JP4394336B2 - リアルタイム・トランスポート・プロトコル・データフローのフロー品質統計値を求めるシステム及び方法 - Google Patents

リアルタイム・トランスポート・プロトコル・データフローのフロー品質統計値を求めるシステム及び方法 Download PDF

Info

Publication number
JP4394336B2
JP4394336B2 JP2002214451A JP2002214451A JP4394336B2 JP 4394336 B2 JP4394336 B2 JP 4394336B2 JP 2002214451 A JP2002214451 A JP 2002214451A JP 2002214451 A JP2002214451 A JP 2002214451A JP 4394336 B2 JP4394336 B2 JP 4394336B2
Authority
JP
Japan
Prior art keywords
endpoint
router
determining
time
packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002214451A
Other languages
English (en)
Other versions
JP2003158550A (ja
Inventor
ジェイ. メランピー パトリック
ダブリュー. ドビンズ エフラム
イー. ノートン スティーブン
エフ. ペンフィールド ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primary Networks Inc D/b/a Acme Packet Inc
Original Assignee
Primary Networks Inc D/b/a Acme Packet Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primary Networks Inc D/b/a Acme Packet Inc filed Critical Primary Networks Inc D/b/a Acme Packet Inc
Publication of JP2003158550A publication Critical patent/JP2003158550A/ja
Application granted granted Critical
Publication of JP4394336B2 publication Critical patent/JP4394336B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/0213Standardised network management protocols, e.g. simple network management protocol [SNMP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1106Call signalling protocols; H.323 and related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5087Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to voice services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types

Description

【0001】
【発明の属する技術分野】
本発明は、遠距離通信網に関し、特に、リアルタイム・マルチメディア・フローに関する。
【0002】
【従来の技術】
公衆交換電話網(PSTN)は、ユーザが、約10億台の電話のうち1台の受話器を取り上げ、約10億台のエンドポイントのいずれか1台に電話をかけることのできる効率的なリアルタイムマルチメディア通信セッションツールに発展した。番号計画、スイッチング及びルーティングの分散化、信号方式のネットワーク化等いくつかの開発により、このネットワークの自動化が可能となった。
【0003】
残念ながら、PSTNは今のところ電話番号やその一部を使用して通信のエンドポイントへの経路を見つけるので、PSTNにある階層に適合するアドレス以外のものに基づいて、実際の通信セッションをルーティングすることができない。携帯の機構では、通信セッションをネットワークを経由して方向付けるために、仮想のまたは仮の番号を必要とする。
【0004】
PSTNが階層に基づいているのと同様に、インターネットはインターネットプロトコル(IP)に基づいている。IPメッセージは、1つのリンクから次のリンクへ(すなわち、データフローのソースからデータフローのデスティネーションへ)ルーティング、もしくは転送される。各IPパケットはIPアドレスを含む。インターネットプロトコル バージョン4(IPv4)では、IPアドレスは32ビットである。各IPアドレスには、ネットワーク部用の一定数のビットと、ホスト部用の一定数のビットとが含まれる。
【0005】
IPルータは、1つのネットワーク(またはリンク)からパケットを受取り、別のネットワーク(またはリンク)に送出するために使用される。IPルータには、パケットをルーティングする最良の経路を決定するために使用される情報または基準を含むテーブルが設けられている。この情報の一例として、ネットワークリンク及びプログラムされた距離表示の状態が挙げられる。残念ながら、通常IPルータはデスティネーションIPアドレスによってパケットをルーティングするが、これは伝送に適当な経路を見出すのには役に立たない。しかしながら、このルーティングシステムの例外として、ネットワークドメインの両側にインテリジェントな装置を使用することにより、パケットに一時アドレスを割当ててネットワーク経由で送り、パケットがネットワークを離れる際にネットワークの反対側で元のアドレスに戻すことができる。これが、現在の多くの仮想私設網(VPN)製品の基本であり、当該技術の中で理解される。
【0006】
ルーティングシステムの別の例外として、マルチプロトコル・ラベル・スイッチング(MPLS)がある。MPLSは、カリフォルニア州サンノゼのシスコシステム株式会社によって開発されたタグスイッチングと呼ばれる技術に基づいている。このIPパケットをルーティングする方法によると、パケットが実際ネットワーク上で取る経路とデスティネーションIPアドレスとを潜在的に分離することができる。MPLSを最大限使用する方法の1つは、VPNまたは仮想専用回線を生成することである。MPLSタグは、ネットワーク上のデータパケットのルーティングを効果的にカプセル化できる。
【0007】
要するに、結論としては、データ網はIPデスティネーションに基づきIPパケットの実質転送を行う。また、IPデスティネーションはネットワークトポロジーに関連し、電話網のように、パケットを伝送するために使用される。MPLSタグ及び経路は、ルーティングに使用されるIPアドレス部に結び付けられたルール、例えばFEC(転送等価クラス)に基づき、IPパケットのオーバーライド転送を可能とする。
【0008】
ネットワーク要素(例えば、電話網の切換器、データ網のルータなど)が共同で行うタスクを実行することを保証するため、隣接する通信リンク及び利用可能な経路のステータスを知る必要があり、この情報を提供するために信号方式を用いる。電話網では、通常使用される信号方式はSS7に準拠しているかもしくはSS7相当である。この信号方式は、個々のリンク、リンク装置、経路等についての情報を提供する。データ網では、境界ゲートウェイプロトコル(BGP)、内部ゲートウェイプロトコル(IGP)、OSPF(open shortest path first)等のプロトコルを使用して接続状態及び経路を決定する。
【0009】
電話網では、ネットワーク経由で末端間経路(すなわち、ISDNユーザ部(ISUP))を確立する際にも信号方式を用いる。残念ながら、IPネットワークでは、端末間経路の割り当てはない。その代わり、通信セッションに参加するため、エンドポイントを名前や目的に関連付けるシステムが必要である。
【0010】
現在、インターネット上では世界的な登録機関は知られていない。ドメイン名E164.comの世界的登録機関が、マサチューセッツ州ローウェルのNetNumber.com株式会社によって提案された。この世界的登録機関の開発は、現在は北米番号計画(NANP)を管理するNeuStar株式会社による提案に基づいている。この提案では、現在のドメインネームサービス(DNS)を使用し、DNSサーバを使用して解決されるような方法で番号をURLのフォーマットに形成することが必要である。このように、各電話番号は1台のDNSサーバに登録され、他の全てのDNSサーバに配信される。DNSクエリの末尾はリソースのレコードで、軽量ディレクトリ・アクセス・プロトコル(LDAP)のディレクトリサーバを示す。
【0011】
IPエンドポイント用のユニバーサル携帯電話(UPT)番号を使用し、従来の有線電話番号との重複を避けるというITUからの提案は効果的であり、IPエンドポイントをアドレス指定可能にする。上記2つの提案を組み合わせてPSTNから/へのインターネットコールをさせることも可能である。残念ながら、この技術には幾つかの制限がある。これらの制限としては、DNSの配信と複写には著しい待ち時間が含まれる、DNSアドレスの解決が遅くなる、DNSサーバが予定された数のアドレスを扱うことができないことがある、DNSサーバが重複する項目を管理できない(ただし、ラウンドロビン方式を除く)、DNSは並列更新機構を採用しており、意図的ではなく重複項目を生じる、私設網アドレスまたはアドレッシングゲートウェイによって重複項目や一致が生じる、要求のあったリソースの管理を扱うポリシーがない、PSTNとデータ網との間で重複する番号を扱う方法がない等が挙げられる。
【0012】
現行のほとんどの電気通信用エンドポイントはPSTNに基づくシステムを介してサービスを受けるので、パケットデータ網とPSTNとの間のマルチメディアフローを容易にするためにゲートウェイが使用される。ゲートウェイはデータ網と音声網との間の境界に設置され、マルチメディア(及び、信号)を変換し、通信を確保するために使用される。ゲートウェイで受信した呼を他のゲートウェイにルーティングする当該技術で説明される方法が幾つかある。これらの方法のうちの2つが、フルメッシュルーティングと階層ルーティングである。フルメッシュルーティングはほとんどのソフトスイッチングアーキテクチャで記述される標準的な方法である。セッション・イニシエーション・プロトコル(SIP)は、任意点間でのシグナリングモデルをサポートするので、ソフトスイッチ間信号方式である。このモデルでは、呼を成立させるために全てのソフトスイッチが他の全てのソフトスイッチに仮想接続される。ソフトスイッチメーカーにより提供されるポリシーに基づき、トラフィックを1つのソフトスイッチに向けるために使用されるルーティングテーブルが利用される。
【0013】
残念ながら、多数のソフトスイッチを含むネットワークを運用する場合、ネットワークの所有者は、フルメッシュを維持するためのポリシー管理に多くの相違点がある。このようなポリシー管理問題には、各ソフトスイッチが他の各ソフトスイッチのIPアドレス、及び接続する電話番号もしくはPSTNを認識していることを保証することが含まれる。複数のベンダからのソフトスイッチを運用する場合、さらなる管理問題が生じる。実際には様々なリンクを介して設備が管理されることから、管理問題はさらに複雑になる。
【0014】
配置されるソフトスイッチの数が多くなると、様々な経路のシェアリングを生じやすい。フルメッシュのルーティング構成においては、異なる出口ソフトスイッチが満杯であるか機能していないものもあるので、呼のルーティングが難しい。例えば、回線業者が国内長距離を扱える30個のソフトスイッチを有していて、ネットワークが約50%で稼動しているとすると、各発信元のソフトスイッチは、塞がっていない経路のソフトスイッチを見つけるまでにおそらく平均15の別々のソフトスイッチを試さなければならない。もし、純粋なランダム分布が実施されるのであれば、この検索の労力は非常に軽減される。しかしながら、コストや品質から他の経路よりも好ましい経路もあることが考えられ、問題を悪化させる。
【0015】
限定はしないが、例えば、Cisco AS5300のなどのある種の単純なゲートウェイは、SIPプロキシサーバにSIPに基づく呼び出し要求を転送できる。残念ながら、これらのゲートウェイは性能が低く、ルーティングポリシをセットアップするのに、ソフトスイッチの精巧さを欠くことがよくある。したがって、ソフトスイッチ制御装置を用いずに、これらのルータを相互に接続してネットワークを生成することはできない。
【0016】
したがって、各種IPネットワーク間に高品質な境界を生成するために一般的に必要とされることだが、リアルタイムパケットフローをある種のしきい値により案内することが大切である。適切に案内しないと、パケットはネットワークが許可するどの経路でも流れ、それにより、パケットを上流及び下流の障害だけでなく破壊された経路に通すことになる。
【0017】
【課題を解決するための手段】
上記を鑑みて、本発明の好ましい実施形態は、概して、RTP(リアルタイム・トランスポート・プロトコル)データフローについてフロー品質の統計値を求めるシステムと方法とに関する。
【0018】
概して、本システムの構造を参照すると、本システムは第2のエンドポイントに接続された第1のエンドポイントを利用し、第1のエンドポイントは、送受信器と、第1のエンドポイント内に格納され、第1のエンドポイントによって実行される関数を定義するソフトウェアと、プロセッサとを含む。或いは、これらの関数は、特定用途向け集積回路に設けられる、スイッチやコントローラなどのハードウェアを使用して定義してもよい。プロセッサはソフトウェアによって構成され、RTPデータフローの待ち時間を求めるステップと、RTPデータフローのジッタを求めるステップと、及び/または、RTPデータフローの消失パケットを求めるステップとを実行する。
【0019】
本発明は、またRTPデータフローのフロー品質の統計値を求める方法を提供すると考えられる。これに関し、このような方法の1つは、別々に、または組み合わせて使用される次のステップ、すなわちRTPデータフローの待ち時間を求めるステップ、RTPデータフローのジッタを求めるステップ、かつ/または、RTPデータフローの消失パケットを求めるステップに大まかに要約される。
【0020】
以下の図面や詳細説明を検討することにより、当業者には本発明の別のシステムや方法が明らかになるだろう。このような更なるシステム、方法、特徴、及び利点は全て本記述に含まれ、本発明の範囲内であり、添付の請求項によって保護されるものである。
【0021】
【発明の実施の形態】
本発明のリルーティングシステムは、ソフトウェア、ファームウェア、ハードウェア、もしくはそれらの組み合わせで実施できる。本発明の好ましい実施形態では、リルーティングシステムの一部は、例えば、これに限らないが、パーソナルコンピュータ、ワークステーション、ミニコンピュータ、メインフレームコンピュータといったコンピュータで実行されるソフトウェアで実施される。ただし、本実施形態は限定をしない例とする。
【0022】
リルーティングシステムのソフトウェア部は、論理関数を実行する実行命令の順序付リストから構成されており、コンピュータベースのシステムプロセッサを含むシステム等の命令実行システム、装置、または機器や、あるいは、命令実行システム、装置、または機器からの命令を取り込み、命令を実行できる他のシステムによって、使用されるか、またはこれらと共に使用されるコンピュータ読取可能媒体にて実現することができる。
【0023】
本稿の文中、「コンピュータ読取可能媒体」とは、命令実行システム、装置、または機器によって使用される、またはこれらと共に使用されるプログラムを含有、格納、伝達、伝播、または伝送することのできる何等かの手段である。コンピュータ読取可能媒体は、例えば、これに限らないが、電子、磁気、光、電磁気、赤外線、または半導体のシステム、機器、または装置、或いは、伝播媒体である。コンピュータ読取可能媒体のより具体的な例(ただし、完全に列挙していない)としては、1本以上のワイヤを有する電気接続機器(電子)、携帯可能なコンピュータディスク(磁気)、ランダムアクセスメモリ(RAM)(磁気)、リードオンリメモリ(ROM)(磁気)、消去可能プログラム可能リードオンリメモリ(EPROMまたはフラッシュメモリ)(磁気)、光ファイバ(光)、及び携帯可能なコンパクトディスク・リードオンリメモリ(CD ROM)(光)が挙げられる。ただし、コンピュータ読取可能媒体はプログラムが印刷された紙や他の適当な媒体でもよく、プログラムは、例えば紙や他の媒体のオプティカルスキャニングによって電子的に取込まれ、その後コンパイルされ、解釈されるかまたは適当な方法で処理され、その後、必要であればコンピュータのメモリに格納される。
【0024】
図1は、通信ネットワーク102に関連して実施される本リルーティングシステムを示すブロック図である。図1に示されるように、第1キャリヤネットワーク112は、米国マサチューセッツ州Pingtel製の電話等の第1SIP電話114と、第1セッションルータ116と、第1マルチメディアルータ118とを含む。第2キャリヤネットワーク132は、インターネット122を介して第1キャリヤネットワーク112に接続され、第2SIP電話134と、第2マルチメディアルータ136と、第2セッションルータ138とを含む。ただし、第1および第2キャリヤネットワーク112、132には、SIPでもSIPでなくてもよいが、ネットワーク112とネットワーク132との間で通信を実施できるいかなる装置が含まれてもよい。他のRTPデータ送信装置としては、これに限らないが、統合アクセス装置(IAD)、VoIPゲートウェイ(Cisco AS5300、Sonus GSX)、マルチメディア送信装置(PC、IP−PBX)が挙げられる。さらに、ネットワーク112とネットワーク132との間の通信は、代わりに、ワイドエリアネットワーク(WAN)やローカルエリアネットワーク(LAN)を介して行われてもよい。また、マルチメディアルータ118、136はインターネット122内の2つのドメイン間で利用されるので、インターネット122は、代わりに、データネットワークドメインでもよい。
【0025】
或いは、第1マルチメディアルータ118と第2マルチメディアルータ136との間に、これに限らないが、境界ルータ等のルータを設け、第1キャリヤネットワーク112と第2キャリヤネットワーク132との間の通信を補助してもよい。ただし、第1キャリヤネットワーク112と第2キャリヤネットワーク132との間の通信を行うのに境界ルータ等の追加のルータは必要ない。その代わり、第1SIP電話114から第2SIP電話134への通信は、以下詳細に説明するように、第1マルチメディアルータ118と第2マルチメディアルータ136とにより行われる。ただし、通信は、セッションルータから直接インターネット122に対して、マルチメディアルータ118または136を経由しなくてもよい。
【0026】
第1および第2セッションルータ116、138は、MeLampyらの「複数ネットワークを経由するRTP(リアルタイム・トランスポート・プロトコル)フローの制御を支援するシステムと方法」(出願番号09/844,204、出願日2001年4月27日)という現在係属中の出願により詳細に説明されるように、セッション開始プロトコル(SIP)とTRIP(telephonyrouting over IP)プロトコルとをサポートする。この出願の明細書を本明細書に全て援用する。
【0027】
第1マルチメディアルータ118と第2マルチメディアルータ136との間に別のマルチメディアルータを設けてもよい。図2は、本発明の別の実施形態による、2台のマルチメディアルータの代わりに3台のマルチメディアルータを使用する場合を示すブロック図である。このように、第1キャリヤネットワーク112に設けられた第1マルチメディアルータ118は、インターネット122を介して、第3マルチメディアルータ137と通信する。第3マルチメディアルータ137は、同様に、インターネット122を介して、第2キャリヤネットワーク132内の第2マルチメディアルータ136と通信する。
【0028】
図3は、更に本発明の好ましい実施形態によるマルチメディアルータ118、136、137(図1)(以降、118とする)を示すブロック図である。図3に示されるように、これに限らないが、伝送制御プロトコル(TCP)ソケット接続等の通信リンク152が、マルチメディアルータ118に設けられ、セッションルータや他のマルチメディアルータ等の他方のエンドポイントに接続する手段を提供する。当該技術において周知のように、TCPは、信頼性の高い全二重データ伝送を提供するコネクション型トランスポート層プロトコルである。或いは、別の種類のソケット接続を使用してもよい。出力装置154もマルチメディアルータ118に設けられる。マルチメディアルータ118の命令及び制御のために、マルチメディアルータ118とセッションルータとの間に私設網を確立することが好ましい。
【0029】
通信リンク152は、パーソナルコンピュータメモリカード国際協会(PCMCIA)スロットでもよい。これに限らないが、フラッシュカードや外部ドライブ等の外部装置を使用してマルチメディアルータ118のソフトウェアをアップグレードするため、PCMCIAスロットが使用される。ただし、マルチメディアルータ118には2つ以上の通信リンク152が設けられてもよい。
【0030】
マルチメディアルータはまたトラフィックマネージャ156を備える。トラフィックマネージャ156は好ましくはIPセッションデータフロー速度やトラフィックを計測したり、強化したりするために使用され、トラフィック測定を行う。市販のトラフィックマネージャ156の例としては、米国カリフォルニア州にあるMMCネットワークにより販売されているNPX5700トラフィックマネージャがある。基本的に、トラフィックマネージャ156は通信リンク152を流れるデータパケット数を測定する。トラフィックマネージャ156はネットワークプロセッサ158(後述する)とともに動作して、一度転送決定がされると、トラフィックマネージャ156は受信パケットを、それぞれのIPフローに、関連する優先順位に従って並べる。
【0031】
当該技術で周知のように、トラフィックマネージャ156は受信したデータパケットを一時的に格納するメモリを備える。受信の観点から見ると、マルチメディアルータ118はRTPデータフローを監視し、パケットがデータフロー用に割当てられた帯域幅の外側にある場合、パケットを捨てるか、廃棄に値するとしてマークするかにより、最大データ速度にする。
【0032】
好ましくは、セッションルータが、データフローへの帯域幅の割当てや、どのデータフローがデスティネーションまでマルチメディアルータ118を経由して流れるように割当てられるかの指定を担当する。ただし、この指定はマルチメディアルータ118により直接行われてもよい。または、マルチメディアルータ118があるデータフローを通すように割当てられていない場合、そのデータフローはマルチメディアルータ118を通ることができない。トラフィックマネージャ156はまた、セッションルータに命令されて、割当てられた帯域幅とビットレートとに従い特定量のデータを受信する。したがって、データがセッションルータにより許可されたよりも高速のビットレートで受信されると、その高速のビットレートで受信されたデータは送信されない。ただし、セッションルータにより指定される特性は、代わりに、セッションルータを使用せずにマルチメディアルータ118に直接プログラムしてもよい。
【0033】
マルチメディアルータ118は、以下に詳細に説明するように、受信したデータパケットを送信する際、トラフィックシェーピングを提供することもできる。トラフィックシェーピングにより、マルチメディアルータ118に一時的に格納された受信データパケットがマルチメディアルータ118からデスティネーションへ送信される順番が指定される。さらに、トラフィックシェーピングにより、データパケットの送信用に割当てられる帯域幅の大きさの指定が可能になる。
【0034】
マルチメディアルータ118はRTPデータフローのフロー品質統計値を生成することができる。更に、マルチメディアルータ118は、RTPパケットが通信ネットワーク102を流れる際、RTPパケットからフロー品質統計値を生成することができる。図1に示すように、マルチメディアルータ間のリンクにのみ関連する統計値もある。つまり、マルチメディアルータ118はエンドポイントまでのフロー品質を測定できない。ジッタ及び待ち時間は、この部類に該当する2つのフロー品質の測定値である。
【0035】
好ましくは、マルチメディアルータ118を経由するフローごとに1つ以上の統計値が格納される。これらの統計値には、これに限らないが、待ち時間、ジッタ、1パケット中のオクテット数、及び/または脱落パケット数などがあり、それぞれ以下に詳細に述べる。ただし、マルチメディアルータ118を経由する各データフローに関して、他の統計値を格納してもよい。各データフローの統計値を生成するために、マルチメディアルータ118は、接続されたマルチメディアルータ間で、これに限らないが、リアルタイム制御プロトコル(RTCP)等のプロトコルの専用バージョンを実行し、待ち時間を求める。ジッタ及び脱落パケットの統計値は、マルチメディアルータ118により独立して生成することができる。以下に、待ち時間、ジッタ、及び脱落パケットがRTCP情報なしにどのように求められるかを説明する。
【0036】
データフローの待ち時間を測定するため、マルチメディアルータ118がそのデータフローの別のエンドポイントと通信する。おそらく、この別のエンドポイントは別のマルチメディアルータである。ただし、必ずしもそうでなくてもよい。好ましくは、この通信の対象は、RTPデータフローの待ち時間を求めるために、エンドポイントがマルチメディアルータ118に折り返すテストパケットである。折り返されたパケットを受信するマルチメディアルータ118は、パケットを受信した時刻とパケットを送信した時刻を比較し、往復時間を調べる。次に、往復時間を半分にして片道の時間の近似値を求める。これが待ち時間である。
【0037】
上述したようにパケットを折り返す専用の方法を使用する以外に、2台のマルチメディアルータ間にRTCPパケットフォーマットを使用することもできる。このフォーマットにより、送信側のタイムスタンプを(送信レポートから)抽出でき、パケットを折り返すのにかかる時間の見積もりとともに、タイムスタンプを折り返すパケット(受信レポート)に入れることができる。
【0038】
ジッタは1フロー上のパケット間隔の変化量の測定値である。別の定義では、ジッタはフローの待ち時間の変化である。マルチメディアルータ118は、RTPデータフローがマルチメディアルータ118を通過する際に、そのRTPデータフローについてジッタを測定する。データパケットが、マルチメディアルータ118内に設けられたネットワークプロセッサ158に達すると、タイマがスタートし、そのRTPデータフローの次のパケットが到着するまで動作する。パケット間隔は、総量に加算されて「平均」ジッタ値を維持する。「平均」ジッタ値をフローレコードの最小値/最大値と比較し、新たな最小/最大ジッタ値となるかを判定することもできる。ただし、フローレコードは、ネットワークプロセッサ158に設けられたネットワークプロセッサメモリ(図示せず)内に設けられる。また、マルチメディアルータ118に設けられる全てのメモリが、マルチメディアルータ118の内部または外部に備えられた単一のメモリ内に設けられてもよい。このプロセスがプロセッサに集中しすぎる状況では、周期的にジッタサンプルを集計し、集計した情報を使用して最小/最大の計算を行ってもよい。
【0039】
RTCPに基づく機構が無い場合の脱落パケット、または消失パケットの処理は、あるRTPフローにおいてブーリアンの2つのスコアボード配列を用いて行われる。スコアボード配列は、パケットがいつ無くなるのか、及び、パケットがジッタウィンドウ中に現れるかを追跡するために使用される。パケットを処理する別の方法を使用してもよい。ただし、ジッタウィンドウは通常、変動するネットワーク条件を補償するために音声ゲートウェイで実装される。ジッタウィンドウは、入ってくるパケットを転送する前に、復元のために一定時間保持するパケットバッファである。このプロセスは、パケットフローを平滑にする効果があり、パケットロスに対する符号化/復号化装置(CODEC)の復元力を増加させ、パケットを遅延させ、他の伝送効果をもたらす。ジッタウィンドウはマルチメディアルータ118により直接的に定義されてもよいが、好ましくは、セッションルータによって定義される。
【0040】
スコアボード配列における各項目は、特定のシーケンス番号のパケットがマルチメディアルータに受信されたかを示す。スコアボード配列は、ネットワークプロセッサメモリまたは何れかのローカルまたは遠隔メモリに設けられてもよい。ブーリアンの各配列は、幾つの項目が「紛失」とマークされたのか追跡するカウンタを備える。好ましくは、全ての項目は初めに「受信」とマークされる。
【0041】
ネットワークプロセッサ158で、連続番号が追跡され、紛失パケットが検出されると、具体的には、連続番号が2以上増分したパケットが検出されると、カレントの配列における適当な項目は「紛失」とマークされ、紛失カウンタが増分される。好ましくは、2つの配列は、ジッタウィンドウにおけるパケットの最大数の大きさにする。これらの2つの配列は以下、カレント配列と古い配列と呼ぶ。カレント配列がジッタウィンドウの最大に達すると、古い配列が再初期化され、カレント配列となり、カレント配列が古い配列になる。古い配列が消去される前に、該データフローについて脱落パケット用のカウンタを検索し集計する。
【0042】
もし、代わりに、連続番号が現在の連続番号より小さい、順序の違う古いパケットが受信されると、ネットワークプロセッサ158はパケットの遅れ時間に応じて、カレント配列または古い配列のいずれかにおいてその連続番号の項目を探索する。ネットワークプロセッサ158が紛失とマークされた項目を見つけその項目を変更すると、ネットワークプロセッサ158は、紛失パケットを追跡するために使用される、該配列の紛失パケットカウンタを減分する。パケットが紛失とマークされていなければ、ネットワークプロセッサ158はパケットが複製であることを示す。もし、連続番号が古くて、パケットの日付がジッタウィンドウの深さより遡る場合、ネットワークプロセッサ158は探索を行わない。ただし、脱落パケットをカウントするこの方法はRTCPを用いて得られるものより正確である。
【0043】
RTCP情報を用いて、待ち時間、ジッタ及び脱落パケットをどのように調べるかついて以下に記述する。詳細は、RTP規格RFC1889「リアルタイムアプリケーションのためのトランスポートプロトコル」(1996年1月、Schulzrinneら)に記述されている。別の参考文献として、「H.323によるIP電話」(Kumarら、ISBN 0−471−39343−6)が挙げられ、これは、今日当該技術において行われる統計値の計測について記述している。マルチメディアルータ118は、エンドポイントから受信するRTPデータフローに付随するRTCPストリームを処理することができる。この処理は、上記プロセスの代わりに、または上記プロセスに付加して行われる。RTCPフローはRTPセッションの間に調査され、様々な精度レベルの品質統計値が得られる。詳細に関係のあるRTCPパケットは、送信側レポートと受信側レポートとを含む。送信側レポートが送信側の送信情報と受信側毎の情報とを含み、受信側レポートは受信側毎の情報を含むという差異はあるが、この2つのレポートはほとんど同一である。
【0044】
待ち時間、ジッタ、及び脱落パケットの導出に特に関係のある、受信側レポートメッセージのセッション統計値には、部分消失、累積消失、受信した最大の連続番号、到着間隔ジッタ、最終セッションレポートのタイムスタンプ(LSR)、及び/またはLSRからの遅延が含まれる。部分消失のセッション統計値は、最後の送信側レポートまたは受信側レポートのメッセージが送信されてから消失した、ある特定ソースからのRTPパケットの率を示す。累積消失のセッション統計値は、セッションの開始以来消失した、ある特定ソースからのRTPパケットの総数を示す。この数には、事実上消失している遅延パケットは含まれない。上記で参照されたRTP仕様によって識別された複製パケットが、受信されたものとしてカウントされ、紛失パケットを補償し、さらにこの計測値の精度を上げている。
【0045】
受信した最大連続番号のセッション統計値の値は、送信側レポートまたは受信側レポートからメッセージごとに追跡され、累積消失の統計値とともに、1セッション中に流れたはずのRTPパケットの数を求めるのに使用される。
【0046】
送信されたLSR時刻メッセージ及びLSRからの遅延時間のセッション統計値は、最後に送信された送信側レポートメッセージの受信側が、その送信側レポートメッセージの送信側にエコーバックすることと、送信側レポートのネットワークタイムプロトコル(NTP)のタイムスタンプと、受信側がどれくらいの時間で送信側レポートメッセージをターンアラウンドし、受信側レポートを送信するのか、とに関係する。基本的に、受信側は受信側レポートメッセージを受信した時刻をマークし、現在の時刻から、(送信側レポートが送信されたときの)LSRと最終セッションレポートからの遅延時間(DSLR)(メッセージ処理遅延)とを減算して往復の遅延時間を求めることができる。
【0047】
送信側レポートメッセージに固有のセッション統計値には、送信側レポートのNTPタイムスタンプと、送信側パケット数と、送信側オクテット数とが含まれる。送信側レポートNTPタイムスタンプのセッション統計値については上記に詳細に記述した。送信側パケット数のセッション統計値は、マルチメディアルータ118を経由して1エンドポイントに送信されるRTPデータパケットの総数を示す。さらに、送信側オクテット数のセッション統計値は、セッションの開始以降、送信側によりRTPデータパケットで送信されたペイロードのオクテットの総数を示す。
【0048】
RTCPパケットから利用可能なデータを与えられたとすると、フロー毎に、消失パケットの数と、パケットの総数と、略即時の待ち時間及びジッタのレベルとが得られる。これら4つのマトリクスの各々の計算は、以下詳細に論議する。
【0049】
消失パケットの数は、受信側レポートメッセージで通知される累積消失の統計値から直接生成してもよい。残念ながら、この生成方法は、期待される数に対し複製パケット及び遅延パケットを誤ってカウントするので、この測定値はいくらか不正確である。
【0050】
パケットの総数は、受信側レポートから受信した最大の連続番号を受信側レポートの初期値と比較し、流れたと期待されるパケット数を求めることで生成される。流れたことが期待されるパケット数から消失パケット数を減算して、受信された実際のパケット数を求める。本発明の別の実施形態によると、送信側レコードの送信側パケット数の統計値を使用して期待される値を設定できる。
【0051】
待ち時間に関しては、受信側レポートメッセージのデスティネーションが、受信側レポートメッセージのLSRフィールド及びDLSRフィールドを使用し、往復の遅延時間を求めてもよい。つまり、受信側レポートメッセージのデスティネーションが、受信側レポートメッセージが受信された時刻を記録し、LSR、すなわち送信側レポートが送信された時刻と、DSLR、すなわち、受信側レポートの送信側が受信側レポートを送信するのにかかる時間とを減算する。
【0052】
送信側レポートの発信者が受信側レポートを受信する実際の時刻が必要なので、待ち時間の計算には誤差を生じる余地がある。待ち時間の計算における誤差を最小限にするために、送信するマルチメディアルータはフロー毎の最終の送信側レポートのタイムスタンプを保持してもよい。これによると、受信側レコードが戻って送信側で受信されると、受信側レコードが、送信するマルチメディアルータによって求められる現在時刻から減算される。更に、受信側レコードメッセージのDSLRが受信側レコードの受信時刻から減算され、送信するマルチメディアルータと受信側レポートの発信者との間の往復遅延時間となる。
【0053】
好ましくは、送信側レコードメッセージのNTPタイムスタンプを戻ってきた受信側レコードメッセージのLSRと比較し、待ち時間の計算が妥当であることを確認する。タイムスタンプが一致しなければ、計算が正しくないので修正される。修正する方法の1つは、次の送信側レコードメッセージが受信されるときに、再度やり直すだけでもよい。ただし、往復の待ち時間は、マルチメディアルータ118を経由するRTPフローの両側から計算され、往復の値が二等分されて片道の待ち時間とする。
【0054】
次にジッタの計算について述べる。ジッタは、パケットの到着間時間の標準偏差と考えられる。そのため、ジッタを測定するには、あるフローに関する最初のパケットの受信後にタイマをセットし、該フローにおける次のパケットの受信時にタイマを停止する。この経過時間が「パケット間時間」の1サンプルである。パケット間時間を数回連続して測定することにより、フローの平均変動、すなわちジッタを求めることができる。フローのジッタを正確に求めるには、一定の数のサンプルを記録し平均して許容値外の測定値の影響を取り除く。これは、時間のウィンドウと考えることができる。一度計算が実行された後、次の計算値を得る方法がいくつかある。1つの方法は、スライディングウィンドウであり、最も古いサンプルを捨て新しいサンプルを追加した後、平均を計算する。つまり、スライディングウィンドウでは、平均はサンプル毎に再計算される。これにより、非常に正確な傾向の指標が得られる。次のウィンドウを計算する二番目の方法は、全てのサンプルを捨てて、データの収集を開始し新しいサンプルを一揃い得る方法である。これにより、非常に正確な「期間」指標が得られる。何れの機構を用いてもよい。ネットワーク動作の品質を把握するためには、待ち時間の最良の計測値と共に最悪の計測値を保持することも有益である。
【0055】
図2のブロック図に戻ると、マルチメディアルータ118にはフロー品質管理エンジン157が設けられている。フロー品質管理エンジン157は、マルチメディアルータ118の変換サービスと、品質測定サービスと、上流・下流の障害の検出及び訂正とを提供する。各々について以下詳細に論議する。
【0056】
マルチメディアルータ118でフロー品質管理エンジン157の実行する変換サービスは、ソースアドレス、デスティネーションアドレス、ソースポート、デスティネーションポート、またはこれらのフィールドの組み合わせを変換する機能を備える。マルチメディアルータ118はまた、RTPデータパケットがルーティングシステム100を通過する際に、そのIPヘッダのマルチプロトコル・ラベル・スイッチング(MPLS)タグを削除及び/または挿入できる。さらに、マルチメディアルータ118は、RTPデータパケットのIPヘッダに設けられるDiffservコードポイントの挿入または変更ができる。当該技術で周知のように、Diffservコードポイントは、データパケットのプライオリティを変更するために使用される。
【0057】
マルチメディアルータ118のフロー品質管理エンジン157の提供する品質測定サービスはフロー毎に提供され、ここで、RTPフローは、ソースIPアドレスと、デスティネーションIPアドレスと、ソースポートと、デスティネーションポートとにより定義される。品質測定において、好ましくは、ネットワークプロセッサメモリにRTPデータフローの現在の統計値を保持し、適用可能であれば、RTPデータフローの総計及び最大/最小の統計値も同様に保持する。収集される統計値の例としては、所定の時間ウィンドウでの待ち時間、ジッタ、及びパケットロスが挙げられる。ただし、このウィンドウはセッションルータまたはマルチメディアルータ118により特定することができる。
【0058】
総計の統計値には、送信されたRTPデータパケット、脱落RTPデータパケット、及び複製RTPデータパケットを含んでもよい。時間ウィンドウ毎の待ち時間、ジッタ、及びパケットロスを含む、境界統計値とも呼ばれる、最小及び最大の統計値を収集してもよい。トラフィックマネージャ156に関連して、待ち時間、ジッタ、及びパケットロスについての更なる論議は上記に示す。
【0059】
上述のように、マルチメディアルータ118のフロー品質管理エンジン157はまた、RTPデータパケットの伝送における上流及び下流の障害の検出及び訂正を行う。フロー品質管理エンジン157が使用する1つの方法は、RTPデータフローの中断を検出する。図4は、フロー中断検出を示すために通信ネットワークの一例を提示するブロック図である。
【0060】
図4に示すように、4つの別々のRTPデータソース202、204、206、208から、4つの別々のRTPデータフローが生じている。ただし、RTPデータソースには、これに限らないが、SIP電話等が含まれる。4つのRTPデータフローは各々、少なくとも1台のセッションルータ(図示せず)を介して、第1マルチメディアルータ212に伝送される。次に第1マルチメディアルータ212は、第1マルチメディアルータ212のネットワークプロセッサメモリ内に格納された開始ソースアドレスとデスティネーションアドレスの組み合わせにしたがって、RTPデータパケットを第2マルチメディアルータ214または第3マルチメディアルータ216の何れかにルーティングする。図4に示すように、第2マルチメディアルータ214は、第1マルチメディアルータ212から同時に3つのRTPデータフローがあり、第3マルチメディアルータ216は、第1マルチメディアルータ212から1つのRTPデータフローしかない。ただし、マルチメディアルータの数、RTPデータフローのソース、セッションルータの種類、及びRTPデータフローのデスティネーションは異なってもよい。
【0061】
図4に示すように、第2マルチメディアルータ214は、RTPデータパケットを3つの異なるデスティネーション222,224、226に転送する。RTPデータパケットのデスティネーションは、これに限らないが、SIP電話を含む何れの装置でもよい。第3マルチメディアルータ216も、受信したRTPデータパケットをデスティネーション228に転送する。好ましくは、各マルチメディアルータが、各RTPデータフローについて定められた閾値よりも長いRTPデータパケットに欠落があるフロー中断を、個々に検出する。
【0062】
フローの中断を判定するために、各RTPデータフローは、初期パケット保護タイマと、後続パケット保護タイマとを有する。保護タイマはセッションの初期開始時、またはパケット受信時にスタートする。新たなパケットが到着せず、かつタイマが切れると、フロー中断が検出される。「無音圧縮」が開始されることを示すために送信される特定のパケットがあり、保護タイマはこれを考慮しなければならないので、実際に単に完全無音のときには、フローが「中断された」と報告されない。
【0063】
全てのRTPデータフロー、または少なくとも、割合もしくは閾値の数により決められた大多数のRTPデータフローが、フロー中断を検出される状態であるとき、第1マルチメディアルータ212は障害を起こしている可能性が高い。詳細に説明すると、マルチメディアルータは、全フローのそれぞれのタイマ(初期及び後続パケット保護タイマ)を同時にセット及びクリアしている。マルチメディアルータはパケットを次のホップ先に送信する。もし、次のホップ先が別のマルチメディアルータであって、そのマルチメディアルータから到着するフローまたはそのフローの多くの箇所で同時にフロー中断が検出されると、次のホップ先のマルチメディアルータが障害を起こしている可能性が高い。例として、図4を考えると、RTPデータパケットは、RTPデータソース202からRTPデスティネーション222へ流れ、同時に、RTPデータパケットはRTPデスティネーション222からRTPデータソース202へ流れる。
【0064】
つまり、RTPパケットはRTPデータソース202から第1マルチメディアルータ212、第2マルチメディアルータ214、デスティネーション222へ流れ、またその逆にも流れる。第1マルチメディアルータ212は、RTPデータソース202からのパケットを第2マルチメディアルータ214へ転送し、第2マルチメディアルータ214は、デスティネーション222からのRTPデータパケットを第1マルチメディアルータ212へ転送する。ただし、図4において、3つのRTPデータフローが矢印で示されている(ここで、逆のフローは示されていないが、当然含まれている)。ただし、また、第2マルチメディアルータ214は、上述したフロー保護タイマを用いてフロー中断検出を行う。3本の全てのフローが同時に中断された場合、第1マルチメディアルータ212、または第1マルチメディアルータ212と第2マルチメディアルータ214との間の共有リンクがもはや動作していない可能性が非常に高い。したがって、第2マルチメディアルータ214は、逆方向に向かうRTPデータパケットをどこに送信するかの決定を行う。第2マルチメディアルータ214は、或いは、パケットをRTPデータソース202に転送するために、第3マルチメディアルータ216に転送することもできる。
【0065】
或いは、フロー中断の検出が、第1マルチメディアルータ212と第2マルチメディアルータ214との間の経路が機能していないことを示していることもある。結果として、複数の別個のRTPフローの不通を累積的に検出することにより、第1マルチメディアルータの経路の不通が検出される。したがって、第2マルチメディアルータ214は、第1マルチメディアルータ212が稼動していない、または、第2マルチメディアルータ214と第1マルチメディアルータ212との間の経路が破損していることを認識する。結果として、第2マルチメディアルータ214は、第1マルチメディアルータ212を使用する経路以外の別のデータ経路を使用することにより、デスティネーション222、224、226から4つのRTPデータソース202、204、206、208に到着するRTPデータフローをリルーティングすることで対処することができる。
【0066】
マルチメディアルータ118には、またホストプロセッサ164が設けられ、ローカルリンク166を介してトラフィックマネージャ156に接続されている。当該技術で周知のように、ローカルリンク166はバス、専用パス、及び/またはデータ伝送手段である。ホストプロセッサ164は、トラフィックマネージャ156と同様、上流及び下流の障害の検出及び訂正を提供する。RTPデータパケットの伝送において上流及び下流の障害を検出及び訂正するために、ホストプロセッサ164の使用する方法には、これに限らないが、リンク障害の使用及び外部管理イベントの使用が含まれる。
【0067】
上流及び下流の障害を検出及び訂正するためにリンク障害を使用する方法に関し、図4を再度参照する。第2マルチメディアルータ214が、第1マルチメディアルータ212と第2マルチメディアルータ214との間のリンク障害に関する情報を受信した場合、その情報を使用してRTPフロートラフィックをリルーティングしてもよい。リンク障害の種類の例としては、例えば、リンク層のハードウェアとドライバとが、これに限らないが、キャリア喪失、ビットエラー、過度の衝突、及び警報を含む各種リンク障害を報告可能な、直接接続されたリンクが挙げられる。これらのリンク障害は、第2マルチメディアルータ214に直接マルチメディアルータのハードウェア及びドライバによって報告され、マルチメディアルータのネットワークプロセッサ158へ入って、ここでリルーティングの決定が行われる。ネットワークプロセッサ158について以下詳細に論議する。
【0068】
マルチメディアルータに直接接続されていないリンクのリンク障害は、多数の様々な方法を用いて発見することができる。そのうちの幾つかを以下に示す。リンク障害を発見する第1の方法には、OSPF(open shortest path first)プロトコルの実施が含まれる。OSPFプロトコルはリンクステートトポロジーを絶え間なく配信する。リンク障害を発見する第2の方法は、マルチメディアルータにより使用されていた到達可能な経路を削除する境界ゲートウェイプロトコル−4(BGP−4)の使用によるものである。OSPFリンクステート情報を得るために、マルチメディアルータ118は、マルチメディアルータ118をインテリア・ゲートウェイ・プロトコル(IGP)のピアとして、OSPF情報交換もしくはフラッディングに参加する。したがって、BGP−4撤回経路情報を得るために、マルチメディアルータ118はIGP(OSPF)参加を使用する。つまり、あるネットワーク内に接続されている場合、経路情報はOSPFを介して配信される。BGP−4撤回経路指示によって、外部経路が使用不能になった場合、前述のように接続された全てのリンクに対し、新たな外部ルーティングの可能性がOSPFを介してプロトコルによって内部通知される。或いは、BGP−4の経路情報交換へ直接参加することにより、撤回経路情報を得てもよい。
【0069】
リンク障害を発見する第3の方法は、隣接フローを処理しているアクティブなマルチメディアルータ間でハートビートメッセージを使用するか、またはポーリングを行い、接続を確保し統計値を共有することである。ポーリングに応答が無い場合、リンクまたはマルチメディアルータは使用不能とされる。
【0070】
以下は、上流及び下流の障害を検出及び訂正するための外部管理イベントの使用についての記述である。ネットワーク運用センタ(NOC)に設けられる、これに限らないが、ヒューレッドパッカードのオープンビュー等のネットワーク管理システムで、ネットワークの障害を認識してもよい。このイベントは意図的でない、すなわちネットワークの定期保守に関連させることもできる。つまり、SNMPを使用して、ネットワークリンク及びハードウェアを監視することが可能である。管理局は、ハードウェアやネットワークの問題を様々な方法で発見することが可能である。第1の方法では、SNMPメッセージが被監視装置から管理局に送信される。これは、一般にSNMPトラップと呼ばれる。第2の方法では、管理局から情報要求が送信され、被監視装置はデータを応答する。どちらの場合も、管理局がネットワーク及びその物理リンクの動作についての情報を得る。
【0071】
このように、管理局は、保守目的のためにリンクをサービスから外してもよく、リンクが使用可能でないことを通知する。OSPFプロトコル及びBGP−4プロトコルは、ネットワークテーブルの再構成と伝送を管理する。これは、リンクの使用可能性に変更を反映するために必要である。当該技術で周知のように、OSPF(及び他の内部ルーティングプロトコル)及びBGP−4(及び他の外部ルーティングプロトコル)を使用して、ネットワークに設けられた各ネットワークルータに含まれるネットワークテーブルに変化を通知する。これらのテーブルは、1つのリンクから別のリンクへ適正にパケットを転送するために使用される。したがって、ルーティングの変更が実行されると、ネットワークルータのネットワークテーブルで変化を認識する。セッションルータの制御下にあるマルチメディアルータ118は、RTPデータフローをある特定の削除された、または使用禁止のエンドポイントに導くポリシーを1つ以上備えてもよく、それにより、稼動しているリンクの使用を防止する。
【0072】
前述のように、ネットワークプロセッサ158もマルチメディア118に設けられている。ネットワークプロセッサ158は、パケットヘッダの検査及びRTPデータフローパケットの高速リルーティングのためのパケットの転送決定を行う。さらに、ネットワークプロセッサ158はマルチプロトコル・ラベル・スイッチング(MPLS)のラベル抽出及び挿入をサポートする。数種の高速ルーティングの方法、すなわち、ロードシェアリング構成、セカンダリ経路構成、経路を新たにルーティングする構成、及びネットワーク指向ルートアラウンド構成がネットワークプロセッサ158によって提供される。
【0073】
以下は、高速ルーティングのためのロードシェアリング構成の使用を説明する。各RTPデータフローは、連続番号、好ましくは、1で始まりパケット毎に増分する連続番号を有するRTPデータパケットからなる。ネットワークへの入り口でRTPデータパケットを受信すると、RTPデータパケットは、例えば、偶数/奇数分散アルゴリズムや、次回のマルチメディアルータの数によるモジュロ除算アルゴリズムに基づき、様々な位置に送信される。ただし、本発明の別の実施形態により他の分散方法を使用してもよい。
【0074】
図5のブロック図を用いてさらに上述のプロセスを説明する。図5に示されるように、偶数/奇数分散が使用される。RTPデータフローが始まると、フローの最初のデータパケットに連続番号の「1」が付される。連続番号はRTPデータパケットのヘッダ部に配置される。後続の各パケットについては、連続番号が増分される。このように、図5では、偶数番号のパケットは、第1マルチメディアルータ252から第3マルチメディアルータ254、デスティネーション位置258へ横断し、奇数番号のパケットは、第1マルチメディアルータ252から第2マルチメディアルータ256、デスティネーション位置258へ横断する。ただし、後続のパケットについて連続番号が増分されれば、代わりに最初のデータパケットに別の連続番号を付してもよい。
【0075】
以下に、図5を参照してRTPデータフローについて詳細に記述する。第1マルチメディアルータ252は、通信ネットワーク102の入り口で、セッションルータ253からRTPデータフローを受信する。ただし、このセッションルータ253から受信されたRTPデータフローは、元々図示されない1台もしくは複数のソースから発生する。偶数番号を付されたRTPデータパケットは第3マルチメディアルータ254に送信され、奇数番号を付されたRTPデータパケットは第2マルチメディアルータ256に送信される。第2マルチメディアルータ256及び第3マルチメディアルータ254は、どちらもセッションルータ253により指定された通りに、RTPデータパケットを転送し、最終的に、偶数番号及び奇数番号のパケットが到着するデスティネーション位置258に集まる。つまり、RTPデータパケットはRTPデータパケットのソースからRTPデータパケットのデスティネーション258に横断する際、すなわち通信ネットワーク102の入り口から出口まで横断する際、2本の経路を使用する。第2マルチメディアルータ256が障害を起こすと、両方の方向について、第1マルチメディアルータ252及びRTPデータパケットのデスティネーション258は、偶数番号のパケットのみを受信する。
【0076】
本発明の実施例によると、偶数番号のRTPデータパケットのみが受信されるので、奇数番号の経路が機能していないことが明らかであり、奇数番号のRTPデータパケットも第3マルチメディアルータ258に送信されることを示す。したがって、第2マルチメディアルータ256の経路上でリンクまたはマルチメディアルータの障害が発生するまでは、RTPデータパケット負荷は均一に分配される。このとき、RTPデータパケット負荷は、第3マルチメディアルータ254によって管理される経路に移動する。ただし、これは通信ネットワークの一例であって、ソース、マルチメディアルータ、データ経路、セッションルータ、またはデスティネーションの数を限定するものではない。
【0077】
モジュロ除算方法は、2本以上の経路が負荷を分担する機構を提供する。したがって、経路の数が例えば3本であるとき、RTPデータパケット連続番号0、3、6、9等が、第1経路に送出さる。また、RTPデータパケット連続番号1、4、7、10等が第2経路に送出され、RTPデータパケット連続番号2、5、8、11、13等が第3経路に送出される。
【0078】
以下に、高速ルーティングのためのセカンダリ経路構成の使用方法について述べる。プライマリ経路が、セッションルーティングを用いてマルチドメインネットワーク経由で割当てられる。この一例が「複数ネットワークを経由するリアルタイム・トランスポート・プロトコルフローの制御を支援するシステム及び方法」と題された係属中出願に記述されている。さらに、マルチメディアルータを使用して様々な位置にパケットを転送する場合、同様に実行可能なセカンダリ経路が割当てられる。したがって、各マルチメディアルータには、プライマリ変換とセカンダリ変換とが用意される。以下にセカンダリ経路構成の一実施例を提示する。本実施例により、セッションルータからマルチメディアルータへのマルチメディアフローを設定する以下のコマンドを考える。
【0079】
【実施例】
Figure 0004394336
ただし、上記提示された実施例では、プライマリまたはセカンダリアドレスの組から受信されるパケットは、1つのRTPデータパケットフローの一部であるものとする。したがって、プライマリのソースとデスティネーションの組、またはセカンダリのソースとデスティネーションの組を持つ、リンクに到着したパケットが変換され、プライマリまたはセカンダリのアウトバウンドアドレスに変換される。つまり、ソースアドレスが129.0.0.1:3000、デスティネーションアドレスが130.0.0.1:5000のRTPデータパケットが到着すると、このパケットは、ソースアドレス131.0.0.1:3000、デスティネーションアドレス132.0.0.2:4000、または、ソースアドレス133.0.0.1:1000、デスティネーションアドレス134.0.0.1:7000に変換される。プライマリ変換かセカンダリ変換かの選択は、好ましくは、フロー中断検出及びリンク障害検出に関して上記で略述したような障害判定に基づく。
【0080】
以下に、高速ルーティングのための経路を新たにルーティングする構成の使用について記述する。経路を新たにルーティングする構成は、転送経路で障害を検出すると、マルチメディアルータのアウトバウンド側に新しいアドレスを割当てる。マルチメディアルータは好ましくは転送経路の障害をセッションルータに報告し、セッションルータで新しい転送経路が割当てられる。セッションルータは次に新しい経路を再接続指示とともにマルチメディアルータに送信する。
【0081】
ネットワーク指向ルートアラウンド構成に関しては、別々のネットワークアドレスを用いてネットワークを経由する様々な経路をターゲットとし、OSPFに基づくルーティングを使用して、RTPトラフィックの二重経路構成または負荷分担構成を有するようにする。OSPFを使用して、複数リンクに均等にパケットを流すことができる。リンクの距離値を慎重に設定することにより、マルチメディアルータは、共通デスティネーションに負荷を分担させることができる。さらに、BGP−4を用いると、通知され受け取った到達可能経路を慎重に管理することにより、複数リンクにわたりトラフィックを低減することもできる。OSPF、BGP−4のどちらの場合でも、1つのリンクが障害を起こすと、他のリンクがトラフィックの残りを吸収する。
【0082】
図3に戻って参照すると、マルチメディアルータ118はシステムレベルでコンフィギュレーションされる。このコンフィギュレーション手段は、好ましくは入力装置166から入力されるコマンドラインを介して行われる。マルチメディアルータのコンフィギュレーションは、ブートソース情報を含む、マルチメディアルータ118用のブート情報と、(管理者が割当てる)システム識別名、ユーザログイン及び/またはパスワード、及びリンクIPアドレスを含むシステム情報とを備える。この情報はネットワークプロセッサメモリに格納される。
【0083】
マルチメディアルータ118の監視も行われる。監視方法の一例には、簡易ネットワーク管理プロトコル(SNMP)を介してアクセス可能な管理情報ベース(MIB)を1組サポートするマルチメディアルータを含む。当該技術で周知のように、MIBは、ネットワークマネージャがアクセス可能なネットワーク要素の管理項目を決定する。マルチメディアルータ118の監視はまた、イベントメッセージを介してマルチメディアルータ118から監視情報を収集するセッションルータによって行われる。イベントメッセージは、フロー上でイベントが発生したときに生成される。例えば、フローが中断されたり、ジッタが管理者の定義する許容限界を超えて増加すると、イベントが生成されセッションルータに転送される。必要であれば、セッションルータがイベントを使用して、トラフィックをリルーティングしてもよい。
【0084】
図6は、マルチメディアルータ118(図1)の可能な実装のアーキテクチャ、機能性、及び動作と、RTPデータフローパケットがリルーティングシステム102を通過する際にパケットが受ける個々の処理ステップを示すフローチャートである。これにおいて、各ブロックは、指定された論理関数を実施する実行可能な命令を1以上含む、コードのモジュール、セグメント、または一部を示す。ただし、別の実装では、ブロックに示される関数が示される順番でなく発生するものもある。例えば、以下に明らかになるように、含まれる機能により、連続して示される2つのブロックが実際ほぼ同時に実行されたり、時々逆の順番で実行されたりする。
【0085】
ブロック302に示されるように、RTPフローデータパケットがマルチメディアルータ118(図1)で受信されると、レイヤ2/マルチメディアアクセス制御(MAC)処理が行われる。レイヤ2/MAC処理では、これに限らないが、リンクプロトコルヘッダ等のレベル2ヘッダまたは、レイヤ2ヘッダが受信されたデータパケットから削除される。リンクプロトコルヘッダの例としては、これに限らないが、イーサネット(登録商標)ヘッダやHDLCヘッダが挙げられる。レイヤ2ヘッダが削除されるので、データパケットのレイヤ3ヘッダがマルチメディアルータ118(図1)によって検査される。当該技術で周知のように、レイヤ3ヘッダは、セッションルータにより割当てられるかまたはマルチメディアルータ118(図1)に直接割当てられる、IPソース及びデスティネーションアドレスとIPソース及びデスティネーションポートとを含む。次に、RTPフローデータパケットが適当に形成され妥当であることを確認するため、標準的なIP処理を行って、レイヤ3ヘッダの妥当性が検査される。当該技術者らには、IP処理にどのようなプロセスが含まれるかが分かるので、このプロセスの更なる論議はここでは行わない。
【0086】
ブロック304に示されるように、レイヤ2/MAC処理が行われた後、フロー処理が行われる。図7はフロー処理の詳細を示すフローチャートである。ブロック352に示されるように、フロー処理では、パケットのソース及びデスティネーションのIPアドレスとポートとが求められる。好ましくは、ネットワークアドレスの変換技術を用いて、フローの方向を決定する。RTPデータパケットフローは2つの異なる方向、すなわち、クライアントからマルチメディアルータ118(図1)へのアウトバウンド及びマルチメディアルータ118(図1)からクライアントへのインバウンドに流れる。
【0087】
パケットのソース及びデスティネーションのIPアドレスとポートとが識別されると、ネットワークプロセッサにフロー・トランスフォーム・レコード(FTR)が存在するかについて判定する(ブロック354)。本発明の好ましい実施形態によると、FTRは、新しいフローが判定される都度、セッションルータによって継続して更新される。或いは、FTRは、所定のタイムリミット後に間隔をおいて更新してもよい。また、FTRの更新は、マルチメディアルータ118(図1)によって直接行われる。FTRを更新する別の方法を使用してもよい。
【0088】
ブロック356に示されるように、FTRが存在する場合、ネットワークプロセッサ158(図3)は、セッションルータにより定義されるように、FTRを検索する。ただし、FTRはソース、デスティネーション、またはソース、デスティネーション双方のアドレスを変換すべきか指示する。さらに、FTRは、マルチプロトコル・ラベル・スイッチング(MPLS)タグをRTPデータパケットに挿入すべきかを指示する。好ましくは、しかし、必ずではないが、FTRを検索するのに連想記憶装置(CAM)を使用する。CAMは直接FTRを返したり、ネットワークプロセッサ158(図3)に設けられたテーブル内のアドレスを返す。このようなテーブルの例としては、シンクロナス・ダイナミック・ランダムアクセスメモリ(SDRAM)テーブルがある。
【0089】
しかし、ネットワークプロセッサ158(図3)にFTR項目が無い場合に、例外としてパケットを廃棄したり、パケットをホストプロセッサ164に転送して処理する(ブロック358)。つまり、FTRを持たないパケットついては、ホストプロセッサ164に転送され、ホストプロセッサ164により一連の動作以外の動作が行われ、ネットワークプロセッサ158でパケット転送が行われる。これらの動作には、パケットのソース及びコンテンツのロギング及び/または管理システムへの通知が含まれる。ブロック362に示されるように、一度パケットに対しルックアップが行われた後、パケットはチェックされRTCPパケットであるか判定される。パケットがRTCPパケットである場合、さらにパケットに対して処理が行われる(ブロック364)。RTCPパケットの処理には、ジッタ及びパケットロスの統計値と、待ち時間を求めるための送り側タイムスタンプの抽出が含まれる。しかし、パケットがRTCPパケットで無い場合、パケットは、以下に示す図6で記述されるフローの中で処理が続けられる(ブロック366)。
【0090】
図6に戻って参照すると、フロー処理が行われた後(ブロック304)、マルチプロトコル・ラベル・スイッチング(MPLS)タグの削除が行われる(ブロック306)。本発明の好ましい実施形態によると、MPLSタグの削除は、FTRで指定された場合にネットワークプロセッサ158(図3)によって行われる。
【0091】
ブロック308に示されるように、MPLSタグの削除が行われた後、ネットワークアドレス変換(NAT)とポートアドレス変換(PAT)が行われる。NAT処理及びPAT処理で、RTPデータフローパケットはさらに調べられる。次に、セッションルータによって与えられるパラメータに応じて、RTPデータフローパケットにおいて、ソースアドレス、デスティネーションアドレス及びポートアドレスの変換が行われる。好ましくは、ただし必ずではないが、上述のアドレスを各々格納及び保持するためにネットワークプロセッサメモリに別々のテーブルを設ける。
【0092】
本発明の好ましい実施形態によると、次にマルチメディアルータにより転送の決定がなされる(ブロック312)。マルチメディアルータ118(図1)内に2以上のリンクがある状況に適合するような、転送の決定を行うオプションが提供される。フローをIP転送用に構成しない場合、セッションルータはFTRの接続情報において静的転送インタフェースを構成している。要するに、RTPデータパケットは、IPルーティングテーブルを使用して通信システム外にルーティングされてもよく、これにより、動的転送特性が提供される。または、「ルーティングせず」を指定することができ、該パケットは特定リンクに送出される。
【0093】
ブロック314に示されるように、次に、受信したRTPデータフローパケットに従いトラフィック測定が行われる。トラフィック測定手順の詳細説明は、フロー品質管理エンジン162(図3)の記述を参照して上記で行った。トラフィック測定で測定される各統計値、すなわち、待ち時間、ジッタ、脱落パケット処理の統計値は、ネットワークプロセッサメモリに格納される。
【0094】
ブロック316に示されるように、次にサービス品質(QoS)特性をRTPデータフローに適用する。QoS特性を使用することにより、高級なRTPデータパケットフローと、フロー毎のポリシング及びシェーピングを提供することで帯域幅の保証とを可能にする。
【0095】
本発明の好ましい実施形態によると、次に、RTPデータパケットの細分化が行われる(ブロック318)。細分化は、マルチメディアルータ118(図1)を経由するRTPデータパケットのサイズを小さくするために、マルチメディアルータ118(図1)により行われる。例として、RTPデータパケットがマルチメディアルータ118(図1)に入ったとき、パケットが既に最大伝送単位(MTU)サイズある場合、デスティネーションエンドポイントに送信する前に細分化する必要がある。このプロセスには、IPヘッダの複製、細分化フラグの設定、及び/またはパケット間のペイロードの分割が含まれる。
【0096】
ブロック322に示されるように、次に、マルチメディアルータ118(図1)によってレイヤ2/MACのカプセル化が行われ、マルチメディアルータ118(図1)から送信される前に、データリンク(レイヤ2)ヘッダがRTPフローパケットに再度付加される。
【0097】
本発明の上記実施形態、つまり、いずれの「好ましい」実施形態も、単に本発明の原理の明確な理解のために述べられた単に可能な実装例であることを強調する。本発明の上記実施形態に対し、本発明の趣旨及び原理をほぼ逸脱することなく多数の変形及び変更が行われ得る。このような変形や変更は全て本明細書及び本発明の範囲内に含まれ、以下の請求項によって保護される。
【図面の簡単な説明】
本発明は、以下の図面を参照するとより理解できる。図面の構成要素は必ずしも同一の縮尺ではなく、本発明の原理を明確に説明するために強調されている。また、図中、同様の参照番号は、複数の図を通じ対応する部品を示す。
【図1】図1は、本リルーティングシステムが実施される通信ネットワークを示すブロック図である。
【図2】図2は、本発明の別の実施形態による、図1に示される2台のマルチメディアルータの代わりに3台のマルチメディアルータを使用する場合を示すブロック図である。
【図3】図3は、さらに図1及び図2に示されるマルチメディアルータの1台を示すブロック図である。
【図4】図4は、図3のマルチメディアルータにより実行されるフロー中断検出を示すために、通信ネットワークの一例を提示するブロック図である。
【図5】図5は、RTPデータパケットの高速ルーティングに使用される負荷分担構成を示すブロック図である。
【図6】図6は、RTPデータフローパケットが本リルーティングシステムを通る際に受ける具体的な処理ステップに加え、図3のマルチメディアルータの可能な実装形態のアーキテクチャ、機能性、及び動作を示すフローチャートである。
【図7】図7は、更に図6のフロー処理ステップを示すフローチャートである。

Claims (3)

  1. 第1のエンドポイントと第2のエンドポイントとの間の、リアルタイム・トランスポート・プロトコルのデータフローについて待ち時間を求める方法において、
    前記第1のエンドポイントと前記第2のエンドポイントとの間に設けられたメディアルータが送信した送信側レポートを受信した前記第1のエンドポイントが送信した第1の受信側レポートを、前記メディアルータで受信することと、
    前記メディアルータが前記第1の受信側レポートを受信した第1の受信時刻を決定することと、
    前記第1の受信時刻から、前記第1のエンドポイントが最後に受信した前記送信側レポートのタイムスタンプ(LSR)及びLSRからの遅延時間(DLSR)を引いて、前記メディアルータと前記第1のエンドポイントとの間の第1の往復の待ち時間を求めることと、
    前記メディアルータが送信した前記送信側レポートを受信した前記第2のエンドポイントが送信した第2の受信側レポートを、前記メディアルータで受信することと、
    前記メディアルータが前記第2の受信側レポートを受信した第2の受信時刻を決定することと、
    前記第2の受信時刻から、前記第2のエンドポイントが最後に受信した前記送信側レポートのタイムスタンプ(LSR)及びLSRからの遅延時間(DLSR)を引いて、前記メディアルータと前記第2のエンドポイントとの間の第2の往復の待ち時間を求めることと、
    前記第1の往復の待ち時間及び前記第2の往復の待ち時間から、前記第1のエンドポイントと前記第2のエンドポイントとの間のデータフローについての待ち時間を求めること
    とを備えることを特徴とするリアルタイム・トランスポート・プロトコルのデータフローについて待ち時間を求める方法。
  2. 第1のエンドポイントと第2のエンドポイントとの間の、リアルタイム・トランスポート・プロトコルのデータフローについて待ち時間を求めるシステムにおいて、
    前記第1のエンドポイントと前記第2のエンドポイントとの間に設けられ、送信側レポートを送信し、前記送信側レポートを受信した前記第1のエンドポイントが送信した第1の受信側レポートを受信し、
    前記第1の受信側レポートを受信した第1の受信時刻を決定し、
    前記第1の受信時刻から、前記第1のエンドポイントが最後に受信した前記送信側レポートのタイムスタンプ(LSR)及びLSRからの遅延時間(DLSR)を引いて、前記第1のエンドポイントとの間の第1の往復の待ち時間を求め、
    前記送信側レポートを受信した前記第2のエンドポイントが送信した第2の受信側レポートを受信し、
    前記第2の受信側レポートを受信した第2の受信時刻を決定し、
    前記第2の受信時刻から、前記第2のエンドポイントが最後に受信した前記送信側レポートのタイムスタンプ(LSR)及びLSRからの遅延時間(DLSR)を引いて、前記第2のエンドポイントとの間の第2の往復の待ち時間を求め、
    前記第1の往復の待ち時間及び前記第2の往復の待ち時間から、前記第1のエンドポイントと前記第2のエンドポイントとの間のデータフローについての待ち時間を求めるメディアルータ
    を備えることを特徴とするリアルタイム・トランスポート・プロトコルのデータフローの待ち時間を求めるシステム。
  3. 第1のエンドポイントと第2のエンドポイントとの間の、リアルタイム・トランスポート・プロトコルのデータフローについて待ち時間を求めるシステムにおいて、
    前記第1のエンドポイントと前記第2のエンドポイントとの間に設けられたメディアルータと、
    前記メディアルータに格納され、前記メディアルータにより実行される関数を定義するソフトウェアと、
    前記ソフトウェアによって構成され、前記メディアルータが送信した送信側レポートを受信した前記第1のエンドポイントが送信した第1の受信側レポートを、前記メディアルータで受信することと、
    前記メディアルータが前記第1の受信側レポートを受信した第1の受信時刻を決定することと、
    前記第1の受信時刻から、前記第1のエンドポイントが最後に受信した前記送信側レポートのタイムスタンプ(LSR)及びLSRからの遅延時間(DLSR)を引いて、前記メディアルータと前記第1のエンドポイントとの間の第1の往復の待ち時間を求めることと、
    前記メディアルータが送信した前記送信側レポートを受信した前記第2のエンドポイントが送信した第2の受信側レポートを、前記メディアルータで受信することと、
    前記メディアルータが前記第2の受信側レポートを受信した第2の受信時刻を決定することと、
    前記第2の受信時刻から、前記第2のエンドポイントが最後に受信した前記送信側レポートのタイムスタンプ(LSR)及びLSRからの遅延時間(DLSR)を引いて、前記メディアルータと前記第2のエンドポイントとの間の第2の往復の待ち時間を求めることと、
    前記第1の往復の待ち時間及び前記第2の往復の待ち時間から、前記第1のエンドポイントと前記第2のエンドポイントとの間のデータフローについての待ち時間を求めること
    を実行するプロセッサ
    とを備えることを特徴とするリアルタイム・トランスポート・プロトコルのデータフローの待ち時間を求めるシステム。
JP2002214451A 2001-07-23 2002-07-23 リアルタイム・トランスポート・プロトコル・データフローのフロー品質統計値を求めるシステム及び方法 Expired - Lifetime JP4394336B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/911256 2001-07-23
US09/911,256 US7362707B2 (en) 2001-07-23 2001-07-23 System and method for determining flow quality statistics for real-time transport protocol data flows

Publications (2)

Publication Number Publication Date
JP2003158550A JP2003158550A (ja) 2003-05-30
JP4394336B2 true JP4394336B2 (ja) 2010-01-06

Family

ID=25429983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214451A Expired - Lifetime JP4394336B2 (ja) 2001-07-23 2002-07-23 リアルタイム・トランスポート・プロトコル・データフローのフロー品質統計値を求めるシステム及び方法

Country Status (5)

Country Link
US (2) US7362707B2 (ja)
EP (1) EP1280297B1 (ja)
JP (1) JP4394336B2 (ja)
AT (1) ATE331362T1 (ja)
DE (1) DE60212511T2 (ja)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040191260A1 (en) 2003-03-26 2004-09-30 Technion Research & Development Foundation Ltd. Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof
JP2004503213A (ja) * 2000-03-27 2004-02-05 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 1本鎖クラスi主要組織適合性複合体、それをコードする構築物およびそれを生成する方法
US6990616B1 (en) * 2000-04-24 2006-01-24 Attune Networks Ltd. Analysis of network performance
US7269157B2 (en) 2001-04-10 2007-09-11 Internap Network Services Corporation System and method to assure network service levels with intelligent routing
US8022190B2 (en) * 2001-06-19 2011-09-20 Technion Research & Development Foundation Ltd. Immuno-molecules containing viral proteins, compositions thereof and methods of using
US7362707B2 (en) 2001-07-23 2008-04-22 Acme Packet, Inc. System and method for determining flow quality statistics for real-time transport protocol data flows
JP3617967B2 (ja) * 2001-09-28 2005-02-09 松下電器産業株式会社 ヘッダ圧縮パケット受信装置及び方法
DE10151442A1 (de) * 2001-10-18 2003-05-28 Siemens Ag Quality of Service bezogene Verkehrsdatensammlung und Verkehrssteuerung bei Virtual Trunking
CA2464516A1 (en) 2001-10-25 2003-05-01 Worldcom, Inc. Communication session quality indicator
US7561517B2 (en) * 2001-11-02 2009-07-14 Internap Network Services Corporation Passive route control of data networks
US7133365B2 (en) * 2001-11-02 2006-11-07 Internap Network Services Corporation System and method to provide routing control of information over networks
US7222190B2 (en) 2001-11-02 2007-05-22 Internap Network Services Corporation System and method to provide routing control of information over data networks
US7668966B2 (en) * 2001-11-02 2010-02-23 Internap Network Services Corporation Data network controller
US6983334B2 (en) * 2001-11-07 2006-01-03 International Business Machines Corporation Method and system of tracking missing packets in a multicast TFTP environment
US7317685B1 (en) * 2001-11-26 2008-01-08 Polycom, Inc. System and method for dynamic bandwidth allocation for videoconferencing in lossy packet switched networks
JP2003169090A (ja) * 2001-11-30 2003-06-13 Fujitsu Ltd 伝送システム
US7376731B2 (en) * 2002-01-29 2008-05-20 Acme Packet, Inc. System and method for providing statistics gathering within a packet network
US7558196B2 (en) * 2002-04-08 2009-07-07 Alcatel-Lucent Usa Inc. Method and apparatus for system resource management in a communications system
US20050169182A1 (en) * 2002-04-29 2005-08-04 Joachim Klink Method for monitoring the transmission quality of connections in mpls networks
GB2391419A (en) 2002-06-07 2004-02-04 Hewlett Packard Co Restricting the propagation of a virus within a network
US6956126B2 (en) * 2002-07-02 2005-10-18 Wyeth Preparation of 6-hydroxyequilenins
JP4233297B2 (ja) * 2002-10-07 2009-03-04 株式会社エヌ・ティ・ティ・ドコモ 通信システム、移動端末、転送装置及び通信方法
US7313141B2 (en) * 2002-10-09 2007-12-25 Alcatel Lucent Packet sequence number network monitoring system
US7584298B2 (en) * 2002-12-13 2009-09-01 Internap Network Services Corporation Topology aware route control
US20040170163A1 (en) * 2003-02-28 2004-09-02 Zarlink Semiconductor V.N. Inc. Data structure providing storage and bandwidth savings for hardware RTCP statistics collection applications
US7349400B2 (en) 2003-04-29 2008-03-25 Narus, Inc. Method and system for transport protocol reconstruction and timer synchronization for non-intrusive capturing and analysis of packets on a high-speed distributed network
US7840664B2 (en) * 2003-05-21 2010-11-23 Ixia Automated characterization of network traffic
DE10327545B4 (de) 2003-06-18 2005-12-01 Infineon Technologies Ag Verfahren und Vorrichtung zur Verarbeitung von Echtzeitdaten
US20040264372A1 (en) * 2003-06-27 2004-12-30 Nokia Corporation Quality of service (QoS) routing for Bluetooth personal area network (PAN) with inter-layer optimization
US7483532B2 (en) * 2003-07-03 2009-01-27 Microsoft Corporation RTP payload format
US9015338B2 (en) * 2003-07-23 2015-04-21 Qualcomm Incorporated Method and apparatus for suppressing silence in media communications
FR2858893B1 (fr) * 2003-08-11 2006-04-28 France Telecom Procede et programme informatique pour estimer la qualite d'un echange de donnees via un reseau distant
JP4229810B2 (ja) * 2003-11-10 2009-02-25 富士通株式会社 通信試験装置
WO2005047862A2 (en) * 2003-11-12 2005-05-26 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for identifying files using n-gram distribution of data
ATE502458T1 (de) * 2003-11-27 2011-04-15 Telecom Italia Spa Verfahren und vorrichtung zur messung der umlaufverzögerungszeit in einem paketvermittelndem telekommunikationsnetz
US7756008B2 (en) * 2003-12-19 2010-07-13 At&T Intellectual Property Ii, L.P. Routing protocols with predicted outrage notification
CN100349449C (zh) * 2004-02-27 2007-11-14 北京邮电大学 基于实时传输协议的端到端网络测量方法
US7761577B2 (en) * 2004-03-16 2010-07-20 Dialogic Corporation Method and apparatus for detecting stuck calls in a communication session
US7821940B2 (en) * 2004-04-05 2010-10-26 Alcatel-Lucent Usa Inc. Transmission of maintenance information of an active packet connection through employment of packets communicated over the active packet connection
GB2413727A (en) * 2004-04-29 2005-11-02 Siemens Plc Measuring latency and jitter for individual links in a network.
CN1947384A (zh) 2004-05-05 2007-04-11 艾利森电话股份有限公司 高速下行链路分组接入流量控制,控制帧往返时间测量
KR100608821B1 (ko) * 2004-07-22 2006-08-08 엘지전자 주식회사 휴대단말기의 왕복지연시간 측정장치 및 방법
US7519086B2 (en) * 2004-08-13 2009-04-14 At&T Intellectual Property I. L.P. Method and system to measure data packet jitter
GB2417391B (en) 2004-08-18 2007-04-18 Wecomm Ltd Transmitting data over a network
US9621473B2 (en) 2004-08-18 2017-04-11 Open Text Sa Ulc Method and system for sending data
PL1813088T3 (pl) * 2004-09-30 2011-03-31 France Telecom Sposób oraz system trasowania w sieciach komunikacyjnych między pierwszym węzłem a drugim węzłem
CN101048984B (zh) * 2004-10-21 2013-08-21 日本电气株式会社 通信质量测量装置和通信质量测量方法
CN100361555C (zh) * 2004-12-21 2008-01-09 华为技术有限公司 一种实现往返时间测量的方法
US8194640B2 (en) 2004-12-31 2012-06-05 Genband Us Llc Voice over IP (VoIP) network infrastructure components and method
US7499395B2 (en) * 2005-03-18 2009-03-03 Cisco Technology, Inc. BFD rate-limiting and automatic session activation
US7561559B2 (en) * 2005-03-30 2009-07-14 Ixia Hardware time stamping and processor synchronization
US20070291734A1 (en) * 2005-05-27 2007-12-20 Medhavi Bhatia Methods and Apparatus for Multistage Routing of Packets Using Call Templates
US7684566B2 (en) 2005-05-27 2010-03-23 Microsoft Corporation Encryption scheme for streamed multimedia content protected by rights management system
CN1870514A (zh) * 2005-05-28 2006-11-29 华为技术有限公司 会话服务质量分析的实现方法
US7729240B1 (en) * 2005-06-30 2010-06-01 Opnet Technologies, Inc. Method and system for identifying duplicate packets in flow-based network monitoring system
US7769880B2 (en) * 2005-07-07 2010-08-03 Microsoft Corporation Carrying protected content using a control protocol for streaming and a transport protocol
US7561696B2 (en) * 2005-07-12 2009-07-14 Microsoft Corporation Delivering policy updates for protected content
WO2007010763A1 (ja) * 2005-07-15 2007-01-25 Nec Corporation 通信品質計測装置、通信品質計測方法、及びそのプログラム
US7634816B2 (en) * 2005-08-11 2009-12-15 Microsoft Corporation Revocation information management
US8321690B2 (en) 2005-08-11 2012-11-27 Microsoft Corporation Protecting digital media of various content types
DE102005039192A1 (de) * 2005-08-18 2007-03-01 Siemens Ag Verfahren zur Störungsanalyse eines Datenstroms, insbesondere eines Echtzeit-Datenstroms, in einem Datennetz, Kommunikationssystem und Überwachungsrechner
GB2430577B (en) * 2005-09-23 2010-09-22 Agilent Technologies Inc Real time monitoring of TCP flows
US7720096B2 (en) * 2005-10-13 2010-05-18 Microsoft Corporation RTP payload format for VC-1
US20070130601A1 (en) * 2005-12-05 2007-06-07 Weiping Li Internet protocol (IP) television
US20070140306A1 (en) * 2005-12-16 2007-06-21 International Business Machines Corporation Identifying existence and rate of jitter during real-time audio and video streaming
US9060047B2 (en) 2005-12-21 2015-06-16 Genband Us Llc Media stream management
CN100568828C (zh) * 2005-12-28 2009-12-09 中兴通讯股份有限公司 一种在rtp中实时检测网络传输时延的方法
JP4640824B2 (ja) * 2006-01-30 2011-03-02 富士通株式会社 通信環境の測定方法、受信装置、及びコンピュータプログラム
US7860990B2 (en) 2006-01-31 2010-12-28 Genband Us Llc Session data records and related alarming within a session over internet protocol (SOIP) network
US7861003B2 (en) * 2006-01-31 2010-12-28 Genband Us Llc Adaptive feedback for session over internet protocol
US7865612B2 (en) 2006-01-31 2011-01-04 Genband Us Llc Method and apparatus for partitioning resources within a session-over-internet-protocol (SoIP) session controller
US7903585B2 (en) * 2006-02-15 2011-03-08 Cisco Technology, Inc. Topology discovery of a private network
US7596150B2 (en) * 2006-02-27 2009-09-29 Cisco Technology, Inc. System and method for consolidating media signaling to facilitate internet protocol (IP) telephony
US8204043B2 (en) * 2006-02-28 2012-06-19 Genband Us Llc Quality of service prioritization of internet protocol packets using session-aware components
US8259706B2 (en) * 2006-02-28 2012-09-04 Genband Us Llc Multistage prioritization of packets within a session over internet protocol (SOIP) network
US8509218B2 (en) 2006-02-28 2013-08-13 Genband Us Llc Prioritization within a session over internet protocol (SOIP) network
JP4946302B2 (ja) * 2006-04-03 2012-06-06 セイコーエプソン株式会社 ネットワークに接続されたデバイスの監視装置および監視方法
ES2549128T3 (es) * 2006-05-19 2015-10-23 Technion Research And Development Foundation Ltd. Proteínas de fusión, usos de las mismas y procesos para producir las mismas
US7466694B2 (en) 2006-06-10 2008-12-16 Cisco Technology, Inc. Routing protocol with packet network attributes for improved route selection
DE602006014667D1 (de) * 2006-06-23 2010-07-15 Nippon Office Automation Co Lt Protokoll- und Sitzunganalysator
US8045457B1 (en) * 2006-06-29 2011-10-25 Symantec Corporation Dropping packets to prevent unauthorized data transfer through multimedia tunnels
US20080049635A1 (en) * 2006-08-25 2008-02-28 Sbc Knowledge Ventures, Lp Method and system for determining one-way packet travel time using RTCP
US20080080702A1 (en) * 2006-10-03 2008-04-03 Santera Systems, Inc. Method, System, and Computer-Readable Medium for Calculating an Echo Path Delay
US8144631B2 (en) 2006-12-13 2012-03-27 Cisco Technology, Inc. Interconnecting IP video endpoints with reduced H.320 call setup time
US8923141B2 (en) * 2007-03-16 2014-12-30 Cisco Technology, Inc. Providing clock synchronization in a network
US8289839B2 (en) * 2007-07-05 2012-10-16 Cisco Technology, Inc. Scaling BFD sessions for neighbors using physical / sub-interface relationships
US8665732B2 (en) * 2007-07-25 2014-03-04 VoIPFuture, GmbH VoIP diagnosis
US8526315B2 (en) * 2007-08-23 2013-09-03 Cisco Technology, Inc. Flow state attributes for producing media flow statistics at a network node
US8190750B2 (en) * 2007-08-24 2012-05-29 Alcatel Lucent Content rate selection for media servers with proxy-feedback-controlled frame transmission
US7912062B2 (en) * 2007-09-28 2011-03-22 Genband Us Llc Methods and apparatus for managing addresses related to virtual partitions of a session exchange device
EP2088691B1 (en) 2008-02-07 2019-10-02 Gilat Satellite Networks, Ltd. Real-time sessions quality-of-service over reservation-based access
US11477721B2 (en) * 2008-02-22 2022-10-18 Qualcomm Incorporated Methods and apparatus for controlling transmission of a base station
JP5225725B2 (ja) * 2008-03-25 2013-07-03 Kddi株式会社 監視装置、監視システムおよび監視プログラム
US7944844B2 (en) * 2008-07-10 2011-05-17 At&T Intellectual Property I, L.P. Methods and apparatus to monitor network layer functionalities
US20100097931A1 (en) * 2008-10-21 2010-04-22 Shakeel Mustafa Management of packet flow in a network
US8385215B1 (en) 2008-11-13 2013-02-26 Cisco Technoogy, Inc. System and method for providing testing in an Ethernet network environment
US20100128770A1 (en) * 2008-11-21 2010-05-27 Adrian Stanciu Measuring Delay in a Network Segment and/or through a Network Communications Device
KR100967890B1 (ko) * 2008-12-05 2010-07-06 양선주 인터넷 전화의 품질 및 품질 장애 분석방법
US20100142377A1 (en) * 2008-12-10 2010-06-10 Razvan Caciula SIP Information Extraction
WO2010092272A1 (fr) * 2009-02-12 2010-08-19 France Telecom Procede de collecte de donnees temps reel
JP5123230B2 (ja) * 2009-03-09 2013-01-23 Kddi株式会社 ネットワークの障害検出方法
US9210050B2 (en) * 2009-07-09 2015-12-08 Centurylink Intellectual Property Llc System and method for a testing vector and associated performance map
US9025497B2 (en) * 2009-07-10 2015-05-05 Qualcomm Incorporated Media forwarding for a group communication session in a wireless communications system
US9088630B2 (en) * 2009-07-13 2015-07-21 Qualcomm Incorporated Selectively mixing media during a group communication session within a wireless communications system
US9237381B2 (en) 2009-08-06 2016-01-12 Time Warner Cable Enterprises Llc Methods and apparatus for local channel insertion in an all-digital content distribution network
US7944840B2 (en) * 2009-08-17 2011-05-17 Edgewater Networks, Inc. Method for facilitating latency measurements using intermediate network devices between endpoint devices connected by a computer network
US8054760B2 (en) * 2009-08-19 2011-11-08 Alcatel Lucent Line-rate, real-time-traffic detector
US9635421B2 (en) 2009-11-11 2017-04-25 Time Warner Cable Enterprises Llc Methods and apparatus for audience data collection and analysis in a content delivery network
US20110170537A1 (en) * 2010-01-08 2011-07-14 Marius Ungureanu One Way and Round Trip Delays Using Telephony In-Band Tones
US8699484B2 (en) 2010-05-24 2014-04-15 At&T Intellectual Property I, L.P. Methods and apparatus to route packets in a network
US9491085B2 (en) 2010-05-24 2016-11-08 At&T Intellectual Property I, L.P. Methods and apparatus to route control packets based on address partitioning
US9215486B2 (en) * 2010-08-13 2015-12-15 Simon Fraser University System and method for multiplexing of variable bit-rate video streams in mobile video systems
US8930979B2 (en) * 2010-11-11 2015-01-06 Time Warner Cable Enterprises Llc Apparatus and methods for identifying and characterizing latency in a content delivery network
US10148623B2 (en) 2010-11-12 2018-12-04 Time Warner Cable Enterprises Llc Apparatus and methods ensuring data privacy in a content distribution network
CN102137282B (zh) 2010-12-15 2014-02-19 华为技术有限公司 一种检测故障链路的方法、装置、节点和系统
US8549360B2 (en) * 2011-01-07 2013-10-01 International Business Machines Corporation Early collection of diagnostic information
US8446920B2 (en) 2011-06-14 2013-05-21 Mitel Networks Corporation Providing resilient digital telephony services for wireless device
US9386127B2 (en) 2011-09-28 2016-07-05 Open Text S.A. System and method for data transfer, including protocols for use in data transfer
US9197691B2 (en) 2011-10-04 2015-11-24 Google Technology Holdings LLC System and method for latency measurement at each network element participating as an RTP relay in a telecommunication network
US8838787B2 (en) * 2011-11-30 2014-09-16 Harman International Industries, Incorporated System for optimizing latency in an AVB network
US8711708B2 (en) * 2012-07-24 2014-04-29 Accedian Networks Inc. Automatic setup of reflector instances
US10003536B2 (en) 2013-07-25 2018-06-19 Grigore Raileanu System and method for managing bandwidth usage rates in a packet-switched network
US10250474B2 (en) * 2014-03-31 2019-04-02 Cisco Technology, Inc. Calculating latency in computer networks
JP6021120B2 (ja) * 2014-09-29 2016-11-09 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation データをストリーム処理する方法、並びに、そのコンピュータ・システム及びコンピュータ・システム用プログラム
US10924408B2 (en) 2014-11-07 2021-02-16 Noction, Inc. System and method for optimizing traffic in packet-switched networks with internet exchanges
US9769070B2 (en) 2015-01-28 2017-09-19 Maxim Basunov System and method of providing a platform for optimizing traffic through a computer network with distributed routing domains interconnected through data center interconnect links
US10142353B2 (en) 2015-06-05 2018-11-27 Cisco Technology, Inc. System for monitoring and managing datacenters
US10536357B2 (en) * 2015-06-05 2020-01-14 Cisco Technology, Inc. Late data detection in data center
US9755789B2 (en) 2015-11-20 2017-09-05 Ringcentral, Inc. Systems and methods for dynamic packet duplication in a network
CN106453829B (zh) * 2016-09-06 2019-08-06 Oppo广东移动通信有限公司 一种跌落高度检测方法及装置
CN106412250B (zh) * 2016-09-06 2019-05-21 Oppo广东移动通信有限公司 一种跌落统计方法及装置
CN106412248B (zh) * 2016-09-06 2019-05-24 Oppo广东移动通信有限公司 一种终端跌落处理方法、装置及移动终端
KR102427834B1 (ko) * 2017-05-22 2022-08-02 삼성전자주식회사 통신 시스템에서 네트워크 품질 관리를 위한 방법 및 장치
CN108495003A (zh) * 2018-03-30 2018-09-04 包头市博辰信息科技有限公司 一种视频终点计时系统
US10805361B2 (en) 2018-12-21 2020-10-13 Sansay, Inc. Communication session preservation in geographically redundant cloud-based systems
WO2021190733A1 (en) * 2020-03-24 2021-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Devices and methods for provision of resource representations
US11893015B2 (en) 2021-11-18 2024-02-06 International Business Machines Corporation Optimizing query performance in virtual database

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE432910B (en) 1979-10-17 1984-04-30 Roland Kaufeldt Sett och anordning for automatisk atdragning av ekrar i ekerhjul
US5222061A (en) * 1991-10-31 1993-06-22 At&T Bell Laboratories Data services retransmission procedure
FI96733C (fi) * 1993-06-18 1996-08-12 Nokia Telecommunications Oy Tilaajaverkkojärjestely tilaajien liittämiseksi yleiseen puhelinverkkoon
US5450394A (en) * 1994-03-10 1995-09-12 Northern Telecom Limited Delay monitoring of telecommunication networks
JP3438105B2 (ja) * 1994-03-18 2003-08-18 富士通株式会社 迂回経路探索方法
US5563875A (en) 1995-07-10 1996-10-08 International Business Machines Corporation Wrap-around route testing in packet communications networks
US5812528A (en) 1995-11-17 1998-09-22 Telecommunications Techniques Corporation Measuring round trip time in ATM network virtual connections
US6032266A (en) * 1996-04-05 2000-02-29 Hitachi, Ltd. Network system having function of changing route upon failure
DE29609800U1 (de) 1996-06-03 1997-10-09 Gruber Eva M Deckenkonstruktion und Deckenelement
JP2947181B2 (ja) 1996-09-10 1999-09-13 日本電気株式会社 ループバックセル制御システム
WO1998020647A1 (en) 1996-11-08 1998-05-14 Integrated Telecom Technology Method and apparatus to translate data streams among multiple parties
US6335927B1 (en) * 1996-11-18 2002-01-01 Mci Communications Corporation System and method for providing requested quality of service in a hybrid network
US6754181B1 (en) * 1996-11-18 2004-06-22 Mci Communications Corporation System and method for a directory service supporting a hybrid communication system architecture
CA2273997A1 (en) * 1996-12-04 1998-06-11 Alcatel Usa Sourcing, L.P. Distributed telecommunications switching system and method
JP3482091B2 (ja) * 1997-01-09 2003-12-22 株式会社東芝 通信装置
US6085245A (en) * 1997-07-24 2000-07-04 Paradyne Corporation System and method for the implicit support of IP subnetworks
US6084956A (en) * 1997-09-19 2000-07-04 Nortel Networks Corporation SS7 mediation for data network call setup and services interworking
US5878032A (en) * 1997-11-07 1999-03-02 Northern Telecom Limited Delay monitoring of telecommunication networks
US6643496B1 (en) * 1998-03-31 2003-11-04 Canon Kabushiki Kaisha System, method, and apparatus for adjusting packet transmission rates based on dynamic evaluation of network characteristics
EP1672835A3 (en) 1998-04-01 2006-06-28 Agilent Technologies Inc., A Delaware Corporation Discovering network configuration
US6301265B1 (en) * 1998-08-14 2001-10-09 Motorola, Inc. Adaptive rate system and method for network communications
US6584093B1 (en) * 1998-08-25 2003-06-24 Cisco Technology, Inc. Method and apparatus for automatic inter-domain routing of calls
US6404733B1 (en) * 1998-09-08 2002-06-11 Mci Worldcom, Inc. Method of exercising a distributed restoration process in an operational telecommunications network
US6266540B1 (en) * 1998-11-30 2001-07-24 Qualcomm Inc Control interface protocol for telephone sets for a satellite telephone system
US6434147B1 (en) * 1999-01-08 2002-08-13 Nortel Netwoks Limited Method and system for sequential ordering of missing sequence numbers in SREJ frames in a telecommunication system
US6856627B2 (en) * 1999-01-15 2005-02-15 Cisco Technology, Inc. Method for routing information over a network
US6678250B1 (en) * 1999-02-19 2004-01-13 3Com Corporation Method and system for monitoring and management of the performance of real-time networks
US6650640B1 (en) * 1999-03-01 2003-11-18 Sun Microsystems, Inc. Method and apparatus for managing a network flow in a high performance network interface
JP4015773B2 (ja) * 1999-03-10 2007-11-28 松下電器産業株式会社 送受信装置
US6775269B1 (en) * 1999-03-30 2004-08-10 Telecom Technologies, Inc. Method and system for routing telephone calls between a public switched telephone network and an internet protocol network
US6765931B1 (en) * 1999-04-13 2004-07-20 Broadcom Corporation Gateway with voice
US6775280B1 (en) * 1999-04-29 2004-08-10 Cisco Technology, Inc. Methods and apparatus for routing packets using policy and network efficiency information
US6501763B1 (en) * 1999-05-06 2002-12-31 At&T Corp. Network-based service for originator-initiated automatic repair of IP multicast sessions
US6507582B1 (en) * 1999-05-27 2003-01-14 Qualcomm Incorporated Radio link protocol enhancements for dynamic capacity wireless data channels
US6263371B1 (en) * 1999-06-10 2001-07-17 Cacheflow, Inc. Method and apparatus for seaming of streaming content
KR100539879B1 (ko) * 1999-06-29 2005-12-28 삼성전자주식회사 이동 통신시스템에서 라디오링크프로토콜에 따른 데이터 송수신 장치 및 방법
US6567929B1 (en) * 1999-07-13 2003-05-20 At&T Corp. Network-based service for recipient-initiated automatic repair of IP multicast sessions
KR100424654B1 (ko) * 1999-08-02 2004-03-24 삼성전자주식회사 이동 통신시스템에서 라디오링크프로토콜에 따른 데이터 재전송 장치 및 방법
US6535481B1 (en) * 1999-08-20 2003-03-18 Nortel Networks Limited Network data routing protection cycles for automatic protection switching
JP4275265B2 (ja) 1999-09-16 2009-06-10 株式会社日立製作所 呼制御サーバおよび音声データ通信方法
AU7384600A (en) 1999-09-24 2001-04-30 Rajesh Chandra Bansal Ip telephony system and method of operation thereof using ss7 network
US7346022B1 (en) * 1999-09-28 2008-03-18 At&T Corporation H.323 user, service and service provider mobility framework for the multimedia intelligent networking
US6687247B1 (en) * 1999-10-27 2004-02-03 Cisco Technology, Inc. Architecture for high speed class of service enabled linecard
GB2355901B (en) 1999-11-01 2003-10-01 Mitel Corp Marker packet system and method for measuring audio network delays
CA2310872A1 (en) * 1999-12-22 2001-06-22 Nortel Networks Corporation Automatic protection switching using link-level redundancy supporting multi-protocol label switching
US6608841B1 (en) * 1999-12-30 2003-08-19 Nokia Networks Oy System and method for achieving robust IP/UDP/RTP header compression in the presence of unreliable networks
US6807150B1 (en) * 2000-01-27 2004-10-19 Cisco Technology, Inc. System and method for controlling a telephony communication session
US6934279B1 (en) * 2000-03-13 2005-08-23 Nortel Networks Limited Controlling voice communications over a data network
US6785273B1 (en) * 2000-03-20 2004-08-31 International Business Machines Corporation Traffic engineering for an application employing a connectionless protocol on a network
US6934752B1 (en) * 2000-03-23 2005-08-23 Sharewave, Inc. Quality of service extensions for multimedia applications in wireless computer networks
US7301952B2 (en) * 2000-04-06 2007-11-27 The Distribution Systems Research Institute Terminal-to-terminal communication connection control method using IP transfer network
US6741569B1 (en) * 2000-04-18 2004-05-25 Telchemy, Incorporated Quality of service monitor for multimedia communications system
US20020004843A1 (en) * 2000-07-05 2002-01-10 Loa Andersson System, device, and method for bypassing network changes in a routed communication network
US6611771B1 (en) * 2000-10-04 2003-08-26 Eaton Corporation Method and apparatus to detect a stator turn fault in an AC motor
US7028092B2 (en) * 2000-12-11 2006-04-11 Acme Packet, Inc. System and method for assisting in controlling real-time transport protocol flow through multiple networks via media flow routing
US7002973B2 (en) * 2000-12-11 2006-02-21 Acme Packet Inc. System and method for assisting in controlling real-time transport protocol flow through multiple networks via use of a cluster of session routers
US7072303B2 (en) * 2000-12-11 2006-07-04 Acme Packet, Inc. System and method for assisting in controlling real-time transport protocol flow through multiple networks
JP2002214451A (ja) 2001-01-22 2002-07-31 Fujitsu Denso Ltd 光ケーブル余長処理装置および光通信機器用収納架
US7158486B2 (en) * 2001-03-12 2007-01-02 Opcoast Llc Method and system for fast computation of routes under multiple network states with communication continuation
US7599351B2 (en) * 2001-03-20 2009-10-06 Verizon Business Global Llc Recursive query for communications network data
WO2002078365A1 (en) * 2001-03-21 2002-10-03 Pelago Networks, Inc. Programmable network service node
JP3762749B2 (ja) * 2001-04-19 2006-04-05 富士通株式会社 リストレーション・プロテクション方法及び装置
JP2002318301A (ja) 2001-04-23 2002-10-31 Okura Ind Co Ltd マイクロレンズアレイおよびその製造方法
US20020159439A1 (en) * 2001-04-25 2002-10-31 Marsh Anita B. Dynamically downloading telecommunication call services
US20030014644A1 (en) * 2001-05-02 2003-01-16 Burns James E. Method and system for security policy management
US20030033418A1 (en) * 2001-07-19 2003-02-13 Young Bruce Fitzgerald Method of implementing and configuring an MGCP application layer gateway
US7031311B2 (en) * 2001-07-23 2006-04-18 Acme Packet, Inc. System and method for providing rapid rerouting of real-time multi-media flows
US7362707B2 (en) 2001-07-23 2008-04-22 Acme Packet, Inc. System and method for determining flow quality statistics for real-time transport protocol data flows
US7142532B2 (en) 2001-07-23 2006-11-28 Acme Packet, Inc. System and method for improving communication between a switched network and a packet network

Also Published As

Publication number Publication date
DE60212511T2 (de) 2007-06-14
US7362707B2 (en) 2008-04-22
ATE331362T1 (de) 2006-07-15
EP1280297A3 (en) 2004-06-23
DE60212511D1 (de) 2006-08-03
EP1280297B1 (en) 2006-06-21
JP2003158550A (ja) 2003-05-30
US7764679B2 (en) 2010-07-27
EP1280297A2 (en) 2003-01-29
US20030016627A1 (en) 2003-01-23
US20070104105A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4394336B2 (ja) リアルタイム・トランスポート・プロトコル・データフローのフロー品質統計値を求めるシステム及び方法
JP4031959B2 (ja) リアルタイム・マルチメディア・データフローの高速リルーティングを提供するシステム及び方法
JP4102690B2 (ja) インターネットプロトコルパケットの目的地を決定するシステム及び方法
US10554720B1 (en) Selecting routes through a network
EP1341345B1 (en) System and method for collecting statistics within a packet network
US7519006B1 (en) Method and apparatus for measuring one-way delay at arbitrary points in network
US11388292B2 (en) Monitoring voice-over-IP performance over the internet
US9692679B2 (en) Event triggered traceroute for optimized routing in a computer network
US7496044B1 (en) Method and apparatus for analyzing a media path for an internet protocol (IP) media session
US7188189B2 (en) System and method to improve the resiliency and performance of enterprise networks by utilizing in-built network redundancy
US8661116B2 (en) Network testing
US8284675B2 (en) Method and system for automated call troubleshooting and resolution
US20130329595A1 (en) Voip quality measurement enhancements using the internet control message protocol
EP2033420A2 (en) Call quality monitoring
US20080310428A1 (en) Method for Identifying Real-Time Traffic Hop by Hop in an Internet Network
Cisco Commands: debug serial interface through debug tacacs events
Cisco MGCP CAS PBX and PRI Backhaul on Cisco 7200 Routers
CN110933002B (zh) 一种mpls带内检测oam的交换芯片实现方法及装置
Sidiropoulou VoIP Operators: From a Carrier Point of View

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Ref document number: 4394336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term