JP4385423B2 - 排気温度測定装置 - Google Patents

排気温度測定装置 Download PDF

Info

Publication number
JP4385423B2
JP4385423B2 JP02742099A JP2742099A JP4385423B2 JP 4385423 B2 JP4385423 B2 JP 4385423B2 JP 02742099 A JP02742099 A JP 02742099A JP 2742099 A JP2742099 A JP 2742099A JP 4385423 B2 JP4385423 B2 JP 4385423B2
Authority
JP
Japan
Prior art keywords
exhaust temperature
exhaust
energization
element impedance
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02742099A
Other languages
English (en)
Other versions
JP2000227364A (ja
Inventor
尚秀 泉谷
圭一郎 青木
真介 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP02742099A priority Critical patent/JP4385423B2/ja
Publication of JP2000227364A publication Critical patent/JP2000227364A/ja
Application granted granted Critical
Publication of JP4385423B2 publication Critical patent/JP4385423B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガスの温度を測定する装置に関し、より詳細には、限界電流式空燃比センサを利用した排気温度測定装置に関する。
【0002】
【従来の技術】
内燃機関の排気ガスを測定するために専用の温度センサを設けることは、コストの上昇を招く。一方、機関回転速度、機関負荷等を監視することにより、排気温度を推定することも、広く行われているが、この場合には精度の面で大きな問題がある。
【0003】
そこで、特開昭58−17351号公報は、空燃比制御用に設けられたO2 センサをO2 濃度検出用と排気系温度検出用とに兼用する技術について提案している。すなわち、この技術は、温度に応じたO2 センサ内部抵抗変化特性を利用してその抵抗変化からO2 センサ近傍の温度を検出するものであり、酸素濃度に依存するO2 センサ起電力を利用しない時間範囲で、かつ、被測定気体の酸素濃度が設定値に対して過剰側にあるとき(内部電池構造によるO2 センサ出力が低レベルになる)に、抵抗を検出して排気温度を測定する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した特開昭58−17351号公報の技術では、測定条件が限定されるため、測定機会が少ないという問題がある。また、リッチ領域では測定をすることができないため、触媒の過昇温(Over Temperature)が問題となるような高回転高負荷状態(通常、触媒過昇温防止のためリッチに設定される)において排気温度を測定することができないという問題がある。さらに、O2 センサの活性化のためにヒータがセンサに付随して設けられることがあるが、上記従来技術は、ヒータ制御に関して考慮していないため、ヒータ通電時において正確な排気温度を測定することができないという問題を有している。
【0005】
一方、近年においては、O2 センサに代わって空燃比センサが利用されるようになってきている。すなわち、車載用内燃機関において燃料消費率の低減と有害ガス排出量の低減とを両立させるためには、機関が燃焼させる混合気の空燃比(A/F)を広範囲に制御する必要がある。このような空燃比制御を可能とするために、ジルコニア固体電解質等の酸素イオン導電素子(センサ素子)に大気側電極、排気側電極及び排気側拡散抵抗体を設けてセンサ本体とし、そのセンサ本体への電圧印加に伴い排気中の酸素濃度又は未燃ガス濃度に応じた限界電流が生ずるのを利用した空燃比センサ(全域空燃比センサ、リニア空燃比センサ等と呼ばれる)が実用化され、かかる空燃比センサの出力に基づくフィードバック制御が行われている。
【0006】
全域空燃比センサの出力に基づく空燃比フィードバック制御を行う上で、酸素イオン導電素子を活性状態に維持することが不可欠である。そのためにヒータを用いて素子を加熱し素子温度を一定の値に保つ制御が行われている。その際、素子温度を検出する必要があるが、素子抵抗が素子温度と相関関係を有することから、素子抵抗を検出して素子温度を推定することにより温度センサの必要性を排除することも提案されている。
【0007】
本発明は、以上のような状況を踏まえてなされたものであり、その目的は、コストの観点から温度センサを排除すべく空燃比センサを利用した排気温度測定装置であって、測定条件を限定されることなく、しかも精度良く排気温度を測定することができるものを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、電圧の印加に伴い排気中の酸素濃度又は未燃ガス濃度に応じた限界電流を発生させるセンサ本体、及び、前記センサ本体中の酸素イオン導電素子を加熱し活性化せしめるためのヒータ、を有する空燃比センサと、前記酸素イオン導電素子の素子インピーダンスを検出する素子インピーダンス検出手段と、前記ヒータへの通電の実行中に一時的に通電をカットし、前記素子インピーダンス検出手段によって検出される素子インピーダンスの該カットに伴う変化の状態に基づいて排気温度を推定する通電時排気温度推定手段と、を具備する排気温度測定装置が提供される。
【0009】
また、本発明によれば、好ましくは、前記ヒータへの通電の非実行中に、前記素子インピーダンス検出手段によって検出される素子インピーダンスに基づいて排気温度を推定する非通電時排気温度推定手段、を更に具備する。
【0010】
また、本発明によれば、好ましくは、前記通電時排気温度推定手段は、通電をカットしたときの素子インピーダンスの上昇率に基づいて排気温度を推定する。
【0011】
また、本発明によれば、好ましくは、前記通電時排気温度推定手段は、通電を一定時間カットしたときの素子インピーダンスの増大量に基づいて排気温度を推定する。
【0012】
また、本発明によれば、好ましくは、前記通電時排気温度推定手段は、通電をカットした後、再び通電を開始したときの素子インピーダンスの下降率に基づいて排気温度を推定する。
【0013】
また、本発明によれば、好ましくは、前記通電時排気温度推定手段は、通電を一定時間カットした後、再び通電を開始する時点から、素子インピーダンスが通電カット前の値に復帰する時点までの所要時間に基づいて排気温度を推定する。
【0014】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明する。
【0015】
まず、空燃比センサの原理について説明する。図1は、空燃比と排気中の酸素(O2 )濃度との関係及び空燃比と排気中の一酸化炭素(CO)濃度との関係を示す特性図である。この図に示されるように、理論空燃比よりもリーン側の空燃比領域にあってはO2 濃度が空燃比に対してほぼリニアに変化する一方、理論空燃比よりもリッチ側の空燃比領域にあっては未燃ガスであるCO濃度が空燃比に対してほぼリニアに変化する。空燃比センサは、後述するように、この関係を利用するものである。
【0016】
図2は、空燃比センサの一構成例を示す断面図である。空燃比センサ10は、内燃機関の排気管90の内部に向けて突設された状態で使用される。空燃比センサ10は、大別して、カバー11、センサ本体13及びヒータ18から構成される。カバー11は断面カップ状の形状を有し、その周壁にはカバー内外を連通する多数の小孔12が形成されている。
【0017】
センサ本体13において、試験管状に形成された酸素イオン導電性固体電解質層14の外表面には排気側電極層16が固着される一方、その内表面には大気側電極層17が固着されている。また、排気側電極層16の外側には、プラズマ溶射法等により拡散抵抗層15が形成されている。固体電解質層14は、例えば、本実施形態においては、ZrO2 (ジルコニア素子)にCaO等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなる(以下、固体電解質層14をセンサ素子とも称する)。拡散抵抗層15は、アルミナ等の耐熱性無機物質からなる。排気側電極層16及び大気側電極層17は、共に、白金等の触媒活性の高い貴金属からなり、その表面には多孔質の化学メッキ等が施されている。
【0018】
ヒータ18は、大気側電極層17内に収容されており、その発熱エネルギによってセンサ本体13を加熱し、ジルコニア素子14を活性化せしめる。ヒータ18は、ジルコニア素子14を活性化するのに十分な発熱容量を有している。
【0019】
ジルコニア素子14は、高温活性状態で素子両端に酸素濃度差が生じると、濃度の高い側から低い側へと酸素イオン(O2-)を通す特性(酸素電池特性)を有する。また、ジルコニア素子14は、その両端に電位差が与えられると、陰極から陽極に向けて、電位差に応じた酸素イオン(O2-)の移動を引き起こそうとする特性(酸素ポンプ特性)を有する。
【0020】
図2に示されるように、センサ本体13には、大気側電極層17を正極性、排気側電極層16を負極性とする一定のバイアス電圧が印加されている。排気空燃比がリーンのときには、酸素ポンプ特性により、排気側電極層16から大気側電極層17へと酸素イオン(O2-)の移動が起こる。その結果、バイアス電圧源の正極から、大気側電極層17、固体電解質層14及び排気側電極層16を介して、バイアス電圧源の負極へと電流が流れる。このとき流れる電流の大きさは、バイアス電圧を一定値以上にすれば、排気中から拡散抵抗層15を通って排気側電極層16へと拡散によって流入する酸素量に対応する。従って、この限界電流の大きさを検出すれば、酸素濃度を知ることができ、ひいては図1にて説明したようにリーン領域における空燃比を知ることができる。
【0021】
一方、排気空燃比がリッチのときには酸素電池特性が働き、この酸素電池特性は大気側電極層17から排気側電極層16へと酸素イオン(O2-)の移動を引き起こそうとする。すなわち、酸素電池特性はバイアス電圧と逆向きに作用する。空燃比センサでは、酸素電池特性による起電力がバイアス電圧に打ち勝つように構成されているため、大気側電極層17から、バイアス電圧源を通って、排気側電極層16へと電流が流れる。このとき流れる電流の大きさは、固体電解質層14中を大気側電極層17から排気側電極層16へと移送される酸素イオン(O2-)の量によって決まる。その酸素イオンは、排気中から拡散抵抗層15を通って排気側電極層16へと拡散によって流入する一酸化炭素などの未燃ガスと排気側電極層16において反応(燃焼)するものであるため、酸素イオン移動量は未燃ガスの濃度に対応する。従って、この限界電流の大きさを検出すれば、未燃ガス濃度を知ることができ、ひいては図1にて説明したようにリッチ領域における空燃比を知ることができる。
【0022】
また、排気空燃比が理論空燃比のときには、排気側電極層16へ流入する酸素及び未燃ガスの量が化学当量比となっているため、排気側電極層16の触媒作用によって両者は完全に燃焼する。したがって、排気側電極層16では酸素がなくなるため、酸素電池特性及び酸素ポンプ特性により移送されるべき酸素イオンが生じない。その結果、排気空燃比が理論空燃比のときには、回路を流れる電流は生じない。
【0023】
かくして、空燃比センサの電圧−電流(V−I)特性は、図3に示されるように、センサが晒される排気の空燃比(A/F)に応じた限界電流を示す。図3においては、V軸に平行な直線部分が限界電流を表している。そして、リーン領域とリッチ領域とでは限界電流の流れる向きが逆になっており、リーン領域にあっては空燃比が大きくなるほど、リッチ領域にあっては空燃比が小さくなるほど、限界電流の絶対値が大きくなる。そして、図3の特性図によれば、印加電圧を0.3V程度に設定すると、広範囲にわたる空燃比を検出することができる。なお、V軸に平行な直線部分の電圧より小さい電圧となる領域は、抵抗支配域となっている。
【0024】
次いで、図4を用いて、本発明に係る排気温度測定装置としての機能も備えた空燃比検出装置のハードウェア構成の一例について説明する。この空燃比検出装置は、大別して、空燃比センサ10、センサ本体駆動回路20、ヒータ駆動回路30及び中央処理装置(CPU)40から構成される。空燃比センサ10は、図2で説明したように、センサ本体13及びヒータ18を備えるものである。また、ヒータ駆動回路30は、デューティ比信号を受け、そのデューティ比に応じてバッテリ32の電圧をヒータ18へオン/オフ的に印加する回路である。また、CPU40は、内燃機関の電子制御装置(ECU)の中枢として燃料噴射制御、点火時期制御等を行うものであり、A/D変換器(ADC)、D/A変換器(DAC)及びメモリを内蔵している。
【0025】
センサ本体駆動回路20は、大別して、ロウパスフィルタ(LPF)21、第1の電圧フォロワ(voltage follower)回路22、基準電圧発生回路25及び第2の電圧フォロワ回路26から構成される。LPF21は、CPU40から出力されるアナログ信号電圧の高周波成分を除去するものである。第1の電圧フォロワ回路22は、演算増幅器、抵抗器、ダイオード、トランジスタ等を備え、センサ本体13の大気側電極層17の電位を、LPF21の出力の電位と同一の電位に維持する。なお、その電位は、空燃比検出時においては3.3Vである。
【0026】
また、基準電圧発生回路25は、一定電圧VCCを分圧して基準電圧3.0Vを発生させる。第2の電圧フォロワ回路26は、第1の電圧フォロワ回路22と同様の回路構成を有し、センサ本体13の排気側電極層16の電位を基準電圧3.0Vに維持する。従って、空燃比検出時には、センサ本体13の両電極層間に0.3Vの電圧Vが印加されることとなり、図3の特性図にて説明したように、限界電流を測定して広範囲にわたる空燃比を検出することができる。第1の電圧フォロワ回路22内の抵抗器23が電流検出回路として機能する。抵抗器23のセンサ側端子の電位V0 と他方の端子の電位V1 とは、CPU40に供給されるようになっている。CPU40は、抵抗器23の両端のアナログ電位V0 及びV1 をA/D変換し、両端の電位差“V1 −V0 ”を算出し、その電位差と抵抗器23の抵抗値とに基づいて、第1の電圧フォロワ回路22からセンサ本体13の大気側電極層17へと流れる方向を正とする電流Iを算出する。
【0027】
先述の図3に関する説明から理解されるように、算出される電流値と空燃比とは、図5に示される如き関係を有している。そこで、CPU40は、検出された電流値に基づいて排気の空燃比を検出することができ、ひいては空燃比フィードバック制御を実現することができる。
【0028】
さて、空燃比を検出するためには、センサ素子(ジルコニア素子)14を活性状態に維持する必要がある。その活性状態は、素子温度を一定値、例えば700°Cに保つことによって維持される。ところで、素子温度と素子抵抗とは、図6に示されるような一定の相関関係を有しているため、素子温度を700°Cに保つためには、素子抵抗が30Ωを示すようにすればよい。そのため、素子抵抗を検出し、その検出される抵抗値に基づき、ヒータ駆動回路30をフィードバック制御することにより、素子活性状態を維持する制御が行われる。
【0029】
図7はセンサ本体13の構造を示す図であり、(A)は断面図、(B)は固体電解質14の部分拡大図である。また、図8は、センサ本体13の等価回路を示す図である。図8において、R1は、ジルコニアからなる固体電解質のバルク抵抗であり、図7のグレイン(grain) 部に対応する。R2は、固体電解質の粒界抵抗であり、図7のグレイン境界(grain boundary)部に対応する。R3は、白金からなる電極の界面抵抗である。C2は、固体電解質の粒界の容量成分である。C3は、電極界面の容量成分である。Z(W)は、交流による分極が起こるときに周期的に界面濃度が変化するために生じるインピーダンス分(ワールブルインピーダンス)である。
【0030】
図8からわかるように、センサ本体13に、抵抗支配域(図3参照)にある電圧を印加して出力電流を測定した場合、“R1+R2+R3”が検出可能となる。しかし、R3は電極の劣化等により大きく変化するため、素子抵抗“R1+R2”のみを抽出することはできない。しかも、図3に示されるように、抵抗支配域は空燃比に応じて変化するため、センサ本体の直流特性により素子抵抗を検出することは極めて困難である。そこで、交流特性を利用した素子抵抗検出法が提案されている。
【0031】
図9は、空燃比検出用の直流電圧(0.3V)に交流電圧を重畳した場合に、その入力交流電圧の周波数fの変化に応じてセンサ本体のインピーダンスZが描く軌跡を示す図であり、横軸はインピーダンスZの実部R、縦軸は虚部Xを示す。この軌跡は、空燃比に依存しない。センサ本体のインピーダンスZは、Z=R+jXで表される。図9に示されるように、インピーダンスZは、周波数fが1kHz付近に近づくにつれて素子抵抗“R1+R2”に収束する。
【0032】
図10は、入力交流電圧の周波数fとインピーダンスZの絶対値|Z|との関係を示す図である。図10から、周波数1kHz〜10MHzでは|Z|がほぼ“R1+R2”であり、10MHzより高周波側では|Z|は減少していき、R1に収束することが判る。このことから、素子抵抗“R1+R2”を検出するためには、1kHz〜10MHz付近の交流電圧を印加して、出力交流電流を測定し、インピーダンスを求めることが望ましい。
【0033】
図11(A)、(B)及び(C)は、LPF21への入力電圧、LPF21からの出力電圧すなわち空燃比センサ10の大気側電極層17への印加電圧、及び空燃比センサ10の出力電流、の各波形を示す図である。横軸は時間を示し、縦軸は電圧又は電流を表す。前述のように、排気側電極層16は基準電圧3.0Vに維持され、大気側電極層17は通常図11(B)に示されるように3.3Vに維持されているため、空燃比センサ本体の両電極間には通常直流電圧0.3Vが印加されていることとなる。この入力直流電圧に対する出力直流電流が空燃比を表している。
【0034】
そして、CPU40は、素子インピーダンスを測定するため、図11(A)に示されるように、LPF21への入力電圧をΔVだけ変化させる。LPF21からの出力電圧すなわち空燃比センサ10の大気側電極層17への印加電圧は、図11(B)に示されるように、主として特定の周波数成分(例えば5kHz)からなる、なまされた波形の交流電圧パルスが直流電圧3.3Vに重畳したものとなる。この交流電圧パルスに対応して、出力電流は、図11(C)に示されるようにΔIだけ変化する。そして、ΔV/ΔIが素子インピーダンス(絶対値)Zを与える。そのZに基づいて図6の特性曲線を参照することにより、素子温度が検出される。なお、印加電圧を正負両側に変化させるのは、容量成分に蓄積される電荷の放電を迅速化させるためである。
【0035】
さて、センサ素子は、排気ガスとヒータとによって加熱せしめられる。すなわち、素子温度は、排気温度とヒータへの通電量とによって決定されることとなる。前述のように、素子温度は、700°Cに維持される必要があるため、排気温度が700°C以上となるような領域においては、ヒータによる加熱は不要となる。
【0036】
排気温度THEGが機関回転速度NEと機関負荷LDとに応じてどのように変化するかを示すと、図12の如き特性図となる。機関負荷LDは、機関吸入空気流量、吸気管圧力、吸入空気流量・回転速度比、等のいずれでもよい。この図においてTHEG=700°Cの曲線よりも上側の領域REG2では、排気温度THEGが700°C以上となるため、ヒータへの通電は不要となり、ヒータ駆動回路30に供給される信号のデューティ比は0%となる。したがって、REG2では、素子温度は排気温度THEGのみによって決まることとなる。すなわち、素子温度を測定することにより、排気温度を推定することができる。
【0037】
一方、図12においてTHEG=700°Cの曲線よりも下側の領域REG1では、排気ガスのみで素子温度を700°Cに維持することができないため、ヒータへの通電が行われることとなる。ところで、ヒータへの通電が行われている最中に、図13に示されるように、ヒータ制御を許可することを示すフラグHFLGを一定時間Δt1 だけOFFにし、ヒータへの通電をカット(デューティ比0%)すれば、それに応じて素子温度が低下する。したがって、図6の関係より、素子インピーダンスZは増大する。そして、その素子温度低下量は、排気温度THEGが低いほど大きな値になる。したがって、素子インピーダンス増大量ΔZは、排気温度THEGが低いほど大きな値になる。そのため、ΔZを測定することにより、排気温度を推定することができる。
【0038】
図14及び図15は、以上の知見を具体化する排気温度推定ルーチンの処理手順を示すフローチャートである。このルーチンは、CPU40によって所定時間(例えば数十ミリ秒)周期に実行される。まず、ステップ102では、現在、素子温度が排気温度よりも大きくなる運転領域、すなわち図12に示されるREG1にあるか否かを、機関回転速度NEと機関負荷LDとに基づいて判定する。
【0039】
ステップ102の判定結果がYESのとき、すなわち、図12のREG1にあるときには、ステップ104に進む。ステップ104では、カウンタCNT1をインクリメントするとともに、カウンタCNT2を0にクリアする。カウンタCNT1は、REG1にあるときに一定時間周期で排気温度を推定するために設けられたものであり、一方、カウンタCNT2は、REG2にあるときに一定時間周期で排気温度を推定するために設けられたものである。
【0040】
ステップ104に次いで実行されるステップ106では、CNT1が所定値C0 に達したか否か、すなわち、REG1に移行してから又は前回排気温度を推定してから一定時間が経過しているか否かを判定する。CNT1=C0 が成立するときには、まず、現在の素子インピーダンスZを測定し、その値をZ0 として記憶し(ステップ108)、次いで、フラグHFLGを0にし(ステップ110)、本ルーチンを終了する。別途実行されているヒータ制御ルーチンは、HFLGが0とされたのを受けて、ヒータ駆動回路30に供給される信号のデューティ比を強制的に0%にする。
【0041】
ステップ106においてCNT1≠C0 と判定されたときに実行されるステップ112では、カウンタCNT1が所定値C1 (>C0 )に達したか否かを判定する。なお、“C1 −C0 ”は、図13における通電カット時間Δt1 に相当する量である。そして、Δt1 は、素子をあまり冷却させることがなく、かつ、ある程度、素子温度すなわち素子インピーダンスの変化が起こる時間として設定されるものであり、例えば、数秒程度の値となる。ステップ112においてCNT1≠C1 と判定されるときには本ルーチンを終了する。
【0042】
一方、ステップ112においてCNT1=C1 と判定されるときには、まず、素子インピーダンスZを測定し、その測定値をZ1 とする(ステップ114)。次いで、フラグHFLGを1にする(ステップ116)。別途実行されているヒータ制御ルーチンは、HFLGが1とされたのを受けて、ヒータへの通電を再開する。次いで、Z1 −Z0 なる演算により、素子インピーダンスの増大量ΔZを求める(ステップ118)。このΔZは、排気温度THEGが低いほど大きくなる量である。
【0043】
次いで、ΔZ×K1なる演算を行い、ΔZ×K1に基づいて図16に示される如きマップを参照することにより、排気温度THEGを推定する(ステップ120)。ここで、図16のマップは、素子インピーダンスの増大量ΔZに基づいて排気温度を求めるための標準的なマップであって、予め実験的に求められたものである。また、K1は、内燃機関の構造、センサの構造、センサの取付位置等の違いを吸収するための補正係数であり、予め実験によって求められている定数である。最後に、カウンタCNT1を0にクリアして本ルーチンを終了する(ステップ122)。
【0044】
ステップ102の判定結果がNOのとき、すなわち、図12のREG2の運転領域にあってヒータへの通電がなされていないときには、ステップ130に進む。ステップ130では、カウンタCNT1を0にクリアするとともに、カウンタCNT2をインクリメントする。次いで、ステップ132では、CNT2が所定値C0 に達したか否か、すなわち、REG2に移行してから又は前回排気温度を推定してから一定時間が経過しているか否かを判定し、CNT2≠C0 のときには本ルーチンを終了する。
【0045】
一方、ステップ132においてCNT2=C0 が成立するときには、まず、素子インピーダンスZを測定し、そのZの値と図6の関係とより素子温度THSEを決定する(ステップ134)。次いで、その素子温度THSEと図17に示される如きマップとに基づいて排気温度THEGを算出する(ステップ136)。なお、図17のマップは、ヒータが駆動されていない状態における素子温度THSEと排気温度THEGとの関係を示すものであり、予め実験的に求められているマップである。なお、素子温度THSEと排気温度THEGとはほぼ等しくなるため、求められた素子温度THSEをそのまま排気温度THEGとして採用してもよい。最後に、CNT2を0にクリアして本ルーチンを終了する(ステップ138)。
【0046】
図14及び図15の処理によれば、あらゆる運転領域において空燃比センサを利用した排気温度の測定が可能となる。
【0047】
ところで、上述の実施形態は、ヒータへの通電を行っている場合においては、その通電を一定時間カットしたときの素子温度の低下量(すなわち素子インピーダンスの増大量)に基づいて排気温度を推定するもの、換言すれば、通電をカットしたときの素子温度の下降率(すなわち素子インピーダンスの上昇率)に基づいて排気温度を推定するものであった。一方、通電をカットした後、再び通電を開始したときの素子温度の上昇率(すなわち素子インピーダンスの下降率)を検出すれば、その温度上昇率(すなわちインピーダンス下降率)は、排気温度が低いほど小さくなり、したがって、素子インピーダンスの下降率によって排気温度を推定することも可能である。そこで、本発明の第2実施形態は、図13に示されるように、通電を一定時間Δt1 だけカットした後、再び通電を開始した時点から、素子インピーダンスが通電カット前の値に復帰する時点までの所要時間Δt2 に基づいて排気温度を推定しようというものである。
【0048】
図18及び図19は、第2実施形態に係る排気温度推定ルーチンの処理手順を示すフローチャートである。ステップ202から210までは、前述のステップ102から110までと同一であり、また、ステップ230から238までは、前述のステップ130から138までと同一であるため、それらの説明は省略する。
【0049】
ステップ212では、カウンタCNT1が所定値C1 (>C0 )に達したか否かを判定し、CNT1=C1 と判定されるとき、すなわちヒータ通電再開時期に至ったときには、ステップ214に進み、フラグHFLGを1にして、本ルーチンを終了する。一方、CNT1≠C1 と判定されるときには、ステップ216に進み、CNT1がC1 より大きいか否かを判定する。CNT1≦C1 のときには本ルーチンを終了する一方、CNT1>C1 のときにはステップ218に進む。ステップ218では、素子インピーダンスZを測定する。次いで、ステップ220では、Z≦Z0 が成立するか否か、すなわち素子インピーダンスが通電カット前の値に復帰したか否かを判定し、Z>Z0 のとき、すなわち未だ復帰してないときには本ルーチンを終了する。
【0050】
一方、ステップ220でZ≦Z0 が成立するとき、すなわち素子インピーダンスが通電カット前の値に復帰したときには、まず、“CNT1−C1 ”が復帰に要した時間Δt2 を表しているため、Δt2 を計算する(ステップ222)。次いで、Δt2 ×K2なる演算を行い、Δt2 ×K2に基づいて図20に示される如きマップを参照することにより、排気温度THEGを推定する(ステップ224)。ここで、図20のマップは、素子インピーダンス復帰所要時間Δt2 に基づいて排気温度を求めるための標準的なマップであって、予め実験的に求められたものである。また、K2は、前述のK1と同様に、内燃機関の構造、センサの構造、センサの取付位置等の違いを吸収するための補正係数であり、予め実験によって求められている定数である。最後に、カウンタCNT1を0にクリアして本ルーチンを終了する(ステップ226)。
【0051】
以上、2つの実施形態について説明してきたが、それらを合体し、通電カット時における素子インピーダンス増大量から排気温度を求めるとともに、通電再開時における素子インピーダンス復帰所要時間からも排気温度を求め、それらの排気温度を平均化することにより、排気温度の測定の精度を高めるようにしてもよい。
【0052】
【発明の効果】
以上説明したように、本発明によれば、空燃比センサの利用によりコストアップを招くことなく、また、測定条件を限定されることもなく、かつ、精度良く、排気温度を測定することが可能となる。
【図面の簡単な説明】
【図1】空燃比と排気成分濃度との関係を示す特性図である。
【図2】空燃比センサの一構成例を示す断面図である。
【図3】空燃比センサの電圧−電流特性の一例を示す特性図である。
【図4】本発明に係る排気温度測定装置としての機能も備えた空燃比検出装置のハードウェア構成の一例を示す電気回路図である。
【図5】空燃比と空燃比センサ出力電流との関係を示す特性図である。
【図6】素子温度と素子抵抗との関係を示す特性図である。
【図7】センサ本体の構造を示す図であって、(A)は断面図、(B)は固体電解質の部分拡大図である。
【図8】センサ本体の等価回路を示す図である。
【図9】空燃比検出用の直流電圧に重畳する入力交流電圧の周波数を変化させたときにセンサ本体のインピーダンスが描く軌跡を示す図である。
【図10】入力交流電圧の周波数と素子インピーダンスとの関係を示す図である。
【図11】LPFへの入力電圧、空燃比センサ大気側電極への入力電圧、及び空燃比センサからの出力電流の各波形を示す図である。
【図12】排気温度THEGが機関回転速度NEと機関負荷LDとに応じてどのように変化するかを示す特性図である。
【図13】ヒータへの通電の実行中に一時的に通電をカットしたときの素子温度の変化及び素子インピーダンスの変化を示すタイムチャートである。
【図14】第1実施形態に係る排気温度推定ルーチンの処理手順を示すフローチャート(1/2)である。
【図15】第1実施形態に係る排気温度推定ルーチンの処理手順を示すフローチャート(2/2)である。
【図16】ヒータへの通電を一定時間カットしたときの素子インピーダンスの増大量から排気温度を求めるためのマップを示す図である。
【図17】ヒータが駆動されていない状態において素子温度THSEから排気温度THEGを求めるためのマップを示すである。
【図18】第2実施形態に係る排気温度推定ルーチンの処理手順を示すフローチャート(1/2)である。
【図19】第2実施形態に係る排気温度推定ルーチンの処理手順を示すフローチャート(2/2)である。
【図20】ヒータへの通電を一定時間カットしたときの素子インピーダンス復帰所要時間から排気温度を求めるためのマップを示す図である。
【符号の説明】
10…空燃比センサ(A/Fセンサ)
11…カバー
12…小孔
13…センサ本体
14…酸素イオン導電性固体電解質層(センサ素子)
15…拡散抵抗層
16…排気側電極層
17…大気側電極層
18…ヒータ
20…センサ本体駆動回路
21…ローパスフィルタ(LPF)
22…第1の電圧フォロワ回路
23…電流検出回路
25…基準電圧発生回路
26…第2の電圧フォロワ回路
30…ヒータ駆動回路
32…バッテリ
40…CPU
90…内燃機関の排気管

Claims (6)

  1. 電圧の印加に伴い排気中の酸素濃度又は未燃ガス濃度に応じた限界電流を発生させるセンサ本体、及び、前記センサ本体中の酸素イオン導電素子を加熱し活性化せしめるためのヒータ、を有する空燃比センサと、
    前記酸素イオン導電素子の素子インピーダンスを検出する素子インピーダンス検出手段と、
    前記ヒータへの通電の実行中に一時的にヒータへの通電をカットし、前記素子インピーダンス検出手段によって検出される素子インピーダンスの該カットに伴う素子インピーダンスの変化の状態に基づいて排気温度を推定する通電時排気温度推定手段と、
    を具備する排気温度測定装置。
  2. 前記ヒータへの通電の非実行中に、前記素子インピーダンス検出手段によって検出される素子インピーダンスに基づいて排気温度を推定する非通電時排気温度推定手段、を更に具備する、請求項1に記載の排気温度測定装置。
  3. 前記通電時排気温度推定手段は、通電をカットしたときの素子インピーダンスの上昇率に基づいて排気温度を推定する、請求項1に記載の排気温度測定装置。
  4. 前記通電時排気温度推定手段は、通電を一定時間カットしたときの素子インピーダンスの増大量に基づいて排気温度を推定する、請求項1に記載の排気温度測定装置。
  5. 前記通電時排気温度推定手段は、通電をカットした後、再び通電を開始したときの素子インピーダンスの下降率に基づいて排気温度を推定する、請求項1に記載の排気温度測定装置。
  6. 前記通電時排気温度推定手段は、通電を一定時間カットした後、再び通電を開始する時点から、素子インピーダンスが通電カット前の値に復帰する時点までの所要時間に基づいて排気温度を推定する、請求項1に記載の排気温度測定装置。
JP02742099A 1999-02-04 1999-02-04 排気温度測定装置 Expired - Fee Related JP4385423B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02742099A JP4385423B2 (ja) 1999-02-04 1999-02-04 排気温度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02742099A JP4385423B2 (ja) 1999-02-04 1999-02-04 排気温度測定装置

Publications (2)

Publication Number Publication Date
JP2000227364A JP2000227364A (ja) 2000-08-15
JP4385423B2 true JP4385423B2 (ja) 2009-12-16

Family

ID=12220617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02742099A Expired - Fee Related JP4385423B2 (ja) 1999-02-04 1999-02-04 排気温度測定装置

Country Status (1)

Country Link
JP (1) JP4385423B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785024B2 (ja) 2000-06-15 2006-06-14 株式会社日立製作所 触媒温度検出装置
JP4424182B2 (ja) 2004-12-06 2010-03-03 株式会社デンソー 内燃機関の排気温度推定装置
JP2008051092A (ja) * 2006-07-25 2008-03-06 Nissan Motor Co Ltd 内燃機関の排気系保護装置及び保護方法
JP4325684B2 (ja) 2007-02-20 2009-09-02 株式会社デンソー センサ制御装置、及び印加電圧特性の調整方法
BRPI0820340B1 (pt) 2007-11-07 2020-04-14 Toyota Motor Co Ltd dispositivo de controle
CN102239318B (zh) 2008-12-03 2014-03-26 丰田自动车株式会社 发动机系统控制装置
CN102265504A (zh) * 2008-12-25 2011-11-30 日本电气株式会社 功率放大装置
JP5204206B2 (ja) * 2010-12-16 2013-06-05 日本特殊陶業株式会社 ガス情報推定装置
WO2013121534A1 (ja) * 2012-02-15 2013-08-22 トヨタ自動車株式会社 NOxセンサの制御装置
US10273907B2 (en) 2014-12-30 2019-04-30 Ford Global Technologies, Llc Systems and methods for engine-off natural vacuum leak testing
JP2016169710A (ja) * 2015-03-16 2016-09-23 ダイハツ工業株式会社 内燃機関の制御装置
JP6004059B2 (ja) * 2015-07-24 2016-10-05 トヨタ自動車株式会社 NOxセンサの制御装置
JP6551317B2 (ja) * 2016-06-14 2019-07-31 トヨタ自動車株式会社 内燃機関の排気温度推定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117790A1 (de) * 1981-05-06 1982-11-25 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur temperaturmessung bei sauerstoffsonden
JP3692640B2 (ja) * 1996-02-28 2005-09-07 株式会社デンソー 酸素濃度センサの素子抵抗検出方法
JPH10221182A (ja) * 1997-02-06 1998-08-21 Ngk Spark Plug Co Ltd 全領域空燃比センサを用いた温度測定方法及び装置

Also Published As

Publication number Publication date
JP2000227364A (ja) 2000-08-15

Similar Documents

Publication Publication Date Title
JP2004069547A (ja) 空燃比センサの制御装置
JP3551054B2 (ja) 空燃比検出装置
EP0994345B1 (en) Power supply control system for heater used in gas concentration sensor
JP3571494B2 (ja) ガスセンサ
JP4385423B2 (ja) 排気温度測定装置
US6453724B1 (en) Gas concentration sensing apparatus
JP4005273B2 (ja) ガス濃度検出装置
JP4466709B2 (ja) ガスセンサ制御装置
EP1586889A2 (en) Gas concentration measuring apparatus designed to compensate for output error
US6541741B2 (en) Heater control device for air-fuel ratio sensor
CN116490771A (zh) 气体传感器
JP2001133429A (ja) 車載用noxセンサのオフセット再校正方法
JP4228488B2 (ja) ガス濃度センサのヒータ制御装置
JP3420932B2 (ja) ガス濃度センサの素子抵抗検出方法
JP2000292411A (ja) ガス濃度検出装置
JP2002250710A (ja) ガス濃度センサの異常診断方法
JP2004205357A (ja) ガス濃度の検出方法
JP3563941B2 (ja) 全領域空燃比センサの劣化状態検出方法及び装置
JP2000193636A (ja) 空燃比センサの異常検出装置
JP2000221160A (ja) 空燃比検出装置
US10677750B2 (en) Gas detection device
JP6583302B2 (ja) ガス検出装置
JP2000221159A (ja) 空燃比検出装置
JPH11352096A (ja) ガスセンサ素子
CN113389625B (zh) 用于排气传感器的控制装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees