JP4340843B2 - 交流直流複合電源装置 - Google Patents

交流直流複合電源装置 Download PDF

Info

Publication number
JP4340843B2
JP4340843B2 JP2003023671A JP2003023671A JP4340843B2 JP 4340843 B2 JP4340843 B2 JP 4340843B2 JP 2003023671 A JP2003023671 A JP 2003023671A JP 2003023671 A JP2003023671 A JP 2003023671A JP 4340843 B2 JP4340843 B2 JP 4340843B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
terminal
detection circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003023671A
Other languages
English (en)
Other versions
JP2004236460A (ja
Inventor
井山  治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2003023671A priority Critical patent/JP4340843B2/ja
Publication of JP2004236460A publication Critical patent/JP2004236460A/ja
Application granted granted Critical
Publication of JP4340843B2 publication Critical patent/JP4340843B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流電力と直流電力との両方を実質的に無停電で供給することができる交流直流複合電源装置に関する。
【0002】
【従来の技術】
【特許文献1】
特開2000−341881号公報
従来の代表的な無停電型の交流直流複合電源装置は、図1に示すように、商用交流電源端子1と、交流スイッチ(AC−SW)2と、交流出力端子3と、双方向電力変換器4と、第1の蓄電池5と、電源異常検出回路6と、交流‐直流即ちAC−DC変換器7と、直流‐直流即ちDC−DC変換器8と、直流出力端子9と、第2の蓄電池10とで構成されている。
【0003】
図1の交流(AC)負荷11に電力を供給するための交流無停電電源装置部分は前記特許文献1等で周知であり、また直流(DC)負荷12に電力を供給するための直流無停電装置部分も周知である。交流電源端子1に電力が正常に供給されている時には、交流電源端子1、交流スイッチ2、及び交流出力端子3の経路で交流負荷11に電力が供給されると共に、交流電源端子1、交流スイッチ2及び双方向電力変換器4の経路で第1の蓄電池5に充電電流が供給され、且つ交流電源端子1、AC−DC変換器7、DC−DC変換器8及び直流出力端子9の経路で直流負荷12に直流電力が供給されると共にDC−DC変換器8から第2の蓄電池10に充電電流が供給される。
【0004】
図1の交流電源端子1の電圧が所定値よりも低下又は上昇した時には、交流スイッチ2がオフ状態に制御されて交流電源端子1からの電力供給が停止し、これに代って第1の蓄電池5、双方向電力変換器4及び交流出力端子3の経路で交流負荷11に電力が供給され、また、第2の蓄電池10から直流負荷12に電力が供給される。
【0005】
【発明が解決しようとする課題】
ところで、スイッチング電源装置に対して力率改善、波形改善、ノイズ低減、高効率化、低コスト化が要求されている。図1の従来の装置において、双方向電力変換器4及びAC−DC変換器7を力率制御機能即ちPFC機能を有するように構成すれば、高力率改善、波形改善、ノイズ低減が達成される。しかし、PFC機能を双方向電力変換器4とAC−DC変換器7との両方に設けるために、電源装置が比較的コスト高、及び大型になる。
また、交流負荷11及び直流負荷12の大きさの変化に対応し難いという問題を有する。例えば、交流負荷11の容量が小さくなり、逆に直流負荷12の容量が大きくなった時には、双方向電力変換器4及び第1の蓄電池5の容量の余裕が大きくなり過ぎ、無駄が生じ、他方、AC−DC変換器7及びDC−DC変換器8及び第2の蓄電池10は容量不足になり、これ等の交換又は増設が必要になる。
【0006】
そこで、本発明の目的は、高効率化、小型化、及び低コスト化を図ることができる交流直流複合電源装置を提供することにある。
本発明の別の目的は、交流負荷容量と直流負荷容量との割合の変化に容易に対応することができる交流直流複合電源装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明は、正弦波交流電圧を入力させるための交流電源端子と、前記交流電源端子の交流電圧が異常であるか否かを検出する電源異常検出回路と、前記交流電源端子と前記電源異常検出回路とに接続されており、且つ前記電源異常検出回路の出力が電源異常を示していない時にオン状態を保持し、前記電源異常検出回路の出力が電源異常を示している時にオフ状態に転換するように前記電源異常検出回路で制御される交流スイッチと、前記交流電源端子に前記交流スイッチを介して接続された交流出力端子と、前記交流電源端子に前記交流スイッチを介して接続され且つ前記交流出力端子にも接続されている交流端子と直流電圧入出力用の直流端子と前記電源異常検出回路に接続された制御端子とを有し、且つ前記電源異常検出回路の出力が電源異常を示していない時には前記交流端子に供給された交流電圧を変換用スイッチのオン・オフ動作を伴なって直流電圧に変換して前記直流端子に出力する機能と、前記電源異常検出回路の出力が電源異常を示している時には前記直流端子に供給された直流電圧を変換用スイッチのオン・オフ動作を伴なって交流電圧に変換して前記交流端子に出力する機能と、力率改善機能とを有している双方向電力変換器ユニットの複数台から成る双方向電力変換器と、前記複数台の双方向電力変換器ユニットの各直流端子にそれぞれ接続された蓄電池と、前記蓄電池の電圧と異なるレベルの電圧を出力するために前記蓄電池に接続された直流−直流変換器ユニットの複数台から成る直流−直流変換器と、前記複数台の直流−直流変換器ユニットにそれぞれ接続された直流出力端子とを備え前記複数台の双方向電力変換器ユニットは、互いに同一に構成され且つ互いに並列接続され前記複数台の直流−直流変換器ユニットは、互いに同一に構成され且つ互いに並列接続されていることを特徴とする交流直流複合電源装置に係わるものである。
【0008】
なお、請求項2に示すように、前記電源異常検出回路は、前記交流電源端子の電圧を示す信号を検出する電源電圧検出手段と、前記電源電圧検出手段で検出された電圧を示す信号に同期して変化し且つ前記交流電源端子の電圧が正常の時において前記電源電圧検出手段で検出される電圧の振幅よりも低い振幅を有する基準値を作成する手段と、前記電源電圧検出手段で検出された電圧を示す信号が前記基準値よりも低い時に電源異常を示す信号を出力する比較手段とから成ることが望ましい。
また、請求項に示すように、前記電源異常検出回路は、前記交流電源端子の電圧を示す信号を検出する電源電圧検出手段と、前記電源電圧検出手段で検出された電圧を示す信号に同期して変化し且つ前記交流電源端子の電圧が正常の時において前記電源電圧検出手段で検出される電圧よりも低い振幅を有する第1の基準値、及び前記電源電圧検出手段で検出された電圧を示す信号に同期して変化し且つ前記交流電源端子の電圧が正常の時において前記電源電圧検出手段で検出される電圧よりも高い振幅を有する第2の基準値を作成する手段と、前記電源電圧検出手段で検出された電圧を示す信号が前記第1の基準値よりも低い時又は前記電源電圧検出手段で検出された電圧を示す信号が前記第2の基準値よりも高い時に電源異常を示す信号を出力する比較手段とから成ることが望ましい。
また、請求項に示すように、更に、前記蓄電池に接続された発電機を有し、前記発電機は前記電源異常検出回路の電源異常を示す出力に応答して駆動されるものであることが望ましい。
また、請求項に示すように、更に、前記蓄電池に接続された燃料電池を有し、前記燃料電池は前記電源異常検出回路の電源異常を示す出力に応答して駆動されるものであることが望ましい。
【0009】
【発明の効果】
各請求項の発明は次の効果を有する。
(1) 双方向電力変換器から蓄電池及び直流−直流変換器の両方に電力が供給されるので、直流−直流変換器のための独立したPFC機能を有するAC−DC変換器が不要になり、交流直流複合電源装置の小型化、低コスト化が達成される。
(2) 交流電源が正常の時には、変換器を介さずに交流負荷に電力が供給されるので、交流直流複合電源装置の高効率化が達成される。
(3) 交流負荷容量が減少し、逆に直流負荷容量が増大した時には双方向電力変換器及び直流−直流変換器の容量の増大で対処できる。即ち、双方向電力変換器の容量の変更を伴なわないで直流負荷容量の割合を増大できる。
(4)双方向電力変換器が、互いに並列接続された複数台の双方向電力変換器ユニットから成り、直流−直流変換器が、互いに並列接続された複数台の直流−直流変換器ユニットから成るので、交流負荷容量及び直流負荷容量の変化に容易に対応できる。例えば、交流負荷容量と直流負荷容量との合計が一定に保たれている状態で直流負荷容量の割合が増大した時には、直流−直流変換器ユニットを追加することによって対処できる。
また、請求項2及び3の発明によれば、電源電圧検出信号に同期して変化する振幅を有する基準値を使用して電源異常を検出するので、電源異常の検出を迅速に達成することができる。
また、請求項4及び5の発明によれば、発電機又は燃料電池によって交流電源の比較的長い停電に対処することができる。
【0010】
【第1の実施形態】
次に、図2〜図14を参照して本発明の第1の実施形態の無停電型の交流直流複合電源装置を説明する。
【0011】
図2に示す本発明の第1の実施形態に従う無停電型の交流直流複合電源装置は、200Vの3相の商用交流電源に接続される交流電源端子1と、3相の交流スイッチ2と、3相の交流出力端子3と、3相の双方向電力変換器4と、300〜400Vの蓄電池5と、電源異常検出回路6と、直流−直流変換器8と、48Vの直流出力端子9とから成る。
【0012】
交流スイッチ2は交流電源端子1と交流出力端子3及び双方向電力変換器4との間に接続されている。この交流スイッチ2は図3に詳しく示すように、GTO(ゲートターンオフ)構成のサイリスタ又は一般的な構成のサイリスタから成る第1、第2、第3、第4、第5及び第6のサイリスタS1 、S2 、S3 、S4 、S5 、S6 とゲート制御回路13とから成る。第1及び第2のサイリスタS1 、S2 の逆方向並列回路は第1相電源ライン1aに直列に接続され、第3及び第4のサイリスタS3 、S4 の逆方向並列回路は第2相電源ライン1bに直列に接続され、第5及び第6のサイリスタS5 、S6 の逆方向並列回路は第3相電源ライン1cに直列に接続されている。第1、第2及び第3相電源ライン1a、1b、1cは図2の3相交流電源端子1に接続される。
ゲート制御回路13はライン14によって与えられる図2の電源異常検出回路6の異常検出出力に応答して第1〜第6のサイリスタS1 〜S6 をオフ制御し、電源正常時には第1〜第6のサイリスタS1 〜S6 をオン制御する。
【0013】
図4は交流スイッチ2の変形例の1相分を示す。図4(A)の交流スイッチ2aはIGBT(絶縁ゲート型バイホーラトランジスタ)15、16の逆並列回路によって構成され、各IGBT15、16に直列に逆流阻止用ダイオード17、18が接続されている。
図4(B)に示す交流スイッチ2bは、ブリッジ接続された4つのダイオード19、20、21、22と、1つのサイリスタから成る半導体スイッチ23によって構成されている。
図4(C)に示す交流スイッチ2cは双方向制御が可能なトライアック24によって構成されている。
図2の交流スイッチ2は、図3、及び図4に限定されるものでなく、交流電圧を高速でオン・オフできるものであれば、どのようなものでもよい。
【0014】
図2の双方向電力変換器4は、交流−直流変換機能と直流−交流変換機能とPFC機能とを有するものであって、3相交流端子25と直流端子26と制御端子27と第1及び第2の双方向電力変換器ユニット4a、4bとで構成されている。第1及び第2の双方向電力変換器ユニット4a、4bは互いに同一に構成され、交流端子25、直流端子26及び制御端子27に接続されている。図2の双方向電力変換器4を第1の双方向電力変換器ユニット4aのみで構成すること、又は更に双方向電力変換器ユニットを増設することが可能である。3相交流端子25は交流スイッチ2を介して交流電源端子1に接続され且つ交流出力端子3にも接続されている。直流端子26は蓄電池5に接続されている。制御端子27はライン28を介して電源異常検出回路6に接続されている。
【0015】
