JP4347978B2 - 周波数信号および周期パルス信号発生装置 - Google Patents

周波数信号および周期パルス信号発生装置 Download PDF

Info

Publication number
JP4347978B2
JP4347978B2 JP2000015001A JP2000015001A JP4347978B2 JP 4347978 B2 JP4347978 B2 JP 4347978B2 JP 2000015001 A JP2000015001 A JP 2000015001A JP 2000015001 A JP2000015001 A JP 2000015001A JP 4347978 B2 JP4347978 B2 JP 4347978B2
Authority
JP
Japan
Prior art keywords
frequency
signal
frequency signal
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000015001A
Other languages
English (en)
Other versions
JP2000286698A (ja
Inventor
仁志 近藤
泰広 樋口
歩 兵頭
貴彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2000015001A priority Critical patent/JP4347978B2/ja
Publication of JP2000286698A publication Critical patent/JP2000286698A/ja
Application granted granted Critical
Publication of JP4347978B2 publication Critical patent/JP4347978B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、測位用衛星からの信号を受信して、測位系で用いられる時系に同期した周期パルス信号およびそれにコヒーレントな周波数信号を発生する装置に関するものである。
【0002】
【従来の技術】
たとえばGPS等の測位システムにおいては、各測位用衛星から受信点までの距離を観測するための信号や各測位用衛星の位置を求めるための情報が送信されていて、受信機は各測位用衛星からの測位用信号を用いて各測位用衛星の位置と各測位用衛星から受信機までの距離とから受信機の測位を行っている。
【0003】
このような測位システムでは、任意の時刻における各衛星の位置を軌道情報と時刻によって特定できるようにするため、統一された時系が(GPSシステムではGPS時)が用いられている。この時系における時刻を求めるための情報は衛星から送信される信号に含まれているため、このような信号を受信する受信機は、測位の目的以外に時計としての機能を有する。
【0004】
GPSシステムでは、衛星上の時計は原子時計であり、その1秒の長さは協定世界時(以下「UTC」と言う。)と同じ原子時の1秒にほぼ(100ns程度以下の小さな誤差で)一致している。したがって、1秒およびそれ以下の単位についてはUTCがGPS測位系の標準クロックということができる。このような正確な時刻情報を得るための受信機は時刻比較用受信機(time transfer receiver)として専用の装置が用いられている。
【0005】
また、上記時刻情報を得るための受信機は、単に現在時刻を求めるためだけでなく、特開平10−48324号に示されているように、高精度な1秒パルス信号(以下「1PPS」と言う。)を発生する装置として用いられる。
【0006】
上記公報に示されている1PPSを発生する装置の構成を図10に示す。図10においてGPS受信回路はRFダウンコンバータ、GPS相関器、PN符号発生器、ドップラNCOなどからなり、GPS衛星からの電波を受信する。制御プロセッサはGPS受信回路を制御して、プログラマブルカウンタから出力される1PPSとUTCとのずれを求める。ここでfLOはGPS受信回路に対してRFダウンコンバータの基準周波数信号として、また制御プロセッサに対してシステムクロック信号としてそれぞれ与えられる。制御プロセッサは分周器の出力信号を割り込み信号として受け、割り込み信号により上記GPS受信回路の制御およびプログラマブルカウンタに対するプリロードネクストカウント値の出力を行う。
【0007】
VC−OCXOは恒温槽(容器)に入れられた周波数可変発振器であり、制御プロセッサはD/AコンバータDACに対して周波数制御用データを与えることによって発振周波数を制御する。分周器はVC−OCXOの発振信号を所定の分周比で分周し、例えば1kHzの信号を出力する。またプログラマブルカウンタはVC−OCXOの出力信号をクロックとしてカウントする。
【0008】
プログラマブルカウンタは分周器の出力信号によりカウントをスタートし、制御プロセッサから与えられているプリロードネクストカウント値に達したとき1PPSを出力する、と同時にカウントをストップする。
【0009】
【発明が解決しようとする課題】
ところで、例えば携帯電話システムやPHSなどの高速デジタル通信基地局、地震計、送電線の落雷や地絡地点の検知システムなどにおいては、上記1PPSなどの正確な周期パルス信号以外に、それに対してコヒーレントな関係にある周波数信号も要求される。
【0010】
