JP4383088B2 - Light emitting device storage package - Google Patents

Light emitting device storage package Download PDF

Info

Publication number
JP4383088B2
JP4383088B2 JP2003124996A JP2003124996A JP4383088B2 JP 4383088 B2 JP4383088 B2 JP 4383088B2 JP 2003124996 A JP2003124996 A JP 2003124996A JP 2003124996 A JP2003124996 A JP 2003124996A JP 4383088 B2 JP4383088 B2 JP 4383088B2
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
light
ceramic substrate
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003124996A
Other languages
Japanese (ja)
Other versions
JP2004335518A (en
Inventor
誠 上玉利
芳和 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2003124996A priority Critical patent/JP4383088B2/en
Publication of JP2004335518A publication Critical patent/JP2004335518A/en
Application granted granted Critical
Publication of JP4383088B2 publication Critical patent/JP4383088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、LED等の発光素子をセラミック基板上に搭載し収納するための発光素子収納用パッケージに関する。
【0002】
【従来の技術】
従来からLED等の発光素子を収容するための発光素子収納用パッケージとしては、プラスチック製や、セラミック製の発光素子収納用パッケージが用いられている。
【0003】
LED等の発光素子は、発光素子の光出力を大きくするのに、電流を増加させることで可能であるが、光出力の増加に併せて発光素子自体の温度も上昇する。従来のプラスチック製の発光素子収納用パッケージは、そこに搭載される発光素子自体の温度上昇が大きくなることで、プラスチック製のパッケージでは耐熱性が十分でなくなり、問題が発生している。そこで、プラスチック製の発光素子収納用パッケージには、パッケージの放熱性向上を目的として発光素子を直接搭載できる金属リードフレーム上にプラスチック製の障壁を設けた構造の発光素子収納用パッケージが開発されている。また、発光素子の光出力を大きくする方法には、複数個の発光素子を平面状に並べて用いることが行われている。
【0004】
従来のセラミック製の発光素子収納用パッケージは、発光素子を搭載するためのキャビティ部の形成に、複数枚のセラミックグリーンシートをダイスとピンからなるパンチングマシーン等で垂直に打ち抜いてキャビティ部の大きさの孔を穿孔し、複数枚のセラミックグリーンシートを積層して行っている。発光素子が搭載されるキャビティ部は、壁面が発光素子からの光を効率よく反射させることで明るさを増加できる反射板の役目をしているが、壁面が垂直であるので、効率よく反射させることができない。
【0005】
そこで、キャビティ部の壁面を上面に対して55〜70度の角度で外側に広げると共に、壁面の表面に中心線平均粗さRaが1〜3μmで且つ発光素子が発光する光に対する反射率が80%以上の金属層が被着されているセラミック製の発光素子収納用パッケージが提案されている(例えば、特許文献1参照)。また、導体配線が形成されたセラミックグリーンシートに発光素子を載置するためのキャビティ部を形成するのに、セラミックグリーンシートをキャビティ部が開口方向に広くなるようにプレス成形し、脱脂、焼成した後、キャビティ部壁面の導体層にめっきを施して、光反射層を形成するセラミック製の発光素子収納用パッケージが提案されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開2002−232017号公報(第1−6頁、第1図)
【特許文献2】
特開平9−45965号公報(第1−4頁、第2図)
【0007】
【発明が解決しようとする課題】
しかしながら、前述したような従来の発光素子収納用パッケージは、次のような問題がある。
(1)金属リードフレームを発光素子からの発熱の放熱板として用いたプラスチック製の発光素子収納用パッケージは、放熱性が十分ではなくプラスチックの耐熱性の温度を超える場合がある。また、金属リードフレームを用いたプラスチック製の発光素子収納用パッケージは、リードフレームのパッケージ全体に占める面積が大きく、パッケージを小型化にすることができないという問題がある。
(2)セラミックグリーンシートを打ち抜いてキャビティ部を形成するセラミック製の発光素子収納用パッケージは、キャビティ部の壁面を上面に対して正常な角度を持たせて安定して成形することが難しく、歩留まりの低下となっている。
(3)セラミックグリーンシートをプレスしてキャビティ部を形成するセラミック製の発光素子収納用パッケージは、セラミックグリーンシートに亀裂等を発生させることなくプレス成形することが難しく、歩留まりの低下となっている。また、この発光素子収納用パッケージは、セラミックグリーンシートを3次元でプレスするので、セラミックグリーンシートの生密度が場所によって変化し、焼成での均一な収縮の妨げとなり変形が発生して歩留まりの低下となっている。
(4)発光素子の光出力を大きくするのに発光素子を搭載した個別の発光素子収納用パッケージの複数個を平面状に並べてボード等に実装して行うのは、実装面積が大きくなる。
本発明は、かかる事情に鑑みてなされたものであって、耐熱性が大きいセラミック基板を用いて容易に歩留まりよく形成され、発光素子の光出力が高くできる発光素子収納用パッケージを提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的に沿う本発明に係る発光素子収納用パッケージは、セラミック基板に発光素子を搭載するための1又は複数個のキャビティ部を有する発光素子収納用パッケージであって、キャビティ部にはキャビティ部の壁面及び底面に当接しないで装填されキャビティ部の上端周縁のセラミック基板の上面で当接して接合される発光素子の光を反射するための反射体を有し、しかも、反射体はテーパ状の円錐形状の貫通孔を有する金属製の筒体の貫通孔の壁面を発光素子の反射面とし、貫通孔の開口径の大きい側の筒体端部外周に有するフランジ部でセラミック基板のキャビティ部の上端周縁に設ける導体パターンにろう材を介して接合されている。これにより、セラミック基板に形成されたキャビティ部の壁面形状と関係なくキャビティ部内に反射体が容易に取り付けられて設けられているので、セラミック製で耐熱性が高く、キャビティ部の形成が従来の穿孔方式で形成できて歩留まりがよく、小型で発光素子の光出力が高くできる発光素子収納用パッケージを提供できる。また、1枚のセラミック基板に複数個のキャビティ部を形成することもできるので、小型な形態で光出力を上げることができる発光素子収納用パッケージを提供できる。
【0009】
前記目的に沿う本発明に係る他の発光素子収納用パッケージは、セラミック基板に発光素子を搭載するための1又は複数個のキャビティ部を有する発光素子収納用パッケージであって、セラミック基板にはキャビティ部の上端周縁に段差を有し、キャビティ部にはキャビティ部の壁面及び底面に当接しないで装填され段差の上面で当接して接合される発光素子の光を反射するための反射体を有し、しかも、反射体はテーパ状の円錐形状の貫通孔を有する金属製の筒体の貫通孔の壁面を発光素子の反射面とし、貫通孔の開口径の大きい側の筒体端部外周に有する段差の高さより薄い厚さのフランジ部でセラミック基板の段差の上面に設ける導体パターンにろう材を介して接合されている。これにより、セラミック基板に形成されたキャビティ部の壁面形状と関係なくキャビティ部内に反射体が容易に取り付けられて設けられているので、セラミック製で耐熱性が高く、キャビティ部の形成が従来の穿孔方式で形成できて歩留まりがよく、小型でパッケージの高さが低く、発光素子の光出力が高くできる発光素子収納用パッケージを提供できる。また、1枚のセラミック基板に複数個のキャビティ部を形成することもできるので、小型でパッケージの高さを低くできる形態で光出力を上げることができる発光素子収納用パッケージを提供できる。
【0010】

【0011】

【0012】

【0013】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る発光素子収納用パッケージの断面図、図2(A)、(B)はそれぞれ同他の発光素子収納用パッケージの断面図、図3(A)、(B)はそれぞれ同更に他の発光素子収納用パッケージの断面図である。
【0014】
図1(A)、(B)を参照しながら、本発明の一実施の形態に係る発光素子収納用パッケージ10、10aを説明する。
図1(A)に示すように、発光素子収納用パッケージ10は、平面視して、矩形状や、多角形や、円形等からなり、中心部に発光素子11を搭載するためのキャビティ部12を1個有している。この発光素子収納用パッケージ10には、キャビティ部12に発光素子11を搭載するためにアルミナ(Al)や、低温焼成セラミックや、窒化アルミニウム等からなるセラミック基板13が用いられている。そして、キャビティ部12は、セラミック基板13の焼成前の複数枚のセラミックグリーンシートの必要セラミックグリーンシートの必要部位にキャビティ部12用の孔をそれぞれのセラミックグリーンシートの穿孔面が垂直になるように穿設し、積層し、焼成することで形成されている。なお、キャビティ部12用の孔は、複数枚のセラミックグリーンシートが同一の大きさであってもよく、上層に行くにつれて大きい孔からなる階段状であってもよい。
【0015】
キャビティ部12には、キャビティ部12内に装填され、キャビティ部12の上端周縁のセラミック基板13の上面でAgCuろうや、AuSnろう等のろう材で接合される反射体14を有している。この反射体14は、テーパ状の円錐形状の貫通孔15を有するKV(Fe−Ni−Co系合金、商品名「Kovar(コバール)」)や、アルミニウム等の金属からなる筒体16の貫通孔15の壁面を発光素子11の発する光の反射面としている。そして、この反射体14は、貫通孔15の開口径の大きい側の筒体16の端部外周にフランジ部17を備え、このフランジ部17でセラミック基板13と接合されている。この反射体14は、テーパ状の円錐形状の貫通孔15の壁面を発光素子11の発する光の反射面とし、貫通孔15の開口径の大きい側を外側にしているので、発光素子11から発する光を効率よく反射させて光出力を向上させることができる。なお、反射体14の貫通孔15の壁面のテーパ状の円錐形状は、稜線が直線状に限定されるものではなく、例えば、椀形の形状のような曲線状のものであってもよい。
【0016】
図1(B)に示すように、発光素子収納用パッケージ10aは、1つのセラミック基板13aに複数個のキャビティ部12を有し、それぞれのキャビティ部12に発光素子11(図示せず、図1(A)参照)が搭載できるようになっている。それぞれのキャビティ部12には、それぞれのキャビティ部12内に装填され、それぞれのキャビティ部12の上端周縁のセラミック基板13aの上面でろう材等で接合されるそれぞれ反射体14を有している。これらの反射体14は、発光素子収納用パッケージ10の場合と同様にテーパ状の円錐形状の貫通孔15を有する金属からなる筒体16の貫通孔15の壁面を発光素子11の発する光の反射面としている。そして、これらの反射体14は、貫通孔15の開口径の大きい側の筒体16の端部外周にフランジ部17を備え、フランジ部17でセラミック基板13aと接合されている。発光素子収納用パッケージ10aは、1つのセラミック基板13aに複数個のキャビティ部12を有し、それぞれのキャビティ部12に発光素子11が搭載されるので、小型でより明るい発光素子モジュールが実現可能となる。
【0017】
なお、発光素子収納用パッケージ10、10aには、キャビティ部12の底面に発光素子11(図1(B)では図示せず)が搭載され、発光素子11とボンディングワイヤ18で接続し、外部から電気的に導通させるためにセラミック基板13、13aに導体パターン19が形成されている。また、発光素子収納用パッケージ10、10aには、発光素子11をキャビティ部12に搭載し、キャビティ部12内に蛍光体の樹脂等が充填された後、発光素子11を気密に収納するために、反射体14の開口部のフランジ部17の上面にレンズ20(図1(B)では図示せず)を有機樹脂接着剤や、無機樹脂接着剤等を用いて接合している。
【0018】
ここで、セラミックの一例であるアルミナからなるセラミック基板13、13aの作製方法を説明する。先ず、セラミックグリーンシートは、アルミナ粉末にマグネシア、シリカ、カルシア等の焼結助剤を適当量加えた粉末に、ジオクチルフタレート等の可塑剤と、アクリル樹脂等のバインダー、及び、トルエン、キシレン、アルコール類等の溶剤が加えられ、十分に混練した後、脱泡して粘度2000〜40000cpsのスラリーが作製される。次いで、スラリーは、ドクターブレード法等によって、例えば、厚み0.25mmのロール状のシートに形成され、適当なサイズにカットしてセラミックグリーンシートが作製される。
【0019】
次に、このセラミックグリーンシートには、打ち抜き金型やパンチングマシーン等を用いて、それぞれの所定位置にキャビティ部12用の孔や、上層と下層との間の導通を形成するためのビア21用の孔が穿設される。更に、セラミックグリーンシートには、タングステン等からなる金属導体ペーストを用いてスクリーン印刷でビア21用の孔に充填したり、反射体14をろう材等で接合させるためや、発光素子11と電気的に導通状態とするために表面に導体パターン19が形成される。これらの印刷が完了したセラミックグリーンシートは、複数枚が重ね合わされ積層体が形成される。そして、次に、タングステン等からなる金属導体と、セラミックグリーンシートとを還元性雰囲気の焼成炉で同時焼成してセラミック基板13、13aが作製されている。なお、キャビティ部12の底面に形成される導体パターン19には、反射体14の筒体16の先端部が接触しても短絡しないようにするために、必要なワイヤボンドパッド部を開口部から露出させるセラミックグリーンシートと実質的に同じ材料からなる絶縁膜(図示せず)が、同時焼成前に形成された後、同時焼成時に焼成されて形成されていてもよい。
【0020】
次いで、図2(A)、(B)を参照しながら、本発明の一実施の形態に係る他の発光素子収納用パッケージ10b、10cを説明する。
図2(A)に示すように、発光素子収納用パッケージ10bは、前記の発光素子収納用パッケージ10と同様に、発光素子11を搭載するためのキャビティ部12を1個有している。この発光素子収納用パッケージ10bには、キャビティ部12に発光素子11を搭載するためにアルミナ(Al)や、低温焼成セラミックや、窒化アルミニウム等からなるセラミック基板13bが用いられている。このセラミック基板13bには、キャビティ部12の上端周縁に段差22を有している。キャビティ部12には、キャビティ部12内に装填され、段差22でろう材等で接合される反射体14を有している。この反射体14は、前記の発光素子収納用パッケージ10と同様に、テーパ状の円錐形状の貫通孔15を有する金属からなる筒体16の貫通孔15の壁面を発光素子11の発する光の反射面としている。そして、この反射体14は、貫通孔15の開口径の大きい側の筒体16の端部外周にフランジ部17を備え、このフランジ部17でセラミック基板13bの段差22と接合されている。
【0021】
図2(B)に示すように、発光素子収納用パッケージ10cは、1つのセラミック基板13cに複数個のキャビティ部12を有し、それぞれのキャビティ部12に発光素子11(図示せず、図2(A)参照)が搭載できるようになっている。それぞれのキャビティ部12には、それぞれのキャビティ部12内に装填され、セラミック基板13cのそれぞれの段差22でろう材等で接合されるそれぞれ反射体14を有している。これらの反射体14は、発光素子収納用パッケージ10bの場合と同様に、テーパ状の円錐形状の貫通孔15を有する金属からなる筒体16の貫通孔15の壁面を発光素子11の発する光の反射面としている。そして、これらの反射体14は、貫通孔15の開口径の大きい側の筒体16の端部外周にフランジ部17を備え、フランジ部17でセラミック基板13cと接合されている。
【0022】
なお、発光素子収納用パッケージ10b、10cには、前記の発光素子収納用パッケージ10、10aの場合と同様に、キャビティ部12の底面に発光素子11(図2(B)では図示せず)が搭載され、発光素子11とボンディングワイヤ18で接続し、外部から電気的に導通させるためにセラミック基板13b、13cに導体パターン19が形成されている。また、発光素子収納用パッケージ10b、10cには、発光素子11をキャビティ部12に搭載し、キャビティ部12内に蛍光体の樹脂等が充填された後、発光素子11を気密に収納するために、反射体14の開口部のフランジ部17の上面にレンズ20(図2(B)では図示せず)を有機樹脂接着剤や、無機樹脂接着剤等を用いて接合している。更に、発光素子収納用パッケージ10b、10cのセラミック基板13b、13cにセラミックの一例であるアルミナからなるセラミックが用いられる場合には、前記セラミック基板13、13aの作製方法と同様な方法で作製されるセラミック基板を用いることができる。
【0023】
次いで、図3(A)、(B)を参照しながら、本発明の一実施の形態に係る上記の発光素子収納用パッケージ10、10a、10b、10cに類似する他の発光素子収納用パッケージ10d、10eを説明する。
図3(A)に示すように、発光素子収納用パッケージ10dは、平面視して、矩形状や、多角形や、円形等からなり、中心部に発光素子11を搭載するためのキャビティ部12を1個有している。この発光素子収納用パッケージ10dには、アルミナ(Al)や、低温焼成セラミックや、窒化アルミニウム等からなる1又は複数枚のセラミックグリーンシートを積層し焼成して形成した平板のセラミック基板13dが用いられている。また、セラミック基板13dの上面には、テーパ状の壁面からなる挿通孔23を設けたKVや、42アロイ(Fe−Ni系合金)等のセラミックと熱膨張係数が近似する金属板24がAgCuろうや、AuSnろう等のろう材で接合されている。そして、発光素子収納用パッケージ10dは、金属板24の挿通孔23の開口から露出するセラミック基板13dと、金属板24の挿通孔23のテーパ状の壁面とでキャビティ部12を形成している。
【0024】
金属板24の挿通孔23は、金属板24の上面側の開口径が金属板24の下面側の開口径より大きいテーパ状に形成されている。そして、挿通孔23のテーパ状の壁面は、発光素子11から発する光を反射させるための反射面として用いられている。テーパ状の壁面は、外側に開いているので、発光素子11から発する光を効率よく反射させて光出力を向上させることができる。なお、金属板24の挿通孔23のテーパ状の壁面は、反射体14の貫通孔15の壁面の形状と同様に、稜線が直線状に限定されるものではなく、例えば、椀形の形状のような曲線状のものであってもよい。
【0025】
図3(B)に示すように、発光素子収納用パッケージ10eは、平板からなる1つのセラミック基板13eに複数個のテーパ状の壁面からなる挿通孔23を有する金属板24aが接合されている。そして、発光素子収納用パッケージ10eは、挿通孔23の開口から露出するセラミック基板13eと金属板24aのテーパ状の壁面とで形成されるそれぞれのキャビティ部12に発光素子11(図示せず、図3(A)参照)が搭載できるようになっている。それぞれのキャビティ部12は、金属板24aの挿通孔23が下面側より上面側の開口径を大きくするテーパ状となっており、このテーパ状の壁面を発光素子11から発する光の反射面としている。この発光素子収納用パッケージ10eは、平板からなるセラミック基板24aに複数個の挿通孔23を有する金属板24aを接合することで形成できるので、小型でより明るい発光素子モジュールが実現可能となるパッケージを容易に提供できる。
【0026】
なお、発光素子収納用パッケージ10d、10eには、前記の発光素子収納用パッケージ10、10a、10b、10cの場合と同様に、キャビティ部12の底面に発光素子11(図3(B)では図示せず)が搭載され、発光素子11とボンディングワイヤ18で接続し、外部から電気的に導通させるためにセラミック基板13d、13eに導体パターン19が形成されている。また、発光素子収納用パッケージ10d、10eには、発光素子11をキャビティ部12に搭載し、キャビティ部12内に蛍光体の樹脂等が充填された後、発光素子11を気密に収納するために、金属板24、24aの挿通孔23の上面側開口部の周縁上面にレンズ20(図3(B)では図示せず)を有機樹脂接着剤や、無機樹脂接着剤等を用いて接合している。更に、発光素子収納用パッケージ10d、10eのセラミック基板13d、13eにセラミックの一例であるアルミナからなるセラミックが用いられる場合には、前記セラミック基板13、13a、13b、13cの作製方法におけるセラミック基板にキャビティ部12の形成がない以外、実質的には同様な方法で作製されるセラミック基板を用いることができる。
【0027】
前記の発光素子収納用パッケージ10、10a、10b、10c、10d、10eには、反射体14の反射面や、金属板24、24aの反射面に、発光素子11から発せられる光を反射させるための、例えば、Auめっきや、Niめっきや、Agめっき等によるコーティングが施されているのがよい。このコーティングによって、発光素子11から発せられる光の明るさを向上させることができる。
【0028】
前記の発光素子収納用パッケージ10a、10c、10eのような1枚のセラミック基板13a、13c、13eに複数個のキャビティ部12を有する場合には、セラミック基板13a、13c、13eに発光素子11を駆動させるための駆動用半導体素子が、例えば、セラミック基板13a、13c、13eの裏面側に搭載できるのがよい。また、セラミック基板13a、13c、13eには、駆動回路用の配線パターンが形成されて有するのがよい。この駆動用半導体素子、及び駆動回路用の配線パターンによって、複数個の発光素子11の発光形態がコントロールできるので、例えば、明るさを無段階的に調整できたりする。
【0029】
【発明の効果】
請求項1記載の発光素子収納用パッケージは、セラミック基板に発光素子を搭載するための1又は複数個のキャビティ部を有する発光素子収納用パッケージであって、キャビティ部にはキャビティ部の壁面及び底面に当接しないで装填されキャビティ部の上端周縁のセラミック基板の上面で当接して接合される発光素子の光を反射するための反射体を有し、しかも、反射体はテーパ状の円錐形状の貫通孔を有する金属製の筒体の貫通孔の壁面を発光素子の反射面とし、貫通孔の開口径の大きい側の筒体端部外周に有するフランジ部でセラミック基板のキャビティ部の上端周縁に設ける導体パターンにろう材を介して接合されているので、キャビティ部内に反射体が容易に取り付けられ、セラミック製で耐熱性が高く、キャビティ部の形成が従来の穿孔方式で形成できて歩留まりがよく、小型で発光素子の光出力が高くできる。また、1枚のセラミック基板に複数個のキャビティ部を形成することもでき、小型で光出力を上げることができる。
【0030】
請求項2記載の発光素子収納用パッケージは、セラミック基板に発光素子を搭載するための1又は複数個のキャビティ部を有する発光素子収納用パッケージであって、セラミック基板にはキャビティ部の上端周縁に段差を有し、キャビティ部にはキャビティ部の壁面及び底面に当接しないで装填され段差の上面で当接して接合される発光素子の光を反射するための反射体を有し、しかも、反射体はテーパ状の円錐形状の貫通孔を有する金属製の筒体の貫通孔の壁面を発光素子の反射面とし、貫通孔の開口径の大きい側の筒体端部外周に有する段差の高さより薄い厚さのフランジ部でセラミック基板の段差の上面に設ける導体パターンにろう材を介して接合されているので、セラミック基板に形成されたキャビティ部の壁面形状と関係なくキャビティ部内に反射体が容易に取り付けられて設けられ、セラミック製で耐熱性が高く、キャビティ部の形成が従来の穿孔方式で形成できて歩留まりがよく、小型でパッケージの高さが低く、発光素子の光出力を高くすることができる。また、1枚のセラミック基板に複数個のキャビティ部を形成することもでき、小型でパッケージの高さを低くできる形態で光出力を上げることができる。
【0031】

【0032】

【0033】

【図面の簡単な説明】
【図1】(A)、(B)はそれぞれ本発明の一実施の形態に係る発光素子収納用パッケージの断面図である。
【図2】(A)、(B)はそれぞれ同他の発光素子収納用パッケージの断面図である。
【図3】(A)、(B)はそれぞれ同更に他の発光素子収納用パッケージの断面図である。
【符号の説明】
10、10a、10b、10c、10d、10e:発光素子収納用パッケージ、11:発光素子、12:キャビティ部、13、13a、13b、13c、13d、13e:セラミック基板、14:反射体、15:貫通孔、16:筒体、17:フランジ部、18:ボンディングワイヤ、19:導体パターン、20:レンズ、21:キャビティ部、22:段差、23:挿通孔、24、24a:金属板
[0001]
[Technical field to which the invention belongs]
The present invention relates to a light emitting element storage package for mounting and storing a light emitting element such as an LED on a ceramic substrate.
[0002]
[Prior art]
Conventionally, plastic or ceramic light emitting element housing packages have been used as light emitting element housing packages for housing light emitting elements such as LEDs.
[0003]
A light emitting element such as an LED can increase the light output of the light emitting element by increasing the current. However, the temperature of the light emitting element itself increases as the light output increases. The conventional plastic light-emitting element storage package has a problem in that the temperature rise of the light-emitting element itself mounted on the plastic light-emitting element is not sufficient in heat resistance. Therefore, a light emitting element storage package having a structure in which a plastic barrier is provided on a metal lead frame on which a light emitting element can be directly mounted has been developed as a plastic light emitting element storage package for the purpose of improving heat dissipation of the package. Yes. Further, as a method for increasing the light output of a light emitting element, a plurality of light emitting elements are arranged side by side and used.
[0004]
Conventional ceramic light-emitting element storage packages use a punching machine that consists of dies and pins to vertically punch multiple ceramic green sheets to form a cavity for mounting light-emitting elements. These holes are perforated and a plurality of ceramic green sheets are laminated. The cavity where the light-emitting element is mounted functions as a reflector that can increase the brightness by reflecting the light from the light-emitting element efficiently, but it reflects efficiently because the wall surface is vertical. I can't.
[0005]
Accordingly, the wall surface of the cavity portion is expanded outward at an angle of 55 to 70 degrees with respect to the upper surface, the center line average roughness Ra is 1 to 3 μm on the surface of the wall surface, and the reflectance with respect to light emitted from the light emitting element is 80. There has been proposed a ceramic light-emitting element storage package on which at least a metal layer is deposited (see, for example, Patent Document 1). Moreover, in order to form a cavity for mounting the light emitting element on the ceramic green sheet on which the conductor wiring is formed, the ceramic green sheet is press-molded so that the cavity is wide in the opening direction, degreased and fired. Thereafter, a ceramic light-emitting element housing package in which a light reflection layer is formed by plating the conductor layer on the wall surface of the cavity has been proposed (for example, see Patent Document 2).
[0006]
[Patent Document 1]
JP 2002-232017 (page 1-6, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 9-45965 (page 1-4, FIG. 2)
[0007]
[Problems to be solved by the invention]
However, the conventional light emitting element storage package as described above has the following problems.
(1) A plastic light emitting element storage package using a metal lead frame as a heat radiating plate for generating heat from a light emitting element may not have sufficient heat dissipation and may exceed the heat resistance temperature of plastic. Further, a plastic light emitting element storage package using a metal lead frame occupies a large area in the entire package of the lead frame, and there is a problem that the package cannot be reduced in size.
(2) A ceramic light emitting device housing package in which a cavity portion is formed by punching a ceramic green sheet is difficult to stably form with the normal angle of the wall surface of the cavity portion with respect to the upper surface, and the yield It is a decline.
(3) A ceramic light-emitting element storage package that forms a cavity by pressing a ceramic green sheet is difficult to press-mold without causing cracks in the ceramic green sheet, resulting in a decrease in yield. . In addition, since the light emitting element storage package presses the ceramic green sheet three-dimensionally, the green density of the ceramic green sheet changes depending on the location, which prevents uniform shrinkage during firing and causes deformation, resulting in a decrease in yield. It has become.
(4) In order to increase the light output of the light-emitting element, mounting a plurality of individual light-emitting element storage packages on which the light-emitting element is mounted in a plane and mounting on a board or the like increases the mounting area.
The present invention has been made in view of such circumstances, and is to provide a light emitting element storage package that is easily formed with a high yield using a ceramic substrate having high heat resistance and that can increase the light output of the light emitting element. Objective.
[0008]
[Means for Solving the Problems]
A light emitting element storage package according to the present invention that meets the above-described object is a light emitting element storage package having one or a plurality of cavity parts for mounting a light emitting element on a ceramic substrate, and the cavity part includes a cavity part. It has a reflector for reflecting the light of the light emitting element that is loaded without contacting the wall surface and the bottom surface and is abutted with and bonded to the upper surface of the ceramic substrate at the upper edge of the cavity, and the reflector is tapered. The wall surface of the through hole of the metal cylinder having the conical through hole is used as a reflection surface of the light emitting element, and the flange part of the outer periphery of the cylinder body on the side with the larger opening diameter of the through hole is used as the cavity part of the ceramic substrate. It is joined to the conductor pattern provided on the upper edge periphery via a brazing material. As a result, the reflector is easily mounted in the cavity regardless of the wall surface shape of the cavity formed on the ceramic substrate. Thus, a light-emitting element housing package that can be formed by a method, has a high yield, is small, and can increase the light output of the light-emitting element can be provided. In addition, since a plurality of cavity portions can be formed on one ceramic substrate, a light emitting element storage package capable of increasing the light output in a small form can be provided.
[0009]
Another light-emitting element storage package according to the present invention that meets the above-described object is a light-emitting element storage package having one or a plurality of cavities for mounting a light-emitting element on a ceramic substrate. The cavity portion has a step for reflecting the light of the light emitting element that is loaded without contacting the wall surface and bottom surface of the cavity portion and is contacted and bonded to the top surface of the step. In addition, the reflector has a wall surface of the through hole of the metal cylinder having a tapered conical through hole as a reflection surface of the light emitting element, and is disposed on the outer periphery of the cylinder end on the side where the through hole has a larger opening diameter. A flange portion having a thickness smaller than the height of the step is joined to a conductor pattern provided on the upper surface of the step of the ceramic substrate via a brazing material. As a result, the reflector is easily mounted in the cavity regardless of the wall surface shape of the cavity formed on the ceramic substrate. A light emitting element housing package that can be formed by a method, has a high yield, is small in size, has a low package height, and can increase the light output of the light emitting element. In addition, since a plurality of cavities can be formed on a single ceramic substrate, it is possible to provide a light emitting element storage package that can increase the light output in a small form that can reduce the height of the package.
[0010]

[0011]

[0012]

[0013]
DETAILED DESCRIPTION OF THE INVENTION
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIGS. 1A and 1B are cross-sectional views of a light-emitting element storage package according to an embodiment of the present invention, respectively, and FIGS. 2A and 2B are for storing other light-emitting elements, respectively. Cross-sectional views of the package and FIGS. 3A and 3B are cross-sectional views of other light-emitting element storage packages.
[0014]
With reference to FIGS. 1A and 1B, a light emitting element storage package 10, 10a according to an embodiment of the present invention will be described.
As shown in FIG. 1A, the light emitting element storage package 10 has a rectangular shape, a polygonal shape, a circular shape, or the like in plan view, and a cavity portion 12 for mounting the light emitting element 11 at the center. One. In the light emitting element storage package 10, a ceramic substrate 13 made of alumina (Al 2 O 3 ), low-temperature fired ceramic, aluminum nitride, or the like is used for mounting the light emitting element 11 in the cavity portion 12. The cavity portion 12 has holes for the cavity portion 12 in the necessary portions of the ceramic green sheets before firing the ceramic substrate 13 so that the perforated surface of each ceramic green sheet is vertical. It is formed by drilling, stacking, and firing. Note that the holes for the cavity portion 12 may have the same size for a plurality of ceramic green sheets, or may have a stepped shape with larger holes as they go to the upper layer.
[0015]
The cavity portion 12 includes a reflector 14 that is loaded in the cavity portion 12 and is joined to the upper surface of the ceramic substrate 13 at the upper peripheral edge of the cavity portion 12 with a brazing material such as AgCu brazing or AuSn brazing. The reflector 14 has a through-hole in a cylindrical body 16 made of a metal such as KV (Fe—Ni—Co alloy, trade name “Kovar”) having a tapered conical through-hole 15 or aluminum. The 15 wall surfaces are used as reflecting surfaces for light emitted from the light emitting element 11. The reflector 14 includes a flange portion 17 on the outer periphery of the end portion of the cylindrical body 16 on the side with the larger opening diameter of the through hole 15, and is joined to the ceramic substrate 13 by the flange portion 17. This reflector 14 emits light from the light emitting element 11 because the wall surface of the tapered conical through hole 15 is a reflective surface of light emitted from the light emitting element 11 and the side with the larger opening diameter of the through hole 15 is on the outside. Light can be efficiently reflected to improve light output. The tapered conical shape of the wall surface of the through-hole 15 of the reflector 14 is not limited to a linear ridgeline, and may be a curved shape such as a bowl shape.
[0016]
As shown in FIG. 1B, the light emitting element storage package 10a has a plurality of cavity portions 12 in one ceramic substrate 13a, and the light emitting elements 11 (not shown in FIG. (See (A)) can be mounted. Each cavity part 12 has a reflector 14 which is loaded in each cavity part 12 and joined with a brazing material or the like on the upper surface of the ceramic substrate 13a at the upper peripheral edge of each cavity part 12. These reflectors 14 reflect light emitted from the light emitting elements 11 on the wall surfaces of the through holes 15 of the cylindrical body 16 made of metal having the tapered conical through holes 15 as in the case of the light emitting element housing package 10. It is a surface. These reflectors 14 are provided with a flange portion 17 on the outer periphery of the end portion of the cylindrical body 16 on the side with the larger opening diameter of the through hole 15, and are joined to the ceramic substrate 13 a by the flange portion 17. The light emitting element storage package 10a has a plurality of cavity portions 12 on one ceramic substrate 13a, and the light emitting elements 11 are mounted in the respective cavity portions 12, so that a lighter element module that is smaller and brighter can be realized. Become.
[0017]
In the light emitting element storage packages 10 and 10a, a light emitting element 11 (not shown in FIG. 1B) is mounted on the bottom surface of the cavity portion 12, and is connected to the light emitting element 11 with a bonding wire 18 from the outside. A conductor pattern 19 is formed on the ceramic substrates 13 and 13a for electrical conduction. Further, in the light emitting element storage package 10, 10a, the light emitting element 11 is mounted in the cavity portion 12, and after the cavity portion 12 is filled with a phosphor resin or the like, the light emitting element 11 is stored in an airtight manner. The lens 20 (not shown in FIG. 1B) is bonded to the upper surface of the flange portion 17 of the opening of the reflector 14 using an organic resin adhesive, an inorganic resin adhesive, or the like.
[0018]
Here, a manufacturing method of the ceramic substrates 13 and 13a made of alumina which is an example of ceramic will be described. First, the ceramic green sheet is a powder obtained by adding an appropriate amount of a sintering aid such as magnesia, silica, calcia to alumina powder, a plasticizer such as dioctyl phthalate, a binder such as acrylic resin, and toluene, xylene, alcohol. A solvent such as the like is added and sufficiently kneaded, and then defoamed to produce a slurry having a viscosity of 2000 to 40000 cps. Next, the slurry is formed into a roll sheet having a thickness of, for example, 0.25 mm by a doctor blade method or the like, and cut into an appropriate size to produce a ceramic green sheet.
[0019]
Next, this ceramic green sheet is used for a via 21 for forming a hole for the cavity portion 12 and conduction between the upper layer and the lower layer at a predetermined position by using a punching die, a punching machine or the like. Are drilled. Further, the ceramic green sheet is filled with a hole for the via 21 by screen printing using a metal conductor paste made of tungsten or the like, or the reflector 14 is bonded with a brazing material or the like, or electrically connected to the light emitting element 11. A conductive pattern 19 is formed on the surface so as to be conductive. A plurality of ceramic green sheets on which printing has been completed are stacked to form a laminate. Next, ceramic substrates 13 and 13a are manufactured by simultaneously firing a metal conductor made of tungsten or the like and a ceramic green sheet in a firing furnace in a reducing atmosphere. The conductor pattern 19 formed on the bottom surface of the cavity portion 12 is provided with a necessary wire bond pad portion from the opening portion so as not to be short-circuited even if the tip portion of the cylindrical body 16 of the reflector 14 contacts. An insulating film (not shown) made of substantially the same material as the ceramic green sheet to be exposed may be formed before being co-fired and then fired at the time of co-firing.
[0020]
Next, with reference to FIGS. 2A and 2B, other light emitting element storage packages 10b and 10c according to an embodiment of the present invention will be described.
As shown in FIG. 2A, the light-emitting element storage package 10b has one cavity portion 12 for mounting the light-emitting elements 11 in the same manner as the light-emitting element storage package 10 described above. In the light emitting element storage package 10b, a ceramic substrate 13b made of alumina (Al 2 O 3 ), low-temperature fired ceramic, aluminum nitride or the like is used for mounting the light emitting element 11 in the cavity portion 12. This ceramic substrate 13 b has a step 22 on the periphery of the upper end of the cavity portion 12. The cavity portion 12 has a reflector 14 that is loaded in the cavity portion 12 and joined by a brazing material or the like at the step 22. Like the light emitting element storage package 10, the reflector 14 reflects light emitted from the light emitting element 11 on the wall surface of the through hole 15 of the metal cylinder 16 having the tapered conical through hole 15. It is a surface. The reflector 14 includes a flange portion 17 on the outer periphery of the end portion of the cylindrical body 16 on the side with the larger opening diameter of the through hole 15, and is joined to the step 22 of the ceramic substrate 13 b by the flange portion 17.
[0021]
As shown in FIG. 2B, the light emitting element storage package 10c has a plurality of cavity portions 12 in one ceramic substrate 13c, and the light emitting elements 11 (not shown in FIG. (See (A)) can be mounted. Each cavity portion 12 has a reflector 14 that is loaded in each cavity portion 12 and joined by a brazing material or the like at each step 22 of the ceramic substrate 13c. Similar to the case of the light emitting element storage package 10 b, these reflectors 14 transmit light emitted from the light emitting element 11 through the wall surface of the through hole 15 of the cylindrical body 16 having a tapered conical through hole 15. Reflective surface. These reflectors 14 are provided with a flange portion 17 on the outer periphery of the end portion of the cylindrical body 16 on the side with the larger opening diameter of the through hole 15, and are joined to the ceramic substrate 13 c by the flange portion 17.
[0022]
The light emitting element storage packages 10b and 10c have a light emitting element 11 (not shown in FIG. 2B) on the bottom surface of the cavity portion 12 as in the case of the light emitting element storage packages 10 and 10a. A conductive pattern 19 is formed on the ceramic substrates 13b and 13c so as to be mounted, connected to the light emitting element 11 by the bonding wire 18 and electrically connected from the outside. In the light emitting element storage packages 10b and 10c, the light emitting element 11 is mounted in the cavity portion 12, and after the cavity portion 12 is filled with a phosphor resin or the like, the light emitting element 11 is stored in an airtight manner. A lens 20 (not shown in FIG. 2B) is bonded to the upper surface of the flange portion 17 of the opening of the reflector 14 using an organic resin adhesive, an inorganic resin adhesive, or the like. Further, when a ceramic made of alumina, which is an example of ceramic, is used for the ceramic substrates 13b and 13c of the light emitting element storage packages 10b and 10c, the ceramic substrates 13b and 13c are manufactured by a method similar to the method for manufacturing the ceramic substrates 13 and 13a. A ceramic substrate can be used.
[0023]
Next, referring to FIGS. 3A and 3B, another light emitting element storage package 10d similar to the above light emitting element storage package 10, 10a, 10b, 10c according to an embodiment of the present invention. 10e will be described.
As shown in FIG. 3A, the light emitting element storage package 10d has a rectangular shape, a polygonal shape, a circular shape, or the like in plan view, and has a cavity portion 12 for mounting the light emitting element 11 at the center. One. The light emitting element storage package 10d includes a flat ceramic substrate 13d formed by laminating and firing one or more ceramic green sheets made of alumina (Al 2 O 3 ), low-temperature fired ceramic, aluminum nitride, or the like. Is used. Further, on the upper surface of the ceramic substrate 13d, a metal plate 24 having a thermal expansion coefficient similar to that of a ceramic such as KV or 42 alloy (Fe—Ni alloy) provided with an insertion hole 23 formed of a tapered wall surface is an AgCu solder. Or, it is joined with a brazing material such as AuSn brazing. In the light emitting element storage package 10 d, the cavity portion 12 is formed by the ceramic substrate 13 d exposed from the opening of the insertion hole 23 of the metal plate 24 and the tapered wall surface of the insertion hole 23 of the metal plate 24.
[0024]
The insertion hole 23 of the metal plate 24 is formed in a tapered shape in which the opening diameter on the upper surface side of the metal plate 24 is larger than the opening diameter on the lower surface side of the metal plate 24. The tapered wall surface of the insertion hole 23 is used as a reflection surface for reflecting light emitted from the light emitting element 11. Since the tapered wall surface is opened to the outside, the light output from the light emitting element 11 can be efficiently reflected to improve the light output. Note that the tapered wall surface of the insertion hole 23 of the metal plate 24 is not limited to a ridge line in the same manner as the shape of the wall surface of the through hole 15 of the reflector 14. Such a curved shape may be used.
[0025]
As shown in FIG. 3B, in the light emitting element housing package 10e, a metal plate 24a having a plurality of tapered through holes 23 is joined to one ceramic substrate 13e made of a flat plate. The light emitting element storage package 10e has light emitting elements 11 (not shown, not shown) in the respective cavity portions 12 formed by the ceramic substrate 13e exposed from the opening of the insertion hole 23 and the tapered wall surface of the metal plate 24a. 3 (A)) can be mounted. In each cavity portion 12, the insertion hole 23 of the metal plate 24 a has a tapered shape in which the opening diameter on the upper surface side is larger than the lower surface side, and the tapered wall surface is a reflection surface for light emitted from the light emitting element 11. . Since the light emitting element storage package 10e can be formed by joining a metal plate 24a having a plurality of insertion holes 23 to a flat ceramic substrate 24a, a package that can realize a lighter element module that is smaller and brighter. Can be easily provided.
[0026]
In the light emitting element storage packages 10d and 10e, the light emitting element 11 (FIG. 3B) is formed on the bottom surface of the cavity portion 12 as in the case of the light emitting element storage packages 10, 10a, 10b, and 10c. A conductor pattern 19 is formed on the ceramic substrates 13d and 13e so as to be connected to the light emitting element 11 by the bonding wire 18 and to be electrically connected from the outside. In the light emitting element storage packages 10d and 10e, the light emitting element 11 is mounted in the cavity portion 12, and after the cavity portion 12 is filled with a phosphor resin or the like, the light emitting element 11 is stored in an airtight manner. The lens 20 (not shown in FIG. 3B) is bonded to the upper peripheral edge of the opening on the upper surface side of the insertion hole 23 of the metal plates 24, 24a using an organic resin adhesive, an inorganic resin adhesive, or the like. Yes. Further, when ceramic made of alumina, which is an example of ceramic, is used for the ceramic substrates 13d and 13e of the light emitting element storage packages 10d and 10e, the ceramic substrate in the method for manufacturing the ceramic substrates 13, 13a, 13b, and 13c is used. A ceramic substrate manufactured by substantially the same method can be used except that the cavity portion 12 is not formed.
[0027]
In the light emitting element storage packages 10, 10a, 10b, 10c, 10d, and 10e, the light emitted from the light emitting element 11 is reflected on the reflecting surface of the reflector 14 and the reflecting surfaces of the metal plates 24 and 24a. For example, coating by Au plating, Ni plating, Ag plating, or the like is preferably performed. By this coating, the brightness of light emitted from the light emitting element 11 can be improved.
[0028]
When one ceramic substrate 13a, 13c, 13e such as the light emitting device storage package 10a, 10c, 10e has a plurality of cavity portions 12, the light emitting device 11 is provided on the ceramic substrates 13a, 13c, 13e. For example, a driving semiconductor element for driving may be mounted on the back side of the ceramic substrates 13a, 13c, and 13e. The ceramic substrates 13a, 13c, and 13e are preferably formed with wiring patterns for driving circuits. Since the light emitting form of the plurality of light emitting elements 11 can be controlled by the driving semiconductor element and the wiring pattern for the driving circuit, for example, the brightness can be adjusted steplessly.
[0029]
【The invention's effect】
The light-emitting element storage package according to claim 1 is a light-emitting element storage package having one or a plurality of cavities for mounting a light-emitting element on a ceramic substrate, wherein the cavity includes a wall surface and a bottom surface of the cavity. The reflector has a reflector for reflecting the light of the light emitting element that is loaded without being in contact with the upper surface of the ceramic substrate at the upper peripheral edge of the cavity portion and bonded, and the reflector has a tapered conical shape. The wall surface of the through hole of the metal cylinder having the through hole is used as a reflection surface of the light emitting element, and the flange is provided on the outer periphery of the end of the cylinder on the larger opening diameter side of the through hole. Since the conductor pattern to be provided is joined via a brazing material, the reflector can be easily mounted in the cavity, and it is made of ceramic and has high heat resistance. Yield can be formed by the puncturing scheme is good, it can be increased optical output of the light emitting device in small size. In addition, a plurality of cavities can be formed on one ceramic substrate, and the light output can be increased in a small size.
[0030]
The light emitting element storage package according to claim 2 is a light emitting element storage package having one or a plurality of cavities for mounting the light emitting elements on the ceramic substrate. The cavity portion has a reflector for reflecting the light of the light emitting element that is loaded without contacting the wall surface and the bottom surface of the cavity portion and is contacted and joined at the top surface of the step. From the height of the step provided on the outer periphery of the end of the cylindrical body on the side with the larger opening diameter of the through-hole, the wall of the through-hole of the metal cylinder having a tapered conical through-hole is used as the reflecting surface of the light-emitting element. Since the thin flange portion is joined to the conductor pattern provided on the upper surface of the step of the ceramic substrate through the brazing material, the cap is formed regardless of the wall surface shape of the cavity portion formed on the ceramic substrate. A reflector is easily installed in the tee, and it is made of ceramic and has high heat resistance. The cavity can be formed by the conventional perforation method, yield is good, small size, low package height, and light emitting device. Can increase the light output. In addition, a plurality of cavities can be formed on a single ceramic substrate, and the light output can be increased in a small form that can reduce the height of the package.
[0031]

[0032]

[0033]

[Brief description of the drawings]
1A and 1B are cross-sectional views of a light-emitting element storage package according to an embodiment of the present invention.
2A and 2B are cross-sectional views of other light emitting element storage packages.
FIGS. 3A and 3B are cross-sectional views of still other light emitting element storage packages.
[Explanation of symbols]
10, 10a, 10b, 10c, 10d, 10e: Light emitting element storage package, 11: Light emitting element, 12: Cavity, 13, 13a, 13b, 13c, 13d, 13e: Ceramic substrate, 14: Reflector, 15: Through hole, 16: cylindrical body, 17: flange portion, 18: bonding wire, 19: conductor pattern, 20: lens, 21: cavity portion, 22: step, 23: insertion hole, 24, 24a: metal plate

Claims (2)

セラミック基板に発光素子を搭載するための1又は複数個のキャビティ部を有する発光素子収納用パッケージであって、
前記キャビティ部には該キャビティ部の壁面及び底面に当接しないで装填され該キャビティ部の上端周縁の前記セラミック基板の上面で当接して接合される前記発光素子の光を反射するための反射体を有し、しかも、該反射体はテーパ状の円錐形状の貫通孔を有する金属製の筒体の該貫通孔の壁面を前記発光素子の反射面とし、前記貫通孔の開口径の大きい側の前記筒体端部外周に有するフランジ部で前記セラミック基板の前記キャビティ部の上端周縁に設ける導体パターンにろう材を介して接合されていることを特徴とする発光素子収納用パッケージ。
A light emitting element storage package having one or a plurality of cavities for mounting a light emitting element on a ceramic substrate,
A reflector for reflecting the light of the light emitting element that is loaded in the cavity portion without contacting the wall surface and bottom surface of the cavity portion and is contacted and bonded to the upper surface of the ceramic substrate at the upper peripheral edge of the cavity portion. In addition, the reflector has a wall surface of the through hole of a metal cylinder having a tapered conical through hole as a reflecting surface of the light emitting element, and the reflector has a large opening diameter side. A package for accommodating a light emitting element, wherein a flange part provided on an outer periphery of the end of the cylindrical body is joined to a conductor pattern provided on an upper end periphery of the cavity part of the ceramic substrate via a brazing material.
セラミック基板に発光素子を搭載するための1又は複数個のキャビティ部を有する発光素子収納用パッケージであって、
前記セラミック基板には前記キャビティ部の上端周縁に段差を有し、前記キャビティ部には該キャビティ部の壁面及び底面に当接しないで装填され前記段差の上面で当接して接合される前記発光素子の光を反射するための反射体を有し、しかも、該反射体はテーパ状の円錐形状の貫通孔を有する金属製の筒体の該貫通孔の壁面を前記発光素子の反射面とし、前記貫通孔の開口径の大きい側の前記筒体端部外周に有する前記段差の高さより薄い厚さのフランジ部で前記セラミック基板の前記段差の上面に設ける導体パターンにろう材を介して接合されていることを特徴とする発光素子収納用パッケージ。
A light emitting element storage package having one or a plurality of cavities for mounting a light emitting element on a ceramic substrate,
The ceramic substrate has a step at a peripheral edge at the upper end of the cavity portion, and the cavity portion is loaded without contacting the wall surface and the bottom surface of the cavity portion, and the light emitting element is contacted and bonded to the upper surface of the step A reflector for reflecting the light, and the reflector has a wall surface of the through-hole of a metal cylinder having a tapered conical through-hole as a reflection surface of the light-emitting element, Bonded to the conductor pattern provided on the upper surface of the step of the ceramic substrate with a flange portion having a thickness smaller than the height of the step provided on the outer periphery of the end of the cylindrical body on the larger opening diameter side of the through hole. A package for storing light emitting elements.
JP2003124996A 2003-04-30 2003-04-30 Light emitting device storage package Expired - Fee Related JP4383088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124996A JP4383088B2 (en) 2003-04-30 2003-04-30 Light emitting device storage package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124996A JP4383088B2 (en) 2003-04-30 2003-04-30 Light emitting device storage package

Publications (2)

Publication Number Publication Date
JP2004335518A JP2004335518A (en) 2004-11-25
JP4383088B2 true JP4383088B2 (en) 2009-12-16

Family

ID=33502387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124996A Expired - Fee Related JP4383088B2 (en) 2003-04-30 2003-04-30 Light emitting device storage package

Country Status (1)

Country Link
JP (1) JP4383088B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942693B2 (en) * 2003-08-28 2012-05-30 京セラ株式会社 Light emitting device
KR101080097B1 (en) 2004-08-16 2011-11-07 서울반도체 주식회사 Light emitting diode package employing a ceramic body
JP2006181779A (en) * 2004-12-27 2006-07-13 Sumitomo Metal Electronics Devices Inc Manufacturing method of ceramic substrate
WO2006100917A1 (en) * 2005-03-22 2006-09-28 Tanaka Kikinzoku Kogyo K.K. Light emitting element reflector, manufacturing method thereof, and light emitting device using the reflector
KR100665182B1 (en) 2005-06-03 2007-01-09 삼성전기주식회사 High power led package and fabrication method thereof
KR100631993B1 (en) * 2005-07-20 2006-10-09 삼성전기주식회사 Led package and fabricating method thereof
JP4889267B2 (en) * 2005-09-07 2012-03-07 共立エレックス株式会社 Manufacturing method of light emitting diode package
JP4857709B2 (en) * 2005-10-25 2012-01-18 日亜化学工業株式会社 Light emitting device
KR101283182B1 (en) 2006-01-26 2013-07-05 엘지이노텍 주식회사 Package of light-emitting diode and manufacturing method thereof
TW200622312A (en) * 2006-03-01 2006-07-01 Elit Fine Ceramics Co Ltd Manufacture method of reflector for light emitting diode
JP4846498B2 (en) * 2006-09-22 2011-12-28 株式会社東芝 Optical semiconductor device and method for manufacturing optical semiconductor device
KR100807714B1 (en) * 2007-03-05 2008-02-28 주식회사 아이엠텍 Package manufacturing method for light emitting diode using mold
KR100910716B1 (en) * 2007-09-28 2009-08-04 서울반도체 주식회사 Molding type led package
CN101442040B (en) * 2007-11-20 2011-03-16 奇力光电科技股份有限公司 Encapsulation structure for LED and method of manufacturing the same
JP2010109119A (en) * 2008-10-30 2010-05-13 Sanyo Electric Co Ltd Light emitting module, and method of manufacturing the same
JP2011054736A (en) * 2009-09-01 2011-03-17 Sharp Corp Light-emitting device, plane light source, and liquid crystal display device
JP2012164774A (en) * 2011-02-04 2012-08-30 Nippon Carbide Ind Co Inc Method of manufacturing ceramic package
KR101273045B1 (en) 2012-06-11 2013-06-10 엘지이노텍 주식회사 Package of light emitting diode
JPWO2020045604A1 (en) * 2018-08-31 2021-08-12 パナソニックIpマネジメント株式会社 Package for mounting semiconductor elements and semiconductor devices

Also Published As

Publication number Publication date
JP2004335518A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4383088B2 (en) Light emitting device storage package
JP4737842B2 (en) Manufacturing method of light emitting element storage package
JP4062358B2 (en) LED device
JP5403920B2 (en) Light emitting element storage package and light emitting device
JP2006216764A (en) Wiring board for packaging light-emitting device
JP2006303351A (en) Package for storing light emitting element
US9848491B2 (en) Wiring board, electronic device, and electronic module
JP2005310935A (en) Storing package for light-emitting element
JP4387160B2 (en) Manufacturing method of light emitting element storage package
JP2009038161A (en) Light emitting element storage package
JP2007258619A (en) Light-emitting element housing package
JP2006261290A (en) Package for containing light emitting element and its manufacturing process
JP2014157949A (en) Wiring board and electronic device
JP2006303366A (en) Package for storing light emitting element, and its manufacturing process
JP2005019688A (en) Package for accommodating light emitting element and light emitting device
JP2006261286A (en) Package for containing light emitting element and its manufacturing process
JP5241537B2 (en) Electronic component mounting substrate, electronic device, and method of manufacturing electronic component mounting substrate
JP4331585B2 (en) Light emitting element storage package and manufacturing method thereof
JP2007048969A (en) Package for light-emitting device storage
JP2007227693A (en) Package for housing light emitting element, and its manufacturing method
JP4070195B2 (en) Light emitting element storage package
JP2006222358A (en) Wiring substrate for mounting light emitting element
JP2006324283A (en) Package for storing light-emitting element
JP2005159082A (en) Package for light emitting element housing, method for manufacturing the same, and light emitting device
JP4336137B2 (en) Light emitting element storage package and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees