JP4351762B2 - 無線情報伝送装置及び無線情報伝送方法 - Google Patents

無線情報伝送装置及び無線情報伝送方法 Download PDF

Info

Publication number
JP4351762B2
JP4351762B2 JP16891899A JP16891899A JP4351762B2 JP 4351762 B2 JP4351762 B2 JP 4351762B2 JP 16891899 A JP16891899 A JP 16891899A JP 16891899 A JP16891899 A JP 16891899A JP 4351762 B2 JP4351762 B2 JP 4351762B2
Authority
JP
Japan
Prior art keywords
matrix
orthogonal
data
information transmission
wireless information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16891899A
Other languages
English (en)
Other versions
JP2000083008A (ja
Inventor
誠一 泉
Original Assignee
ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP98110931 priority Critical
Priority to EP98110931.7 priority
Priority to EP98122469.4 priority
Priority to EP98122469A priority patent/EP0966133B1/en
Application filed by ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング
Publication of JP2000083008A publication Critical patent/JP2000083008A/ja
Application granted granted Critical
Publication of JP4351762B2 publication Critical patent/JP4351762B2/ja
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter
    • H04L27/2627Modulators
    • H04L27/2634IFFT/IDFT in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals

Description

【0001】
【発明の属する技術分野】
本発明は、無線情報伝送装置及び無線情報伝送方法、無線情報伝送システム、畳み込み符号化方法及び復号方法、並びに行列生成方法に関し、特に、直交周波数分割多重(orthogonal frequency division multiplexing:以下、OFDMという。)方式の通信において、干渉波をキャンセルする無線情報伝送装置及び無線情報伝送方法、畳み込み符号化方法及び復号方法、並びに行列生成方法に関する。
【0002】
【従来の技術】
OFDM方式を採用した無線情報伝送システムにおける干渉を最小化する手法として、いわゆる直交ランダム変換(random orthogonal transform:以下、ROTという。)が知られている。ROTの原理については、ソニー株式会社を出願人とする欧州特許出願番号第EP98 104 287.2号に記載されており、この欧州特許出願番号第EP98 104 287.2号は、引用することにより、本願に援用される。以下では、図19〜図21を用いて、本願の基礎となる技術について説明する。
【0003】
図19は、携帯電話機50A,50Bと、基地局51A,51Bからなる無線情報伝送システムを示す図である。携帯電話機50Aは、セル52A内において、所定のチャンネルを使用して基地局51Aと無線通信を行う。また、セル52Aに隣接するセル52Bにおいては、携帯電話機50Bが同様のチャンネルを用いて基地局51Bと無線通信を行う。このとき、2つの携帯電話機50A,50Bにおいては、4位相偏移変調(four phase transition modulation)、すなわち直交位相偏移変調(quadrature phase shift keying:以下、QPSKという。)を用いてデータの送信が行われている。このとき、変調された送信信号の送信系列をx(A) nとすると、変調された送信信号は、x(A) 1,x(A) 2,x(A) 3,・・・x(A) k-1,x(A) k,x(A) k+1,・・・及びx(B) 1,x(B) 2,x(B) 3,・・・x(B) k-1,x(B) k,x(B) k+1,・・・と定義される。
【0004】
携帯電話機50Aは、Nを1以上の整数として、送信系列x(A) n(n=1,2,3,・・・)をN個ずつのグループに分割する。グループ化された送信系列x(A) k,・・・x(A) k+Nは、下記式1に示すように、所定のN次正規直交行列MAに順次乗算される。
【0005】
【数1】
【0006】
これにより、送信系列x(A) n(n=1,2,3,・・・)は直交変換され、得られる信号系列y(A) n(n=1,2,3,・・・)が順次送信される。
【0007】
一方、信号の受信側となる基地局51Aは、携帯電話機50Aから送信されてきた送信信号CAを受信し、受信系列y(A) n(n=1,2,3,・・・)をN個ずつのグループに分割し、下記式2に示すように、グループ化した受信系列y(A) k,・・・y(A) k+Nに送信時に使用されたN次正規直交行列MAの逆行列MA -1を乗算する。
【0008】
【数2】
【0009】
これにより、信号系列X(A) n(n=1,2,3,・・・)が再生され、すなわち直交変換が施される前のx(A) n(n=1,2,3,・・・)に等しい信号が得られる。
【0010】
同様に、携帯電話機50Bは、N送信系列x(B) n(n=1,2,3,・・・)をN個ずつのグループに分割する。そして、式3に示すように、グループ化した送信系列x(B) k,・・・x(B) k+Nに所定のN次正規直交行列MBを順次乗算する。
【0011】
【数3】
【0012】
これにより送信系列x(B) n(n=1,2,3,・・・)は直交変換され、得られる信号系列y(B) n(n=1,2,3,・・・)が順次送信される。なお、携帯電話機50Bにおいて使用されるN次正規直交行列MBと、携帯電話機50Aにおいて使用されるN次正規直交変換行列MAとは、全く異なる行列である。
【0013】
信号の受信側となる基地局51Bは、携帯電話機50Bから送信されてきた信号CBを受信し、受信系列y(B) n(n=1,2,3,・・・)をN個ずつのグループに分割し、さらに、下記式4に示すように、グループ化した受信系列y(B) k,・・・y(B) k+Nに送信側で使用されたN次正規直交行列MBの逆行列MB -1を順次乗算する。
【0014】
【数4】
【0015】
これにより得られる信号系列X(B) n(n=1,2,3,・・・)は、直交変換処理が施される前の送信系列x(B) n(n=1,2,3,・・・)に等しいものである。
【0016】
ここで、基地局51Aは、携帯電話機50Aから送信された送信信号CAのみを受信するが、状況によっては、基地局51Aは、携帯電話機50Bから送信された送信信号CBを受信することもある。この場合、携帯電話機50Bからの送信信号CBは、干渉波Iとして振る舞う。このとき、送信信号CBの信号レベルが携帯電話機50Aから送信されてくる送信信号CAの信号レベルに比べて無視できない大きさである場合、携帯電話機50Aとの通信に問題が発生する。すなわち、このような状況では、基地局51Aは、受信信号が携帯電話機50Aからのものであるか携帯電話機50Bからのものであるかを判別できなくなり、携帯電話機50Bからの送信信号CBを誤って受信してしまうおそれがある。
【0017】
このような場合、基地局51Aは、携帯電話機50Bから送信されてきた受信系列y(B) n(n=1,2,3,・・・)をN個ずつのグループに分割してしまい、そして、式5に示すように、このグループ化した受信系列y(B) k,・・・y(B) k+1に、通常通り、逆行列MA -1を乗算する復調処理を施す。
【0018】
【数5】
【0019】
しかしながら、この式5からも判るように、携帯電話機50Bから送信されてきた受信系列y(B) n(n=1,2,3,・・・)は、直交行列MAではなく、直交行列MBとの乗算により得られた信号であり、したがって、逆直交行列MA -1に乗算しても、逆対角線変換(diagonal reverse conversion)が行われず、元の信号系列x(B) n(n=1,2,3,・・・)は再生されない。この場合、受信系列は、元の信号系列x(B) n(n=1,2,3,・・・)をMA -1Bからなる他の直交行列に乗算する直交変換が施された信号となる。この信号は、雑音信号であり、この信号系列にQPSK復調処理を施しても、携帯電話機50Bから送信されたデータは再生されない。
【0020】
以上のように、この無線情報伝送システムにおいては、送信側において信号系列にそれぞれ異なる直交行列を乗算して送信し、受信側においては、受信した信号に対し、送信側、すなわち通信上の相手先(communication partner)が使用した直交行列の逆行列を乗算し、これにより直交変換が行われる前の信号系列を再生する。この結果、他の通信により同一のチャンネルが用いられていたとしても、他の通信を介して送信信号が再生されることはなく、したがって情報が他の通信に漏洩することが防止される。
【0021】
例えば、上述のように、携帯電話機50Bから送信されてきた信号CBが基地局51Aに受信されても、基地局51Aは、信号CBから元の信号を再生することはできない。同様に、基地局51Bが信号CAを受信しても、基地局51Bは、信号CAに基づいて元の信号を再生することはできず、これにより情報の漏洩が防止される。
【0022】
【発明が解決しようとする課題】
ここで、直交行列を用いた直交変換及び直交逆変換について、信号遷移の観点から説明する。まず、携帯電話機50Aの送信系列x(A) n(n=1,2,3,・・・)は、QPSK変調され、これによりπ/4、3π/4、5π/4又は7π/4の位相状態に対応付けられる。この結果、図20(a)に示すように、複素平面(IQ平面)において、位相状態がπ/4、3π/4、5π/4又は7π/4となる位置に位相が存在することとなる。送信系列x(A) n(n=1,2,3,・・・)にN次正規直交行列MAを乗算すると、これにより得られる受信系列y(A) n(n=1,2,3,・・・)は、図20(b)に示すようなランダム状態となる。
【0023】
受信側となる基地局51Aは、この受信系列y(A) n(n=1,2,3,・・・)を受信する。上述のように、送信側で使用された行列MAの逆行列MA -1を受信系列y(A) n(n=1,2,3,・・・)に乗算することにより得られる信号系列X(A) n(n=1,2,3,・・・)は図20(c)に示すように、元の信号系列x(A) n(n=1,2,3,・・・)に等しくなり、したがってこの信号系列は、複素平面のπ/4、3π/4、5π/4又は7π/4に対応付けられる。この結果、信号系列X(A) n(n=1,2,3,・・・)にQPSK復調処理を施すと、携帯電話機50Aから送信されたデータが正確に再生される。
【0024】
さらに、携帯電話機50Bの送信系列x(B) n(n=1,2,3,・・・)もQPSK変調され、すなわち、図21(a)に示すような複素平面上のπ/4、3π/4、5π/4又は7π/4の位置に位相状態が存在することとなる。この送信系列x(B) n(n=1,2,3,・・・)にN次正規直交行列MBを乗算することにより、図21(b)に示すようなランダム状態が得られる。
【0025】
ここで、このような受信系列y(B) n(n=1,2,3,・・・)が通信相手先ではない基地局51Aに受信されてきた場合、受信系列y(B) n(n=1,2,3,・・・)は、基地局51Aにとって干渉波となる。しかしながら、基地局51Aは、受信した信号系列が通信上の相手先から送信されたものであるか、あるいは干渉波であるかを判断することができず、したがってこのような干渉に対しても通常の受信処理、すなわち通常の復調処理を施すこととなる。ここで、この受信系列y(B) n(n=1,2,3,・・・)に乗算される直交行列MAの逆行列MA -1は、当然、携帯電話機50Bの送信時に使用された直交行列MBの逆行列とは異なる。したがって位相状態は、図21(c)に示すように、元の位相状態には再生されず、位相状態は、ランダム状態となる。したがって、このような信号に対してQPSK復調処理を施しても、携帯電話機50Bから送信されたデータは再生されない。
【0026】
直交ランダム変換(random orthogonal transform:以下、ROTという。)に基づくランダム化は、ランダム化処理により干渉を最小化する機能を有するが、例えば時分割多元接続(time division multiple access:以下、TDMAという。)システムにおいてこのような状況が生じた場合干渉をキャンセルすることはできない。また、直交周波数分割多重(orthogonal frequency division multiplexing:以下、OFDMという。)システムでは、通常、トレーニングシーケンス(training sequence)やミッドアンブル(mid-amble)を使用しないため、必要な信号と不要な信号とを区別できない。
【0027】
本発明は、上述の課題に鑑みてなされたものであり、OFDMシステムにおいて、より効果的に干渉をキャンセルすることができる無線情報伝送装置及び無線情報伝送方法を提供することを目的とする。
【0028】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る無線情報伝送装置は、1つのブロックのデータからなる各ベクトルに、畳み込み符号行列に基づいて形成された行列を乗算することにより複数ブロックのデータを直交ランダム変換する直交ランダム変換手段と、直交ランダム変換手段により変換されたデータを送信する送信手段とを備え、この行列は、1つのブロックのデータのサンプル数をnとして、直交n列からなり、該1つのブロックのデータが列ベクトルとして表されるとき、行列の行数は、該行列の列数より大きく、該行列の要素は、畳み込み関数の多項式における係数であることを特徴とする。
【0029】
なお、1つのブロックのデータが列ベクトルとして表されるときは、このように行数が列数より大きい行列を用い、1つのブロックのデータが行ブロックとして表されるときは、列数が行数より大きい行列を用いる。すなわち、本発明では、従来のような正方行列に代えて、非正方行列を用いて直交ランダム変換を行う。この行列の行数は、M及びnを2以上の整数として、M*nと表される。この無線データ伝送装置に、さらに直交ランダム変換手段にデータブロックを供給する変調手段と、直交ランダム変換手段からデータを受信する逆フーリエ変換手段を設けてもよい。
【0030】
本発明の実施の形態においては、送信手段は、直交周波数分割多重方式の送信機であり、直交ランダム変換手段は、相互に直交する複数の行列を有し、直交周波数分割多重方式に基づいて周波数帯域分割を行う。これにより、干渉波を効果的に抑制できるとともに、直交周波数分割多重方式における多重アクセスが実現される。
【0031】
さらに、無線情報伝送装置に畳み込み符号行列に基づいて実現された畳み込み符号化手段を設けてもよい。この場合、行列の要素は、畳み込み関数の多項式における係数を用いる。これらの係数は、行列の各列において桁送りされる。
【0032】
さらに、無線情報伝送装置は、受信したデータブロックに、データ送信時に使用された行列の転置行列を乗算して逆直交ランダム変換を行う逆ランダム直交変換手段を備える。
【0033】
あるいは、この転置行列の乗算に代えて、無線情報伝送装置に、受信したデータブロックに対し、トレリス復号によって逆直交ランダム変換処理及び畳み込み復号処理を施す逆直交ランダム変換/畳み込み復号手段を設けてもよい。逆直交ランダム変換/畳み込み復号手段は、例えば、受信したシンボルの等価ベクトルを算出するベクトル算出手段と、等価ベクトルの要素に基づいてトレリス状態行列を生成するトレリス状態行列生成手段と、元の状態メトリックのパスメトリックを算出し、算出したパスメトリックを加算するパスメトリック加算手段と、新たな状態への2つのパスメトリックを比較して、復号されたシンボルを判定する判定手段とを備える。
【0034】
また、本発明に係る無線情報伝送システムは、上述の無線情報伝送装置をそれぞれ備える複数の基地局と移動局とを備える。
【0035】
また、本発明に係る無線情報伝送方法は、1つのブロックのデータからなる各ベクトルに、畳み込み符号行列に基づいて形成された行列を乗算することにより複数ブロックのデータを直交ランダム変換し、直交ランダム変換器により変換されたデータを送信する送信器を用いて無線情報を送信し、この行列は、1つのブロックのデータのサンプル数をnとして、直交n列からなり、該1つのブロックのデータが列ベクトルとして表されるとき、行列の行数は、行列の列数より大きく、該行列の要素は、畳み込み関数の多項式における係数であることを特徴とする。この行列の行数は、行列の列数をnとし、Mを2以上の整数として、M*nで表される。
【0036】
また、本発明に係る畳み込み符号化方法は、上述の方法を用いてデジタルデータブロックを畳み込み符号化する畳み込み符号化するものであり、上記行列は、畳み込み符号行列に基づいて生成され、該行列により直交ランダム変換及び畳み込み符号化が同時に行われる。行列の要素は、畳み込み関数の多項式における係数を用いることができる。多項式における係数は、行列の各列において桁送りされている。
【0037】
また、本発明に係る復号方法は、上述の方法により符号化されたデータを受信し、受信したデータを、トレリス復号の手法により逆直交ランダム変換及び畳み込み復号しするステップとを有する。この逆直交ランダム変換及び畳み込み復号するステップは、受信したシンボルの等価ベクトルを算出するステップと、上記等価ベクトルの要素に基づいてトレリス状態行列を生成するステップと、元の状態メトリックのパスメトリックを算出し、算出したパスメトリックを加算するステップと、トレリス状態行列の新たな状態への2つのパスメトリックを比較して、復号されたシンボルを判定するステップとを有する。
【0038】
また、本発明に係る行列生成方法は、伝送システムにおいてデータブロックを直交ランダム変換するための行列を、畳み込み符号行列に基づいて生成するものであり、M及びnを2以上の整数として、M*n列の直交ベクトル及びM*n行の直交ベクトルからなる正方行列を準備し、この正方行列を、M個のM*n行n列の行列に分割し、分割されたM個の各行列を伝送システム内の各送信機に割り当てる。本発明に係る行列生成方法において、該行列の要素は、畳み込み関数の多項式における係数である。
【0039】
本発明に係る無線情報伝送装置及び無線情報伝送方法、無線情報伝送システム、畳み込み符号化方法及び復号方法、並びに行列生成方法により、通信の相手先以外の送信機から送信されてくる干渉波が効果的にキャンセルされる。
【0040】
【発明の実施の形態】
以下、本発明に係る無線情報伝送装置及び無線情報伝送方法、無線情報伝送システム、畳み込み符号化方法及び復号方法、並びに行列生成方法について、図面を参照して詳細に説明する。
【0041】
本発明を適用した無線情報伝送装置の構成を図1に示す。この無線情報伝送装置において、ハンドセット1は、音声を受信し、この音声に基づく音声信号をA/D変換器2に供給する。A/D変換器2は、この音声信号をアナログ信号からデジタル信号に変換して音声データを音声コーデック3に供給する。音声コーデック3は、音声データを所定の形式で符号化し、さらにこの符号化された音声データをチャンネル符号器5に供給する。ここで、このような音声データに代えて他のデータ、例えばカメラ4から入力される映像データや、ラップトップコンピュータ6からのデータをこのチャンネル符号器5に供給するようにしてもよい。チャンネル符号器5は、供給されたデータをチャンネル符号化し、符号化したデータをインターリーバ7に供給する。インターリーバ7は、チャンネル符号器5が符号化したデータにインターリーブ処理を施し、インターリーブ処理を施したデータを変調器8に供給する。変調器8は、インターリーブされたデータをシンボルマッピングによりシンボルに変換して、シンボルを直交ランダム変換(random orthogonal transform:以下、ROTという。)回路9に供給する。ROT回路9は、シンボルを直交ランダム変換し、直交ランダム変換したシンボルを高速フーリエ逆変換(inverse fast Fourier transform:以下、IFFTという。)回路10に供給する。IFFT回路10は、ROT回路9から供給されたシンボルを高速フーリエ逆変換し、これにより得られるデータをD/A変換器11に供給する。D/A変換器11は、データをデジタル信号からアナログ信号に変換して、変換したデータ信号をアップコンバータ12に供給する。アップコンバータ12は、このデータ信号をアップコンバートし、無線伝送路13を介してデータ信号を送信する。
【0042】
受信側では、ダウンコンバータ14は、受信されたデータ信号をダウンコンバートし、このデータ信号をA/D変換器15に供給する。A/D変換器15は、このデータ信号をアナログ信号からデジタル信号に変換し、これにより得られる受信データを高速フーリエ変換(fast Fourier transformation:FFT)回路16に供給する。FFT回路16は、受信データを高速フーリエ変換処理し、これにより得られるデータを逆直交ランダム変換(以下、逆ROTという。)回路17に供給する。逆ROT回路17は、データに逆ROT処理を施した後、得られるシンボルをビットマッピング回路18に供給する。ビットマッピング回路18は、このシンボルをビットマッピングによりデータに変換して、これにより得られるデータをデインターリーバ19に供給する。デインターリーバ19は、このデータをデインターリーブし、このデータをチャンネル復号器20に供給する。チャンネル復号器20は、このデータをチャンネル復号し、このデータが映像情報に基づく映像データである場合には、復号した映像データをモニタ装置21に供給し、また、コンピュータ用のデータである場合には、復号したデータをラップトップコンピュータ22に供給し、このデータが音声に基づく音声データである場合には、この音声データを音声復号器23に供給する。音声復号器23は、音声データに音声復号処理を施した後、復号した音声データをD/A変換器24に供給する。D/A変換器24は、音声データをデジタル信号からアナログ信号に変換し、得られる音声信号をハンドセット25に供給する。これにより、ハンドセット25からは、送信側のハンドセット1に入力された音声が出力される。
【0043】
本発明の特徴は、上述のような一連の処理において、特に、ROT回路9及び逆ROT回路17を用いる点にある。
【0044】
図2は、上述した欧州特許出願番号第EP98 104 27.2号に基づくROT処理を示す図である。図1に示す変調器8から出力されたn個のデータサンプルからなる入力シンボルベクトル26には、例えば直交n列及び直交n行を有するROT行列27を乗算する。すなわち、入力シンボルベクトル26には、正方行列であるROT行列27が乗算される。これによりROT処理されたシンボルベクトル28が生成される。伝送されるシンボルベクトル28もnサンプルのデータからなり、このシンボルベクトル28は、IFFT回路10に入力される。このように、ROT行列処理は、IFFT及び直交行列を用いたOFDM変調処理を施す前に、データのシンボルベクトルをランダム化するものである。
【0045】
このようにしてランダム化されたシンボルは、受信側において、FFT及びOFDM復調処理が施された後に再生される。ここで、干渉波信号は、データ信号とは異なる行列を用いてランダム化されている。したがって、受信側で再生処理が行われた後も、干渉波は、ランダム化されたまま残存することとなる。すなわち、この例において、逆ROT処理は、ランダム化されている干渉波信号をさらにランダム化するのみである。OFDM方式では、トレーニングシーケンス(training sequence)やミッドアンブル(mid-amble)が使用されないので、必要な信号と不要な信号を区別することは困難である。
【0046】
本発明に基づくROT行列乗算処理を図3に示す。この処理においては、データをシンボルに変換する変調処理を施した後に、シンボルをIFFTに適合するサイズに分割する。そして、シンボルをサイズがnである複素ベクトルとして取り扱う。本発明では、入力シンボルベクトル26に行数が列数よりも多いROT行列29を乗算する。
【0047】
なお、入力データが行ベクトルで表されている場合は、ROT行列の列数を行数より多くする。一方、入力データが列ベクトルで表されている場合、ROT行列の行数を列数より多くする。
【0048】
ここで、好ましくは、行数を列数のm倍とする。したがって、ROT行列処理によりサンプルの数が増加することとなる。すなわち、ROT乗算回路9に入力されるサンプルの数は、IFFTにおいて処理されるサンプルの数(n)の1/m倍である。
【0049】
ここで、n個の列ベクトルは、相互に直交しているが、行ベクトルの数は3nとなり、すなわち列ベクトルよりも多数の行ベクトルが存在し、これら行ベクトルは、相互に直交する関係にない。なお、n個の要素からなる基底ベクトルに対しては、n個の直交基底のみが存在する。本発明によるROT行列処理によれば、入力シンボルベクトル26がn個のサンプルからなり、ROT処理により得られたシンボルベクトル30は、より多くのサンプル、例えば、直交列ベクトルと3n行ベクトルからなるROT行列29を用いた場合、サンプル数は3n個となる。
【0050】
なお、図示した行列以外に、行列の一部ではない(M−n)個の直交列ベクトルが存在する。これらの図示しない直交ベクトルは、後述するように、干渉波信号のランダム化に使用される。
【0051】
なお、本発明において、ベクトルの要素の値は、バイナリコードに限定されるものではなく、ベクトルの要素の値は、例えば0,1、1,0、0,0、1,1等のより高次の値とすることもできる。
【0052】
図4は、本発明において使用する行数と列数が異なる行列(以下、本明細書ではこのような行列を非正方行列と呼ぶ。)の生成例を示す。まず、直交3N列ベクトル及び直交3N行ベクトルを有する正方行列31を生成する。さらにこの正方行列31を3つの非正方行列29、すなわち、ROT#1,ROT#2,ROT#3に分割する。これら非正方行列ROT#1,ROT#2,ROT#3において、列ベクトルは直交関係を保っているが、行ベクトルは、直交関係を失う。このように、本発明では、N(=m*n)列を有する正方行列をm個の非正方行列に分割する。これら非正方行列ROT#1,ROT#2,ROT#3は、図5に示すような等式を満足させるものである。すなわち、ROTjにROTiの転置行列ROTi Tを乗算すると、δijが得られ、δijは、iがjに等しい場合1となり、iとjが異なる場合0となる。
【0053】
そして、m個の各非正方行列をそれぞれ異なる基地局及び移動局に割り当てる。すなわち、図6に示すように、例えばROT#1(29a)を基地局#1とこの基地局#1に属する移動局からなる通信システムに割り当て、ROT#2(29b)を基地局#2とこの基地局#2に属する移動局からなる通信システムに割り当て、ROT#3(29c)を基地局#3とこの基地局#3に属する移動局からなる通信システムに割り当てる。この図5と図6からわかるように、上述の非正方行列29a〜29bの1つを基地局#1において使用し、他の行列を他の基地局、すなわち基地局#2又は基地局#3において使用することにより、いかなる干渉の組合せも、異なる行列ROT#1,ROT#2,ROT#3間の直交性によりキャンセルできる。
【0054】
また、図7に示すように、ランダム化されたデータは、受信機32において、転置行列ROTTを乗算することより容易に再生できる。すなわち、所望のデータは、ROT129の転置行列を用いた乗算により得られる。受信機32は、この転置行列ROT1 Tを予め備えている。上述のとおり、ROT#2は、ROT#1に直交するため、ROT#2によりランダム化されたいかなる干渉波信号もROT#1の転置行列を用いた乗算処理によりキャンセルできる。なお、ここで、ROT行列の要素を複素値としてもよい。
【0055】
実際の使用環境下では、チャンネルは理想的な状態であるとは限らず、セル間の同期も完全ではない。このような場合、本発明によっても、干渉を完全にキャンセルすることはできないが、例えば前述した欧州特許出願番号第EP98 104 287.2号に開示されているランダム化処理を用いた場合に比べ、本発明の手法を用いればより効果的に干渉を低減できる。
【0056】
さらに、本発明の他の実施の形態では、1つの基地局において、相互に直交する複数の直交行列を用いる。すなわち、相互に直交した複数の行列を同一の基地局に割り当てる。OFDMの周波数帯域は、これらの直交行列により分割される。したがって、この実施の形態においては、OFDMに対する多元アクセスを実現できる。
【0057】
OFDMシステムにおいては、変調された複数の干渉シンボルがそれぞれ異なる直交行列によりランダム化されている可能性がある。上述の非正方行列は、複数のシンボルを互いに直交するようにランダム化するため、この非正方行列を用いて干渉をキャンセルすることができる。非正方行列を用いたランダム化によってシンボルの数は増加する。本発明では、このようにシンボルを増加させることにより、干渉波信号に対する直交性を維持させている。
【0058】
本発明のさらに他の実施の形態においては、ROT行列による乗算を畳み込み符号化/復号に用いる。例えば、ビタビアルゴリズムは、ランダム化された信号の再生に用いることができる。この実施の形態においては、畳み込み符号化技術と非正方行列を用いたROT技術を組み合わせて用いる。この実施の形態における無線情報伝送装置を図8に示す。なお、図8において、図1に示す無線情報伝送装置と同一の機能を司る部分については、同一の符号を付し、説明を省略する。
【0059】
図8に示す無線情報伝送装置では、図1に示す無線情報伝送装置におけるチャンネル符号化処理をROT乗算処理に置き換えている。このROT乗算処理により、干渉波に対する直交性が維持される。
【0060】
図8に示すように、送信側においては、変調器32が音声コーデック3からの音声データを受信し、受信した音声データにシンボルマッピング処理を施し、生成したシンボルをROT/畳み込み符号器33に供給する。ROT/畳み込み符号器33は、ROT乗算処理と同時に畳み込み符号化処理を行う。受信側では、ROT/畳み込み復号器34がデインターリーブされたシンボルにROT/畳み込み符号器33で使用されたROTの転置行列を乗算するとともに、同時に、例えばビタビ復号等の畳み込み復号処理を行う。すなわち、送信側においてデータ信号は、音声符合器3において音声符号化されたのち、変調器32において変調されて複素シンボルとなる。そして、複数のシンボルからなるシンボルベクトルが生成され、このシンボルベクトルには、ROT/畳み込み符号器33において、ROT行列を乗算する。
【0061】
この実施の形態において、ROT/畳み込み符号器33において用いられる行列を図9に示す。この図9に示す行列も非正方行列である。この図では、入力データを行ベクトルとして表している。したがって、この実施の形態では、列数が行数より多いROT行列を用いる。通常、入力データを行ベクトルとして表す場合、ROT行列においては、列数を行数より多くし、入力データを列ベクトルとして表す場合は、ROT行列においては、行数を列数より多くする。
【0062】
畳み込み符号化行列に基づいて構築された行列40を図10に示す。この行列40は、図11に示すように3つの部分行列(submatrices)A0,A1,A2に分割され、これら部分行列A0,A1,A2は、水平方向に互いに結合される。
【0063】
畳み込み符号化行列40の要素a0,a1,a2は、それぞれ畳み込み関数の多項式における係数を示している。この係数は、例えば−1,1といったバイナリ値に限定されるものではなく、実数や複素数であってもよい。シンボルベクトルと行列40との乗算は、図12に示すようなシフトレジスタを用いた周知の畳み込み符号化処理に対応する。ここでは、畳み込み符号化処理において行われるような入力シンボルの桁送り(シフト)を実現するために、畳み込み関数の多項式における各項を示す行列40の要素は、各列ベクトルにおいて既に桁送りされている。また、畳み込み符号化処理において用いられる排他的論理和に代えて、本発明では、入力シンボルベクトルと行列40との乗算処理において、行列におけるそれぞれの要素と各シンボルの積の総和を算出する。
【0064】
行列40における全ての行ベクトルは、互いに直交しており、したがって、図13に示すように、この行列40と転置行列(複素共役転置行列)の積は単位行列となる。すなわち、この演算により得られる行列の対角要素は、すべて1であり、この行列における他のすべての要素は0である。したがって、受信側のROT/畳み込み復号器34において転置行列を用いて、ランダム化及び符号化されたデータの再生を同時に行うことができる。直交多項式の項を選択することにより、他のROT行列を生成することができ、生成されるROT行列は、図14に示すように、それぞれ元のROT行列に対して直交する。したがって、直交ROT行列により符号化された干渉波をキャンセルすることができる。
【0065】
受信シンボルベクトルに送信側で用いられた行列の転置行列を乗算する手法は、上述のとおり、ランダム化と畳み込み符号化を同時に解決する1つの手法である。この目的を達するために用いられる他の手法としては、いわゆるトレリス線図法(Trellis technic)がある。ここで、図15〜図18を用いて、このトレリス線図法について説明する。
【0066】
トレリス線図法では、図15の式に示すように、ROTにより変換された受信シンボルの要素の総和を求め、これにより等価ベクトルxAを生成する。この等価ベクトルxAは、それぞれが総和を示すn個の要素s0,s1,・・・sn-1からなる。そして、等価ベクトルxAの要素s0,s1,・・・sn-1を用いて、図16に示すような状態行列を生成する。変調にQPSKを用いている場合、状態の数は、拘束長をkとして、4k-1となる。そして、等価ベクトルのシンボルを用いて、状態行列のパスメトリック、例えばハミング距離を算出する。そして、このようにして算出したパスメトリックを前の状態メトリックに加算する。トレリス状態線図を図17に示す。ここで、新たな状態に遷移する経路となる、2つの加算されたパスメトリックを比較する。そして、受信され、復号されたシンボルがより小さなパスメトリックを有する、したがって信頼性の高いパスに決定する。すなわち、このようなトレリス線図法によれば、図18に示すように、受信した実際のシンボルと各状態遷移から推定される位置との間の距離を測定することによりパスメトリックを算出し、軟判定復号情報を用いてビタビ復号処理を実行している。
【0067】
以上のように、非正方行列は、畳み込み符号化/復号にも用いることができる。例えば、転置行列の乗算又はトレリス復号技術によるビタビアルゴリズムをランダム化の解決、すなわち逆ランダム化に用いることができる。換言すると、本発明においては、畳み込み符号化と非正方行列を用いたROT行列の手法を組み合わせて用いることができる。図8に示すように、チャンネル符号化処理をROT乗算処理に置き換えることができ、これによっても干渉波に対する直交性は保たれる。
【0068】
【発明の効果】
以上のように、本発明に係る無線情報伝送装置及び無線情報伝送方法、無線情報伝送システム、畳み込み符号化方法及び復号方法、並びに行列生成方法においては、1ブロックデータのサンプル数をnとして、直交n列を有し、行数が列数より大きい行列を1ブロックのデータに乗算する。例えば、M*n行M*n列の正方直交行列を分割してM個のn行M*n列の非正方行列を生成して、これにより得られるM個の行列を各送信機に割り当て、n個のサンプルを有する1ブロックのデータからなる各ベクトルにこの行列を乗算して直交ランダム変換を行う。これにより、真の通信相手先以外の送信機から送信される干渉波を効果的にキャンセルすることができ、したがって雑音の少ない無線情報伝送が実現できる。
【図面の簡単な説明】
【図1】本発明を適用した無線データ送受信装置の構成を示すブロック図である。
【図2】周知のROT行列処理を説明する図である。
【図3】本発明を適用したROT行列処理を説明する図である。
【図4】図3に示すROT行列の生成の手法を説明する図である。
【図5】直交行列の乗算の結果を示す図である
【図6】図3に示す手法により生成されたROT行列の割り当てを説明する図である。
【図7】本発明による干渉波のキャンセル処理を説明する図である。
【図8】本発明の第2の実施の形態として示す無線情報伝送装置のブロック図である。
【図9】畳み込み符号化に用いるROT行列を示す図である。
【図10】畳み込み符号化行列に基づいて生成されたROT行列を示す図である。
【図11】図10に示すROT行列の分割を説明する図である。
【図12】ROT行列を用いた畳み込み符号化処理を説明する図である。
【図13】ROT行列と前記ROT行列の転置行列との乗算を示す図である。
【図14】ROT行列と前記ROT行列に直交する転置行列との乗算を示す図である。
【図15】畳み込み符号化/復号処理に用いる等価ベクトルの生成の手法を説明する図である。
【図16】トレリス状態行列を示す図である。
【図17】トレリス状態線図を示す図である。
【図18】パスメトリックの算出の手法を図式的に示す図である。
【図19】本発明が適用される無線情報伝送システムの基本的な構造を示す図である。
【図20】通信相手先から受信した信号処理を説明する図である。
【図21】干渉波に対する信号処理を説明する図である。
【符号の説明】
26 入力シンボルベクトル、29 非正方ROT行列、30 シンボルベクトル

Claims (22)

  1. 1つのブロックのデータからなる各ベクトルに、畳み込み符号行列に基づいて形成された行列を乗算することにより、複数のブロックのデータを直交ランダム変換する直交ランダム変換手段と、
    上記直交ランダム変換手段により変換されたデータを送信する送信手段とを備え、
    上記行列は、上記1つのブロックのデータのサンプル数をnとして、直交n列からなり、該1つのブロックのデータが列ベクトルとして表されるとき、該行列の行数は、該行列の列数より大きく、該行列の要素は、畳み込み関数の多項式における係数であることを特徴とする無線情報伝送装置。
  2. 上記行列の行数は、該行列の列数をnとし、Mを2以上の整数として、M*nであることを特徴とする請求項1記載の無線情報伝送装置。
  3. 上記複数のブロックのデータを上記直交ランダム変換手段に供給する変調手段を更に備える請求項1又は2記載の無線情報伝送装置。
  4. 上記直交ランダム変換手段により変換されたデータが供給される高速フーリエ逆変換手段を更に備える請求項1乃至3のいずれか1項記載の無線情報伝送装置。
  5. 上記送信手段は、直交周波数分割多重方式の送信機であり、上記直交ランダム変換手段は、相互に直交する複数の行列を有し、該直交周波数分割多重方式に基づいて周波数帯域分割を行うことを特徴とする請求項1乃至4のいずれか1項記載の無線情報伝送装置。
  6. 上記多項式の係数を、上記行列内の各列において桁送りすることにより、上記畳み込み符号化が実現されることを特徴とする請求項1記載の無線情報伝送装置。
  7. 受信したデータブロックに対し、送信時に使用された上記行列の転置行列を乗算することにより、該受信したデータブロックを逆直交ランダム変換する逆直交ランダム変換手段を更に備える請求項1乃至のいずれか1項記載の無線情報伝送装置。
  8. 受信したデータブロックに対し、トレリス復号によって逆直交ランダム変換処理及び畳み込み復号処理を施す逆直交ランダム変換/畳み込み復号手段を更に備える請求項1乃至6のいずれか1項記載の無線情報伝送装置。
  9. 上記逆直交ランダム変換/畳み込み復号手段は、受信したシンボルの等価ベクトルを算出するベクトル算出手段と、上記等価ベクトルの要素に基づいてトレリス状態行列を生成するトレリス状態行列生成手段と、前の状態メトリックのパスメトリックを算出し、算出したパスメトリックを加算するパスメトリック加算手段と、新たな状態への2つのパスメトリックを比較して、復号されたシンボルを判定する判定手段とを備えることを特徴とする請求項8記載の無線情報伝送装置。
  10. 複数の基地局と、
    複数の移動局とを備え、
    上記基地局及び上記移動局は、それぞれ請求項1乃至9のいずれか1項記載の無線情報伝送装置を備える無線情報伝送システム。
  11. 1つのブロックのデータからなる各ベクトルに、畳み込み符号行列に基づいて形成された行列を乗算することにより、複数のブロックのデータを直交ランダム変換するステップと、
    上記直交ランダム変換器により変換されたデータを送信する送信器を用いて無線情報を送信するステップとを有し、
    上記行列は、上記1つのブロックのデータのサンプル数をnとして、直交n列からなり、該1つのブロックのデータが列ベクトルとして表されるとき、該行列の行数は、該行列の列数より大きく、該行列の要素は、畳み込み関数の多項式における係数であることを特徴とする無線情報伝送方法。
  12. 上記行列の行数は、該行列の列数をnとし、Mを2以上の整数として、M*nであることを特徴とする請求項11記載の無線情報伝送方法。
  13. 上記複数のブロックのデータを上記直交ランダム変換を行う直交ランダム変換器に供給するステップを有する請求項11又は12記載の無線情報伝送方法。
  14. 上記直交ランダム変換を行う直交ランダム変換器から高速フーリエ逆変換器にデータを供給するステップを有する請求項11乃至13のいずれか1項記載の無線情報伝送方法。
  15. 受信したデータブロックに対し、送信時に使用された上記行列の転置行列を乗算することにより、該受信したデータブロックを逆直交ランダム変換するステップを有する請求項11乃至14のいずれか1項記載の無線情報伝送方法。
  16. 請求項11乃至15のいずれかに記載の方法を用いてデジタルデータブロックを畳み込み符号化する畳み込み符号化方法において、
    上記行列は、畳み込み符号行列に基づいて生成され、該行列により直交ランダム変換及び畳み込み符号化が同時に行われることを特徴とする畳み込み符号化方法。
  17. 上記行列の要素は、畳み込み関数の多項式における係数であることを特徴とする請求項16記載の畳み込み符号化方法。
  18. 上記多項式における係数は、上記行列の各列において桁送りされていることを特徴とする請求項17記載の畳み込み符号化方法。
  19. 請求項16乃至18のいずれか1項記載の方法により符号化されたデータを受信するステップと、
    上記受信したデータを、トレリス復号の手法により逆直交ランダム変換及び畳み込み復号するステップとを有する復号方法。
  20. 上記逆直交ランダム変換及び畳み込み復号するステップは、受信したシンボルの等価ベクトルを算出するステップと、上記等価ベクトルの要素に基づいてトレリス状態行列を生成するステップと、元の状態メトリックのパスメトリックを算出し、算出したパスメトリックを加算するステップと、トレリス状態行列の新たな状態への2つのパスメトリックを比較して、復号されたシンボルを判定するステップとを有することを特徴とする請求項19記載の復号方法。
  21. 伝送システムにおいてデータブロックを直交ランダム変換するための行列を、畳み込み符号行列に基づいて生成する行列生成方法において、
    M及びnを2以上の整数として、M*n列の直交ベクトル及びM*n行の直交ベクトルからなる正方行列を準備するステップと、
    上記正方行列を、M個のM*n行n列の行列に分割するステップと、該分割されたM個の各行列を伝送システム内の各送信機に割り当てるステップとを有し、
    上記行列の要素は、畳み込み関数の多項式における係数であることを特徴とする行列生成方法。
  22. 伝送システムにおいてデータブロックを直交ランダム変換するための行列を、畳み込み符号行列に基づいて生成する行列生成方法において、
    M及びnを2以上の整数として、M*n列の直交ベクトル及びM*n行の直交ベクトルからなる正方行列を準備するステップと、
    上記正方行列を、M個のM*n行n列の行列に分割するステップと、
    上記分割されたM個の各行列を、上記伝送システム内の基地局に割り当てるステップとを有し、
    上記行列の要素は、畳み込み関数の多項式における係数であることを特徴とする行列生成方法。
JP16891899A 1998-06-15 1999-06-15 無線情報伝送装置及び無線情報伝送方法 Expired - Lifetime JP4351762B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98110931 1998-06-15
EP98110931.7 1998-06-15
EP98122469.4 1998-11-26
EP98122469A EP0966133B1 (en) 1998-06-15 1998-11-26 Orthogonal transformations for interference reduction in multicarrier systems

Publications (2)

Publication Number Publication Date
JP2000083008A JP2000083008A (ja) 2000-03-21
JP4351762B2 true JP4351762B2 (ja) 2009-10-28

Family

ID=26149348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16891899A Expired - Lifetime JP4351762B2 (ja) 1998-06-15 1999-06-15 無線情報伝送装置及び無線情報伝送方法

Country Status (3)

Country Link
US (2) US6549581B1 (ja)
EP (1) EP0966133B1 (ja)
JP (1) JP4351762B2 (ja)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355720B2 (en) 2001-04-26 2019-07-16 Genghiscomm Holdings, LLC Distributed software-defined radio
US9893774B2 (en) 2001-04-26 2018-02-13 Genghiscomm Holdings, LLC Cloud radio access network
US7430257B1 (en) * 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US5955992A (en) * 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US10425135B2 (en) 2001-04-26 2019-09-24 Genghiscomm Holdings, LLC Coordinated multipoint systems
US7215772B2 (en) * 1999-11-09 2007-05-08 Chaoticom, Inc. Method and apparatus for remote digital key generation
US6961369B1 (en) 1999-11-09 2005-11-01 Aware, Inc. System and method for scrambling the phase of the carriers in a multicarrier communications system
EP1236326A1 (en) * 1999-11-27 2002-09-04 Deutsche Telekom AG Method for co-channel interference cancelation in a multicarrier communication system
US7006579B2 (en) * 2000-09-29 2006-02-28 Nokia Corporation ISI-robust slot formats for non-orthogonal-based space-time block codes
US7477703B2 (en) * 2000-02-22 2009-01-13 Nokia Mobile Phones, Limited Method and radio system for digital signal transmission using complex space-time codes
US6865237B1 (en) 2000-02-22 2005-03-08 Nokia Mobile Phones Limited Method and system for digital signal transmission
FI112565B (fi) * 2000-02-22 2003-12-15 Nokia Corp Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon
US6687307B1 (en) * 2000-02-24 2004-02-03 Cisco Technology, Inc Low memory and low latency cyclic prefix addition
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
USRE45775E1 (en) 2000-06-13 2015-10-20 Comcast Cable Communications, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
EP1317809A4 (en) * 2000-08-09 2005-05-18 Avway Com Inc Method and system for steganographically embedding information bits in source signals
US9628231B2 (en) 2002-05-14 2017-04-18 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
US10200227B2 (en) 2002-05-14 2019-02-05 Genghiscomm Holdings, LLC Pre-coding in multi-user MIMO
US10142082B1 (en) 2002-05-14 2018-11-27 Genghiscomm Holdings, LLC Pre-coding in OFDM
US8670390B2 (en) 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
US9819449B2 (en) 2002-05-14 2017-11-14 Genghiscomm Holdings, LLC Cooperative subspace demultiplexing in content delivery networks
US7095731B2 (en) * 2000-12-13 2006-08-22 Interdigital Technology Corporation Modified block space time transmit diversity encoder
FI20002845A (fi) * 2000-12-22 2002-06-23 Nokia Corp Digitaalisen signaalin lähettäminen
US7298785B2 (en) 2001-07-04 2007-11-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Multicarrier demodulation method and apparatus, and multicarrier modulation method and apparatus
US7269224B2 (en) * 2001-09-17 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Apparatus and methods for providing efficient space-time structures for preambles, pilots and data for multi-input, multi-output communications systems
EP1428343B1 (de) 2001-09-18 2012-10-17 Siemens Aktiengesellschaft Verfahren und kommunikationssystemvorrichtung zum bereitstellen bzw. verarbeiten von ofdm-symbolen in einem übertragungssystem mit gespreizten teilnehmerdaten
US7889819B2 (en) * 2002-10-04 2011-02-15 Apurva Mody Methods and systems for sampling frequency offset detection, correction and control for MIMO OFDM systems
TWI237955B (en) * 2003-11-24 2005-08-11 Ind Tech Res Inst Apparatus of transmitter and receiver for MIMO MC-CDMA system
US7483932B1 (en) * 2004-05-05 2009-01-27 Sun Microsystems, Inc. Method and system for computing multidimensional fast Fourier transforms
KR100757078B1 (ko) * 2006-01-03 2007-09-10 주식회사 휴커넥스 Ici를 제거하기 위한 ofdm 송신기, 시스템 및부호화 방법
JP4340732B2 (ja) * 2006-08-03 2009-10-07 日本電気株式会社 情報記録媒体の情報管理方法、記録方法及び情報記録再生装置
CN101574010B (zh) * 2007-01-05 2010-12-08 华为技术有限公司 二维参考信号序列
US8073393B2 (en) * 2009-02-05 2011-12-06 Qualcomm Incorporated Methods and systems for least squares block channel estimation
CN101710828B (zh) 2009-08-24 2013-07-24 清华大学 一种正交随机相位编码技术及其在体全息存储器中的应用
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
US9077386B1 (en) 2010-05-20 2015-07-07 Kandou Labs, S.A. Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
US9985634B2 (en) 2010-05-20 2018-05-29 Kandou Labs, S.A. Data-driven voltage regulator
US9590779B2 (en) 2011-05-26 2017-03-07 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
AU2013239970C9 (en) * 2012-03-26 2017-05-11 Cohere Technologies, Inc. Signal modulation method resistant to echo reflections and frequency offsets
US9444514B2 (en) 2010-05-28 2016-09-13 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
US9071285B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9071286B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9130638B2 (en) 2011-05-26 2015-09-08 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US8547988B2 (en) 2010-05-28 2013-10-01 Ronny Hadani Communications method employing orthonormal time-frequency shifting and spectral shaping
US9294315B2 (en) 2011-05-26 2016-03-22 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US8976851B2 (en) 2011-05-26 2015-03-10 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9031141B2 (en) 2011-05-26 2015-05-12 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9912507B2 (en) 2012-06-25 2018-03-06 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9967758B2 (en) 2012-06-25 2018-05-08 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
US9929783B2 (en) 2012-06-25 2018-03-27 Cohere Technologies, Inc. Orthogonal time frequency space modulation system
US10469215B2 (en) 2012-06-25 2019-11-05 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the Internet of Things
US10090972B2 (en) 2012-06-25 2018-10-02 Cohere Technologies, Inc. System and method for two-dimensional equalization in an orthogonal time frequency space communication system
US10003487B2 (en) 2013-03-15 2018-06-19 Cohere Technologies, Inc. Symplectic orthogonal time frequency space modulation system
US10411843B2 (en) 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US10090973B2 (en) 2015-05-11 2018-10-02 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
WO2014172377A1 (en) 2013-04-16 2014-10-23 Kandou Labs, S.A. Methods and systems for high bandwidth communications interface
WO2014210074A1 (en) 2013-06-25 2014-12-31 Kandou Labs SA Vector signaling with reduced receiver complexity
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
KR20160117505A (ko) * 2014-02-02 2016-10-10 칸도우 랩스 에스에이 제한된 isi 비율을 갖는 저전력 칩 대 칩 통신을 위한 방법 및 장치
WO2015131203A1 (en) 2014-02-28 2015-09-03 Kandou Lab, S.A. Clock-embedded vector signaling codes
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9112550B1 (en) 2014-06-25 2015-08-18 Kandou Labs, SA Multilevel driver for high speed chip-to-chip communications
KR20170031168A (ko) 2014-07-10 2017-03-20 칸도우 랩스 에스에이 증가한 신호대잡음 특징을 갖는 벡터 시그널링 코드
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
US9444654B2 (en) 2014-07-21 2016-09-13 Kandou Labs, S.A. Multidrop data transfer
EP3175592A4 (en) 2014-08-01 2018-01-17 Kandou Labs S.A. Orthogonal differential vector signaling codes with embedded clock
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
KR20180040521A (ko) 2015-05-11 2018-04-20 코히어 테크놀로지 데이터의 심플렉틱 직교 시간 주파수 시프팅 변조 및 송신을 위한 시스템 및 방법
US9866363B2 (en) 2015-06-18 2018-01-09 Cohere Technologies, Inc. System and method for coordinated management of network access points
US9832046B2 (en) 2015-06-26 2017-11-28 Kandou Labs, S.A. High speed communications system
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10003315B2 (en) 2016-01-25 2018-06-19 Kandou Labs S.A. Voltage sampler driver with enhanced high-frequency gain
WO2017173461A1 (en) 2016-04-01 2017-10-05 Cohere Technologies, Inc. Tomlinson-harashima precoding in an otfs communication system
KR20190008848A (ko) 2016-04-01 2019-01-25 코히어 테크놀로지, 아이엔씨. 직교 시간 주파수 공간 변조된 신호들의 반복적 2차원 등화
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
US10242749B2 (en) 2016-04-22 2019-03-26 Kandou Labs, S.A. Calibration apparatus and method for sampler with adjustable high frequency gain
CN109314518A (zh) 2016-04-22 2019-02-05 康杜实验室公司 高性能锁相环
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US10193716B2 (en) 2016-04-28 2019-01-29 Kandou Labs, S.A. Clock data recovery with decision feedback equalization
EP3449606A4 (en) 2016-04-28 2019-11-27 Kandou Labs SA Low power multilevel driver
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US10411922B2 (en) 2016-09-16 2019-09-10 Kandou Labs, S.A. Data-driven phase detector element for phase locked loops
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10372665B2 (en) 2016-10-24 2019-08-06 Kandou Labs, S.A. Multiphase data receiver with distributed DFE
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10356632B2 (en) 2017-01-27 2019-07-16 Cohere Technologies, Inc. Variable beamwidth multiband antenna
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization
US10467177B2 (en) 2017-12-08 2019-11-05 Kandou Labs, S.A. High speed memory interface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633256A (en) * 1984-12-10 1986-12-30 The United States Of America As Represented By The Secretary Of Commerce Method and apparatus for four-beam radar
US5367516A (en) * 1993-03-17 1994-11-22 Miller William J Method and apparatus for signal transmission and reception
CN1106715C (zh) * 1996-02-27 2003-04-23 皇家菲利浦电子有限公司 一种信号编码和译码的方法及装置
JPH09321736A (ja) * 1996-05-27 1997-12-12 Sony Corp 受信方法及び受信装置
JP3724676B2 (ja) * 1997-03-10 2005-12-07 ソニー株式会社 通信方法及び送信装置並びに受信装置

Also Published As

Publication number Publication date
JP2000083008A (ja) 2000-03-21
EP0966133A3 (en) 2002-07-24
US20020181607A1 (en) 2002-12-05
EP0966133B1 (en) 2005-03-02
US6549581B1 (en) 2003-04-15
US6631168B2 (en) 2003-10-07
EP0966133A2 (en) 1999-12-22

Similar Documents

Publication Publication Date Title
JP5048138B2 (ja) 送信装置、受信装置、データ送信方法およびデータ受信方法
KR100429528B1 (ko) 디지털 통신 방법 및 장치
KR100682330B1 (ko) 다중 송수신 안테나를 사용하는 이동통신시스템에서송신모드를 제어하기 위한 장치 및 방법
US9026877B2 (en) Transmitting apparatus, receiving apparatus, transmission method, and reception method
EP1249980B1 (en) OFDM signal communication system, OFDM signal transmitting device and OFDM signal receiving device
ES2332158T3 (es) Intercalador para correlacionar simbolos en las portadoras de un sistema ofdm.
KR100578675B1 (ko) 직교 주파수 분할 멀티플렉싱에 의한 디지털 신호 전송 장치 및 시스템
JP3878774B2 (ja) Cdmaシステム
US7991062B2 (en) Apparatus and method for transmitting a sub-channel signal in a communication system using an orthogonal frequency division multiple access scheme
EP1143625A1 (en) Communication device and communication method
US7903748B2 (en) Transmitter apparatus, communication system, and communication method
CN1050952C (zh) 采用双最大量度产生方法的非相干接收机
US7535860B2 (en) Apparatus and method for transmitting/receiving pilot signal in communication system using OFDM scheme
KR100621432B1 (ko) 복수의 송신 안테나들을 사용하는 다중셀 직교 주파수분할 다중 방식 통신시스템에서 채널 추정 장치 및 방법
JP3962745B2 (ja) 無線通信システム、無線送信装置、無線受信装置及び無線通信方法
JP2007506359A (ja) ワイヤレスシステムのための反復コード化
USRE46550E1 (en) 16k mode interleaver in a digital video broadcasting (DVB) standard
EP1610514A1 (en) Method and apparatus for generating a pilot signal with a cell identification in an OFDM system
US8223853B2 (en) Method and apparatus for decoding data in a layered modulation system
KR100520159B1 (ko) 다중 안테나를 사용하는 직교주파수분할다중 시스템에서간섭신호 제거 장치 및 방법
CN101326740B (zh) 发送正交频分复用信号的方法及其发射机和接收机
CN1222144C (zh) 正交频分复用系统中的信道解码装置和方法
RU2496235C2 (ru) Способ и устройство для формирования частотно-временных шаблонов для опорного сигнала в ofdm-системе беспроводной связи
US7652978B2 (en) Transmitting apparatus of OFDM system and method thereof
JP3745502B2 (ja) 受信装置及び送受信装置並びに通信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term