図10に示した従来の周期パルス信号発生装置を用いて正確な周波数信号を発生させる場合、図10におけるクロック信号fLOを外部へ出力するように構成すればよい。例えば、外部へ出力すべき周波数信号の周波数が10MHzである場合、fLOを10.0MHzとし、その際、分周器の出力信号の周波数として1kHzが要求される場合には、分周器の分周比を1/10000とすればよい。しかし制御プロセッサは、内部で毎秒カウントしている時刻とUTCとの差に基づいてプログラマブルカウンタに対する設定値(プリロードネクストカウント値)を決定しているため、VC−OCXOの発振周波数が規定値からずれていたり、GPS受信回路の測位誤差が大きい場合などでは、プログラマブルカウンタに設定するプリロードネクストカウント値が毎回変化することになる。そのため、連続する1PPSの間に出力される10MHzの波数は必ずしも1×107 とはならない。すなわち1PPSは高精度に出力できるが、1PPSにコヒーレントな周波数信号を必ずしも得ることはできない。
【0011】
そこで仮に、図10に示したプログラマブルカウンタの代わりに10MHzを1/107 に分周する分周器を用いれば、連続する1PPSの間に出力される10MHzの波数は必ず1×107 となる。但し、その方式では、1PPSの出力されるタイミングをUTCに合わせるために、VC−OCXOの発振周波数を正確な10MHzに対して増減させなければならない。ところが、VC−OCXOの周波数可変範囲は一般に±1〜2ppmである。10MHzの場合、せいぜい±10〜20Hz程度であり、毎秒10〜20サイクル分しか修正できない。一方のUTCと1PPSのタイミングのずれは、電源投入時などでは最大1秒の半分すなわち±500msである。そのため、電源投入後、10MHzが安定し、且つ1PPSがUTCに同期するまでに、0.5×(107 /10〜20)=0.5×106 〜0.25×106 [秒] =139〜69時間となり、数十時間も要することになる。
【0012】
この発明の目的は、測位系の時系に同期した周期パルス信号を発生するとともに、それにコヒーレントな関係にある周波数信号を短時間のうちに安定化させて出力できるようにした周波数信号および周期パルス信号発生装置を提供することにある。
【0013】
【課題を解決するための手段】
この発明は、第1の周波数信号を発生する第1周波数信号発生回路と、該第1周波数信号発生回路に比べて周波数可変幅の広い第2の周波数信号を発生する第2周波数信号発生回路と、第1または第2の周波数信号発生回路による周波数信号のいずれか一方を選択する選択手段と、選択された周波数信号を分周してパルス信号を発生する手段と、測位用衛星からの信号を受信する受信手段と、該受信手段により受信された前記測位用衛星からの信号を基にして測位系の標準クロックと前記パルス信号とのずれを求め該ずれが所定値より大きな状態で第2周波数信号発生回路が選択され、前記ずれが前記所定値より小さな状態で第1周波数信号発生回路が選択され、且つ前記第1の周波数信号の位相と前記第2の周波数信号の位相とが連続するように前記選択手段を制御するとともに、前記ずれが小さくなるように前記第1または第2の周波数信号発生回路の発生周波数を制御する演算処理手段とを設けて、周波数信号および周期パルス信号を発生する。
【0014】
このように、第1の周波数信号を発生する回路と、第2の周波数信号を発生する回路を設け、いずれか一方の周波数信号の分周信号を、1PPSなどのパルス信号として出力する。そして、このパルス信号とUTCなどの標準クロックとのずれが所定値より大きい時に周波数可変幅の広い第2の周波数信号発生回路を用い、上記ずれが所定値より小さい場合に、第1の周波数信号発生回路を選択するが、この第1の周波数信号発生回路は、周波数可変幅が相対的に狭い分、周波数安定性の高い発振器により構成できるので、UTCなどの測位系の標準クロックと1PPSなどの一定周期のパルス信号とのずれが速やかに減少し、そのずれが小さくなった時点で高精度な周波数信号および周期パルス信号が出力される。しかも第1または第2の周波数信号と上記パルス信号とはコヒーレントな関係にあるため、例えば1PPSの間に出力される例えば10MHzの波数は常に1×107 の関係に保たれる。
また、周波数信号出力手段が第1周波数信号発生回路の出力信号を常に外部へ出力するので、歪みの非常に少ない正弦波信号を外部へ出力できる。また、選択手段は正弦波信号を切り替えるアナログ回路で構成する必要がなく、矩形波信号を出力する回路で容易に構成できる。
【0015】
また、この発明は、前記第2周波数信号発生回路が、第1の周波数信号または第1の周波数信号の一定周波数比に相当する信号を入力し、該入力信号の単位時間当たりの波数の制御によって周波数を変化させて第2の周波数信号を発生するものとする。例えば、第1の周波数信号を基準周波数信号とし、制御データにより周波数信号の周期を制御する数値制御発振器(NCO)により構成する。
【0016】
また、この発明は、第1・第2の周波数信号をそれぞれ所定分周比で分周して位相比較するとともに、該位相差に応じて前記第2周波数信号発生回路の発生周波数を制御するPLL回路を構成し、前記周波数制御手段が、前記分周比によって第2の周波数信号の周波数を制御するものとする。
【0017】
また、この発明は、前記受信手段の動作タイミングを定めるクロック信号を発生する第3の周波数信号発生回路と、該第3の周波数信号発生回路の出力信号の分周信号と前記第1または第2周波数信号発生回路の分周信号とを位相比較して、第1または第2の周波数信号発生回路の出力信号にコヒーレントなクロック信号を第3の周波数信号発生回路から出力させるPLL回路を設ける。これにより、受信手段が要するクロック信号の周波数と、外部へ出力する周波数信号の周波数とを任意の比(分周比/逓倍比)に定めることができ、受信手段で用いるクロック信号の周波数とは独立して任意の周波数信号を出力できるようになる。逆に、出力すべき周波数信号の周波数とは独立して任意のクロック信号を基に処理を行う受信手段を設けることもできる。
【0018】
【発明の実施の形態】
この発明の第1の実施形態に係る周波数信号および周期パルス信号発生装置の構成を図1〜図3を参照して説明する。
図1は装置全体のブロック図である。受信回路11は、GPSアンテナ1が受けたGPS衛星からの電波を周波数変換するRFダウンコンバータおよび、その信号をデジタルデータに変換するADコンバータを備えている。プロセッサ12は受信回路11に対して、発生すべきC/Aコードとその位相の指定、およびキャリア成分除去のための制御を行う。
【0019】
VC−OCXO14は、この発明に係る第1周波数信号発生回路に相当する、周波数安定性は高いが周波数可変幅の狭い、恒温槽入りの電圧制御発振器であり、10MHzの周波数信号を発生する。プロセッサ12はDAコンバータ13に対して制御データを与えることにより、その発振周波数を僅かながら制御する。分周器19はVC−OCXO14の発振信号を分周して位相比較器18へ与える。VC−XO16は、この発明に係る第2周波数信号発生回路に相当する、周波数安定性が上記VC−OCXO14に比べて高くはないが、周波数可変幅の広い電圧制御発振器であり、略10MHzの周波数信号を発生する。分周器17はVC−XO16の発振信号を分周して位相比較器18へ与える。その分周比はプロセッサ12が定める。位相比較器18は2つの分周器19,17より出力される信号の位相差を検出して、その位相差が小さくなる方向にVC−XO16の発振周波数を制御する。これによりPLL回路を構成している。
セレクタ15はプロセッサ12の出力信号に従ってVC−OCXO14またはVC−XO16の発振信号のうち何れか一方を選択して出力する。
【0020】
位相比較器18は、分周器19,17より出力される信号が同位相となったとき、そのタイミングを示す信号“Lock”を出力する。上記セレクタ15は位相比較器18から出力される信号“Lock”に同期して、プロセッサ12の出力信号に従って、VC−OCXO14の出力からVC−XO16の出力へ、またはVC−XO16の出力からVC−OCXO14の出力へ切り替える。したがってこの切替時においても、位相が連続した10MHzの信号が出力されることになる。
【0021】
分周器20はセレクタ15から出力される10MHzの周波数信号を1/10000に分周して1kHzの信号を出力する。分周器21はこれを更に1/1000分周して1PPSとして出力する。この1PPSはプロセッサ12へも与えられる。プロセッサ12はこの1PPSの発生タイミングを検出し、UTCとのずれを求める。
【0022】
VC−TCXO23は、この発明に係る第3の周波数信号発生回路に相当する温度補償電圧制御発振器であり、受信回路11に対する周波数変換用の基準周波数信号として、およびプロセッサ12に対するクロック信号として11.605MHzの信号を発生する。分周器24はこのVC−TCXO23の発振信号を1/11605分周して1kHzの信号を出力する。この1kHzの信号はプロセッサ12に対して割り込み信号として与えられる。位相比較器22は分周器24の出力信号と分周器20の出力信号との位相比較を行って、位相差が小さく且つ安定するようにVC−TCXO23の発振周波数を制御する。これによりPLL回路を構成している。
【0023】
VC−TCXO23の周波数安定性はVC−OCXOよりは低いが、上記PLL回路により、略VC−OCXO並の周波数安定性を確保できる。また、一般にVC−TCXO23の周波数可変幅はVC−XO16より狭いため、セレクタ15によりVC−XO16を選択しているときは、上記PLL回路の同期範囲を超えることもあり得る。しかし、その場合においても、受信回路11とプロセッサ12はVC−TCXO23のクロックにより動作し、1PPSの発生タイミングとUTCとのずれを求めることができる。
【0024】
図2は図1に示したプロセッサ12のC/Aコード位相とキャリア位相の追尾のための構成を示すブロック図である。図2においてCPU61はROM62に予め書き込まれたプログラムを実行する。RAM63はそのプログラムの実行に際してワーキングエリアとして用いる。IQ分離回路50は、受信回路のA/Dコンバータからのデータのキャリア周波数におけるI成分とQ成分を分離する。キャリアNCO51は乗算器52に対してキャリア信号(データ)を与え、乗算器52は対してキャリア信号のデータを乗算することによってキャリア成分(ドップラ成分)を除去したI成分とQ成分のデータを出力する。C/Aコード発生回路53は所定幅位相のずれたC/Aコードを、指定された位相で発生する。相関器54はI成分とQ成分について、受信信号のC/AコードとC/Aコード発生回路の発生した位相のずれた2つのC/Aコードとの相関値を求める。CPU61はI成分とQ成分の相関値を基に、受信信号のキャリア位相を検出し、キャリア位相が0になるように、キャリアNCO51の発生するキャリア位相を制御する。また上記位相のずれた2つのC/Aコードの相関値からC/Aコード位相を検出し、その結果に応じてC/Aコード発生回路53を制御して受信信号のC/Aコードを追尾する。さらにCPU61は受信信号から航法メッセージデータを抽出し、時刻情報と複数の衛星の軌道情報およびC/Aコード位相から測位演算を行う。
【0025】
図3は図1に示したVC−OCXO14の発振周波数制御、分周器17の分周比制御およびセレクタ15の切替制御を行う処理手順を示すフローチャートである。
【0026】
まずセレクタをVC−XO16側に選択する(n1)。これにより、VC−XO16の発振信号である略10MHzの周波数信号を先ず出力する。続いてUTCと1PPSとのずれΔtを求める(n2)。なお、C/AコードはUTCに同期してGPS衛星から送信されているので、C/Aコード位相の追尾を行うことによってUTCの毎秒のタイミングを求めることができる。上記ΔtはVC−XO16の発振周波数のずれ(誤差)に起因している。
【0027】
このずれΔtの絶対値が、予め定めたしきい値thを超えるとき、Δtの大きさに応じて、図1に示した分周器17の分周比を設定する(n3→n4)。例えば分周器19の分周比が1/10000であり、1PPSがUTCより遅れているときにΔtがプラスになる関係であるものとすると、上記Δtが+0.05秒を超える値であれば、分周器17の分周比を1/11000とする。図1に示した位相比較器18は分周器19,17の出力信号の位相差が小さくなる方向にVC−XO16の発振周波数を制御するため、このことにより、VC−XO16から11MHzの周波数信号が出力され、1秒あたり1秒の10%の割合で1PPSの発生タイミングが早まっていく。また、Δtが−0.05秒未満の(絶対値が0.05を超える)値であれば、分周器17の分周比を1/9000とする。これにより、1秒あたり1秒の10%の割合で1PPSの発生タイミングが遅れていく。
【0028】
このようにして、原発振器であるVC−XO16の発振周波数を一時的に大きくずらせることによって、UTCに略同期した1PPSを速やかに発生させることができる。前述したように、電源投入後のUTCと1PPSのタイミングのずれは最大±500msであるから、最大約5秒程度の短時間で精度±0.05秒の1PPSと、それにコヒーレントな10MHzの周波数信号が出力される。
【0029】
その後、Δtが+0.05秒以下となれば、分周器17の分周比を1/10100とする。これにより、1秒あたり1秒の1%の割合で1PPSの発生タイミングが早まっていく。また、Δtが−0.05秒以上(絶対値が0.05秒以下)となれば、分周器17の分周比を1/9800とする。これにより、1秒あたり1秒の1%の割合で1PPSの発生タイミングが遅れていく。したがってこの段階になってから約5秒以内に精度±0.005秒の1PPSが出力される。
【0030】
更に、Δtが+0.005秒以下となれば、分周器17の分周比を1/10010とし、Δtが−0.005秒以上(絶対値が0.005秒以下)となれば、分周器17の分周比を1/9990とする。これにより、1秒あたり1秒の0.1%の割合で1PPSの発生タイミングがずれていき、この段階になってから約5秒以内に精度±0.0005秒の1PPSが出力されることになる。
【0031】
以降、同様にしてΔtの絶対値が小さくなるように分周器17の分周比を1/10000に近づけていく。そしてΔtの絶対値が所定のしきい値th以下となれば、セレクタ15をVC−OCXO14側に切り替える(n5)。このしきい値thはVC−XO16の発振周波数がVC−OCXO14の周波数可変幅内に入る条件で定めておく。
【0032】
続いて、UTCと1PPSとのずれΔtを求めるとともに、その値が小さくなるようにVC−OCXO14に対する制御データを出力する(n6→n7→n8→n6→・・・)。以降は周波数安定性の高いVC−OCXOの発振信号を10MHzの周波数信号として出力する。
【0033】
もし複数のGPS衛星からの電波が途絶えるなどによって、Δtの絶対値がしきい値thを超える状態となれば、セレクタ15を再びVC−XO16側に切り替えて初期状態における処理へ戻る(n7→n1→・・・)。その後は同様にしてVC−XOを原発振器とする処理を行い、UTCと1PPSとのずれがしきい値thにまで小さくなった時点で再びVC−OCXOを原発振器とする処理へ移行する。
【0034】
以上のようにして、測位系の時系(UTC)に同期した周期パルス信号(1PPS)を発生するとともに、それにコヒーレントな関係にある周波数信号(10MHz)を短時間のうちに安定化させて出力させる。
【0035】
なお、図1において破線で示すように、VC−OCXO14の出力信号を10MHz信号として外部へ出力するようにしてもよい。この場合、歪みの非常に少ない10MHzの正弦波信号を外部へ出力できる。また、セレクタ15は正弦波信号を切り替えるアナログ回路で構成する必要がなく、矩形波信号を出力する回路で容易に構成できる。但し、セレクタ14がVC−XO16側を選択している状態では、外部へ出力されている10MHz信号と1PPSとはコヒレーントな関係には無い。しかし、電源投入直後、通常は短時間の内にセレクタ14がVC−OCXO14側を選択することになり、それ以降はコヒーレント性が保てる。また、セレクタがVC−OCXO14側とVC−XO16側のいずれを選択しているかの状態を外部へ出力することによって、10MHz信号および1PPSを利用する装置は、それに応じた処理を行うことができる。例えば、セレクタがVC−XO16側を選択している状態では(セレクタがVC−OCXO14側を選択するまでの間は)、VC−OCXO14から直接出力されている10MHz信号をモニターして、正常に発振動作しているか否かのチェックを行う、といった処理も可能である。
【0036】
次に、第2の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図を図4に示す。
図1に示した例では、セレクタ15がVC−XO16側を選択していて、VC−XO16の発振周波数が10MHzからずれているとき、VC−TCXO23の発振周波数もずれる。この場合でも、原理的にはプロセッサ12は毎秒毎秒のUTCと1PPSとの差Δtを求めることができる。しかし、受信回路11に対する基準周波数信号およびプロセッサ12に対するクロック信号の周波数が設計値より極端にずれると、衛星の捕捉ができなくなる。そこで、この第2の実施形態では、受信回路11に対する基準周波数信号およびプロセッサ12に対するクロック信号の周波数を常に安定化させる。
【0037】
図4において、分周器25はVC−OCXO14の出力信号を1/10000分周して1kHzの信号を位相比較器22へ与える。その他の構成は図1に示したものと同様である。
【0038】
図4に示した構成によれば、受信回路11に対する基準周波数信号およびプロセッサ12に対するクロック信号の周波数を、VC−OCXO14の発振周波数にコヒーレントな関係とすることができる。そのため、セレクタ15の選択状態およびVC−XO16の発振周波数に無関係に、受信回路11は常に安定性の高い周波数で周波数変換を行い、プロセッサ12は常に周波数安定性の高いクロック信号で動作することになる。但し、設計によっては、VC−OCXO14の出力信号を用いないで、常にVC−XO16の出力信号を分周器25へ与えるようにしてもよい。
【0039】
なお、この第2の実施形態でも、第1の実施形態の場合と同様に、セレクタを通さずにVC−OCXO14の出力信号を直接外部へ出力するようにしてもよい。
【0040】
次に、第3の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図を図5に示す。
図1に示した例とは異なり、この第3の実施形態では、第2周波数信号発生回路として数値制御発振器NCOを用いている。すなわち、NCO26はVC−OCXO14の出力信号を入力し、プロセッサ12から与えられる制御データに応じて入力信号の波数を間引き、その信号をセレクタ15へ出力する。
【0041】
プロセッサ12から与えられるデータは、例えば2段階で与えられ、10000または100である。データが10000であるとき、NCO26はVC−OCXO14の出力信号である10MHzを矩形波として10000カウントする毎に1回の頻度で矩形波を間引く。これにより、10MHzより1kHzだけ周波数を低下させる。また、プロセッサ12から与えられるデータが1000000であるとき、NCO26はVC−OCXO14の出力信号である10MHzを矩形波として1000000カウントする毎に1回の頻度で矩形波を間引く。これにより、10MHzより10Hzだけ周波数を低下させる。
【0042】
図6は図5に示したVC−OCXO14の発振周波数制御、NCO26の周波数制御およびセレクタ15の切替制御を行う処理手順を示すフローチャートである。
【0043】
まずセレクタをNCO26側に選択する(n1)。これにより、NCO26の出力信号である略10MHzの周波数信号を先ず出力する。続いてUTCと1PPSとのずれΔtを求める(n2)。このΔtはNCO26の出力周波数のずれ(誤差)に起因している。
【0044】
このずれΔtの絶対値が予め定めたしきい値thを超えるとき、Δtの大きさに応じてNCO26に対する制御データを設定する(n3→n4)。例えば1PPSがUTCより1ms以上遅れているとき、NCO26に対する制御データを10000とする。これより、NCO26からの出力信号の周波数は10M−1kHzとなり、分周器21から出力される1PPSが、UTCの毎秒のタイミングより毎秒1msの割合で遅れていく。
【0045】
その後、UTCに対する1PPSの遅れが1ms未満となれば、NCO26に対する制御データを1000000とする。これより、NCO26からの出力信号の周波数は10M−10Hzとなり、分周器21から出力される信号が、UTCの毎秒のタイミングより10μsの割合で遅れていく。
図6におけるその他の処理は図3に示したものと同様である。
【0046】
このようにして、UTCに略同期した1PPSを速やかに発生させる。この実施形態では、電源投入直後は1ms単位で1PPSのタイミングを毎秒ずらせるが、NCO26が10MHzの周波数を低下させる方向にしか制御できないので、電源投入後のUTCと1PPSのタイミングのずれは最大999msとなり、最大約999秒で精度±0.001秒の1PPSと、それにコヒーレントな10MHzの周波数信号が出力される。その後は10μs単位で1PPSのタイミングを毎秒ずらせるので、最大99秒で精度±0.00001秒の1PPSが出力される。
【0047】
以上に示した例では、NCO26に与える制御データを2段階としたが、これを3段階以上の多段階とすれば、さらに短時間のうちに1PPSをUTCの毎秒のタイミングに収束させることができる。
【0048】
次に、第4の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図を図7に示す。
この第4の実施形態では、第2周波数信号発生回路として数値制御発振器NCOを用い、VC−OCXO14の出力信号を分周器25で分周して位相比較器へ与えるようにしている。その他の構成は図4に示したものと同様である。
【0049】
図7に示した構成によれば、受信回路11に対する基準周波数信号およびプロセッサ12に対するクロック信号の周波数を、VC−OCXO14の発振周波数にコヒーレントな関係とすることができる。そのため、セレクタ15の選択状態およびNCO26の出力信号の周波数に無関係に、受信回路11は常に安定性の高い周波数で周波数変換を行い、プロセッサ12は常に周波数安定性の高いクロック信号で動作することになる。但し、設計によっては、VC−OCXO14の出力信号を用いないで、常にNCO26の出力信号を分周器25へ与えるようにしてもよい。
【0050】
なお、この第4の実施形態でも、セレクタを通さずにVC−OCXO14の出力信号を直接外部へ出力するようにしてもよい。
【0051】
次に、第5の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図を図8に示す。
この第5の実施形態では、VC−OCXO14の発振周波数を20MHzとし、これを1/2分周する分周器27を設け、NCO26が、20MHzの信号を入力し、10MHzの信号を出力するように構成している。ここで、VC−OCXO14と分周器27とが第1周波数信号発生回路に相当し、NCO26が第2周波数信号発生回路に相当する。NCO26は出力すべき第1周波数信号を逓倍した周波数に相当する信号を入力し、その波数を、プロセッサ12から与えられた制御データに応じて所定の頻度で間引く。このように出力すべき信号の周波数より予め高い周波数の信号の波数を間引くことによって、10M±nHzの周波数信号を出力する。
【0052】
このように、1PPSのタイミングを遅らせる方向の制御だけでなく、進める方向の制御も行えるようにすることによって、電源投入後のUTCと1PPSのタイミングのずれは最大約500msとなり、さらに短時間のうちに1PPSをUTCの毎秒のタイミングに収束させることができる。
【0053】
次に、第6の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図を図9に示す。
この第6の実施形態では、VC−OCXO14の発振周波数を分周器20で先ず分周し、NCO26が分周器20の出力信号をプロセッサ12から与えられた制御データに応じて間引くことにより周波数制御することにし、セレクタ15は分周器20の出力信号またはNCO26の出力信号のいずれかを選択し、分周器21がその選択された信号を分周して1PPSとして出力するようにしたものである。ここで、VC−OCXO14と分周器20とが第1周波数信号発生回路に相当し、NCO26が第2周波数信号発生回路に相当する。但し、VC−OCXO14の発振信号を外部へ出力する。
【0054】
分周器20はVC−OCXO14から出力される10MHzを1/9999分周し、1k+0.1Hzの信号を出力するので、NCOの間引きにより、セレクタ15に出力する信号を、例えば1k±0.1Hzの範囲で制御することができる。このことにより、1±0.0001Hzすなわち毎秒0.1msの単位で1PPSをUTCの毎秒のタイミングに収束させることができる。
【0055】
第3〜第6の実施形態では第2周波数信号発生回路にNCOを用いたため、第1の周波数信号発生回路のVC−OCXO14との干渉による問題を回避できる。すなわち、第1・第2の実施形態のように、第2周波数信号発生回路をVC−OXで構成すれば、周波数の非常に接近した2つの信号を出力するVC−OCXOとVC−XOとが干渉し易く、両者のアイソレーションのためのスペースが必要となる。しかし、NCOは入力信号の波数を所定周期で間引く回路であるため、VC−OCXOと干渉することはない。また、ディジタル回路で構成するため、部品点数も少なくなり、装置全体を小型化できる。
【0056】
なお、以上に示した各実施形態では、受信回路11に対する基準周波数信号およびプロセッサ12に対するクロック信号を発生する第3の周波数信号発生回路としてVC−TCXO23を設け、その発振出力の分周信号と第2の周波数信号とを位相比較して、第1または第2の周波数信号発生回路の発振信号にコヒーレントなクロック信号を発生するPLL回路を設けたが、各図における分周器20,21の分周比を適宜定めることによって、分周器20の出力信号を受信回路に対する基準周波数信号およびプロセッサ12に対するクロック信号として与えるようにしてもよい。また、出力すべき10MHzなどの周波数信号を、受信回路に対する基準周波数信号およびプロセッサ12に対するクロック信号として与えるようにしてもよい。これらの場合、上記位相比較器22によるPLL回路は不要となる。
【0057】
逆に、各図に示したように上記位相比較器22によるPLL回路を設け、分周器の分周比を適宜定めることによって、出力すべき周波数信号の周波数(10MHz)とは独立して、任意の周波数信号を受信回路に対する基準周波数信号およびプロセッサ12に対するクロック信号として得ることができる。
【0058】
【発明の効果】
請求項1に記載の発明によれば、UTCなどの測位系の標準クロックと1PPSなどの一定周期のパルス信号とのずれが速やかに減少し、そのずれが小さくなった時点で高精度な周波数信号および周期パルス信号が出力される。しかも第1または第2の周波数信号発生回路の出力信号と上記一定周期のパルス信号とはコヒーレントな関係にあるため、例えば1PPSの間に出力される例えば10MHzの波数は常に1×107 の関係が保たれる。
【0059】
請求項2に記載の発明によれば、第1の周波数信号を基準周波数信号とし、制御データにより周波数信号の周期を制御する数値制御発振器(NCO)により第2の周波数信号発生回路を構成できるので、非常に近接する周波数信号を発生する第1の周波数信号発生回路との干渉を防止することができる。また、ディジタル回路により構成できるので、その集積化により部品点数が削減できる。さらに、第1・第2の周波数信号発生回路間の干渉防止のためのスペースを確保する必要がなく、部品点数も削減されることから、全体に小型化できる。
【0060】
請求項3に記載の発明によれば、第1・第2の周波数信号発生回路を電圧制御発振器により構成できるので、第1・第2のいずれの周波数信号も正弦波信号とすることができる。そのため、第2の周波数信号をも所望のアナログ回路に与えることができる。
【0061】
請求項4に記載の発明によれば、受信手段の要するクロック信号の周波数と、外部へ出力する第1または第2の周波数信号発生回路の出力周波数とを任意の比(分周比/逓倍比)に定めることができ、受信手段で用いるクロック信号の周波数とは独立して任意の周波数信号を出力できるようになる。逆に、必要とされる周波数信号の周波数とは独立して任意のクロック信号を基に処理を行う受信手段を設けることもできるようになる。
【図面の簡単な説明】
【図1】第1の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図
【図2】同装置のプロセッサの一部の構成を示すブロック図
【図3】プロセッサの主要部の処理手順を示すフローチャート
【図4】第2の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図
【図5】第3の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図
【図6】同装置のプロセッサの主要部の処理手順を示すフローチャート
【図7】第4の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図
【図8】第5の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図
【図9】第6の実施形態に係る周波数信号および周期パルス信号発生装置のブロック図
【図10】従来の周期パルス信号発生装置の構成を示すブロック図
【符号の説明】
1−GPSアンテナ
VC−OCXO−恒温槽入り電圧制御発振器
VC−XO−電圧制御発振器
VC−TCXO−温度補償電圧制御発振器
NCO−数値制御発振器

Claims (5)

  1. 第1の周波数信号を発生する第1周波数信号発生回路と、該第1周波数信号発生回路に比べて周波数可変幅の広い第2の周波数信号を発生する第2周波数信号発生回路と、第1または第2の周波数信号発生回路による周波数信号のいずれか一方を選択する選択手段と、選択された周波数信号を分周してパルス信号を発生する手段と、測位用衛星からの信号を受信する受信手段と、該受信手段により受信された前記測位用衛星からの信号を基にして測位系の標準クロックと前記パルス信号とのずれを求め該ずれが所定値より大きな状態で第2周波数信号発生回路が選択され、前記ずれが前記所定値より小さな状態で第1周波数信号発生回路が選択され、且つ前記第1の周波数信号の位相と前記第2の周波数信号の位相とが連続するように前記選択手段を制御するとともに、前記ずれが小さくなるように前記第1または第2の周波数信号発生回路の発生周波数を制御する演算処理手段とを設けて成る周波数信号および周期パルス信号発生装置。
  2. 前記第2周波数信号発生回路は、第1の周波数信号または第1の周波数信号の一定周波数比に相当する入力信号を入力し、該入力信号の単位時間当たりの波数の制御によって周波数を変化させて第2の周波数信号を発生するものである請求項1に記載の周波数信号および周期パルス信号発生装置。
  3. 第1・第2の周波数信号をそれぞれ所定分周比で分周して位相差を求めるとともに、該位相差に応じて前記第2の周波数信号発生回路の発生周波数を制御するPLL回路を構成し、前記演算処理手段が前記分周比を定めることにより第2の周波数信号の周波数を制御するものとした請求項1に記載の周波数信号および周期パルス信号発生装置。
  4. 前記受信手段の動作タイミングを定めるクロック信号を発生する第3の周波数信号発生回路と、該第3の周波数信号発生回路の出力信号の分周信号と前記第1または第2の周波数信号発生回路の分周信号とを位相比較して、第1または第2の周波数信号発生回路の出力信号にコヒーレントなクロック信号を第3の周波数信号発生回路から出力させるPLL回路を設けた請求項1、2または3に記載の周波数信号および周期パルス信号発生装置。
  5. 前記第1周波数信号発生回路の出力信号を常に外部へ出力する周波数信号出力手段を設けた、請求項1〜4のいずれかに記載の周波数信号および周期パルス信号発生装置。
JP2000015001A 1999-01-26 2000-01-24 周波数信号および周期パルス信号発生装置 Expired - Fee Related JP4347978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015001A JP4347978B2 (ja) 1999-01-26 2000-01-24 周波数信号および周期パルス信号発生装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1708499 1999-01-26
JP11-17084 1999-01-26
JP2000015001A JP4347978B2 (ja) 1999-01-26 2000-01-24 周波数信号および周期パルス信号発生装置

Publications (2)

Publication Number Publication Date
JP2000286698A JP2000286698A (ja) 2000-10-13
JP4347978B2 true JP4347978B2 (ja) 2009-10-21

Family

ID=26353554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015001A Expired - Fee Related JP4347978B2 (ja) 1999-01-26 2000-01-24 周波数信号および周期パルス信号発生装置

Country Status (1)

Country Link
JP (1) JP4347978B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174629A1 (en) * 2020-11-30 2022-06-02 Viettel Group Method and apparatus for data frame synchronization of 5g base station

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177889A (ja) * 2004-12-24 2006-07-06 Japan Radio Co Ltd 発振器監視装置
WO2010098460A1 (ja) * 2009-02-27 2010-09-02 古野電気株式会社 位相測定装置、および周波数測定装置
JP5159704B2 (ja) * 2009-05-25 2013-03-13 古野電気株式会社 基準周波数発生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174629A1 (en) * 2020-11-30 2022-06-02 Viettel Group Method and apparatus for data frame synchronization of 5g base station
US11683771B2 (en) * 2020-11-30 2023-06-20 Viettel Group Method and apparatus for data frame synchronization of 5G base station

Also Published As

Publication number Publication date
JP2000286698A (ja) 2000-10-13

Similar Documents

Publication Publication Date Title
JP5230010B2 (ja) 基準信号発生システム、タイミング信号供給装置及び基準信号発生装置
US5440313A (en) GPS synchronized frequency/time source
JPH08146166A (ja) 基準周波数発生装置
MXPA01002489A (es) Localizacion de posicion con un oscilador de baja tolerancia.
EP1277286B9 (en) Personal communications device with gps receiver and comon clock source
JP2017118371A (ja) タイミング信号生成装置、電子機器および移動体
JP2005086821A (ja) 航法衛星受信機と通信装置との組合せデバイス
EP1480053B1 (en) Gps receiver apparatus and receiving method
JP4347978B2 (ja) 周波数信号および周期パルス信号発生装置
JP3575220B2 (ja) スペクトル拡散信号捕捉装置
JP4352557B2 (ja) 同期回路
JP4109097B2 (ja) 衛星信号受信方法及びその受信装置
JP2006184219A (ja) 測位衛星受信装置
RU2205417C2 (ru) Многоканальный приемоиндикатор спутниковых радионавигационных систем
JPS63111486A (ja) スペクトル拡散受信機の逆拡散回路
JPH05312935A (ja) Gps受信機の信号処理回路
JP2001044889A (ja) スペクトラム拡散受信装置
JP2000004152A (ja) 時間周波数基準信号発生器及び基準時間周波数発生装置及びこれを用いる基準時刻発生装置
KR960015849B1 (ko) 기준시각 대 주파수의 위상조절 회로 및 방법
JP3802229B2 (ja) Pll回路
KR101543379B1 (ko) 다중 위상 동기 루프 회로 구조의 주파수 합성 장치용 스케쥴러
JP2000174685A (ja) 通信装置および通信方法
JPH11298372A (ja) スペクトラム拡散信号受信装置
KR20000039004A (ko) 코드 분할 다중 접속 시스템에서 gps/glonass수신기를 이용한 기지국 동기 방법
JPH10257018A (ja) 同期回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees