JP4365515B2 - Manufacturing method of semiconductor module - Google Patents

Manufacturing method of semiconductor module Download PDF

Info

Publication number
JP4365515B2
JP4365515B2 JP2000249478A JP2000249478A JP4365515B2 JP 4365515 B2 JP4365515 B2 JP 4365515B2 JP 2000249478 A JP2000249478 A JP 2000249478A JP 2000249478 A JP2000249478 A JP 2000249478A JP 4365515 B2 JP4365515 B2 JP 4365515B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
base material
manufacturing
semiconductor module
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000249478A
Other languages
Japanese (ja)
Other versions
JP2002064179A (en
Inventor
隆 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2000249478A priority Critical patent/JP4365515B2/en
Publication of JP2002064179A publication Critical patent/JP2002064179A/en
Application granted granted Critical
Publication of JP4365515B2 publication Critical patent/JP4365515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体モジュールの製造方法に関するものである。
【0002】
【従来の技術】
近年には、ICチップの高密度実装化に対応するために、ICチップを積層した半導体モジュールを製造する技術が開発されてきている。例えば、特開平9−219490号公報、特開平10−135267号公報、及び特開平10−163414号公報には、そのような積層パッケージが開示されている。
【0003】
このような従来の技術では、TSOP(Thin Small Outline Package)、TCP(Tape Carrier Package)、BGA(Ball Grid Array)等のICパッケージを一層毎に組み立てた後に、複数のICパッケージを積層する。このとき、各層間は、予め各パッケージに設けられた外部接続用の端子を介して接続される。このように従来の工法では、多くの製造工程を経なければならないことから、加工コストが増加していた。
【0004】
ところで、図6および図7には、上記のような従来の工法により製造された積層パッケージを示した。図6に示すものは、樹脂でモールドされたパッケージを積層したものである。また、図7は、図6のパッケージを搭載したモジュール基板の側面図および平面図である。このICパッケージ100A、100Bには、IC実装部106と、その上面に実装されたICチップ102と、ICチップ102と外部部品とを接続するリード101と、ICチップ102とリード101とを樹脂内部で接続するボンディングワイヤ103とが設けられている。また、ICチップ102を含む所定の領域は、樹脂体104により被覆されている。
【0005】
このような構造のICパッケージ100Aの上側には、他のICパッケージ100Bが積層された状態とされて、基板105に実装されている。
【0006】
【発明が解決しようとする課題】
上記のICパッケージ100A、100Bを厚さ方向に積み重ねて、基板105に実装しようとすると、樹脂体104の厚みのために総モジュール厚が厚くなってしまうという問題がある。また、ICパッケージ100A、100Bを横方向に基板105に実装する場合には、総モジュールが大きくなるという問題がある。さらに、上下のパッケージ100A、100Bは、それぞれのリード101によって基板105に接続されているので、パッケージ100A、100Bの積層時に位置ずれが生じると、リード101間が短絡してしまう可能性があった。
【0007】
今後は、例えばICカードや携帯電話等の電子機器の小型化に伴い、ICパッケージに対しても、更なる高密度化と薄型化が図られると考えられているが、従来の工法によっては、そのような高密度・薄型化を図ることは困難である。
【0008】
この問題を解決するためには、ICチップ102を樹脂体104でモールドする構成を変更し、例えばプリント基板を層間部材を介して積層しながらその層間にICチップを実装するという構成が考えられる。このとき、層間部材としては、その上下両面に配される配線回路間の接続を図るための導電性物質を充填したビアホールを備えたプリント基板を使用することができる。そのようなプリント基板を製造するためには、例えば片面銅張積層板の絶縁層を貫通して導体層に到達するビアホールを形成させ、このビアホール内に導電性ペーストを充填する、あるいは電解メッキによってメッキ金属を充填するなどの方法が考えられる。
【0009】
しかし、導電性ペーストを充填する方法では、ビアホールの一方の開口が導体層により閉止されていること、半導体チップの収容に必要な空間を確保するために層間部材の厚みを厚くする必要があることから、ビアホール内に導電性ペーストを隙間なく充填することが困難な場合がある。一方、電解メッキ法では多大な時間と手間を要し、生産性が低下するおそれがある。また、これらのプリント基板及び層間部材を積層する際には、各プリント基板と層間部材との間に接着層を設けることが必要であり、コストが高くなるおそれがある。
【0010】
本発明は、上記した事情に鑑みてなされたものであり、その目的は、積層型の半導体モジュールを簡便かつ安価に製造できる方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題を解決するための請求項1の発明に係る半導体モジュールの製造方法は、所定の配線回路を形成させて一面側に半導体チップを実装したプリント基板を、前記配線回路に接続可能な導電性バンプと前記半導体チップを収容可能な開口部とを備えた層間部材を介して積層する半導体モジュールの製造方法であって、あらかじめ所定の前記配線回路を形成させた前記プリント基板の前記一面側に前記半導体チップを実装する工程と、前記層間部材となる絶縁性基材の両面に保護フィルムを貼り付ける工程と、前記絶縁性基材の所定の位置にスルーホールを形成する工程と、前記スルーホールに導電性ペーストを充填して導電性バンプを形成する工程と、前記保護フィルムを剥離する工程と、前記絶縁性基材に前記半導体チップを収容可能な前記開口部を形成する工程と、前記絶縁性基材と前記プリント基板とを交互に積層して接着する工程とを経ることを特徴とする。
【0012】
請求項2の発明は、請求項1に記載の半導体モジュールの製造方法であって、前記絶縁性基材がプリプレグであることを特徴とする。
【0013】
ここで、プリプレグとは、基材に熱硬化性樹脂を含浸させて加熱により半硬化状態としたものであり、基材としては例えば紙、ガラス布、ガラス不織布、合成繊維布等が、熱硬化性樹脂としては例えばエポキシ樹脂、フェノール樹脂等が使用できる。
【0014】
【発明の作用、および発明の効果】
請求項1の発明によれば、両面に保護フィルムを貼りつけた絶縁性基材の所定の位置にスルーホールを形成させ、このスルーホールに導電性ペーストを充填した後に、保護フィルムを剥離することにより、絶縁性基材の両面に突出した導電性バンプを形成することができる。この方法においては、両方の開口が開放されたスルーホールに導電性ペーストを充填するため、一方の開口が閉止されたビアホールの場合と比較して、充填の際に孔内に隙間が生じてしまうことを回避でき、接続信頼性を高めることができる。また、時間と手間を要する電解メッキを行う必要がないため、簡便かつ安価に半導体モジュールを製造することができる。
【0015】
請求項2の発明によれば、絶縁性基材としてはプリプレグを使用する。プリプレグは半硬化状態であるため、プリント基板と交互に積層してプレスにより加熱加圧することにより、上下に配されたプリント基板と接着、硬化する。このため、プリント基板と層間部材の間に接着層を形成させることが不要となり、簡便かつ安価に半導体モジュールを製造することができる。
【0016】
【発明の実施の形態】
以下、本発明を具体化した一実施形態について、図1〜図5を参照しつつ詳細に説明する。本実施形態の半導体モジュール1は、半導体チップ3を実装したプリント基板2と層間部材20とを交互に重ね合わせ、最下層にI/O配線基板30を重ねて熱プレスすることにより一体化された構造となっている(図1参照)。
【0017】
まず、半導体チップ3を実装したプリント基板2の製造方法について説明する。
【0018】
プリント基板2の出発材料は、片面銅張積層板4である。この片面銅張積層板4は、例えば板状のガラス布エポキシ樹脂により形成される厚さ75μmの絶縁性基板5の一方の面(図2において上面)に、全面に厚さ12μmの銅箔6が貼り付けられた周知の構造である。この片面銅張積層板4において、銅箔6とは反対側の面をポリエチレンテレフタレート(PET)製の保護フィルム7で保護しておく(図2A)。
【0019】
この保護フィルム7が施されている面側(図2において下面側)から、所定の位置に例えばパルス発振型炭酸ガスレーザ加工装置によってレーザ照射を行うことにより、絶縁性基板5を貫通して銅箔6に達するビアホール8を形成する(図2B)。加工条件は、パルスエネルギーが2.0〜10.0mJ、パルス幅が1〜100μs、パルス間隔が0.5ms以上、ショット数が3〜50の範囲内であることが好ましい。次いで、このビアホール8の内部に残留する樹脂を取り除くためのデスミア処理を行う。その後、銅箔6面を保護フィルム7で保護しておき、銅箔6を一方の電極として電解メッキ法によってビアホール8内にメッキ導体9を形成させる(図2C)。なお、メッキ導体9の充填深さは、その上面が保護フィルム7の表面と面一になる程度が好ましい。
【0020】
次に、銅箔6側の保護フィルム7を剥離した後に、感光性のドライフィルム10を貼りつける。このドライフィルム10を所定のパターンにより露光・現像処理することにより、孔部11を形成する(図2D)。この孔部11内に電解メッキを施すことにより、半導体チップ3を実装するための実装用バンプ12となるメッキ層を形成する(図2E)。
【0021】
その後、ドライフィルム10を剥離し、実装用バンプ12を突出させる。同時に、下面側の保護フィルム7を剥離することで、メッキ導体9の先端部が絶縁性基板5の表面から突出されて接続用バンプ13とされる(図3F)。
【0022】
次いで、電着法により、上面側全面と下面側の接続用バンプ13上にフォトレジスト層14を形成させる(図3G)。次に、上面側のフォトレジスト層14を所定の配線回路15のパターンに合わせて露光・現像処理する。この後、フォトレジスト層14により保護されていない銅箔6部分をエッチング処理することにより、配線回路15を形成させる(図3H)。配線回路15の一部は、後述する層間部材20の導電性バンプ25と接続するための接続用ランド15Aとされている。最後に、フォトレジスト層14を除去することにより、プリント基板2の製造が完了する(図3I)。
【0023】
このプリント基板2の上面側の中央部分には、半導体チップ3が実装される(図3J)。半導体チップ3は、プリント基板2の中央に接着層16により固着され、半導体チップ3の下面側に形成された端子部(図示せず)が実装用バンプ12に埋め込まれることにより、プリント基板2の配線回路15と電気的に接続される。
【0024】
次に、層間部材20の製造方法について説明する。
【0025】
層間部材20の出発材料は、例えばガラス布基材にエポキシ樹脂を含浸し、加熱半硬化状態として板状に形成されたプリプレグ21である(図4A)。このプリプレグ21の厚さは、後述のキャビティ(本発明の開口部に該当する)26内に半導体チップ3を収容する必要性から、プリント基板2の上面から半導体チップ3の上面までの高さよりもやや厚く、例えば130μmとされている。また、プリプレグ21の上面および下面の面積は対向するプリント基板2の面積と略等しくされている。
【0026】
このプリプレグ21の両面をPET製の保護フィルム22で保護しておき(図4B)、対向するプリント基板2の接続用ランド15Aおよび接続用バンプ13に対応する位置に、例えばパルス発振型炭酸ガスレーザ加工装置によってレーザ照射を行うことにより、プリプレグ21の厚さ方向に貫通するスルーホール23を形成させる(図4C)。次いで、このスルーホール23内部に残留する樹脂を取り除くデスミア処理を行う。
【0027】
このスルーホール23内に、導電性ペースト24を充填する(図4D)。充填は、例えばスクリーン印刷機を使用して導電性ペースト24を保護フィルム22上から印刷することにより行うことができる。そして、保護フィルム22を剥離すると、導電性ペースト24は保護フィルム22の厚さ分だけプリプレグ21の表面から突出されて導電性バンプ25とされる(図4E)。
【0028】
そして、プリプレグ21の中央部分に例えばレーザ照射を行うことによりキャビティ26を貫通形成させて、層間部材20の製造が完了する(図4F)。キャビティ26の大きさは半導体チップ3の外形寸法よりやや大きくされて、その内部に半導体チップ3を収容可能とされている。
【0029】
上記のように製造されたプリント基板2と層間部材20とを交互に重ね合わせる(図5A)。このとき、最上層にはプリント基板2が、半導体チップ3を実装された面が下面側になるように配置され、その下方には層間部材20が配置される。層間部材20は、そのキャビティ26内にプリント基板2の半導体チップ3を収容し、また、導電性バンプ25がプリント基板2の接続用ランド15Aおよび接続用バンプ13と接続可能なように重ね合わせられる。そして、その下方にはさらにプリント基板2および層間部材20が同様に重ね合わせられ、最下層にはI/O配線基板30が積層される。このI/O配線基板30は、絶縁性基板33の所定の位置にビアホール34が形成され、その上下に所定の配線回路(図示せず)およびランド31が形成されたものである。
【0030】
次いで、プレスにより加圧加熱を行うと、プリプレグ21はいったん溶融流動し、時間の経過に伴って硬化するとともに上下のプリント基板2およびI/O配線基板30と接着して、半導体モジュール1が形成される。このとき、各プリント基板2の接続用ランド15A、接続用パンプ13、およびI/O配線基板30のランド31と、隣接する層間部材20の導電性バンプ25とが接続されており、これにより上下のプリント基板2およびI/O配線基板30の配線回路間が電気的に接続される。また、I/O配線基板30の下面側のランド31には、外部基板との接続用のはんだボール32が形成される。
【0031】
以上のように本実施形態によれば、層間部材20としてプリプレグ21を使用する。プリプレグ21に導電性バンプ25を形成する際には、所定の位置に形成させたスルーホール23に導電性ペースト24を充填する。このスルーホール23は両方の開口が開放されているため、導電性ペースト24の充填の際に孔内に隙間が生じてしまうことを回避でき、接続信頼性を高めることができる。また、時間と手間を要する電解メッキを行う必要がないため、簡便かつ安価に半導体モジュール1を製造することができる。
【0032】
また、プリプレグ21は半硬化状態であるため、プリント基板2と交互に積層して加熱加圧することによりいったん溶融流動し、時間の経過とともに硬化して上下に配されたプリント基板2と接着する。このため、プリント基板2と層間部材20の間に接着層を設けることが不要となり、簡便かつ安価に半導体モジュール1を製造することができる。
【0033】
なお、本発明の技術的範囲は、上記した実施形態によって限定されるものではなく、例えば、次に記載するようなものも本発明の技術的範囲に含まれる。その他、本発明の技術的範囲は、均等の範囲にまで及ぶものである。
(1)本実施形態では、半導体モジュール1はそれぞれ2枚のプリント基板2と層間部材20、およびI/O配線基板30の5層で構成されているいるが、本発明によれば積層枚数は本実施形態の限りではなく、例えば1枚のプリント基板、層間部材およびI/O配線基板の3層で構成されてもよい。あるいはそれぞれ3枚のプリント基板と層間部材、およびI/O配線基板の7層で構成されてもよく、さらに多層化させてもよい。
(2)本実施形態では、電解メッキ法によってメッキ導体9を形成させているが、本発明によればメッキ導体の形成方法は本実施形態の限りではなく、例えば無電界メッキによって形成させてもよい。
【図面の簡単な説明】
【図1】本実施形態におけるプリント基板と層間部材とを積層させて半導体モジュールを製造する前の様子を示す斜視図
【図2】プリント基板の製造方法を示す断面図−1
【図3】プリント基板の製造方法を示す断面図−2
【図4】層間部材の製造方法を示す断面図
【図5】プリント基板と層間部材とを積層させた断面図
【図6】従来におけるICパッケージの側断面図
【図7】(a)従来におけるICパッケージを実装した基板の側面図
(b)従来におけるICパッケージを実装した基板の平面図
【符号の説明】
1…半導体モジュール
2…プリント基板
3…半導体チップ
5…絶縁性基材
15…配線回路
20…層間部材
21…プリプレグ
22…保護フィルム
23…スルーホール
24…導電性ペースト
25…導電性バンプ
26…キャビティ(開口部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor module.
[0002]
[Prior art]
In recent years, in order to cope with high-density mounting of IC chips, a technique for manufacturing a semiconductor module in which IC chips are stacked has been developed. For example, JP-A-9-219490, JP-A-10-135267, and JP-A-10-163414 disclose such a stacked package.
[0003]
In such a conventional technique, IC packages such as TSOP (Thin Small Outline Package), TCP (Tape Carrier Package), and BGA (Ball Grid Array) are assembled for each layer, and then a plurality of IC packages are stacked. At this time, the respective layers are connected via external connection terminals provided in advance in each package. Thus, in the conventional construction method, since many manufacturing steps have to be performed, the processing cost has increased.
[0004]
6 and 7 show a stacked package manufactured by the conventional method as described above. The one shown in FIG. 6 is a laminate of packages molded with resin. 7 is a side view and a plan view of a module substrate on which the package of FIG. 6 is mounted. The IC packages 100A and 100B include an IC mounting portion 106, an IC chip 102 mounted on the upper surface thereof, a lead 101 connecting the IC chip 102 and an external component, and the IC chip 102 and the lead 101 inside the resin. And a bonding wire 103 to be connected with each other. A predetermined region including the IC chip 102 is covered with a resin body 104.
[0005]
Another IC package 100B is stacked on the upper side of the IC package 100A having such a structure and mounted on the substrate 105.
[0006]
[Problems to be solved by the invention]
If the IC packages 100A and 100B are stacked in the thickness direction and mounted on the substrate 105, the total module thickness increases due to the thickness of the resin body 104. Further, when the IC packages 100A and 100B are mounted on the substrate 105 in the horizontal direction, there is a problem that the total module becomes large. Furthermore, since the upper and lower packages 100A and 100B are connected to the substrate 105 by the respective leads 101, there is a possibility that the leads 101 are short-circuited if a positional shift occurs when the packages 100A and 100B are stacked. .
[0007]
In the future, for example, with the miniaturization of electronic devices such as IC cards and mobile phones, it is considered that further increases in density and thickness will be achieved for IC packages, but depending on the conventional construction method, It is difficult to achieve such high density and thinning.
[0008]
In order to solve this problem, a configuration in which the IC chip 102 is molded with the resin body 104 is changed, and for example, a configuration in which the IC chip is mounted between the layers while a printed board is laminated via an interlayer member is conceivable. At this time, as the interlayer member, a printed board including a via hole filled with a conductive material for connection between wiring circuits arranged on the upper and lower surfaces thereof can be used. In order to manufacture such a printed circuit board, for example, a via hole that penetrates the insulating layer of a single-sided copper-clad laminate and reaches the conductor layer is formed, and the via hole is filled with a conductive paste, or by electrolytic plating. A method such as filling with plating metal is conceivable.
[0009]
However, in the method of filling the conductive paste, one opening of the via hole is closed by the conductor layer, and it is necessary to increase the thickness of the interlayer member in order to secure a space necessary for housing the semiconductor chip. Therefore, it may be difficult to fill the via hole with the conductive paste without a gap. On the other hand, the electrolytic plating method requires a great amount of time and labor, and there is a risk that the productivity is lowered. Moreover, when laminating these printed boards and interlayer members, it is necessary to provide an adhesive layer between each printed board and the interlayer members, which may increase the cost.
[0010]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method by which a laminated semiconductor module can be manufactured simply and inexpensively.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for manufacturing a semiconductor module, comprising: a printed circuit board having a predetermined wiring circuit formed thereon and a semiconductor chip mounted on one side; A method of manufacturing a semiconductor module, which is laminated via an interlayer member having a conductive bump and an opening capable of accommodating the semiconductor chip, on the one surface side of the printed circuit board on which the predetermined wiring circuit is formed in advance A step of mounting the semiconductor chip, a step of attaching a protective film to both surfaces of the insulating base material to be the interlayer member, a step of forming a through hole at a predetermined position of the insulating base material, and the through hole Filling the conductive paste into a conductive bump, forming a conductive bump, peeling the protective film, and accommodating the semiconductor chip in the insulating substrate Forming a Do the opening, characterized in that going through a step of adhering by laminating said insulating substrate and the printed circuit board alternately.
[0012]
A second aspect of the present invention is the method of manufacturing a semiconductor module according to the first aspect, wherein the insulating base material is a prepreg.
[0013]
Here, the prepreg is a material in which a base material is impregnated with a thermosetting resin to be in a semi-cured state by heating, and examples of the base material include paper, glass cloth, glass nonwoven fabric, synthetic fiber cloth, etc. As the functional resin, for example, an epoxy resin, a phenol resin, or the like can be used.
[0014]
Operation of the invention and effect of the invention
According to the first aspect of the present invention, the through-hole is formed at a predetermined position of the insulating base material having the protective film pasted on both surfaces, and the protective film is peeled off after filling the through-hole with the conductive paste. Thereby, the conductive bump which protruded on both surfaces of the insulating base material can be formed. In this method, since the conductive paste is filled in the through hole in which both openings are opened, a gap is generated in the hole during filling as compared with the case of the via hole in which one opening is closed. Can be avoided, and connection reliability can be improved. Moreover, since it is not necessary to perform electrolytic plating which requires time and labor, a semiconductor module can be manufactured easily and inexpensively.
[0015]
According to invention of Claim 2, a prepreg is used as an insulating base material. Since the prepreg is in a semi-cured state, it is alternately laminated with the printed circuit board and heated and pressed by a press to adhere and cure to the printed circuit board disposed above and below. For this reason, it is not necessary to form an adhesive layer between the printed board and the interlayer member, and a semiconductor module can be manufactured easily and inexpensively.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment embodying the present invention will be described in detail with reference to FIGS. The semiconductor module 1 of this embodiment is integrated by alternately superimposing the printed circuit board 2 on which the semiconductor chip 3 is mounted and the interlayer member 20 and then superimposing the I / O wiring substrate 30 on the lowermost layer and performing heat pressing. It has a structure (see FIG. 1).
[0017]
First, a method for manufacturing the printed circuit board 2 on which the semiconductor chip 3 is mounted will be described.
[0018]
The starting material for the printed circuit board 2 is a single-sided copper-clad laminate 4. This single-sided copper-clad laminate 4 is made of, for example, a copper foil 6 having a thickness of 12 μm on one surface (upper surface in FIG. 2) of an insulating substrate 5 having a thickness of 75 μm formed of a plate-like glass cloth epoxy resin. Is a well-known structure to which is attached. In this single-sided copper-clad laminate 4, the surface opposite to the copper foil 6 is protected with a protective film 7 made of polyethylene terephthalate (PET) (FIG. 2A).
[0019]
From the surface side on which the protective film 7 is applied (the lower surface side in FIG. 2), laser irradiation is performed at a predetermined position by, for example, a pulse oscillation type carbon dioxide laser processing apparatus, thereby penetrating the insulating substrate 5 and copper foil. A via hole 8 reaching 6 is formed (FIG. 2B). The processing conditions are preferably such that the pulse energy is 2.0 to 10.0 mJ, the pulse width is 1 to 100 μs, the pulse interval is 0.5 ms or more, and the number of shots is 3 to 50. Next, a desmear process for removing the resin remaining inside the via hole 8 is performed. Then, the copper foil 6 surface is protected with the protective film 7, and the plated conductor 9 is formed in the via hole 8 by the electrolytic plating method using the copper foil 6 as one electrode (FIG. 2C). The filling depth of the plated conductor 9 is preferably such that the upper surface thereof is flush with the surface of the protective film 7.
[0020]
Next, after peeling off the protective film 7 on the copper foil 6 side, a photosensitive dry film 10 is attached. The dry film 10 is exposed and developed in a predetermined pattern to form the hole 11 (FIG. 2D). By applying electrolytic plating in the hole 11, a plating layer to be a mounting bump 12 for mounting the semiconductor chip 3 is formed (FIG. 2E).
[0021]
Thereafter, the dry film 10 is peeled off, and the mounting bumps 12 are projected. At the same time, by peeling off the protective film 7 on the lower surface side, the tip end portion of the plating conductor 9 protrudes from the surface of the insulating substrate 5 to form the connection bump 13 (FIG. 3F).
[0022]
Next, a photoresist layer 14 is formed on the entire upper surface side and the connection bumps 13 on the lower surface side by electrodeposition (FIG. 3G). Next, the photoresist layer 14 on the upper surface side is subjected to exposure / development processing in accordance with a predetermined pattern of the wiring circuit 15. Thereafter, the wiring circuit 15 is formed by etching the copper foil 6 portion not protected by the photoresist layer 14 (FIG. 3H). A part of the wiring circuit 15 serves as a connection land 15A for connection to a conductive bump 25 of an interlayer member 20 described later. Finally, by removing the photoresist layer 14, the production of the printed circuit board 2 is completed (FIG. 3I).
[0023]
A semiconductor chip 3 is mounted on the central portion on the upper surface side of the printed board 2 (FIG. 3J). The semiconductor chip 3 is fixed to the center of the printed circuit board 2 by the adhesive layer 16, and terminal portions (not shown) formed on the lower surface side of the semiconductor chip 3 are embedded in the mounting bumps 12, whereby the printed circuit board 2. It is electrically connected to the wiring circuit 15.
[0024]
Next, a method for manufacturing the interlayer member 20 will be described.
[0025]
The starting material of the interlayer member 20 is, for example, a prepreg 21 formed in a plate shape in a semi-heated state by impregnating a glass cloth base material with an epoxy resin (FIG. 4A). The thickness of the prepreg 21 is larger than the height from the upper surface of the printed circuit board 2 to the upper surface of the semiconductor chip 3 because the semiconductor chip 3 needs to be accommodated in a cavity 26 (corresponding to the opening of the present invention) described later. Slightly thick, for example, 130 μm. Further, the area of the upper surface and the lower surface of the prepreg 21 is substantially equal to the area of the opposing printed circuit board 2.
[0026]
Both surfaces of the prepreg 21 are protected with a protective film 22 made of PET (FIG. 4B), and a pulse oscillation type carbon dioxide laser processing, for example, is performed at a position corresponding to the connection land 15A and the connection bump 13 of the opposing printed board 2. By performing laser irradiation with the apparatus, a through hole 23 penetrating in the thickness direction of the prepreg 21 is formed (FIG. 4C). Next, a desmear process for removing the resin remaining in the through hole 23 is performed.
[0027]
The through-hole 23 is filled with a conductive paste 24 (FIG. 4D). The filling can be performed by printing the conductive paste 24 on the protective film 22 using, for example, a screen printer. When the protective film 22 is peeled off, the conductive paste 24 is projected from the surface of the prepreg 21 by the thickness of the protective film 22 to form conductive bumps 25 (FIG. 4E).
[0028]
Then, for example, laser irradiation is performed on the central portion of the prepreg 21 so as to penetrate the cavity 26, thereby completing the manufacture of the interlayer member 20 (FIG. 4F). The size of the cavity 26 is slightly larger than the outer dimensions of the semiconductor chip 3 so that the semiconductor chip 3 can be accommodated therein.
[0029]
The printed circuit board 2 and the interlayer member 20 manufactured as described above are alternately overlapped (FIG. 5A). At this time, the printed circuit board 2 is disposed on the uppermost layer so that the surface on which the semiconductor chip 3 is mounted is on the lower surface side, and the interlayer member 20 is disposed below the printed circuit board 2. The interlayer member 20 accommodates the semiconductor chip 3 of the printed board 2 in the cavity 26 and is overlaid so that the conductive bumps 25 can be connected to the connection lands 15 </ b> A and the connection bumps 13 of the printed board 2. . Below that, the printed board 2 and the interlayer member 20 are similarly overlapped, and the I / O wiring board 30 is stacked in the lowermost layer. The I / O wiring board 30 is formed by forming a via hole 34 at a predetermined position of the insulating substrate 33 and forming a predetermined wiring circuit (not shown) and a land 31 above and below the via hole 34.
[0030]
Next, when pressure heating is performed by a press, the prepreg 21 once melts and flows, cures with time, and adheres to the upper and lower printed circuit boards 2 and the I / O wiring board 30 to form the semiconductor module 1. Is done. At this time, the connection land 15A of each printed circuit board 2, the connection pump 13, and the land 31 of the I / O wiring board 30 are connected to the conductive bumps 25 of the adjacent interlayer member 20, thereby The printed circuit board 2 and the wiring circuit of the I / O wiring board 30 are electrically connected. A solder ball 32 for connection to an external board is formed on the land 31 on the lower surface side of the I / O wiring board 30.
[0031]
As described above, according to the present embodiment, the prepreg 21 is used as the interlayer member 20. When the conductive bumps 25 are formed on the prepreg 21, the conductive paste 24 is filled into the through holes 23 formed at predetermined positions. Since both the openings of the through hole 23 are opened, it is possible to avoid a gap from being generated in the hole when the conductive paste 24 is filled, and to improve connection reliability. Moreover, since it is not necessary to perform electrolytic plating which requires time and labor, the semiconductor module 1 can be manufactured easily and inexpensively.
[0032]
Further, since the prepreg 21 is in a semi-cured state, it is melted and flowed once by alternately laminating with the printed circuit board 2 and heating and pressing, and is cured with the passage of time and bonded to the printed circuit board 2 disposed above and below. For this reason, it becomes unnecessary to provide an adhesive layer between the printed circuit board 2 and the interlayer member 20, and the semiconductor module 1 can be manufactured simply and inexpensively.
[0033]
The technical scope of the present invention is not limited by the above-described embodiment, and for example, the following are also included in the technical scope of the present invention. In addition, the technical scope of the present invention extends to an equivalent range.
(1) In this embodiment, the semiconductor module 1 is composed of five layers of two printed boards 2, an interlayer member 20, and an I / O wiring board 30, respectively. The present embodiment is not limited to this embodiment. For example, the printed circuit board may be composed of three layers of one printed board, an interlayer member, and an I / O wiring board. Alternatively, it may be composed of seven layers each of three printed boards, an interlayer member, and an I / O wiring board, and may be further multilayered.
(2) In the present embodiment, the plated conductor 9 is formed by the electrolytic plating method. However, according to the present invention, the method for forming the plated conductor is not limited to the present embodiment. For example, the plated conductor 9 may be formed by electroless plating. Good.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a state before a semiconductor module is manufactured by laminating a printed board and an interlayer member in the embodiment. FIG. 2 is a cross-sectional view showing a printed board manufacturing method.
FIG. 3 is a cross-sectional view showing a method for manufacturing a printed circuit board-2.
4 is a cross-sectional view showing a manufacturing method of an interlayer member. FIG. 5 is a cross-sectional view in which a printed circuit board and an interlayer member are laminated. FIG. 6 is a side cross-sectional view of a conventional IC package. Side view of substrate mounted with IC package (b) Plan view of substrate mounted with conventional IC package 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 ... Semiconductor module 2 ... Printed circuit board 3 ... Semiconductor chip 5 ... Insulating base material 15 ... Wiring circuit 20 ... Interlayer member 21 ... Prepreg 22 ... Protective film 23 ... Through hole 24 ... Conductive paste 25 ... Conductive bump 26 ... Cavity (Aperture)

Claims (2)

所定の配線回路を形成させて一面側に半導体チップを実装したプリント基板を、前記配線回路に接続可能な導電性バンプと前記半導体チップを収容可能な開口部とを備えた層間部材を介して積層する半導体モジュールの製造方法であって、
あらかじめ所定の前記配線回路を形成させた前記プリント基板の前記一面側に前記半導体チップを実装する工程と、前記層間部材となる絶縁性基材の両面に保護フィルムを貼り付ける工程と、前記絶縁性基材の所定の位置にスルーホールを形成する工程と、前記スルーホールに導電性ペーストを充填して導電性バンプを形成する工程と、前記保護フィルムを剥離する工程と、前記絶縁性基材に前記半導体チップを収容可能な前記開口部を形成する工程と、前記絶縁性基材と前記プリント基板とを交互に積層して接着する工程とを経ることを特徴とする半導体モジュールの製造方法。
A printed circuit board in which a predetermined wiring circuit is formed and a semiconductor chip is mounted on one side is laminated via an interlayer member provided with conductive bumps connectable to the wiring circuit and openings capable of accommodating the semiconductor chip. A method for manufacturing a semiconductor module comprising:
A step of mounting the semiconductor chip on the one surface side of the printed board on which the predetermined wiring circuit is formed in advance, a step of attaching a protective film to both surfaces of an insulating base material to be the interlayer member, and the insulating property A step of forming a through hole at a predetermined position of the base material, a step of filling the through hole with a conductive paste to form a conductive bump, a step of peeling the protective film, and the insulating base material. A method of manufacturing a semiconductor module, comprising: a step of forming the opening capable of accommodating the semiconductor chip; and a step of alternately laminating and bonding the insulating base material and the printed board.
前記絶縁性基材がプリプレグであることを特徴とする請求項1に記載の半導体モジュールの製造方法。  The method for manufacturing a semiconductor module according to claim 1, wherein the insulating base material is a prepreg.
JP2000249478A 2000-08-21 2000-08-21 Manufacturing method of semiconductor module Expired - Fee Related JP4365515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249478A JP4365515B2 (en) 2000-08-21 2000-08-21 Manufacturing method of semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249478A JP4365515B2 (en) 2000-08-21 2000-08-21 Manufacturing method of semiconductor module

Publications (2)

Publication Number Publication Date
JP2002064179A JP2002064179A (en) 2002-02-28
JP4365515B2 true JP4365515B2 (en) 2009-11-18

Family

ID=18739212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249478A Expired - Fee Related JP4365515B2 (en) 2000-08-21 2000-08-21 Manufacturing method of semiconductor module

Country Status (1)

Country Link
JP (1) JP4365515B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504798B2 (en) 2004-12-16 2010-07-14 パナソニック株式会社 Multistage semiconductor module
JP4433298B2 (en) 2004-12-16 2010-03-17 パナソニック株式会社 Multistage semiconductor module
JP4520355B2 (en) 2005-04-19 2010-08-04 パナソニック株式会社 Semiconductor module
JP2009158641A (en) * 2007-12-26 2009-07-16 Murata Mfg Co Ltd Method of producing module with built-in component
KR100991744B1 (en) * 2008-09-03 2010-11-04 한국전자통신연구원 Vertical connector, semiconductor package having vertical connector and methods for fabricating vertical connector and semiconducor package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283608A (en) * 1992-03-31 1993-10-29 Toshiba Corp Resin-sealed semiconductor device and manufacture thereof
JP3610661B2 (en) * 1996-02-21 2005-01-19 株式会社日立製作所 Three-dimensional laminated module
JP3051700B2 (en) * 1997-07-28 2000-06-12 京セラ株式会社 Method of manufacturing multilayer wiring board with built-in element
JPH11186698A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Manufacture of circuit board, and circuit board

Also Published As

Publication number Publication date
JP2002064179A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP5129645B2 (en) Manufacturing method of wiring board with built-in components
JP5711472B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
WO2003067656A1 (en) Semiconductor chip mounting board, its manufacturing method, and semiconductor module
KR20090130727A (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP2016063130A (en) Printed wiring board and semiconductor package
JP2015211194A (en) Printed wiring board, semiconductor package and printed wiring board manufacturing method
JP4022405B2 (en) Circuit board for mounting semiconductor chips
TWI506758B (en) Package on package structure and method for manufacturing same
JP4694007B2 (en) Manufacturing method of three-dimensional mounting package
CN107770946B (en) Printed wiring board and method for manufacturing the same
JP4717316B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP4365515B2 (en) Manufacturing method of semiconductor module
KR20120046602A (en) Printed circuit board and method for manufacturing the same
JP4562881B2 (en) Manufacturing method of semiconductor module
JP4562153B2 (en) Manufacturing method of semiconductor module
JP2015109346A (en) Component incorporated wiring board and manufacturing method thereof
CN101242713A (en) Multilayer wiring board and method of manufacturing the same
JP4376890B2 (en) Circuit board for mounting semiconductor chips
JP4550239B2 (en) Manufacturing method of semiconductor module
JP2002246745A (en) Three-dimensional mounting package and its manufacturing method, and adhesive therefor
JP4562154B2 (en) Manufacturing method of semiconductor module
JP4668822B2 (en) Wiring board manufacturing method
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP2001015912A (en) Multilayered printed wiring board and production thereof
JP2014123592A (en) Process of manufacturing printed wiring board and printed wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4365515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees