JP4340355B2 - 波長利得特性シフトフィルタ、光伝送装置および光伝送方法 - Google Patents

波長利得特性シフトフィルタ、光伝送装置および光伝送方法 Download PDF

Info

Publication number
JP4340355B2
JP4340355B2 JP19123099A JP19123099A JP4340355B2 JP 4340355 B2 JP4340355 B2 JP 4340355B2 JP 19123099 A JP19123099 A JP 19123099A JP 19123099 A JP19123099 A JP 19123099A JP 4340355 B2 JP4340355 B2 JP 4340355B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
gain
filter
gain characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19123099A
Other languages
English (en)
Other versions
JP2001024262A (ja
Inventor
淳也 小坂
大輔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Communication Technologies Ltd
Original Assignee
Hitachi Communication Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies Ltd filed Critical Hitachi Communication Technologies Ltd
Priority to JP19123099A priority Critical patent/JP4340355B2/ja
Priority to EP00114314A priority patent/EP1067725A3/en
Priority to US09/609,595 priority patent/US6580550B1/en
Publication of JP2001024262A publication Critical patent/JP2001024262A/ja
Priority to US10/421,567 priority patent/US6867909B2/en
Application granted granted Critical
Publication of JP4340355B2 publication Critical patent/JP4340355B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2941Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/25073Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using spectral equalisation, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光伝送装置に係り、特に波長多重伝送に好適な波長利得特性シフトフィルタ、光伝送装置および光伝送方法に関する。
【0002】
【従来の技術】
インターネットの急速な普及に伴うトラヒックの急増に対応するため、北米では高密度波長多重伝送(DWDM:Dense Wavelength Division Multiplexing)が実現化されつつある。このDWDMが実現したのは、波長多重光の一括増幅に使用される光増幅器に増幅帯域があるからである。しかしながら、光増幅器の利得には波長依存性があり、さらにその波長依存性も入力レベルに依存して変化する。このため、現在の波長多重伝送は、光増幅器の全増幅帯域を使用できず、利得の波長依存性が比較的フラットなレッドバンドと呼ばれる帯域を使用しているに過ぎない。
【0003】
なお、本願発明に関連する公知例として、特開平08−278523号公報、特開平11−150526号公報が挙げられる。
【0004】
【発明が解決しようとする課題】
本発明は、入力レベルに応じてダイナミックに利得を等する波長利得特性シフトフィルタを実現することを目的とする。また、本発明は、波長多重伝送に適した光伝送装置を提供することを目的とする。さらに、本発明は、波長多重伝送に適した光伝送方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するため、光増幅器の複数の入力レベルに対する波長利得特性に対応するフィルタ特性をその温度を変えることによって得るフィルタ部と、フィルタ部の温度を制御するペルチェ素子とからなる波長利得特性シフトフィルタとすることによって達成される。また、入力レベルに応じた波長利得特性を補償する波長利得特性シフトフィルタと、光利得調整器と、複数の波長の光信号を増幅する光増幅器とからなる光伝送装置とすることによって達成される。さらに、少なくとも不純物添加ファイバの波長利得特性の変極点を与える波長で増幅帯域を分割し、分割された波長帯毎に利得調整することを特徴とする光伝送装置とすることによって達成される。
【0006】
【発明の実施の形態】
以下本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の実施の形態である光伝送装置の実施例のブロック図である。本実施例で、光送信器1より供給される信号光波長帯は、λ1=1531±1.5nm、λ2=1534±1.5nm、λ3=1537±1.5nm、λ4=1549.5±11nm、λ5=1510±10nmである。λ5はITU−Tで標準化されている監視光の波長帯域であり、λ1〜λ4が信号光の波長帯域である。ここで、信号光の波長帯域と波長帯域との境は、光増幅器のエルビウム添加ファイバ(EDF:Er-doped Fiber)の波長−利得特性の変極点を与える波長としている。この理由は後で述べる。λ1〜λ5は、発明の効果を説明する便宜上の区分けであり、各波長帯は必ずしもこの区分けに従う必要はなく、さらに細分されていても良い。また、信号波長は、各帯域にいくつ多重されていても構わない。また、λ5として1480nmを中心とする帯域を用いても良い。
【0007】
λ1〜λ5を多重した入力信号光Pinは、実回線と伝送装置とを切り分ける光コネクター60を通過し、第一の監視光合分波器61によってλ1〜λ4と、λ5とに分波される。分波されたλ5は、第一の回線監視装置62に送達される。一方、λ1〜λ4は、第一の光分岐器63を介し、第一の光増幅装置64に入力される。第一の光分岐器63によって一部分岐された光は、第一の光受光器65によって検出され、第一の光モニタ信号を第一の制御装置66に送出する。
【0008】
第一の光増幅装置64によって増幅された光は、第二の光分岐器67によって一部分岐された後、第一の光分波装置68に入力される。なお、分岐された光は、第二の光受光器69によって検出され、第二の光モニタ信号を第一の制御装置66に送出する。第一の光分波装置68は、λ1〜λ3と、λ4とを分波するための光分波装置であって、λ1〜λ3は第一の分波経路へ、λ4は第二の分波経路へ分波される。
【0009】
ここで、第一の光分波装置68について図2を用いて詳細を説明しよう。
図2は、光分波装置68のブロック図である。光分波装置68において、入力された信号光λ1〜λ4は、まず光アイソレータ70に入力される。光アイソレータ70を通過した光は光分岐器71によって二経路に分岐される。各経路上では通過帯域に隣接し、かつ光フィルタ72、73のみでは除去不可能な光成分を取り除くための光ノッチフィルタ74、75に導入される。
【0010】
光ノッチフィルタ74、75を通過した信号光は、光フィルタ72、73によって帯域外の信号光をさらに遮蔽する。なお、本構成では、光ノッチフィルタ74、75として、帯域内信号光の一つ隣のグリッドに位置する信号光を効果的に遮蔽する、ファイバーグレーティング型の光ノッチフィルタを適用した。同時に一般的にファイバーグレーティング型の光ノッチフィルタ74、75を使用すると、信号光の進行逆方向に反射光が回帰するため、これを防ぐよう、光分岐器71前段に光アイソレータ70を併用する構成とした。
【0011】
通過帯域内信号光の一つ隣のグリッドに位置する信号光を遮蔽する光ノッチフィルタ74、75を使用した理由は、通過帯域に対して最も悪影響のある通過帯域外の雑音光が、通過帯域と隣り合う信号光であり、この信号光を取り除くことが重要であるためである。
【0012】
より効果的には、隣接する複数の信号光を取り除く帯域の広い光ノッチフィルタ、もしくは複数の各信号光を独立に遮蔽する光ノッチフィルタを縦列接続することが望ましい。
【0013】
本実施例の光合波装置により、帯域内と帯域外のクロストークを30dB以上に分離することが可能となる。また、本構成の光分波装置68の特徴は、波長グリッドを飛ばすことなく連続して帯域分割可能とした点において、光増幅器の波長帯域を有効利用できる効果がある。これによって、光伝送システムの波長当りのコストを低減でき、コストメリットを増大させることができる。
【0014】
図1に戻って、第一の経路をたどるλ1、λ2、λ3の増幅過程について説明する。本実施例の光伝送装置は、各波長帯域を波長帯域毎に独立調整可能とすることができる。この特徴を利用して、λ1〜λ3の波長帯域の調整増幅機能を切り離し可能とするために、第一の経路に光コネクタ76、91を設けた。
【0015】
光コネクタ76を通過したλ1〜λ3の信号光は、第三の光分岐器77によって一部分岐された後、第二の光分波装置78に入力される。なお、分岐された光は、第三の光受光器79によって検出される。この構成によって、光コネクタ76の脱着を監視できる。
【0016】
第二の光分波装置78は、λ1と、λ2と、λ3とを分波するための光分波装置であって、λ1は第三の分波経路へ、またλ2は第四の分波経路へ、λ3は第五の分波経路へ分波する。光分波器78の構成は光分波器68と同様であり、単に光分岐器71が3分岐に変わるだけである。分波されたλ1は第一の光利得調節装置80に導入され、所定の利得に調節された後、第三の光合波器81に導入される。光合波器の構成は光分波器78と同様であり、異なる点は、入出力が正反対になる点と、光アイソレータが省かれる点だけである。同様に、λ2、λ3は第二、第三の光利得調節装置82、83に導入され、所定の利得に調節された後、第三の光合波器81に導入される。
【0017】
再び合波されたλ1〜λ3の信号光は、後段光部品からの反射光の影響を遮蔽し、λ1〜λ3の信号光へ同時に効果を発揮する光アイソレータ84を通過して分散補償器85に導入される。分散補償器85は、回線光ファイバが固有に有する分散特性と逆の特性を有するものであり、回線光ファイバの種類によって不要であれば取り除いてもかまわない。分散補償器85の両端は、分離可能なように光コネクタを設けても良い。こうすれば、回線に適切な分散補償器を取り替え挿入することが可能となる。この場合においても本発明の効果が失われることはない。
【0018】
分散補償器85よりの信号光は、第四の光分岐器86によって一部分岐された後、第二の光増幅器87によって増幅される。分岐された光は、第四の光受光器88によって検出され、第三の光モニタ信号を第二の制御装置89に送出する。一方、増幅された信号光は、第五の光分岐器90によって一部分岐された後、光コネクタ91を通過して、第四の光合波器92に導入される。なお、分岐された光は、第五の光受光器93によって検出され、第四の光モニタ信号を第二の制御装置89に送出する。
【0019】
次に、第二の経路をたどる、λ4の増幅過程について説明する。
λ4の信号光は、第四の光利得調節装置94に導入され、所定の利得に調節された後、光アイソレータ95を通過して第二の分散補償器96に導入される。第二の分散補償器96よりの信号光は、第六の光分岐器97によって一部分岐された後、第三の光増幅器98によって増幅される。分岐された光は、第六の光受光器99によって検出され、第五の光モニタ信号を第三の制御装置100に送出する。一方、増幅された信号光は、第七の光分岐器101によって一部分岐された後、第四の光合波器92に導入される。分岐された光は、第七の光受光器102によって検出され、第六の光モニタ信号を第三の制御装置100に送出する。
【0020】
第四の光合波器92によって増幅されたλ4の光信号とともにλ1〜λ3の光信号が合波され、第二の監視光光合波器103によってλ1〜λ4、および第二の回線監視装置104よりの監視光λ5が合波されて光コネクタ151を介して回線へ出力される構成となっている。
第二の分散補償器96の両端は、分離可能なように光コネクタを設けても良い。これによって、回線に適切な特性の分散補償器を取り替え挿入することが可能となる。
【0021】
既に説明したように、本実施例では、波長帯域毎に独立調整可能であるから、λ4を伝送装置として設置する初期段階から増幅伝送する構成としている。望ましい適用法としては、設置第一段階としてλ4の波長帯域の信号光と、λ5の監視光とを伝送し、増設段階である第二段階としてλ1〜λ3の波長帯域の信号光を伝送する形態が好ましい。
【0022】
なぜなら、光増幅装置は、最大波長多重数に対応するよう設計されているものである反面、伝送システム設置初期段階では、少ない波長多重数で運用される場合が多い。これは、回線の逼迫や、伝送容量増は、一時にしてなるわけではなく、徐々に増加していくことが多いためである。本実施例の伝送装置は、波長帯域毎に独立調整可能であるから、初期投資を少なくして、将来の伝送容量増にも対応できる光伝送システムとすることができる。
【0023】
同時に、独立調整可能な点は、増設時に既に運用されている設備に影響を与えないことを意味しており、大きなメリットがある。
また、用途によっては、第一段階としてλ1〜λ3の波長帯域の信号光と、λ5の監視光とを伝送し、第二段階としてλ4を伝送する形態がよい場合も考えられる。その場合、第二の経路上、第一の光合波器68と第四の光利得調節装置94の間、および第四の光合波器92の前段に光コネクタを設けて分離可能な構成としても良い。
【0024】
次に、本発明の他の実施形態である光利得調節装置の機能を、再び図1を用いて具体的に説明する。図1において、光利得調節装置は、符号80、81、83、94で示す部分である。ここでの説明は、光利得調整装置94について行うが、他の光利得調整装置80、82、83も同様に動作する。光利得調整装置94は、光利得調節器105と、波長利得特性シフトフィルタ109と、光分岐器113と、光分岐器113から分岐された光を受光する光受光器121と、光受光器121からのモニタ情報によって光利得調節器105を制御する制御装置129と、波長利得特性シフトフィルタ109を制御する波長利得特性シフトフィルタ制御装置133、134、135、136とから構成されている。
【0025】
光増幅装置内部の部品のうち、受動部品に起因する固定された利得特性は、比較的大きな問題とはならない。実使用上、最も重要かつ大きな問題となる現象は、伝送装置に入力される入力パワーによって光増幅装置内の、光増幅媒体による利得特性が大きく変動することである。一般に、光増幅器は、信号利得に依存して、利得偏差が変化することが知られている。
【0026】
一方、伝送ファイバの非線型効果を防止したり、より長距離伝送を可能とする回線設計上の要求から、伝送装置の出力レベルを一定の範囲内に収めることが要求される。それゆえ、入力パワーが変化することによって光増幅装置の所要利得が変わり、結果として利得特性が大きく変動する。
【0027】
本実施例の、光利得調節器105は、第一の光増幅器64および第三の光増幅器98によって生じる波長間利得偏差を独立に調節することが可能である。この光利得調整器を図3を用いて説明する。ここで図3は、光利得調整器の構成を説明するブロック図である。光利得調整器105は、EDF301と、励起光源302と、光合波器303とから構成されている。本実施例では、励起光源として820nm波長の発光ダイオードを用いたが、1480nm、980nm波長でも構わないし、レーザダイオードであっても構わない。
【0028】
励起光源302が高励起であるとき、励起光源302からの励起光は、光合波器303でEDF301の後方端から入射し、EDF301を励起する。λ4の波長帯の信号光は、EDF301の前方端から入射し、増幅を受けた後、出力される。一方、励起光源302が低励起であるか発光していないとき、EDF301は、信号光の減衰する。つまり、光利得調節器105は、励起光源302の励起電流を調整することによって、正または負の利得を有する光利得調整器として機能する。
【0029】
ここでEDF301は、過度の増幅特性を必要としないので、3m程度で構わない。また、励起光源302に用いた830nm波長の発光ダイオードの出力は、20mW程度で構わない。
【0030】
本実施例の波長利得特性シフトフィルタは、光利得調節器と組み合わせてその機能を補完し、その効果を飛躍的に高める。即ち、まず、発生する利得偏差を各波長帯独立に、光利得調節器によって補正する。さらに光利得調節器によって補正しきれない利得偏差を、波長利得特性シフトフィルタによって補正する。
【0031】
この光利得補助調整器の構成を図4を用いて説明する。ここで、図4は、波長利得特性シフトフィルタのブロック図である。
以下λ2の波長帯域を例にとって説明するが、他の波長帯域も同様である。
本実施例の波長利得特性シフトフィルタ111は、温度依存性のある光フィルタ138と、温度調節器としてのペルチェ素子139と、光フィルタ138の温度を検出するためのサーミスタ抵抗140とから構成されている。ここで、光フィルタ138としては、エタロンフィルタや、ファイバグレーティング型フィルタが適用できるが、本発明の趣旨を逸脱しない範囲のフィルタであれば他の種類のフィルタでも良いが、本実施例では、温度依存性の高いデバイスであるLong Period Gratingと呼ばれるファイバグレーティング型フィルタを適用した。
【0032】
つぎに、ファイバグレーティング型フィルタのフィルタ特性の設計を図5ないし図7を用いて、具体的に説明する。ここで、図5は入力レベルをパラメータとして求めたEDFの波長−利得曲線図、図6は図5の4本の波長−利得曲線を連続的に並べた図、図7は図6を天地逆転しフィルタ特性として求めた図である。
【0033】
図5は、λ2の領域のEDFの波長と利得との関係を、入力レベルをパラメータとしてプロットした曲線である。ここで、1532.5nmで36dBの利得の曲線はもっとも入力レベルが小さく、同波長で26dBの利得の曲線はもっとも入力レベルが大きい。図に明らかなように、この波長領域では、EDFへの入力レベルが変化することにより、利得特性が大きく変化している。
【0034】
図6は、図5に示した4本の波長−利得曲線をおのおのの形状を維持させたまま、少しづつ波長軸方向にシフトさせ、全ての点に漸近する近似曲線を描いた曲線である。図6の意味するところは、同一のλ2波長帯域で発生する利得特性の変化を示す曲線を、波長軸方向の連続的な変化(シフト)によって再現させているところにある。
【0035】
つぎに、図7は、図6と逆特性となる光フィルタ138の挿入損失特性を示したグラフである。本実施例では、再現精度0.1dBで設計することができた。また、もともとλ2の波長帯域は3nmであるが、この光フィルタ138は、7nmの帯域で図5に示したすべての入力レベルに対応する損失特性を保有することなった。
【0036】
本実施例のファイバグレーティング型フィルタの温度特性は、0.08nm/℃であり、約50℃の温度変化をペルチェ素子によって変化させることによって4nmの波長シフトが可能である。具体的には、温度可変領域の中心を25℃と考えると、光フィルタ138の7nmの帯域の中心を、25℃におけるλ2の中心波長と一致させる。これによって、光フィルタの損失特性は、25℃を基準として低温側に−25℃シフトさせることにより−2nm、低温側に25℃シフトさせることにより+2nm、変化させることが可能である。
【0037】
図4、図5、図7を参照して、波長利得特性シフトフィルタ94としての機能を説明しよう。入力レベルが小さいとき出力一定増幅をする光増幅器は大きな利得を光信号に与え、図5の一番上の曲線に示すように波長間の利得偏差が大きい。このとき図4のペルチェ素子139は、温度を上げるよう制御する。これによって、光フィルタ138の温度が上昇する。光フィルタ138のフィルタ特性は温度上昇によって、図7の高波長側にずれる。これによって、利得の波長間偏差を補償することができる。
【0038】
本実施例ではフィルタの温度特性は、0.08nm/℃としたが、より温度依存性の大きいデバイスを適用することにより、温度変化範囲を狭めることが可能であることは言うまでもない。逆に0.01nm/℃以上であれば、温度範囲0〜50℃において0.5nmのシフトが可能であるから適用する波長帯によっては十分発明の効果が得られる。
【0039】
一方、nm/℃という単位はあくまでも特性を近似的にわかりやすく表現するための表記であって、負の特性であったり、温度領域によって特性が異なっても構わない。たとえば、+0.01nm/℃や、−0.01nm/℃や、0〜20℃において0.03nm/℃、20〜50℃において0.09nm/℃であるようなデバイスであっても良い。
【0040】
ここで、実施例の最初に記載した波長帯域の境をどこに置くかが重要であることを説明しよう。波長をシフトさせるだけで連続にかつ極めて小さな誤差で適切な波長利得特性シフトフィルタの損失特性を実現させるためには、波長帯の利得特性に変極点を含まないようにすることが必要である。そこで、本発明では信号光の波長帯域と波長帯域との境は、光増幅器のEDFの波長−利得特性の変極点を与える波長としている。ただし、前述したようにさらに細かく分割しても構わない。細かな分割をすれば狭い温度可変領域でフィルタ特性をコントロールできる。
【0041】
また、より効果的に制御する方法として上記波長利得特性シフトフィルタを縦列に接続する方法が考えられる。たとえば前段の上記波長利得特性シフトフィルタと、後段の波長利得特性シフトフィルタを別々の波長特性をもって制御すれば、より複雑な波長特性を実現することが可能となる。
【0042】
次に本発明を実現する手段として、実際に光利得調節器及び波長利得特性シフトフィルタを制御する方法について図1に戻って説明する。
まず、本実施例の光増幅装置では、最終的に回線へ出力されるの各信号あたりの光出力が、光増幅装置への入力レベルに依存せず一定となる制御を行うことを目的としている。
【0043】
また、分散補償器には、入力パワー制限があり、所定レベル以上の光を導入すると、光の非線型効果により、信号波形が歪む現象が観測される。本実施例ではこの現象を回避するため、分散補償器の信号入力レベルは、各信号とも+0dBm以下となるよう制御する。
【0044】
まず、第一の光増幅器64は、入力レベルおよび出力レベルをモニタすることによって、増幅利得を求めることができ、入力レベルに応じて利得を調整するよう第一の制御装置66によって制御する。たとえば、入力レベルが最も低い−30dBmであるとき、その利得は約30dBとなるよう制御する。また入力レベルが、+5dBmであるとき、その利得は、約5dBとなるよう制御する。
【0045】
次に光利得調節器105、106、107、108は、光出力レベルをモニタし各信号波長とも+0dBm以下となるよう、一定出力に制御する。この時、光利得調節器105、106、107、108の利得は所定の値に決定される。決定された利得は、光利得調節器105、106、107、108への入力モニタとから増幅あるいは減衰利得をモニタすることが可能である。
【0046】
次に、この経路を通過した信号光は、分散補償器85を通過して第二の光増幅装置87によって増幅される。第二の光増幅装置87は、回線光出力が各信号波長あたり+8dBm一定となるよう制御する。分散補償器85の損失量により、第二の光増幅器87の利得が決定される。決定された利得は、第二の光増幅装置87への入力モニタとから増幅利得をモニタすることが可能である。
【0047】
このようにして光増幅装置への入力から出力までの利得が各経路毎に決定され、これらの利得情報は、波長利得特性シフトフィルタ制御装置133、134、135、136に集約される。
【0048】
たとえば、第一の光増幅器64の利得が25dB、光利得調節器105、106、107、108の利得が10dB、第二の光増幅器87の利得が18dBであったとすると、これらの利得情報が波長利得特性シフトフィルタ制御装置133、134、135、136に集約される。
【0049】
先に説明したように、利得偏差は、光増幅器による利得に依存して変化する。利得に対する波長利得特性シフトフィルタ109、110、111、112の調節量は、あらかじめ設定しておき、検出された利得情報から所定の調節を行うよう波長利得特性シフトフィルタ制御装置133、134、135、136によって波長利得特性シフトフィルタ109、110、111、112を制御する。
第四の経路についても同様の制御が行われる。
【0050】
図8を用いて、図1の実施例とは異なる方法で光利得補助調節装置109、110、111、112を制御する本発明の他の実施例を説明しよう。ここで、図8は本発明の実施例の光伝送装置のブロック図である。
【0051】
各光増幅器、及び各光利得調節器の制御方法は、図1に示した光伝送装置の実施例と同様である。光増幅装置より出力された波長多重出力は、光分波装置137−1、137−2に導入され、各波長毎に分波される。分波された波長は、それぞれ光分岐器138−1〜138−nによって一部分岐され、各波長毎に光受光器139−1〜139−nによってモニタされる。本構成では、各波長の光レベルが、所定の値になるよう波長利得特性シフトフィルタ109、110、111、112を制御する構成となっている。
【0052】
このように構成することにより、直接的に波長の特性をモニタすることが可能となるため、制御精度が向上する。また、必ずしも光増幅装置内の光増幅器の利得に依存せず、光パワー補助調節器を制御可能であるため、実使用時の制御自由度が向上する。
【0053】
なお、光利得調節器140−1〜140−nおよび光分波装置137−1、137−2は、各信号波長を独立に調整する光パワー調節器8を応用した構成であり、光分岐器141−2〜142−nで分岐した光を光受光器143−1〜143−nでモニタすることにより、一定出力となるよう制御装置141−1〜141−nを持って制御する構成となっている。
【0054】
なお、光パワー調節器8および利得調節器94の位置は、光分岐器90あるいは光分岐器101の後であっても構わない。
【0055】
本発明の図1、図8とは異なる方法で光利得補助調節装置109、110、111、112を制御した実施例を説明する。ここで、図9は本発明の実施例の光伝送装置のブロック図である。
【0056】
各光増幅器、及び各光利得調節器の制御方法は、図1、図8と同様である。
光利得調節器146−1〜146−nおよび光合波装置150−1、150−2は、各信号波長を独立に調整する光パワー調節器8を応用したものである。光分岐器144−1〜144−nで分岐した光を光受光器145−1〜145−nでモニタすることにより入力光を検出する一方、光分岐器148−1〜148−nで分岐した光を光受光器149−1〜149−nでモニタすることにより、一定出力となるよう制御装置147−1〜147−nをもって制御する構成とした。
【0057】
各信号出力は、光合波装置150−1、150−2に導入され、合波される。本構成では、各波長の出力光レベルをモニタし、これらの出力レベルに対して所定の利得値をもって増幅されるよう波長利得特性シフトフィルタ109、110、111、112を制御する構成とした。
なお、光パワー調節器8および利得調節器94の位置は、光分岐器90あるいは光分岐器101の前であっても構わない。
【0058】
このように構成することにより、入力される信号利得に対して直接的に増幅利得を管理可能となるため、制御精度が向上する。また、必ずしも光増幅装置内の光増幅器の利得に依存せず、波長利得特性シフトフィルタを制御可能であるため、実使用時の制御自由度が向上する。
【0059】
上述した各実施例の特徴は、光増幅媒体である希土類添加光ファイバの利得特性を複数の変極点を有する曲線とみなし、ほぼ変極点近傍で波長分割する構成とした点である。分割された波長帯域は、ほぼ変極点と変極点の間に跨ることになる。このように分割構成することにより、実際は同一波長間で生じる利得偏差をあたかも異なる波長で連続的に生じる利得偏差に置き換え可能となる。詳述してきたように、波長帯域毎に独立調整可能な利得調節器を、上記設計法にて分割化しなければ、連続的な利得変化に置き換えることは不可能であり、本実施例の効果は大きい。
【0060】
また、一般的に光フィルタは、温度依存性を低減することに大きな改善努力が注がれている。一方、本発明の光パワー補助調節器が有する光フィルタは、逆に温度特性を大きく有するものを適用する点に特徴がある。
【0061】
本発明によって実現可能となる機能は、温度を可変することによって、もともとは異なる波長帯の利得特性を、所望の波長帯に出現させ、所望の利得特性を得ることである。この機能を容易に実現するためには、必要温度可変幅の狭い方が実制御上有効であり、このためには温度依存性を大きく有する光フィルタが必要である。
【0062】
また、元々異なる波長帯にまたがって存在する利得特性を、単にシフトさせることによって実現させる本方式は、構成が単純で機能的にも簡単に制御可能であり、信頼性を向上可能である。
ただし、本実施例では、もともとは異なる波長帯の利得特性を、所望の波長帯に出現させ、所望の利得特性を得る方法として温度を制御する方法をとったが必ずしもこの構成に限るものではない。たとえば光学分光的に波長特性を変化させ、所望の利得特性を得るよう構成しても良い。
【0063】
また、光利得調節器は、帯域内の光のパワーと、帯域内の利得偏差を同時に調整することが可能であるが、逆に光パワーの調整に重点をおいた場合、利得偏差の補償量が不足する可能性がある。一方、波長利得特性シフトフィルタは、利得偏差を調節可能であると同時に帯域内の損失量が変化するため、帯域内の光パワーが変化してしまう。即ち、光利得調節器と、波長利得特性シフトフィルタを別個にかつ同時に有することによって相互にその効果を補完し、引いては従来の発明の効果をさらに向上させることが可能となる。
【0064】
光利得調節器に波長利得特性シフトフィルタを付加することによって、装置内の光増幅器によって発生する利得偏差を調整する効果がある。さらに、光増幅装置の多段接続時に問題となる、前段光増幅装置からの利得偏差の積算を十分に補正調整(前段光増幅装置で利得偏差が発生しても利得偏差が積算されない)可能となり、伝送システム上大きな改善効果を有する。
【0065】
なお、以上の実施例において、波長利得特性シフトフィルタは、図示の位置に特定するものではなく、たとえば、光利得調節器の前段や後段に設置されても構わない。
【0066】
【発明の効果】
入力レベルに応じてダイナミックに利得を等する波長利得特性シフトフィルタを実現することができた。また、波長多重伝送に適した波長帯域の効率的利用が可能な光伝送装置を提供することができた。さらに、波長多重伝送に適した光伝送方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の実施例の光伝送装置のブロック図である。
【図2】本発明の実施例に適用した光分波装置のブロック図である。
【図3】本発明の実施例の光利得調整器の構成を説明するブロック図である。
【図4】本発明の実施例の波長利得特性シフトフィルタのブロック図である。
【図5】本発明の実施例の、λ2の領域のEDFの波長と利得との関係を、入力レベルをパラメータとしてプロットした曲線である。
【図6】本発明の実施例の4本の波長−利得曲線をおのおのの形状を維持させたまま、少しづつ波長軸方向にシフトさせ、全ての点に漸近する近似曲線を描いた曲線である。
【図7】本発明の実施例の光フィルタ138の挿入損失特性を示したグラフである。
【図8】本発明の実施例の光伝送装置のブロック図である。
【図9】本発明の実施例の光伝送装置のブロック図である。
【符号の説明】
8…光パワー調節器、80,81,83,94…光利得調節装置、60,76,91,151…光コネクタ、61,68,78…光分波器、62,104…回線監視装置、63,67,71,77,86,90,97,101,113,114,115,116,117,118,119,120…光分岐器、64,98,87…光増幅器、65,69,79,88,93,99,102,121,122,123,124,125,126,127,128…光受光器、66,89,100,129,130,131,132…制御装置、105,106,107,108…光利得調節器、109,110,111,112…波長利得特性シフトフィルタ、133,134,135,136…波長利得特性シフトフィルタ制御装置、70,84,95…光アイソレータ、81,92,103…光合波装置、85,96…分散補償器、74,75…光ノッチフィルタ、72,73…光フィルタ、137…波長シフトフィルタ、138…ファイバーグレーティング型光フィルタ、139…温度調節器、140…サーミスター抵抗、301…EDF、302…励起光源、303…光合波器。

Claims (2)

  1. 複数の波長を有する光信号を受信して、予め定めた複数の波長帯域に分離する波長分波部と、
    前記波長分波部から出力された複数の波長帯域の光信号毎に、入力レベルに依存して発生する波長利得特性の変化を補償する複数のフィルタ部と、
    前記複数のフィルタ部から出力された光信号の利得を調整する複数の光利得調整器と、
    前記光利得調整器から出力された光信号を増幅する光増幅器とを有し、
    前記光利得調整器は希土類添加光ファイバを備え、
    前記波長分波部は、前記光増幅器の波長利得特性について複数の変曲点を有する曲線とみなすとき、前記変曲点おいて光信号の波長帯域を分離し、
    前記フィルタ部は、縦列接続された複数の波長利得特性シフトフィルタを含み、前記光増幅器の波長利得を等価するように前記波長利得特性の変化を補償し、各々の波長利得特性シフトフィルタは温度に依存して波長利得特性が変化する光フィルタと当該光フィルタの温度を制御するペルチェ素子とを含み、
    前記各々の波長利得特性シフトフィルタ内の光フィルタは異なる波長利得特性を有し、各々の波長利得特性シフトフィルタ内のペルチェ素子を光信号の入力レベルに応じて独立に制御することを特徴とする光伝送装置。
  2. 複数の波長を有する光信号を受信して、予め定めた複数の波長帯域に分離する波長分波部と、
    縦列接続された複数の波長利得特性シフトフィルタを含み前記波長分波部から出力された複数の波長帯域の光信号毎に波長利得特性を補償する複数のフィルタ部と、
    第1の不純物ドープファイバと第1の励起光源とを含み前記複数のフィルタ部から出力された光信号の利得を調整する複数の光利得調整器と、
    前記光利得調整器から出力された光信号を増幅するための、第2の不純物ドープファイバと第2の励起光源をと含む光増幅器とを有し、
    前記第1の不純物ドープファイバは希土類添加光ファイバであり、
    前記波長分波部は、前記光増幅器の波長利得特性について複数の変曲点を有する曲線とみなすとき、前記変曲点おいて光信号の波長帯域を分離し、
    前記フィルタ部は、前記光増幅器の波長利得を等価するように前記波長利得特性の変化を補償し、
    前記波長利得特性シフトフィルタの各々は、温度に依存して波長利得特性が変化する光フィルタと、当該光フィルタの温度を制御するペルチェ素子とを含み、前記光フィルタはそれぞれ異なる波長利得特性を有し、前記ペルチェ素子を光信号の入力レベルに応じて独立に制御することを特徴とする光伝送装置。
JP19123099A 1999-07-06 1999-07-06 波長利得特性シフトフィルタ、光伝送装置および光伝送方法 Expired - Fee Related JP4340355B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19123099A JP4340355B2 (ja) 1999-07-06 1999-07-06 波長利得特性シフトフィルタ、光伝送装置および光伝送方法
EP00114314A EP1067725A3 (en) 1999-07-06 2000-07-04 Filter with variable transmission characteristic
US09/609,595 US6580550B1 (en) 1999-07-06 2000-07-05 Filter with variable transmission character, optical transmission equipment and method of optical transmission
US10/421,567 US6867909B2 (en) 1999-07-06 2003-04-23 Filter with variable transmission character, optical transmission equipment and method of optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19123099A JP4340355B2 (ja) 1999-07-06 1999-07-06 波長利得特性シフトフィルタ、光伝送装置および光伝送方法

Publications (2)

Publication Number Publication Date
JP2001024262A JP2001024262A (ja) 2001-01-26
JP4340355B2 true JP4340355B2 (ja) 2009-10-07

Family

ID=16271074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19123099A Expired - Fee Related JP4340355B2 (ja) 1999-07-06 1999-07-06 波長利得特性シフトフィルタ、光伝送装置および光伝送方法

Country Status (3)

Country Link
US (2) US6580550B1 (ja)
EP (1) EP1067725A3 (ja)
JP (1) JP4340355B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340355B2 (ja) * 1999-07-06 2009-10-07 株式会社日立コミュニケーションテクノロジー 波長利得特性シフトフィルタ、光伝送装置および光伝送方法
JP2002158636A (ja) * 2000-03-29 2002-05-31 Hitachi Ltd 光伝送装置およびその監視システム
DE10040472A1 (de) * 2000-08-18 2002-03-07 Siemens Ag Optische Verstärkeranordnung mit einem variabel einstellbaren Dämpfungsglied
US6751012B1 (en) * 2000-12-14 2004-06-15 Tyco Telecommunications (Us) Inc. Method and apparatus for measuring noise figure in optical amplifiers
US7106969B1 (en) * 2001-02-12 2006-09-12 Atrica Israel Ltd. Optical network terminator
US7031613B1 (en) * 2001-07-17 2006-04-18 Cisco Technology, Inc. Chromatic dispersion compensation by sub-band
US7075712B2 (en) * 2002-05-30 2006-07-11 Fujitsu Limited Combining and distributing amplifiers for optical network and method
US7085496B2 (en) * 2002-05-30 2006-08-01 Fujitsu Limited Passive add/drop amplifier for optical networks and method
JP4246644B2 (ja) * 2004-01-21 2009-04-02 富士通株式会社 光受信器及び光伝送装置
JP4725951B2 (ja) * 2004-07-28 2011-07-13 富士通株式会社 波長多重信号光の増幅方法および光増幅器
JP2020514797A (ja) * 2017-01-06 2020-05-21 ニスティカ,インコーポレーテッド 波長選択スイッチにおける帯域外クロストークを抑制するための光学配置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US628361A (en) * 1899-04-22 1899-07-04 John Peirce Shank Lady's sewing-cabinet.
US5579143A (en) * 1993-06-04 1996-11-26 Ciena Corporation Optical system with tunable in-fiber gratings
US5541766A (en) * 1994-11-30 1996-07-30 At&T Corp. Gain control for optically amplified systems
JPH08237203A (ja) * 1995-02-23 1996-09-13 Fujitsu Ltd 光フィルタアレイ、光送信機及び光送信システム
FR2731082B1 (fr) * 1995-02-28 1997-04-04 France Telecom Multiplexeur optique a insertion-extraction utilisant des circulateurs optiques et des reseaux de bragg photoinscrits
JPH08278523A (ja) * 1995-04-05 1996-10-22 Hitachi Ltd 光増幅装置
JPH0918416A (ja) * 1995-06-28 1997-01-17 Hitachi Ltd 光増幅器
US6297902B1 (en) * 1995-07-05 2001-10-02 Hitachi, Ltd. Light amplification medium control method, light amplification apparatus and system using the same
US6111681A (en) * 1996-02-23 2000-08-29 Ciena Corporation WDM optical communication systems with wavelength-stabilized optical selectors
JP3556379B2 (ja) * 1996-03-07 2004-08-18 富士通株式会社 光伝送システム
IT1283224B1 (it) * 1996-03-11 1998-04-16 Pirelli Cavi Spa Apparato e metodo di protezione per dispositivi in fibra ottica
FR2747527B1 (fr) * 1996-04-12 1998-05-15 Cit Alcatel Procede et dispositif d'amplification de canaux extraits d'un multiplex de longueurs d'onde
JPH10145298A (ja) * 1996-11-08 1998-05-29 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重通信用光分波装置
US5900969A (en) * 1997-02-14 1999-05-04 Lucent Technologies Inc. Broadband flat gain optical amplifier
CA2228122A1 (en) * 1997-02-17 1998-08-17 Kevin W. Bennett Pump wavelength tuning of optical amplifiers and use of same in wavelength division multiplexed systems
US6049417A (en) * 1997-06-02 2000-04-11 Lucent Technologies Inc. Wide band optical amplifier
US6151157A (en) * 1997-06-30 2000-11-21 Uniphase Telecommunications Products, Inc. Dynamic optical amplifier
WO1999000925A1 (en) * 1997-06-30 1999-01-07 Uniphase Telecommunications Products, Inc. Method and apparatus for dynamically equalizing gain in an optical network
JP3771010B2 (ja) * 1997-08-06 2006-04-26 富士通株式会社 光増幅のための方法及び該方法を実施するためのシステム
US5987200A (en) 1997-10-27 1999-11-16 Lucent Technologies Inc. Device for tuning wavelength response of an optical fiber grating
JP3884841B2 (ja) * 1997-11-14 2007-02-21 株式会社日立コミュニケーションテクノロジー 光伝送システム及び光通信装置
JP3453301B2 (ja) * 1998-04-27 2003-10-06 富士通株式会社 能動型光ファイバ及び光ファイバ増幅器
US6275629B1 (en) * 1998-09-11 2001-08-14 Lucent Technologies Inc. Optical grating devices with adjustable chirp
JP2000106544A (ja) * 1998-09-28 2000-04-11 Fujitsu Ltd 光増幅器及び波長多重光伝送システム
JP2000180803A (ja) * 1998-12-15 2000-06-30 Sumitomo Electric Ind Ltd 多チャネル光可変減衰器
JP2000299518A (ja) * 1999-02-10 2000-10-24 Oki Electric Ind Co Ltd 光ファイバ増幅器及びその制御方法
JP2000277842A (ja) * 1999-03-23 2000-10-06 Oki Electric Ind Co Ltd 光学部品、光増幅器及び光増幅器の特性制御方法
JP4340355B2 (ja) * 1999-07-06 2009-10-07 株式会社日立コミュニケーションテクノロジー 波長利得特性シフトフィルタ、光伝送装置および光伝送方法
EP1072937B1 (en) * 1999-07-27 2005-12-21 Sumitomo Electric Industries, Ltd. Optical filter
US6307668B1 (en) * 1999-10-04 2001-10-23 Optigain, Inc. Ultra-wide bandwidth fiber based optical amplifier

Also Published As

Publication number Publication date
US6580550B1 (en) 2003-06-17
EP1067725A3 (en) 2005-08-31
EP1067725A2 (en) 2001-01-10
US20030193714A1 (en) 2003-10-16
US6867909B2 (en) 2005-03-15
JP2001024262A (ja) 2001-01-26

Similar Documents

Publication Publication Date Title
JP4821037B2 (ja) ラマン増幅を用いた光増幅器およびラマン励起光源
EP2180612B1 (en) Control apparatus and method for optical transmission apparatus
JP4725951B2 (ja) 波長多重信号光の増幅方法および光増幅器
US7529022B2 (en) Raman amplifier and wavelength division multiplexing optical communication system, and method of controlling raman amplification
EP1909414B1 (en) Dynamic raman tilt compensation
JP5245747B2 (ja) 光増幅器および光受信モジュール
JP5267119B2 (ja) 光受信装置および波長多重伝送システム
JP2001103013A (ja) 波長間光パワー偏差のモニタ方法、並びに、それを用いた光等化器および光増幅器
JP4340355B2 (ja) 波長利得特性シフトフィルタ、光伝送装置および光伝送方法
EP1478109B1 (en) Optical amplifier, communication system and method for control tilt of a communication system
JP2004158652A (ja) 光増幅器,光増幅器における通過波長特性制御方法および光伝送システム
JP2002198599A (ja) 光増幅器および光増幅方法
JP4635402B2 (ja) 光増幅器及び光増幅方法
JP2000307552A (ja) 波長多重光伝送用光増幅装置
JP2002232362A (ja) 光中継伝送システムおよび光中継伝送方法
JP2710199B2 (ja) 波長多重伝送用光ファイバ増幅器
JP4074750B2 (ja) 光増幅装置及びその利得特性モニタ方法
JP3482962B2 (ja) 光増幅装置及びそれを用いた光伝送システム
JP3298404B2 (ja) 光増幅器の利得制御装置および方法
WO2017085822A1 (ja) 光増幅装置
JP3609968B2 (ja) 光増幅器
JP2004072062A (ja) 光増幅器及びその制御方法
JP3063724B2 (ja) Wdm光直接増幅器
JP2000261384A (ja) 可変光利得等化器およびこれを用いた波長多重伝送用光増幅器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees