合わせて積層したものである。燃料電池スタック22は、アノード側に水素等の燃料ガスを供給し、カソード側に酸素を含む酸化ガス、例えば空気を供給し、電解質膜を通しての電池化学反応によって発電し、必要な電力を取り出す機能を有する。なお、燃料電池スタック22は、FCスタックと呼ばれることもある。
アノード側の燃料ガスタンク26は、水素ガス源であって、燃料ガスとしての水素を供給するタンクである。水素ガス源である燃料ガスタンク26に接続されるレギュレータ46は、水素ガス源である燃料ガスタンク26からのガスを適当な圧力と流量に調整する機能を有する。レギュレータ46の出力口は燃料電池スタック22のアノード側入口に接続され、適当な圧力と流量に調整された燃料ガスが燃料電池スタック22に供給される。
燃料電池スタック22のアノード側出口に接続される分流器47は、アノード側出口からの排出ガスの不純物ガス濃度が高まってきたときに、排気バルブ48を通して希釈器28に流すためのものである。また、分流器47の後でさらにアノード側入口との間に設けられる循環昇圧器49は、アノード側出口から戻ってくるガスの水素分圧を高めて再びアノード側入口に戻し再利用する機能を有する水素ポンプである。
カソード側の酸化ガス源40は、実際には大気を用いることができる。酸化ガス源40である大気はフィルタを通してからエアコンプレッサ(ACP)42に供給される。ACP42は、モータによって酸化ガスを容積圧縮してその圧力を高める気体昇圧機である。またACP42は、その回転速度(毎分当りの回転数)を可変して、所定量の酸化ガスを提供する機能を有する。すなわち、酸化ガスの所要流量が大きいときは、モータの回転速度を上げ、逆に酸化ガスの所要流量が小さいときは、モータの回転速度を下げる。ACP42によって加圧された酸化ガスは、ACP42の回転数制御によって所望の流量とされて、燃料電池スタック22に供給される。また、酸化ガス流路の燃料電池スタック22の出口側に設けられる調圧弁45は、カソード側出口のガス圧を調整する機能を有する。
希釈器28は、アノード側の排気バルブ48からの排水混じりの水素、及び、カソード側の水蒸気混じりでさらにMEAを通して漏れてくる水素混じりの排気を集め、適当な水素濃度に希釈して外部に排出するためのバッファ容器である。
また、冷媒循環ポンプ30は、燃料電池スタック22の温度を電気化学反応における適度な範囲とするために冷媒を流すためのポンプである。冷媒としては、LLC(Long Life Coolant)等の不凍液を含む冷却水を用いることができる。
このように、燃料電池12には多くの要素が用いられる。その中で電気的に作動する補機としては、ACP42、循環昇圧器49、冷媒循環ポンプ30等がある。これらの補機は、2次電池14と電圧変換器18との間における一対の電力配線から高電圧電力が供給されて作動する。
図1における制御部50は、電源制御装置10を構成する各要素の作動を全体として制御する機能を有し、ここでは特に、回転電機8がロック状態になったときに、インバータ入力電圧VINVを低下させて、インバータ20のスイッチング素子等の損傷を抑制する制御を行う機能を有する。制御部50には、回転電機8からそのロック状態に関するものとして回転数信号が伝送され、その結果に基いて、燃料電池12の作動、電圧変換器18の作動、燃料電池側リレー16の作動が制御される。かかる制御部50としては、車載に適したコンピュータを用いることができる。
制御部50は、回転電機8がロック状態にあるか否かを取得するロック状態取得モジュール52と、回転電機8がロック状態になったときに、燃料電池の出力電圧を所定低電圧となるように変更する燃料電池制御モジュール54と、回転電機8がロック状態になったときに、電圧変換器18の作動を制御する電圧変換器制御モジュール56と、回転電機8がロック状態になったときに、燃料電池側リレー16を接続状態から遮断状態に変更するリレー状態変更モジュール58を含んで構成される。
かかる機能はソフトウェアを実行することで実現でき、具体的には、電源制御プログラムの中のロック状態処理プログラムを実行することで実現できる。かかる機能の一部をハードウェアによって実現するものとしてもよい。
上記構成の作用、特に制御部50の各機能について、図2のフローチャート、図3のタイムチャート、および図4と図5を用いて説明する。なお、以下では図1の符号を用いて説明する。図2は、回転電機8がロック状態となるときの処理の手順を示すフローチャートで、各手順の内容は、電源制御プログラムの中のロック状態処理プログラムの各処理手順にそれぞれ対応する。図3は、電源制御装置10の各要素の状態の時間変化を説明するタイムチャートである。また、図4は燃料電池12の制御の様子を説明する図であり、図5はインバータ20におけるスイッチング素子の電力損失の様子を説明する図である。
図2において、車両が燃料電池12と2次電池14を用いて回転電機8によって走行しているときは、回転電機8がロック状態か否かが監視されている(S10)。この工程は、制御部50のロック状態取得モジュール52の機能によって実行される。ロック状態か否かは、トルク指令の値に比べて、回転電機8の回転数が著しく低いかあるいはゼロであるか否かによって判断できる。例えば、トルク指令が約200Nm以上であるのに、回転電機8の回転数が約毎分100回転(100rpm)以下である場合等のときに、回転電機8がロック状態である、と判定するものとできる。勿論それ以外の判断基準を用いてもよい。また、回転電機8の回転数以外の指標を用いてもよい。例えば、回転電機8のコイル電流の特定の相への局在を検出するときにロック状態と判断するものとできる。
図3のタイムチャートは、横軸に時間をとり、上段から下段に向かって、回転電機回転数、回転電機トルク指令、回転電機ロック判定、インバータ入力電圧VINV、燃料電池出力電流IFC、燃料電池酸化ガス流量を示すACP回転数、2次電池電流の時間変化を順に示してある。ここで、時刻tにおいて、トルク指令が所望の値であるのも関らず、回転電機8の回転数が上昇しないので、回転電機ロック判定がロック状態であるとしている様子が示されている。
ロック状態であると判定されると、次に、燃料電池12に対してその出力電圧を低下させる指令が出される(S12)。この工程は、制御部50の燃料電池制御モジュール54の機能によって実行される。具体的には、回転電機8がロック状態になったときに、燃料電池12の出力電圧を、回転電機8がロック状態にないときの通常制御電圧状態から予め定めた所定低電圧となるように変更される。
この場合に、燃料電池12の出力電流は変化させずに出力電圧を低下させることが好ましい。このようにすることで、インバータ20に対し、トルク指令に見合う電流を供給しながらインバータ入力電圧VINVを低下させることができる。そのような制御として、酸化ガスの供給を停止し、あるいは通常よりも少なくし、いわゆる低効率発電状態とすることができる。なお、燃料ガスを停止し、あるいは通常よりも少なくしてもよいが、この場合には、まず酸化ガスの供給を先に停止し、その後に燃料ガスを停止する順序とすることがMEAの保護等の観点から好ましい。
その様子を図4に示す。図4は、横軸に燃料電池12の出力電流、縦軸に燃料電池12の出力電圧をとって、燃料電池12の作動状態を説明する図である。燃料電池12の通常の運転制御は、燃料電池12における電気化学反応が最も効率のよい特性線60に沿って行われる。すなわち、燃料電池12の出力電流IFCを指令するときは、特性線60上でその出力電流IFCに対応する出力電圧VFCが生成されるような電気化学反応となるように、酸化ガスの供給と燃料ガスの供給が行われる。これに対し、上記S12の指令が出されるときは、酸化ガスの供給を絞るので、IFCに対し、VFCが一定の低電圧となる特性線62となる。すなわち、予め定めた所定の低電圧の下で、燃料電池12の出力電流IFCを変化させることができる。
このように、燃料電池12の出力電圧VFCを所定の低電圧とすると、電圧変換器18はそれに対応して2次電池14の出力電圧を低電圧とするので、インバータ入力電圧VINVが低下する。例えば、回転電機8がロック状態でない通常制御電圧状態のときのインバータ入力電圧VINVを約400Vとして、回転電機8がロック状態となるときに、そのインバータ入力電圧VINVを約30V程度とすることができる。
図3には、時刻tの後に、酸化ガスであるAIRの流量を低下させ、これに伴ってインバータ入力電圧VINVが低下することが示されている。なお、酸化ガス流量の変更は、ACP42の回転数によって行うことができるので、図3のAIR流量の変化は、ACP42の回転数の変化でもある。
インバータ入力電圧VINVを低下させることで、ロック状態にあるインバータ20のスイッチング素子の発熱に関係する損失電力を低減させることができる。その様子を図5に示す。図5は、横軸に時間をとり、縦軸にスイッチング素子の両端電圧Vとスイッチング素子に流れる電流Iとをとって示したものである。図5の左側の状態はスイッチング素子がONのとき、右側の状態はスイッチング素子がOFFのときである。スイッチング素子の損失電力は、その両端電圧Vと流れる電流Iとの積であるので、両端電圧Vが低下してvとなることで、その値を小さくできる。スイッチング素子の両端電圧は、インバータ入力電圧VINVに関係し、VINVが小さくなればスイッチング素子の両端電圧も小さくなる。したがって、VINVを低下させることで、ロック状態にあるインバータ20のスイッチング素子の損失電力を低減し、その発熱を抑制することができる。
図3において、時刻tから時刻tの間において、燃料電池12の出力電流IFCが持ち上がり、これに対応して2次電池14の電流が落ち込んでいるのは次のような理由である。すなわち、図1の構成において、燃料電池12の作動を制御して、燃料電池12の出力電圧VFCを低下させ、これによってインバータ入力電圧VINVを低下させると、燃料電池12の容量成分によって、インバータ入力電圧VINVの低下を補償するように電流が放出される。これによって、一時的に、燃料電池12の出力電流IFCが持ち上がり、これに対応して2次電池14の電流が落ち込むことになる。この現象は、一時的な過渡現象であるので、ある程度時間が経過すると、定常状態に復帰する。なお、この燃料電池12の容量成分の影響は、VINVを元の通常制御電圧状態に復帰させるときにも現れる。図3では、回転電機8がロック状態を解消した時刻tの後で、その影響が出ることが示されている。
燃料電池12の容量成分による影響は過渡的なものであり、いずれにせよ、回転電機8がロック状態であると判断されると、インバータ入力電圧VINVを低下させて、インバータ20のスイッチング素子の損失電力を低減させることができる。このように回転電機8がロック状態のときには燃料電池12の作動制御によってインバータ入力電圧VINVを低下させ、インバータ20のスイッチング素子の損傷を抑制する制御が行われる。
再び図2に戻り、VINVを低下させる制御を行いながら、回転電機8がロック状態を解消したか否かが監視される(S14)。この工程は、制御部50のロック状態取得モジュール52の機能によって実行される。すなわち、上記の例では、トルク指令と回転電機8の回転数との参照によって、ロック状態の判定が解消されたか否かが判断される。そして、ロック状態が解消されたと判断されると、燃料電池12の制御が通常運転制御の状態に戻される(S16)。具体的には、図4で説明した特性線60の上における制御に戻される。
図3では、時刻tにおいて、回転電機回転数が上昇したことから、回転電機ロック判定がロック状態の解消と判断される様子が示されている。そして、時刻t以降において、酸化ガス流量がトルク指令に応じた値に戻され、これによって燃料電池12の出力電流IFCも対応する値となり、また、インバータ入力電圧VINVが通常の制御電圧の範囲に戻される。これによって、電源制御装置10が通常制御状態に戻り、車両の走行が行われる。
上記では、燃料電池側リレー16が接続状態にあるものとして説明している。そのために、燃料電池12の出力電圧VFCを低下させてインバータ入力電圧VINVが低下するとき、燃料電池12の容量成分の影響で、燃料電池12の出力電流IFCが一時的に持ち上がる。この現象は過渡的なものであるが、電圧変換器18の定格、2次電池14の定格等によっては、VINVの低下速度に制限が加わることが生じえる。そこで、以下に、燃料電池12の容量成分の影響を抑制する構成と方法について説明する。なお、以下では、図1から図5の符号を用いて説明する。
1つの方法は、燃料電池側リレー16を遮断することで、燃料電池12の容量成分の影響をインバータ20の側に及ばないようにすることである。すなわち、回転電機8がロック状態にない状態からロック状態になったときに、燃料電池側リレー16を接続状態から遮断状態に変更し、インバータ入力電圧VINVが低下しても燃料電池12の容量成分による放出電流が生じないようにする。具体的には、図2のフローチャートにおいて、S12の次に、あるいは場合によってS10の次に、燃料電池側リレー16を接続状態から遮断状態に変更する処理を設ける。この工程は、制御部50のリレー状態変更モジュール58の機能によって実行される。
その様子が図6のタイムチャートに示される。図6のタイムチャートは、図3に対応するものであるが、上段から5つ目に燃料電池側リレー(FCリレー)16の状態変化が示され、また、7つ目に燃料電池12の出力電圧VFCの状態変化が示されている。その他の項目は図6と同様であるので詳細な説明を省略する。図6では、時刻tにおいて回転電機8がロック状態にあると判定されると、燃料電池12の酸化ガス流量が絞られあるいは停止され、燃料電池側リレー16が接続状態から遮断状態に変更される様子が示されている。
このとき、燃料電池12の出力側は、燃料電池側リレー16によってインバータ20等との間の接続が遮断されるので、燃料電池12の出力電圧VFCは開放端電圧(Open Circuit Voltage:OCV)となり、酸化ガス供給が絞られあるいは停止されるので、時間経過とともに徐々に低下する。また、電圧変換器18は、燃料電池12の作動が図4で説明した特性線62の上のものになることに対応して、インバータ入力電圧VINVを所定の低電圧レベルに低下させる処理を行う。ここで、燃料電池側リレー16は遮断されているので、VINVが低下しても、燃料電池12の容量成分の影響がインバータ20等に及ばない。つまり、図6において、時刻tから時刻tにおいて燃料電池12の出力電流IFCが持ち上がっていない。
このように、回転電機8がロック状態になったときに、燃料電池側リレー16を接続状態から遮断状態に変更することで、燃料電池12の作動制御を行い、インバータ入力電圧VINVを低下させても、燃料電池12の容量成分の影響をなくすことができる。これによって、回転電機8のロック状態におけるインバータ20のスイッチング素子の損失電力を低下させ、その損傷を抑制することができる。
時刻tになって、回転電機8がロック状態でなくなったと判定されると、燃料電池12が通常供給状態に戻される。そして、これにより、燃料電池12の出力電圧VFCが上昇を始め、その値が予め定めた所定開放出力電圧となったときに、燃料電池側リレー16を再び接続状態に戻す。すなわち、図2におけるS16の後に、燃料電池側リレー16が遮断状態から接続状態に戻される。この工程は、制御部50のリレー状態変更モジュール58の機能によって実行される。これにより、再び電源制御装置10は通常制御状態に戻り、車両走行が通常通りに行われる。
燃料電池12の容量成分の影響を回避するもう1つの方法は、回転電機8がロック状態になったとき、燃料電池12において酸化ガスの供給を絞りあるいは停止するとともに、
電圧変換器18の作動を一時停止することである。この方法は、燃料電池12の容量成分による放出電流を、ロック状態にあるインバータ20の電流集中に吸収しようというものである。図2のフローチャートにおいては、S12の後、場合によってはS10の後に、電圧変換器18の作動一時停止を行うことになる。この機能は、制御部50の電圧変換器制御モジュール56の機能によって実行される。
図7にその様子が示される。図7は、図3、図6に対応するもので、上から5段目に燃料電池12の出力電圧VFCが示され、その他の項目は図3と同様であるので、詳細な説明を省略する。ここでは、時刻tにおいて回転電機8がロック状態であると判定されると、燃料電池12の酸化ガス流量が絞られあるいは停止され、電圧変換器18の作動が停止(SDOWN)される様子が示されている。
このとき、燃料電池12において、酸化ガス流量が絞られあるいは停止されるので、燃料電池12の出力電圧VFCは次第に低下し、これに伴ってインバータ入力電圧VINVも低下する。燃料電池12はVINVの低下に伴い、放出電流が生じて、IFCが持ち上がるが、それは、インバータ20の電流の全体によって吸収される。その間にも、VFCは次第に低下し、所定の低電圧に低下したならば、上記の例では約30V程度に低下したならば、電圧変換器18の作動を再開する。すなわち、図2におけるS16の後に、電圧変換器18の作動が一時停止状態から作動状態に戻される。この工程は、制御部50の電圧変換器制御モジュール56の機能によって実行される。これにより、再び電源制御装置10は通常制御状態に戻り、車両走行が通常通りに行われる。
本発明に係る実施の形態の電源制御装置の構成を示す図である。 本発明に係る実施の形態において、回転電機がロック状態となるときの処理の手順を示すフローチャートである。 本発明に係る実施の形態において、電源制御装置の各要素の状態の時間変化を説明するタイムチャートである。 本発明に係る実施の形態において、燃料電池の制御の様子を説明する図である。 本発明に係る実施の形態において、インバータにおけるスイッチング素子の電力損失の様子を説明する図である。 本発明に係る実施の形態において、他の制御の例を示すタイムチャートである。 本発明に係る実施の形態において、別の制御の例を示すタイムチャートである。
符号の説明
8 回転電機、10 電源制御装置、12 燃料電池、14 2次電池、16 燃料電池側リレー、17 2次電池側リレー、18 電圧変換器、20 インバータ、22 燃料電池スタック、26 燃料ガスタンク、28 希釈器、30 冷媒循環ポンプ、40 酸化ガス源、45 調圧弁、46 レギュレータ、47 分流器、48 排気バルブ、49 循環昇圧器、50 制御部、52 ロック状態取得モジュール、54 燃料電池制御モジュール、56 電圧変換器制御モジュール、58 リレー状態変更モジュール、60,62 特性線。

Claims (4)

  1. 回転電機に接続されるインバータと、
    インバータの正極側母線と負極側母線とを一対の電力配線として、一対の電力配線に対して並列に配置接続される燃料電池と、
    一対の電力配線に対し並列に配置接続される2次電池と、
    一対の電力配線に対し並列に配置接続され、燃料電池と2次電池との間に配置接続される電圧変換器と、
    燃料電池の出力側の一対の電力配線に設けられ、燃料電池とインバータとの間、および燃料電池と電圧変換器との間を接続または遮断するリレー手段と、
    制御部と、
    を備え、
    制御部は、
    回転電機がロック状態にあるか否かを取得するロック状態取得手段と、
    回転電機がロック状態になったときに、燃料電池の出力電圧を、回転電機がロック状態にないときの通常制御電圧状態から予め定めた所定低電圧となるように変更する燃料電池制御手段と、
    回転電機がロック状態になったときに、電圧変換器の作動制御によって、一対の電力配線の間の電圧であるインバータ入力電圧について、回転電機がロック状態にないときの通常制御電圧状態から予め定めた低電圧に低下させる所定低電圧状態に変更する電圧変換器制御手段と、
    回転電機がロック状態にない状態からロック状態になったときに、リレー手段を接続状態から遮断状態に変更し、インバータ入力電圧が低下しても燃料電池の容量成分による放出電流が生じないようにするリレー状態変更手段と、
    を有する電源制御装置。
  2. 請求項1に記載の電源制御装置において、
    リレー状態変更手段は、
    回転電機がロック状態からロック状態にない状態に戻り、さらに、燃料電池が通常供給状態に戻り、これにより、燃料電池の開放出力電圧が予め定めた所定開放出力電圧となったときに、リレー手段を接続状態に戻すことを特徴とする電源制御装置。
  3. 回転電機に接続されるインバータと、
    インバータの正極側母線と負極側母線とを一対の電力配線として、一対の電力配線に対して並列に配置接続される燃料電池と、
    一対の電力配線に対し並列に配置接続される2次電池と、
    一対の電力配線に対し並列に配置接続され、燃料電池と2次電池との間に配置接続される電圧変換器と、
    制御部と、
    を備え、
    制御部は、
    回転電機がロック状態にあるか否かを取得するロック状態取得手段と、
    回転電機がロック状態になったときに、燃料電池の出力電圧を、回転電機がロック状態にないときの通常制御電圧状態から予め定めた所定低電圧となるように変更するとともに、燃料電池の酸化ガスまたは燃料ガスの少なくとも一方の供給について回転電機がロック状態にないときの通常供給状態から供給量を制限する制限供給状態に変更する燃料電池制御手段と、
    回転電機がロック状態になったときに、燃料電池の酸化ガスまたは燃料ガスの少なくとも一方の供給の制限によって燃料電池の出力電圧が所定低電圧レベルに低下するまでの低下期間について、電圧変換器の作動を停止し、燃料電池の出力電圧の低下に応じたインバータ入力電圧の低下に伴って生じる燃料電池の容量成分による放出電流をインバータによって吸収させ、低下期間経過後に電圧変換器の停止を解除する電圧変換器制御手段と、
    を有する電源制御装置。
  4. 請求項1から3のいずれか1に記載の電源制御装置において、
    回転電機は、車両に搭載され、車両の駆動用回転電機であることを特徴とする電源制御装置。
JP2008073493A 2008-03-21 2008-03-21 電源制御装置 Active JP4395576B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008073493A JP4395576B2 (ja) 2008-03-21 2008-03-21 電源制御装置
PCT/JP2009/054035 WO2009116392A1 (ja) 2008-03-21 2009-03-04 電源制御装置
CN2009801102334A CN101977790B (zh) 2008-03-21 2009-03-04 电源控制装置
DE112009000599.3T DE112009000599B4 (de) 2008-03-21 2009-03-04 Leistungszuführsteuerungsvorrichtung
US12/933,267 US8476862B2 (en) 2008-03-21 2009-03-04 Power supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073493A JP4395576B2 (ja) 2008-03-21 2008-03-21 電源制御装置

Publications (2)

Publication Number Publication Date
JP2009232543A JP2009232543A (ja) 2009-10-08
JP4395576B2 true JP4395576B2 (ja) 2010-01-13

Family

ID=41090798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073493A Active JP4395576B2 (ja) 2008-03-21 2008-03-21 電源制御装置

Country Status (5)

Country Link
US (1) US8476862B2 (ja)
JP (1) JP4395576B2 (ja)
CN (1) CN101977790B (ja)
DE (1) DE112009000599B4 (ja)
WO (1) WO2009116392A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2740221C (en) * 2010-05-27 2013-05-07 Toyota Jidosha Kabushiki Kaisha Fuel cell with low-efficiency operation
JP5395773B2 (ja) * 2010-09-27 2014-01-22 パナソニック株式会社 充電式電動工具
DE102011075869A1 (de) 2011-05-16 2012-11-22 Robert Bosch Gmbh Verfahren und Steuergerät zur Erkennung einer geblockten Elektromaschine in einem Elektrofahrzeug
JP5763483B2 (ja) * 2011-09-13 2015-08-12 本田技研工業株式会社 燃料電池車両
JP5335117B1 (ja) * 2012-06-18 2013-11-06 株式会社椿本チエイン 電力制御装置
JP5737329B2 (ja) * 2013-05-21 2015-06-17 トヨタ自動車株式会社 車両用誘導電動機制御装置
JP6922723B2 (ja) * 2017-12-26 2021-08-18 トヨタ自動車株式会社 燃料電池システム
US11251637B2 (en) 2018-12-04 2022-02-15 Mobile Escapes, Llc Mobile power system with multiple converters and related platforms and methods
JP7202471B2 (ja) * 2019-05-14 2023-01-11 中▲車▼青▲島▼四方▲機車車▼輌股▲分▼有限公司 高速磁気浮上列車の電力供給電池及び電力供給システム
US20210175807A1 (en) * 2019-12-05 2021-06-10 Jiangsu Horizon New Energy Technologies Co. Ltd. Partial dc/dc boost system and method
DE102020125933A1 (de) 2020-10-05 2022-04-07 Audi Aktiengesellschaft Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zur Steuerung eines elektrischen Antriebssystems für ein Fahrzeug

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598975B2 (ja) * 2001-01-19 2004-12-08 日産自動車株式会社 燃料電池自動車の制御装置
JP3719205B2 (ja) * 2001-12-19 2005-11-24 トヨタ自動車株式会社 電源装置
JP4334851B2 (ja) * 2002-10-29 2009-09-30 本田技研工業株式会社 燃料電池システム
JP4248225B2 (ja) * 2002-11-01 2009-04-02 トヨタ自動車株式会社 燃料電池システム
JP2006164555A (ja) * 2004-12-02 2006-06-22 Nissan Motor Co Ltd 燃料電池の出力制限装置
JP2006236799A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 燃料電池システムおよび燃料電池システムの運転方法
JP4710545B2 (ja) * 2005-10-25 2011-06-29 トヨタ自動車株式会社 モータ駆動装置
JP4665809B2 (ja) 2006-03-24 2011-04-06 トヨタ自動車株式会社 電動機駆動制御システム
DE102007024396A1 (de) 2007-05-25 2008-11-27 Robert Bosch Gmbh Gestufte Abschaltung eines brennstoffzellenbasierten Antriebssystems

Also Published As

Publication number Publication date
US20110026172A1 (en) 2011-02-03
CN101977790B (zh) 2013-04-03
DE112009000599B4 (de) 2018-07-26
WO2009116392A1 (ja) 2009-09-24
JP2009232543A (ja) 2009-10-08
CN101977790A (zh) 2011-02-16
US8476862B2 (en) 2013-07-02
DE112009000599T5 (de) 2011-02-24

Similar Documents

Publication Publication Date Title
JP4395576B2 (ja) 電源制御装置
JP4461398B2 (ja) 燃料電池システム
US9368850B2 (en) Fuel cell system and fuel cell vehicle
US20060280977A1 (en) Fuel cell system
US8027759B2 (en) Fuel cell vehicle system
US20070129859A1 (en) Control apparatus for fuel cell vehicle
US7829229B1 (en) Power control for hybrid fuel cell systems
JP2009089536A (ja) 電源システム
JP2008077920A (ja) 燃料電池システム
US9713964B2 (en) Output controller for fuel cell
JP2011243477A (ja) 燃料電池システム
JP4615379B2 (ja) 燃料電池システム
US10029579B2 (en) Power supply system
JP2006210100A (ja) 電源装置
JP5125301B2 (ja) 燃料電池システム
US8999591B2 (en) Fuel cell system for preventing excessive power generation
JP2020140930A (ja) 燃料電池システム
JP2002141091A (ja) 燃料電池電源装置の制御装置
JP2008171770A (ja) 燃料電池システム
JP2021082493A (ja) 燃料電池システム
WO2013150619A1 (ja) 燃料電池システム
JP4888654B2 (ja) 燃料電池システム
US20210376348A1 (en) Fuel cell system and control method for fuel cell system
JP2013098052A (ja) 燃料電池システム
JP2006190572A (ja) 燃料電池の運転方法および制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4395576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4