図5は図2の第1の双方向電力変換器ユニット4aを詳しく示す。なお、第2の双方向電力変換器ユニット4bも図5に示す第1の双方向電力変換器ユニットと同一に構成されている。双方向電力変換器ユニット4aは、スイッチ回路30と、第1、第2及び第3のインダクタL1 、L2 、L3 と高周波成分除去用フィルタ31と、第1、第2及び第3の電流検出器32a、32b、32cと、平滑コンデンサ33と、スイッチ制御回路34とを含む周知の回路であって、第1、第2及び第3相交流端子35a、35b、35cに供給される3相交流電圧を直流電圧に変換し、直流電圧を一対の直流端子36a、36b間に送出するAC−DC変換機能と、一対の直流端子36a、36b間の直流電圧を3相交流電圧に変換して第1、第2及び第3相交流端子35a、35b、35cに送出するDC−AC変換機能とを有する。第1、第2及び第3相交流端子35a、35b、35cは図2の3相交流端子25に接続され、一方の直流端子36aは図2の直流端子26に接続され、他方の直流端子36bは図2の蓄電池5の負側電極に接続されている。即ち、図2の蓄電池5は図5の一対の直流端子36a、36b間に接続されている。
【0016】
スイッチ回路30は、3相ブリッジ接続された第1、第2、第3、第4、第5及び第6のダイオードD1 、D2 、D3 、D4 、D5 、D6 と、第1〜第6のダイオードD1 〜D6 に対してそれぞれ逆方向並列に接続された変換用スイッチとしての第1、第2、第3、第4、第5及び第6のスイッチQ1 、Q2 、Q3 、Q4 、Q5 及びQ6 とから成る。図5では第1〜第6のスイッチQ1 〜Q6 が絶縁ゲート型バイポーラトランジスタ即ちIGBTで示されているが、この代りにFET、トランジスタ等の別の制御可能な半導体スイッチとすることができる。
【0017】
第1〜第6のスイッチQ1 〜Q6 の制御端子(ゲート)は、スイッチ制御回路34の第1〜第6の制御信号ライン37、38、39、40、41、42に図示が省略されているドライブ回路を介して接続される。スイッチ回路30の第1及び第2のダイオードD1 、D2 の相互接続点43、第3及び第4のダイオードD3 、D4 の相互接続点44、第5及び第6のダイオードD5 、D6 の相互接続点45は、第1、第2及び第3のインダクタL1 、L2 、L3 を介して第1、第2及び第3相交流端子35a、35b、35cにそれぞれ接続されている。第1、第3及び第5のダイオードD1 、D3 、D5 のカソードは一方の直流端子36aに接続され、第2、第4及び第6のダイオードD2 、D4 、D6 のアノードは他方の直流端子36bに接続されている。
高周波成分除去用フィルタ31はコンデンサC1 、C2 、C3 から成り、第1〜第6のスイッチQ1 〜Q6 の高周波(例えば20〜100kHz )でのオン・オフに基づく高周波成分を除去する。3相電源ラインに直列に接続された第1、第2及び第3のインダクタL1 、L2 、L3 は、交流−直流変換時即ちAC−DC変換動作時にPFC用リアクトル及び昇圧リアクトルとして機能し、また直流−交流(DC−AC)変換時即ちDC−AC変換(インバータ)動作時に高周波成分除去リアクトルとして機能する。
【0018】
スイッチ制御回路34は、スイッチ回路30をAC−DC変換動作及びDC−AC変換動作させるために、ライン46によって直流出力端子36aに接続され、且つ電源異常検出信号が入力する制御端子27に接続され、且つライン47a、47b、47cによって電流検出器32a、32b、32cに接続され、且つライン48a、48b、48cによって第1、第2及び第3相交流端子35a,35b、35cが接続されている。
【0019】
電流検出器32a、32b、32cは、第1、第2及び第3相交流端子35a、35b、35cを通って流れる電流に比例した電圧値をスイッチ制御回路34に送る。
図5では3個の電流検出器32a、32b、32cが設けられ、且つ3本の電圧検出ライン48a、48b、48cが設けられているが、3相から選択された2相の電流及び電圧をスイッチ制御回路34に送り、これによって残りの1相の電流及び電圧を合成して形成してもよい。
【0020】
図6は図5のスイッチ制御回路34の内部を概略的に示す。この図6から明らかなように、スイッチ制御回路34はAC−DC変換制御回路49とDC−AC変換制御回路50と切換手段51とを有する。
AC−DC変換制御回路49は、AC−DC変換を実行するための第1〜第6のスイッチQ1 〜Q6 の制御信号を形成し、DC−AC変換制御回路50はDC−AC変換を実行するための第1〜第6のスイッチQ1 〜Q6 の制御信号を形成する。切換手段51は制御端子27の電源異常検出信号が正常を示している時にAC−DC変換制御回路49の出力を6本の出力ライン37〜42に送出し、電源異常検出信号が異常を示している時にDC−AC変換制御回路50の出力をライン37〜42に送出する。図6のライン37〜42は図5の第1〜第6のスイッチQ1 〜Q6 のゲートに接続されている。
【0021】
次に、図6のAC−DC変換制御回路49の詳細を図7及び図8を参照して説明する。図7のAC−DC変換制御回路49は、第1、第2及び第3相電圧検出回路52a、52b、52cと、第1、第2及び第3の乗算器53a、53b、53cと、第1、第2及び第3の減算器54a、54b、54cと、第1、第2及び第3の比較器55a、55b、55cと、第1、第2及び第3の反転信号形成回路56a、56b、56cと、鋸波発生器57と、2つの電圧検出抵抗58、59と、基準電圧源60と、誤差増幅器61とを有する。
【0022】
第1、第2及び第3相電圧検出回路52a、52b、52cは、電圧検出ライン48a、48b、48cに接続され、交流端子25の第1、第2及び第3相電圧に対応する3相基準正弦波電圧Va 、Vb 、Vc を出力する。なお、図7の第1、第2及び第3相電圧検出回路52a、52b、52cを一括して3相電圧検出回路を構成することができる。
【0023】
2つの電圧検出抵抗58、59はライン46を介して図5の直流端子36a、36bの間に接続され、直流出力電圧の分圧値を誤差増幅器61の一方の入力端子に与える。誤差増幅器61は基準電圧源60の基準電圧と電圧検出抵抗58、59で検出された電圧との差を示す信号を直流出力電圧指令値Vd として出力する、
【0024】
第1、第2及び第3の乗算器53a、53b、53cは、第1、第2及び第3相電圧検出回路52a、52b、52cから得られた第1、第2及び第3相基準正弦波Va 、Vb 、Vc に誤差増幅器61の出力電圧指令値Vd を乗算し、第1、第2及び第3相指令値Va ′Vb ′、Vc ′を作成する。第1、第2及び第3相指令値Va ′Vb ′、Vc ′は第1、第2及び第3相基準正弦波Va 、Vb 、Vc の振幅を出力電圧指令値Vd で変調したものに相当する。なお、乗算器53a、53b、53cの代りに減算器を設けることができる。
鋸波発生器57は、キャリア発生器とも呼ぶことができるものであり、交流端子35a、35b、35cの交流電圧の周波数、例えば50Hzよりも十分に高い例えば20〜100kHz の周波数で図8(A)に概略的に示す鋸波電圧Vt を発生する。なお、鋸波発生器57を三角波発生器に置き換えることができる。鋸波電圧Vt の振幅は第1、第2及び第3相スイッチ制御指令値V1 、V2 、V3 を横切るように設定されている。
【0025】
第1、第2及び第3の比較器55a、55b、55cは、第1、第2及び第3の減算器54a、54b、54cから得られた第1、第2及び第3のスイッチ制御指令値V1 、V2 、V3 と鋸波発生器57の鋸波電圧Vt とを比較し、図8(B)(D)(F)に示すPWM信号から成る第1、第3及び第5のスイッチ制御信号G1 、G3 、G5 を形成する。
【0026】
反転信号形成回路56a、56b、56cは第1、第2及び第3の比較器55a、55b、55cに接続され、図8(B)(D)(F)に示す第1、第3及び第5のスイッチ制御信号G1 、G2 、G3 の位相反転信号から成る図8(C)(E)(G)に示す第2、第4及び第6のスイッチ制御信号G2 、G4 ,G6 を形成する。第2、第4及び第6のスイッチ制御信号G2 、G4 、G6 は反転信号形成回路56a、56b、56cの代りに3つの比較器を設け、これ等の正入力端子に鋸波電圧Vt を入力させ、負入力端子に第1、第2及び第3のスイッチ制御指令値V1 、V2 、V3 を入力させて形成してもよい。なお、第1、第3及び第5のスイッチ制御信号G1 、G3 、G5 と第2、第4及び第6のスイッチ制御信号G2 、G4 、G6 との間に周知のデッドタイムを設けることが望ましい。
第1〜第6のスイッチ制御信号G1 〜G6 は図6の切換手段51を介して第1〜第6のスイッチQ1 〜Q6 の制御端子に供給される。
【0027】
図9は図6のDC−AC変換制御回路50を詳しく示す。このDC−AC変換制御回路50は周知の回路であって、第1、第2及び第3相回路71、72、73を有する。第1相回路71は、第1及び第2のスイッチQ1 、Q2 の制御信号G1 ′、G2 ′を形成するために、第1相基準電圧発生器74、電圧検出回路75、基準電圧源76、誤差増幅器77、乗算器78、鋸波発生器79、比較器80、及び位相反転信号形成回路81を有する。
【0028】
電圧検出回路75は、図5の交流端子35a、35b、35cに接続された三相整流平滑回路から成る。電圧検出回路75から得られた第1、第2及び第3の交流端子35a、35b、35cの交流電圧に対応する直流電圧と基準電圧源76の基準電圧との差に対応する信号が誤差増幅器77で形成され、これが電圧帰還信号となる。なお、電圧帰還信号は直流信号である。図9では電圧検出回路75が三相電圧を検出しているが、この代りに第1相の電圧を検出するように変形することができる。誤差増幅器77から得られた電圧帰還信号は第2及び第3相回路72、73にも送られる。
【0029】
第1相基準電圧発生器74は、図10に示す正弦波から成る第1相基準電圧Va を発生する。第2及び第3相回路72、73に含まれる第2及び第3相基準電圧発生器は、図10に示す第2及び第3相基準電圧Vb 、Vc を発生する。図10の第1、第2及び第3相基準電圧Va 、Vb 、Vc は順次に120度の位相差を有する例えば50又は60Hzの正弦波交流電圧であり、図2の交流電源端子1の交流電圧と同一の周波数を有する。なお、第1相基準電圧発生器74から正弦波を全波整流した脈流波形を送出することができる。
【0030】
乗算器78の一方の入力端子は第1相基準電圧発生器74に接続され、その他方の入力端子は誤差増幅器77に接続されている。従って、乗算器78は第1相基準電圧Va に電圧帰還信号を乗算して信号を形成する。乗算器78の出力信号には交流電圧の波形情報と出力電圧調整情報とが含まれている。なお、乗算器78の代りに減算器を設けることができる。
【0031】
鋸波発生器79は、第1〜第3の交流端子35a、35b、35cの交流電圧及び第1、第2及び第3相基準電圧Va 、Vb 、Vc の周波数よりも十分に高い例えば20〜100kHz の繰返し周波数で鋸波電圧即ちキャリア波形を発生する。第1相回路71の鋸波発生器79は、同期信号を与えるために第2及び第3相回路72、73に接続されている。なお、鋸波発生器79の代りに三角発生器を設けることができる。また、DC−AC変換制御回路50の鋸波発生器79とAC−DC変換制御回路49の鋸波発生器57とのいずれか一方を省いて、鋸波発生器79又は鋸波発生器57をAC−DC変換制御回路49とDC−AC変換制御回路50とで共用することができる。
【0032】
比較器80の一方即ち負入力端子は乗算器78に接続され、他方即ち正の入力端子は鋸波発生器79に接続されている。従って、比較器80は鋸波電圧と乗算器78の出力信号とを比較して周知のPWN信号から成るDC−AC変換用の第1の制御信号G1 ′を出力する。
【0033】
比較器80に接続された反転信号形成回路81は、第1の制御信号G1 ′の位相反転信号から成る第2の制御信号G2 ′を形成する。反転信号形成回路81の代りに比較器を設け、この正入力端子に乗算器78の出力信号を入力させ、この負入力端子に鋸波電圧を入力させてPWM信号から成る第2の制御信号G2 ′を形成することができる。なお、第1及び第2の制御信号G1 ′、G2 ′の相互間に周知のデッドタイムを付加する手段を設けることが望ましい。
【0034】
第2相回路72及び第3相回路73は第1相回路71と同様に形成されており、第3〜第6のスイッチQ3 〜Q6 のための第3〜第6の制御信号G3 ′〜G6 ′を送出する。
スイッチ回路30をDC−AC駆動即ちインバータ駆動させるための図9の第1〜第6の制御信号G1 ′〜G6 ′は図6の切換手段51を介して第1〜第6のスイッチQ1 〜Q6 の制御端子に送られる。
【0035】
図2の直流−直流変換器8は、直流電圧をこれと異なるレベルの直流電圧に変換するものであって、互いに同一構成の第1及び第2の直流−直流(DC‐DC)変換器ユニット8a、8bの並列接続回路から成る。この直流−直流変換器8の入力ラインは蓄電池5に接続され、出力ラインは直流出力端子9に接続されている。
【0036】
図11は図2の第1の直流−直流変換器ユニット8aを詳しく示す。第2の直流−直流変換器ユニット8bの詳細は図示されていないが、図11の第1の直流−直流変換器ユニット8aと同一に構成されている。直流−直流変換器ユニット8aは、インバータ回路82と整流平滑回路83とスイッチ制御回路84とから成る。
【0037】
インバータ回路82は直流入力端子85a、85bと、ブリッジ接続された第1、第2、第3及び第4インバータ用スイッチQa 、Qb 、Qc 、Qd と、互いに絶縁された1次巻線N1 と2次巻線N2 とを有するトランス86とから成る。一方の直流入力端子85aは図2の蓄電池5の正側電極に接続され、他方の直流入力端子85bは図2の蓄電池5の負側電極に接続されている。1次巻線N1 は、第1及び第2のインバータ用スイッチQa 、Qb の相互接続点と第3及び第4のインバータ用スイッチQc 、Qd の相互接続点との間に接続されている。第1及び第4のスイッチQa 、Qd と第2及び第3のスイッチQb 、Qc とを交互にオン・オフすることによって2次巻線N2 に交流電圧が得られる。
【0038】
2次巻線N2 に接続された整流平滑回路83は2次巻線N2 の交流電圧を整流及び平滑して出力端子86a、86bに送出する。一方の出力端子86aは図2の直流出力端子9に接続され、他方の出力端子86bは2次側のグランドに接続される。スイッチ制御回路84は制御可能な半導体スイッチから成る第1〜第4のインバータ用スイッチQa 〜Qd の制御端子に周知のオン・オフ制御信号を供給する。また、スイッチ制御回路84は出力端子86a、86b間の電圧を一定に保つように第1〜第4のインバータ用スイッチQa 〜Qd のオン・オフを帰還制御する。
【0039】
図12は図2の電源異常検出回路6を詳しく示すものである。この電源異常検出回路6は、電源電圧検出手段としての電圧検出回路90と、直流バイアス電圧源91と、加算器92と、基準値作成手段93と、第1及び第2の比較器94、95と、論理和回路96とから成る。
【0040】
電圧検出回路90は図2の交流電源端子1に接続され、交流電圧に比例した電圧検出信号Vacを出力する。直流バイアス電圧源91は図12に示すバイアス電圧Vdcを出力する。加算器92は電圧検出回路90から得られた電圧検出信号Vacに直流バイアス電圧Vdcを加算して図12に示す被判定信号Vu を形成する。加算器92に接続された基準値作成手段93は、図13に示すように、交流電源端子1の電圧が正常の時即ち定格値の時に加算器92から得られる被判定信号Vu よりもVL だけ低い第1の基準値Vr1と、交流電源端子1の電圧が正常の時即ち定格値の時に加算器92から得られる被判定信号VuよりもVH だけ高い第2の基準値Vr2とをソフト的に作成する。第1及び第2の基準値Vr1、Vr2の振幅は、電圧検出信号Vac及び被判定信号Vuの振幅に同期さて変化している。基準値作成手段93は、例えば被判定信号Vuに交流電圧の1サイクル又は数サイクル分に相当する遅延を与える遅延手段と、この遅延した被判定信号Vuに第1及び第2の係数(例えば0.1〜0.8)を乗算して第1及び第2の基準値Vr1、Vr2を求める乗算手段とで構成することができる。また、基準値作成手段93は、同期検出回路と正弦波状の第1及び第2の基準値Vr1、Vr2を格納しているメモリとで構成することもできる。この場合は、同期検出回路によって電圧検出信号Vacの位相角0度を検出し、これに同期してメモリから第1及び第2の基準値Vr1、Vr2を読み出す。
第1の比較器94は被判定信号Vu が第1の基準値Vr1よりも低いか否かを判定し、被判定信号Vu が第1の基準値Vr1よりも低い時に異常を示す高レベル出力を発生する。第2の比較器95は被判定信号Vu が第2の基準値Vr2よりも高いか否かを判定し、被判定信号Vu が第2の基準値Vr2よりも高い時に異常を示す高レベル出力を発生する。論理和回路96は第1及び第2の比較器94、95の異常を示す信号を通過させ、これを図2のライン14、28に送る。
なお、第1の基準値Vr1は交流電源端子1の電圧が正常の時即ち定格値の時における被判定信号Vu よりも10〜80%程度低い値に設定され、第2の基準値Vr2は交流電源端子1の電圧が正常の時即ち定格値の時における被判定信号Vu よりも10〜80%程度高い値に設定される。第1及び第2の基準値Vr1、Vr2を使用して電源電圧の異常を検出すると、電圧異常を短時間で検出することができ、電圧異常の発生時点から2msec 程度の間に双方向電圧変換器4のインバータ動作を開始することができる。
【0041】
図12において基準値作成手段93の入力信号を加算器92の出力から得る代りに、図12で点線で示すように電圧検出回路90から得ることができる。また、直流バイアス電圧源91を省くこともできる。
また、図12及び図13では3相の内の1相のみによって電源異常を検出しているが、全ての相において図12及び図13に示すような電源異常判定を行うことができる。
また、図12の電源異常検出回路6の代りに、図14に示す変形された電源異常検出回路6aを設けることができる。図14の電源異常検出回路6aは電源端子1に接続される電圧検出回路97と、基準電圧源98と、比較器99と、持続判定回路100とから成る。基準電圧源98は交流電源端子1の電圧が正常の時即ち定格値の時における電圧検出回路97の出力電圧よりも低い値、例えば零又は零に近い値の基準電圧を発生する。比較器99は電圧検出信号が基準電圧よりも低いか否かを判定する。持続判定回路100は、電圧検出信号が基準電圧よりも低いことを示す信号が比較器99から所定時間以上持続して発生しているか否かを判定し、持続している時に電源異常を示す信号を出力する。
【0042】
【電力供給動作】
図2の交流電源端子1から交流電圧が正常に供給されている時には、交流スイッチ2がオン状態に保たれ、且つ双方向電力変換器4がAC−DC変換制御される。従って、交流負荷11には交流電源端子1から交流スイッチ2を介して商用交流電圧が直接に供給される。また、双方向電力変換器4のAC−DC変換動作によって交流電圧が直流電圧に変換されるために、交流電源端子1、交流スイッチ2及び双方向電力変換器4の経路で蓄電池5の充電電流が供給され、且つ直流−直流変換器8の入力電圧が供給される。直流−直流変換器8は電源異常検出回路6の出力に無関係に動作し、蓄電池5の電圧(300〜400V)よりも低い電圧(48V)を直流負荷12に供給する。双方向電力変換器4において、第1、第2及び第3のインダクタL1 、L2 、L3 は周知のように昇圧機能を有すると共に力率改善機能を有する。例えば、第1及び第2の交流端子35a、35b間の電圧が正の半サイクルの期間において、第3のスイッチQ3 がオンの期間には第1のインダクタL1 に入力電圧の振幅に応じた電流がL1 −D1 −Q3 −L2 の経路で流れる。その後に第3のスイッチQ3 がオフになると、入力交流電圧に第1のインダクタL1 の電圧が加算されて出力される。第1、第2及び第3のインダクタL1 、L2 、L3 に流れる電流のピークが入力電圧の振幅に比例して変化すると力率改善が達成される。即ち、双方向電力変換器4がAC−DC変換動作している時にはPFC機能による力率改善が実行されている。
【0043】
電源異常検出回路6で電源異常が検出されると、交流スイッチ2がオフになって交流電源端子1側への逆流が阻止される。また、双方向電力変換器4の動作が異常検出に応答してDC−AC変換動作に切り換わる。これにより、蓄電池5と双方向電力変換器4の経路によって交流負荷11に交流電力が供給される。また、蓄電池5及び直流−直流変換器8の経路で直流負荷12に直流電力が供給される。直流負荷12に対する電力供給は交流スイッチ2のオフにも拘らず無停電で維持される。交流負荷11に対する電力供給は、双方向電力変換器4のAC−DC動作からDC−AC動作への切り換えの遅れにより、微小時間中断することがあるが、実質的無停電と見なせる中断である。
【0044】
本実施形態は次の効果を有する。
(1) 電源正常時にはPFC機能を有する双方向電力変換器4から蓄電池5及び直流−直流変換器8の両方に電力が供給されるので、直流−直流変換器8のための独立したPFC機能を有するAC−DC変換器が不要になり、無停電型の交流直流複合電源装置の小型化、低コスト化が達成される。
(2) 交流電源が正常の時には、変換器を介さずに交流負荷11に電力が供給されるので、無停電型の交流直流複合変換装置の高効率化が達成される。
(3) 双方向電力変換器4及び直流−直流変換器8が並列接続可能にユニット化されているので、交流負荷11の容量及び直流負荷12の容量の変化に容易に対応できる。例えば、交流負荷11の容量と直流負荷12の容量との合計が一定に保たれている状態で直流負荷12の容量の割合が増大した時には、直流−直流変換器ユニットを追加するのみで対処できる。このため交流負荷11の容量を減らして直流負荷12の容量を増す時の設備費の増大を抑えることができる。
(4) 電圧検出信号Vacに同期し且つ交流電源端子1の電圧が正常の時即ち定格値の時において加算器92から得られる被判定信号Vuと振幅において一定の差を有する第1及び第2の基準値Vr1、Vr2を使用して電源異常を検出するので、電源異常の検出を迅速且つ正確に達成することができる。
(5) 直流―直流変換器8はトランス86を有するので、1次側と2次側の絶縁を確実に達成することができる。
(6) 第1〜第3のインダクタL1〜L3及びフィルタ31を有するので、AC−DC変換時、及びDC−AC変換時の波形改善及びのイズ抑制が達成される。
【0045】
【第2の実施形態】
次に、図15を参照して第2の実施形態の無停電型の交流直流複合電源装置を説明する。但し、図15及び後述する図16において図2と実質的に同一の部分には同一の符号を付してその説明を省略する。
図15の無停電型の交流直流複合電源装置は、図2に示す回路にコージェネレーションシステムとしての発電機101及び逆流阻止ダイオード102を付加し、この他は図2と同一に構成したものである。発電機101は電源異常検出回路6の異常を示す信号に応答して直流電圧を発生する。発電機101は逆流阻止ダイオード102を介して蓄電池5に接続されているので、電源異常時に発電機101によって蓄電池5を充電することができ、且つ双方向電力変換器4及び直流−直流変換器8に電力を供給することができる。
従って、交流電源の長時間の停電に対処することができる。
【0046】
【第3の実施形態】
図16の第3の実施形態の無停電型の交流直流複合電源装置は、図2の回路に燃料電池103及び逆流阻止ダイオード104を付加し、この他は図2と実質的に同一に構成したものである。燃料電池103は電源異常検出回路6の異常を示す信号に応答して直流電圧を発生する。燃料電池103は逆流阻止ダイオード104を介して蓄電池5に接続されているので、電源異常時に燃料電池103によって蓄電池5を充電することができ、且つ双方向電力変換器4及び直流−直流変換器8に電力を供給することができる。
従って、交流電源の長時間の停電に対処することができる。
【0047】
【変形例】
本発明は上述の実施形態に限定されるものでなく、例えば次の変形が可能なものである。
(1) 双方向電力変換器4は図5の回路に限定されるものでなく、AC−DC変換とDC−AC変換との両方が可能であればどのようなものでもよい。また、第1〜第6のスイッチQ1 〜Q6 を図8に示すように入力電圧の正弦波の1周期の全期間において高周波でオン・オフせずに、図17に示すように特定された期間においてのみオン・オフするように変形することができる。図17においてVu 、Vv 、Vw は3相交流端子35a、35b、35cの相電圧を示し、G1 、G2 ,G3 、G4 、G5 、G6 は第1〜第6のスイッチQ1 〜Q6 のゲート制御信号を示す。また、ゲート制御信号G1 〜G6 のSWは高周波(例えば20kHz )のオン・オフ動作を示し、オフは連続的オフを示す。図17では同一期間に少なくとも2相のみがオン・オフ制御されている。今、相電圧Vu を基準にして第1〜第6のスイッチQ1 〜Q6 のオン・オフ(SW)動作を説明すると、0〜60度の第1の期間T1 では第2及び第6のスイッチQ2 、Q6 をオン・オフ動作させる。60〜120度の第2の期間T2 では第3及び第5のスイッチQ3 、Q5 をオン・オフ動作させる。また、120〜180度の第3の期間T3 では第2及び第4のスイッチQ2 、Q4 をオン・オフ動作させる。また、180〜240度の第4の期間T4 では第1及び第5のスイッチQ1 、Q5 をオン・オフ動作させる。また、240〜300度の第5の期間T5 では第4及び第6のスイッチQ4 、Q6 をオン・オフ動作させる。また、300〜360度の第6の期間T6 では第1及び第3のスイッチQ1 、Q3 をオン・オフ動作させる。なお、3相スイッチング方式を採用する場合には、上記に追加して第1のスイッチQ1 を第5の期間T5 でオン・オフ動作、第2のスイッチQ2 を第2の期間T2 でオン・オフ動作、第3のスイッチQ3 を第1の期間T1 でオン・オフ動作、第4のスイッチQ4 を第4の期間T4 でオン・オフ動作、第5のスイッチQ5 を第3の期間T3 でオン・オフ動作、第6のスイッチQ6 を第6の期間T6 でオン・オフ動作させる。
(2) スイッチ制御回路34、84の一部又は全部をマイクロコンピュータやDSP(ディジタル・シグナル・プロセッサ)等のディジタル演算手段によって構成してもよい。
(3) 交流電源、双方向電力変換器4及び交流負荷11を単相とすることができる。
(4) 直流−直流変換器8の回路を種々変形できる。
(5)交流スイッチ2のオン開始指令を手動で与えることができる。
(6) 図13において、第1の基準値Vr1のみを使用して電源異常を検出することができる。
(7) 電源異常検出回路6の入力端子を交流スイッチ2の出力端子に接続するこよができる。
【図面の簡単な説明】
【図1】従来の無停電型の交流直流複合電源装置を示すブロック図である。
【図2】本発明の第1の実施形態の無停電型の交流直流複合電源装置を示すブロック図である。
【図3】図1の交流スイッチを詳しく示す回路図である。
【図4】交流スイッチの変形例を示す回路図である。
【図5】図2の双方向電力変換器ユニットを詳しく示す回路図である。
【図6】図2のスイッチ制御回路を詳しく示すブロック図である。
【図7】図6のAC−DC変換制御回路を詳しく示す回路図である。
【図8】図7のAC−DC変換制御回路の各部の状態を示す波形図である。
【図9】図6のDC−DC変換制御回路を詳しく示す回路図である。
【図10】図9の第1〜第3相の基準電圧を示す波形図である。
【図11】図2の直流−直流変換器ユニットを詳しく示す回路図である。
【図12】図2の電源異常検出回路を詳しく示す回路図である。
【図13】図12の各部の状態を示す波形図である。
【図14】電源異常検出回路の変形例を示す回路図である。
【図15】第2の実施形態の無停電型の交流直流複合電源装置を示すブロック図である。
【図16】第3の実施形態の無停電型の交流直流複合電源装置を示すブロック図である。
【図17】変形例の相電圧及びスイッチ制御信号を示す波形図である。
【符号の説明】
1 交流電源端子
2 交流スイッチ
3 交流出力端子
4 双方向電力変換器
5 蓄電池
6 電源異常検出回路
8 直流−直流変換器
9 直流出力端子

Claims (5)

  1. 正弦波交流電圧を入力させるための交流電源端子と、
    前記交流電源端子の交流電圧が異常であるか否かを検出する電源異常検出回路と、
    前記交流電源端子と前記電源異常検出回路とに接続されており、且つ前記電源異常検出回路の出力が電源異常を示していない時にオン状態を保持し、前記電源異常検出回路の出力が電源異常を示している時にオフ状態に転換するように前記電源異常検出回路で制御される交流スイッチと、
    前記交流電源端子に前記交流スイッチを介して接続された交流出力端子と、
    前記交流電源端子に前記交流スイッチを介して接続され且つ前記交流出力端子にも接続されている交流端子と直流電圧入出力用の直流端子と前記電源異常検出回路に接続された制御端子とを有し、且つ前記電源異常検出回路の出力が電源異常を示していない時には前記交流端子に供給された交流電圧を変換用スイッチのオン・オフ動作を伴なって直流電圧に変換して前記直流端子に出力する機能と、前記電源異常検出回路の出力が電源異常を示している時には前記直流端子に供給された直流電圧を変換用スイッチのオン・オフ動作を伴なって交流電圧に変換して前記交流端子に出力する機能と、力率改善機能とを有している双方向電力変換器ユニットの複数台から成る双方向電力変換器と、
    前記複数台の双方向電力変換器ユニットの各直流端子にそれぞれ接続された蓄電池と、
    前記蓄電池の電圧と異なるレベルの電圧を出力するために前記蓄電池に接続された直流−直流変換器ユニットの複数台から成る直流−直流変換器と、
    前記複数台の直流−直流変換器ユニットにそれぞれ接続された直流出力端子と
    備え、前記複数台の双方向電力変換器ユニットは、互いに同一に構成され且つ互いに並列接続され、前記複数台の直流−直流変換器ユニットは、互いに同一に構成され且つ互いに並列接続されていることを特徴とする交流直流複合電源装置。
  2. 前記電源異常検出回路は、
    前記交流電源端子の電圧を示す信号を検出する電源電圧検出手段と、
    前記電源電圧検出手段で検出された電圧を示す信号に同期して変化し且つ前記交流電源端子の電圧が正常の時において前記電源電圧検出手段で検出される電圧の振幅よりも低い振幅を有する基準値を作成する手段と、
    前記電源電圧検出手段で検出された電圧を示す信号が前記基準値よりも低い時に電源異常を示す信号を出力する比較手段と
    から成ることを特徴とする請求項1記載の交流直流複合電源装置。
  3. 前記電源異常検出回路は、
    前記交流電源端子の電圧を示す信号を検出する電源電圧検出手段と、
    前記電源電圧検出手段で検出された電圧を示す信号に同期して変化し且つ前記交流電源端子の電圧が正常の時において前記電源電圧検出手段で検出される電圧よりも低い振幅を有する第1の基準値、及び前記電源電圧検出手段で検出された電圧を示す信号に同期して変化し且つ前記交流電源端子の電圧が正常の時において前記電源電圧検出手段で検出される電圧よりも高い振幅を有する第2の基準値を作成する手段と、
    前記電源電圧検出手段で検出された電圧を示す信号が前記第1の基準値よりも低い時又は前記電源電圧検出手段で検出された電圧を示す信号が前記第2の基準値よりも高い時に電源異常を示す信号を出力する比較手段と
    から成ることを特徴とする請求項1記載の交流直流複合電源装置。
  4. 更に、前記蓄電池に接続された発電機を有し、前記発電機は前記電源異常検出回路の電源異常を示す出力に応答して駆動されるものであることを特徴とする請求項1又は2又は3記載の交流直流複合電源装置。
  5. 更に、前記蓄電池に接続された燃料電池を有し、前記燃料電池は前記電源異常検出回路の電源異常を示す出力に応答して駆動されるものであることを特徴とする請求項1又は2又は3記載の交流直流複合電源装置。
JP2003023671A 2003-01-31 2003-01-31 交流直流複合電源装置 Expired - Fee Related JP4340843B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023671A JP4340843B2 (ja) 2003-01-31 2003-01-31 交流直流複合電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023671A JP4340843B2 (ja) 2003-01-31 2003-01-31 交流直流複合電源装置

Publications (2)

Publication Number Publication Date
JP2004236460A JP2004236460A (ja) 2004-08-19
JP4340843B2 true JP4340843B2 (ja) 2009-10-07

Family

ID=32952406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023671A Expired - Fee Related JP4340843B2 (ja) 2003-01-31 2003-01-31 交流直流複合電源装置

Country Status (1)

Country Link
JP (1) JP4340843B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832611A (zh) * 2012-08-29 2012-12-19 华中科技大学 一种并联型直流电力系统电能质量调节器
CN104682375A (zh) * 2015-03-24 2015-06-03 华为技术有限公司 数据中心的供电设备和供电方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893007B2 (ja) * 2006-02-07 2012-03-07 サンケン電気株式会社 交流スイッチ
US8084886B2 (en) 2006-03-28 2011-12-27 Fujitsu Limited Uninterruptible power supply apparatus
JP4495105B2 (ja) * 2006-03-28 2010-06-30 富士通株式会社 無停電電源装置
JP5255869B2 (ja) * 2008-03-11 2013-08-07 日本インター株式会社 パワーモジュール
US8400113B2 (en) * 2011-02-11 2013-03-19 Mark Andrew Waring Battery enhanced, smart grid add-on for appliance
JP5934538B2 (ja) * 2012-03-28 2016-06-15 東芝キヤリア株式会社 三相整流装置
CN103475017B (zh) * 2013-09-23 2016-01-20 国家电网公司 一种自适应移动微电网的能量交互系统
CN108725356B (zh) * 2017-04-17 2022-12-13 乾碳国际公司 一种车辆电源组件及其布置方法
US10714973B2 (en) 2017-09-27 2020-07-14 Delta Electronics, Inc. Uninterruptible power operating apparatus
EP3961856A4 (en) * 2020-05-15 2022-07-20 Huawei Digital Power Technologies Co., Ltd. UNINTERRUPTIBLE POWER SUPPLY AND CONTROL METHOD THEREFOR
CN116317660B (zh) * 2023-03-28 2023-10-20 苏州腾圣技术有限公司 一种可控逆变器电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832611A (zh) * 2012-08-29 2012-12-19 华中科技大学 一种并联型直流电力系统电能质量调节器
CN104682375A (zh) * 2015-03-24 2015-06-03 华为技术有限公司 数据中心的供电设备和供电方法
US10014717B2 (en) 2015-03-24 2018-07-03 Huawei Technologies Co., Ltd. Power supply device and power supply method in data center

Also Published As

Publication number Publication date
JP2004236460A (ja) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4645808B2 (ja) 3相電力変換装置
JP2760666B2 (ja) Pwmコンバ―タの制御方法及び装置
JP2857094B2 (ja) 三相整流装置
US8018331B2 (en) Multilevel inverter using cascade configuration and control method thereof
JP4340843B2 (ja) 交流直流複合電源装置
JPH04197097A (ja) 交流電動機可変速システム
JP5053581B2 (ja) アーク加工用電源装置
US7042194B1 (en) Controller for a wound-rotor induction motor
JP2006191743A (ja) 3レベルpwm電力変換装置
JP2004222421A (ja) 電力変換装置
JP2006238621A (ja) 無停電電源装置
JP2006238616A (ja) 電力変換装置
JP2004343826A (ja) 無停電電源装置
JP4365171B2 (ja) 電力変換装置及びそれを用いたパワーコンディショナ
JP2000139085A (ja) 電力変換装置
JP2003189474A (ja) 系統連系電力変換装置
JP3541887B2 (ja) 電力変換装置
JP2003244960A (ja) Pwmサイクロコンバータ
JP4561945B2 (ja) 交流−直流変換装置
JP3082849B2 (ja) 無停電電源装置
JP2009177901A (ja) 無停電電源装置
JP2005278304A (ja) 電力供給装置
JPH09252581A (ja) 無停電電源装置の運転方法
WO2011128942A1 (ja) 電力変換装置
JP2005348563A (ja) 交流電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4340843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees