JP4333160B2 - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
JP4333160B2
JP4333160B2 JP2003046162A JP2003046162A JP4333160B2 JP 4333160 B2 JP4333160 B2 JP 4333160B2 JP 2003046162 A JP2003046162 A JP 2003046162A JP 2003046162 A JP2003046162 A JP 2003046162A JP 4333160 B2 JP4333160 B2 JP 4333160B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
filter
exhaust
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003046162A
Other languages
English (en)
Other versions
JP2004257267A (ja
Inventor
好一郎 中谷
信也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003046162A priority Critical patent/JP4333160B2/ja
Publication of JP2004257267A publication Critical patent/JP2004257267A/ja
Application granted granted Critical
Publication of JP4333160B2 publication Critical patent/JP4333160B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化システムに関する。
【0002】
【従来の技術】
近年、ディーゼルエンジンの排気中に含まれる浮遊粒子状物質である煤に代表されるパティキュレートマター(Particulate Matter:以下、「PM」という。)の除去が重要な課題となっている。このため、大気中にPMが放出されないように排気系にPMの捕獲を行うパティキュレートフィルタ(以下、単に「フィルタ」とする)を設ける技術が知られている。
【0003】
このフィルタにより排気中のPMが一旦捕獲され大気中へ放出されることを防止することができる。しかし、フィルタに捕獲されたPMが該フィルタに堆積するとフィルタの目詰まりを発生させることがある。この目詰まりが発生すると、フィルタ上流の排気の圧力が上昇し内燃機関の出力低下やフィルタの毀損を誘発する虞がある。このようなときには、フィルタ上に堆積したPMを酸化せしめることにより該PMを除去することができる。このようにフィルタに堆積したPMを除去することをフィルタの再生という。
【0004】
このフィルタの再生を行う技術として、例えば、フィルタ上流の酸化触媒の酸化作用で排気の温度を上昇させ、フィルタに捕獲されたPMを酸化させる技術(例えば、特許文献1参照)、吸蔵還元型NOx触媒を担持したパティキュレートフィルタ及びその上流に酸化能を有するNOx触媒を備え、該NOx触媒にてSOF成分を酸化させる技術(例えば、特許文献2参照)、パティキュレートフィルタ上流の酸化触媒にてNO2を生成させ、このNO2によりPMを酸化させる技術(例えば、特許文献3参照)が知られている。
【0005】
【特許文献1】
特開平8−312331号公報(第4−7頁、図1)
【特許文献2】
特開2002−115524号公報(第3−13頁、図18)
【特許文献3】
特許第3012249号公報(第2−12頁、図1)
【0006】
【発明が解決しようとする課題】
ところで、フィルタ上流に該フィルタの温度を上昇させるための触媒を設けた場合、その触媒にもPMが付着することがある。ここで、フィルタに堆積したPMは、排気中の燃料添加により除去することが可能であるが、上流に設けた触媒では、該触媒の上流端の温度が上昇しないため、この上流端に付着したPMの除去が困難となる。これに対し、内燃機関から排出される排気の温度自体を上昇させることにより、上流端に付着したPMを酸化させることが可能である。
【0007】
しかし、内燃機関からの排気の温度を上昇させるために、燃料噴射時期の遅延や、主噴射の他に副噴射を行うと、この燃料による潤滑油の希釈やシリンダ壁面の潤滑油を洗い流す所謂ボアフラッシングが発生する虞があり、更にはピストンの焼き付きが発生する虞がある。
【0008】
本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化システムにおいて、潤滑油の希釈やボアフラッシングを抑制しつつ、パティキュレートフィルタ上流に設けられた前段触媒の上流端に付着したPMを除去する技術を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を達成するために本発明の内燃機関の排気浄化システムは、以下の手段を採用した。即ち、
内燃機関の排気通路に設けられ酸化能力を有する触媒と、
前記酸化能力を有する触媒の下流に設けられ排気中の粒子状物質を捕獲するパティキュレートフィルタと、
前記酸化能力を有する触媒の上流から排気中に燃料を供給する燃料供給手段と、
燃料供給手段により燃料を供給して前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生手段と、
前記酸化能を有する触媒の上流で排気の温度を上昇させて該酸化能を有する触媒に堆積した堆積物を除去する前段触媒再生手段と、
を具備することを特徴とする。
【0010】
本発明の最大の特徴は、フィルタ再生手段と前段触媒再生手段とを備え、パティキュレートフィルタと酸化能を有する触媒とで夫々異なる手段により堆積物を除去することにある。
【0011】
このように構成された内燃機関の排気浄化システムでは、パティキュレートフィルタに堆積した粒子状物質は、フィルタ再生手段により除去される。ここで、燃料供給手段から排気中へ燃料が供給されると、この燃料が上流の酸化能を有する触媒にて酸化され、熱が発生する。また、パティキュレートフィルタが酸化能を有している場合には、該パティキュレートフィルタにおいても熱が発生する。この熱により、パティキュレートフィルタに堆積した粒子状物質は酸化され除去される。しかし、前記酸化能を有する触媒の上流端では温度上昇が緩慢となり、粒子状物質の酸化が緩慢となる。ここで、前段触媒再生手段により排気の温度を上昇させ、前記酸化能を有する触媒に高い温度の排気を流通させることにより上流端に付着した粒子状物質を酸化させ除去することが可能となる。酸化能を有する触媒の堆積物を除去する場合に限り排気の温度を上昇させるので、潤滑油の希釈やボアフラッシングの起こる回数を抑制することが可能となる。
【0012】
本発明においては、前記酸化能力を有する触媒に堆積した堆積物を除去する時期を判定する前段触媒再生時期判定手段を更に備え、前記前段触媒再生時期判定手段により堆積物を除去する時期であると判定された場合には、前記フィルタ再生手段によりフィルタに堆積した粒子状物質が除去されるときに、前記前段触媒再生手段は排気の温度を上昇させることができる。
【0013】
このように構成された内燃機関の排気浄化システムでは、前段触媒再生時期判定手段により前記酸化能力を有する触媒に堆積した堆積物を除去する時期であると判定された場合には、フィルタ再生手段によりパティキュレートフィルタに堆積した粒子状物質を除去するときに、前記前段触媒再生手段により排気の温度を上昇させる。排気の温度を上昇させることにより、酸化能力を有する触媒及びパティキュレートフィルタから同時に堆積物を除去することが可能となる。
【0014】
本発明においては、前記前段触媒再生手段により堆積物を除去する間隔は、フィルタ再生手段により粒子状物質を除去する間隔よりも長くする。
【0015】
酸化能力を有する触媒は、パティキュレートフィルタと比べて粒子状物質等が付着する量が少ない。そのため、前段触媒再生手段により酸化能を有する触媒に堆積した堆積物を除去する間隔は、フィルタ再生手段によりパティキュレートフィルタに堆積した堆積物を除去する間隔よりも長くてよい。そして、前段触媒再生手段による堆積物の除去の間隔を長くすることにより、潤滑油の希釈やボアフラッシングが起こる回数を抑制することが可能となる。
【0016】
本発明においては、前記酸化能力を有する触媒に堆積した堆積物の量を推定する堆積量推定手段を更に備え、フィルタ再生手段によりフィルタに堆積した粒子状物質を除去するときに前記前段触媒再生手段は、堆積量推定手段により推定された堆積物の量が多くなるほど排気の温度を高くすることができる。
【0017】
酸化能力を有する触媒の堆積物の減少量と排気の温度とには相関がある。即ち、排気の温度が高いほど、酸化能力を有する触媒に堆積した堆積物の減少量が大きくなる。従って、酸化能力を有する触媒に堆積した堆積物の量に応じて排気の温度を上昇させることにより、必要最小限の温度上昇が可能となり、酸化能力を有する触媒及びパティキュレートフィルタに堆積した粒子状物質を同時に除去しつつ、潤滑油の希釈やボアフラッシングが起こる回数を抑制することが可能となる。
【0018】
本発明においては、前記酸化能力を有する触媒に堆積した堆積物の量を推定する堆積量推定手段を更に備え、該堆積量推定手段により推定された堆積物の量が許容範囲を超えた場合に前記前段触媒再生手段による堆積物の除去を行うことができる。
【0019】
これにより、パティキュレートフィルタに堆積した粒子状物質の量、若しくは、フィルタ再生手段による粒子状物質の除去に関わりなく、酸化能を有する触媒に堆積した堆積物を除去する必要が生じたときに排気温度の上昇を行うことが可能となる。
【0020】
本発明においては、前記酸化能力を有する触媒に流入する排気の温度を検出する排気温度検出手段を更に備え、前記堆積量推定手段は、前記排気温度検出手段により検出された排気の温度が高くなるほど前記酸化能力を有する触媒に堆積する堆積物の量が少なくなると判定することができる。
【0021】
酸化能力を有する触媒に流入する排気の温度が高いほど、該触媒に堆積した粒子状物質が酸化される量が多くなり、粒子状物質の堆積量が減少する。従って、堆積量推定手段は、高い温度の排気が前記酸化能力を有する触媒に流入した場合には、堆積物の量が減少すると推定することが可能となる。
【0022】
【発明の実施の形態】
<第1の実施の形態>
以下、本発明に係る内燃機関の排気浄化システムの具体的な実施態様について図面に基づいて説明する。ここでは、本発明に係る内燃機関の排気浄化システムを車両駆動用のディーゼル機関に適用した場合を例に挙げて説明する。
【0023】
図1は、本実施の形態に係る排気浄化システムを適用するエンジン1とその吸排気系の概略構成を示す図である。
【0024】
図1に示すエンジン1は、4つの気筒2を有する水冷式の4サイクル・ディーゼル機関である。
【0025】
エンジン1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレール)4と接続されている。
【0026】
前記コモンレール4は、燃料供給管5を介して燃料ポンプ6と連通している。この燃料ポンプ6は、エンジン1の出力軸(クランクシャフト)の回転トルクを駆動源として作動するポンプであり、該燃料ポンプ6の入力軸に取り付けられたポンププーリ6aがエンジン1の出力軸(クランクシャフト)に取り付けられたクランクプーリ1aとベルト7を介して連結されている。
【0027】
このように構成された燃料噴射系では、クランクシャフトの回転トルクが燃料ポンプ6の入力軸へ伝達されると、燃料ポンプ6は、クランクシャフトから該燃料ポンプ6の入力軸へ伝達された回転トルクに応じた圧力で燃料を吐出する。
【0028】
前記燃料ポンプ6から吐出された燃料は、燃料供給管5を介してコモンレール4へ供給され、コモンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴射弁3へ分配される。そして、燃料噴射弁3に駆動電流が印加されると、燃料噴射弁3が開弁し、その結果、燃料噴射弁3から気筒2内へ燃料が噴射される。
【0029】
次に、エンジン1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と吸気ポート(図示省略)を介して連通している。
【0030】
前記吸気枝管8は吸気管9に接続されている。吸気管9には、該吸気管9内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ11が取り付けられている。
【0031】
前記吸気管9における吸気枝管8の直上流に位置する部位には、該吸気管9内を流通する吸気の流量を調節する吸気絞り弁13が設けられている。この吸気絞り弁13には、ステップモータ等で構成されて該吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。
【0032】
前記エアフローメータ11と前記吸気絞り弁13との間に位置する吸気管9には、排気のエネルギを駆動源として作動する遠心過給機(ターボチャージャ)15のコンプレッサハウジング15aが設けられている。
【0033】
このように構成された吸気系では、吸気は、吸気管9を介してコンプレッサハウジング15aに流入する。
【0034】
コンプレッサハウジング15aに流入した吸気は、該コンプレッサハウジング15aに内装されたコンプレッサホイールの回転によって圧縮される。前記コンプレッサハウジング15a内で圧縮された吸気は、必要に応じて吸気絞り弁13によって流量を調節されて吸気枝管8に流入する。吸気枝管8に流入した吸気は、各枝管を介して各気筒2の燃焼室へ分配され、各気筒2の燃料噴射弁3から噴射された燃料を着火源として燃焼される。
【0035】
一方、エンジン1には、排気枝管18が接続され、排気枝管18の各枝管が排気ポート1bを介して各気筒2の燃焼室と連通している。
【0036】
前記排気枝管18は、前記遠心過給機15のタービンハウジング15bと接続されている。前記タービンハウジング15bは、排気管19と接続され、この排気管19は、下流にて大気へと通じている。
【0037】
前記排気管19の途中には、吸蔵還元型NOx触媒(以下、単にNOx触媒とする。)を担持し、且つ排気中に含まれる浮遊粒子状物質である煤に代表されるパティキュレートマター(Particulate Matter:以下、「PM」という。)を捕獲するためのパティキュレートフィルタ(以下、単にフィルタという。)20が設けられている。
【0038】
ここで、本実施の形態に係るフィルタ20について説明する。
【0039】
図2は、フィルタ20の断面図である。図2(A)は、フィルタ20の横方向断面を示す図である。図2(B)は、フィルタ20の縦方向断面を示す図である。
【0040】
図2(A)及び(B)に示されるようにフィルタ20は、互いに平行をなして延びる複数個の排気流通路50、51を具備するいわゆるウォールフロー型である。これら排気流通路は下流端が栓52により閉塞された排気流入通路50と、上流端が栓53により閉塞された排気流出通路51とにより構成される。なお、図2(A)においてハッチングを付した部分は栓53を示している。従って、排気流入通路50および排気流出通路51は薄肉の隔壁54を介して交互に配置される。換言すると排気流入通路50および排気流出通路51は各排気流入通路50が4つの排気流出通路51によって包囲され、各排気流出通路51が4つの排気流入通路50によって包囲されるように配置される。
【0041】
フィルタ20は例えばコージェライトのような多孔質材料から形成されており、従って排気流入通路50内に流入した排気は図2(B)において矢印で示されるように周囲の隔壁54内を通って隣接する排気流出通路51内に流出する。
【0042】
本実施例では、各排気流入通路50および各排気流出通路51の周壁面、即ち各隔壁54の両側表面上および隔壁54内の細孔内壁面上には例えばアルミナからなる担体の層が形成されており、この担体上に吸蔵還元型NOx触媒が坦持されている。
【0043】
フィルタ20は、例えば、アルミナを担体とし、その担体上に、カリウム(K)、ナトリウム(Na)、リチウム(Li)、もしくはセシウム(Cs)等のアルカリ金属と、バリウム(Ba)もしくはカルシウム(Ca)等のアルカリ土類と、ランタン(La)もしくはイットリウム(Y)等の希土類とから選択された少なくとも1つと、白金(Pt)等の貴金属とを担持して構成されている。尚、本実施の形態では、アルミナからなる担体上にバリウム(Ba)と白金(Pt)とを担持して構成される吸蔵還元型NOx触媒(以下、単にNOx触媒という。)を採用した。更に、O2ストレージ能力のあるセリア(Ce23)を添加しても良い。
【0044】
このフィルタ20に担持された吸蔵還元型NOx触媒は、該フィルタ20に流入する排気の酸素濃度が高いときは排気中の窒素酸化物(NOx)を吸蔵(吸収、吸着でも良い。)し、一方、該フィルタ20に流入する排気の酸素濃度が低下したときは吸蔵していたNOxを放出する。その際、排気中に炭化水素(HC)や一酸化炭素(CO)等の燃料が存在していれば、吸蔵還元型NOx触媒から放出されたNOxが還元される。また、セリア(CeO2)等の遷移金属は、排気の特性に応じて酸素を一時的に保持し、活性化酸素として放出する能力を有する。
【0045】
一方、フィルタ20により、排気中のPMが一旦捕獲され、大気中への放出が防止される。
【0046】
尚、フィルタ20は、吸蔵還元型NOx触媒を担持したものに限らず、触媒を担持していないパティキュレートフィルタであっても良く、また、酸化触媒や三元触媒を担持したフィルタであっても良い。
【0047】
フィルタ20の上流には、吸蔵還元型NOx触媒を担持した前段触媒21が備えられている。この前段触媒21は、フィルタ20よりも容量が小さく、機関始動時であっても排気の熱により速やかに温度が上昇され活性状態となることができる。尚、前段触媒21は、酸化能力を有する触媒であれば良く、吸蔵還元型NOx触媒に代えて、例えば、酸化触媒や三元触媒であっても良い。
【0048】
この前段触媒21は、セラミックス担体を採用し、排気との接触面積を増加させるために担体形状がモノリス形状若しくはハニカム形状となるように形成されている。そして、排気の流通方向に貫通孔が備えられ、該貫通孔の断面形状は格子状となっている。また、本実施の形態では、前段触媒21にメタル担体を採用することもできる。メタル担体では、平板の上に波板を重ね合わせて長形状積層材を形成し、その後、該長形状積層材をロール巻きして円柱状に形成されている。そして、担体上に吸蔵還元型NOx触媒が担持されている。
【0049】
また、前段触媒21より上流の排気管19には、該排気管19内を流通する排気の温度に対応した電気信号を出力する排気温度センサ22が取り付けられている。
【0050】
このように構成された排気系では、エンジン1の各気筒2で燃焼された混合気(既燃ガス)が排気ポート1bを介して排気枝管18へ排出され、次いで排気枝管18から遠心過給機15のタービンハウジング15bへ流入する。タービンハウジング15bに流入した排気は、該排気が持つエネルギを利用してタービンハウジング15b内に回転自在に支持されたタービンホイールを回転させる。その際、タービンホイールの回転トルクは、前述したコンプレッサハウジング15aのコンプレッサホイールへ伝達される。
【0051】
前記タービンハウジング15bから排出された排気は、排気管19を介して前段触媒21及びフィルタ20へ流入し、排気中のNOxが吸蔵還元型NOx触媒に吸蔵され、フィルタ20ではPMが捕獲される。その後、排気は排気管19を流通して大気中へと放出される。
【0052】
ところで、フィルタ20に捕獲されたPMが該フィルタ20に堆積するとフィルタ20の目詰まりを発生させることがある。この目詰まりが発生すると、フィルタ20上流の排気の圧力が上昇し、エンジン1の出力低下やフィルタ20の毀損を誘発する虞がある。このようなときには、フィルタ20上に堆積したPMを酸化せしめることにより該PMを除去することができる。このようにフィルタに堆積したPMを除去することをフィルタの再生という。フィルタ20の再生は、前段触媒21若しくはフィルタ20で酸化反応熱を発生させる例えば炭化水素(HC)や一酸化炭素(CO)等を前段触媒21若しくはフィルタ20に供給し、このときに発生する熱や、通常よりも高い温度の排気の熱により可能となる。
【0053】
従って、エンジン1からの排気の温度が低い場合は、フィルタ20の目詰まりが発生する前に、該フィルタ20若しくは前段触媒21に炭化水素(HC)や一酸化炭素(CO)等を供給し、若しくは排気の温度を上昇させてフィルタ20に堆積したPMを酸化させる必要がある。
【0054】
フィルタ20若しくは前段触媒21へHCを供給する方法としては、排気中への燃料添加を例示することができる。排気中への燃料添加では、前段触媒21より上流の排気管19を流通する排気中に燃料(軽油)を添加する燃料添加機構を備え、この燃料添加機構から排気中へ燃料を添加することにより、前段触媒21及びフィルタ20に流入する排気中の酸素濃度を低下させるとともにHCの濃度を高めることができる。
【0055】
燃料添加機構は、図1に示されるように、その噴孔が排気枝管18内に臨むように取り付けられ、後述するECU35からの信号により開弁して燃料を噴射する燃料添加弁28と、前述した燃料ポンプ6から吐出された燃料を前記燃料添加弁28へ導く添加燃料供給路29と、を備えている。
【0056】
このような燃料添加機構では、燃料ポンプ6から吐出された高圧の燃料が添加燃料供給路29を介して燃料添加弁28へ印加される。そして、ECU35からの信号により該燃料添加弁28が開弁して、排気枝管18内へ燃料(HC)が噴射される。
【0057】
燃料添加弁28から排気枝管18内へ噴射された燃料は、排気枝管18の上流から流れてきた排気中のHC濃度を上昇させると共に、前段触媒21及びフィルタ20に到達し、そこで酸化される。この酸化反応により熱が発生し、この熱によりフィルタ20に堆積したPMが酸化され除去される。
【0058】
その後、ECU35からの信号により燃料添加弁28が閉弁し、排気枝管18内への燃料の添加が停止されることになる。
【0059】
また、エンジン1には、クランクシャフトの回転位置に対応した電気信号を出力するクランクポジションセンサ33が設けられている。
【0060】
以上述べたように構成されたエンジン1には、該エンジン1を制御するための電子制御ユニット(ECU:Electronic Control Unit)35が併設されている。このECU35は、エンジン1の運転条件や運転者の要求に応じてエンジン1の運転状態を制御するユニットである。
【0061】
ECU35には、各種センサが電気配線を介して接続され、上記した各種センサの出力信号の他、運転者がアクセルを踏み込んだ量に応じた電気信号を出力するアクセル開度センサ36の出力信号が入力されるようになっている。このアクセル開度センサ36の出力信号により、機関負荷を求めることもできる。
【0062】
一方、ECU35には、燃料噴射弁3、吸気絞り用アクチュエータ14、燃料添加弁28等が電気配線を介して接続され、上記した各部をECU35が制御することが可能になっている。
【0063】
また、本実施の形態では、PMを除去する他の手段として、排気の温度を上昇させることができる。
【0064】
排気の温度を上昇させる方法として、エンジン1で燃料噴射弁3からの主噴射の後の膨張行程中若しくは排気行程中に、再度燃料を噴射させる副噴射を例示することができる。
【0065】
このように膨張行程若しくは排気行程で燃料を噴射させるのは、機関出力に殆ど影響を与えることなく排気温度を上昇させることができるためである。この副噴射により噴射された燃料は、気筒2から排出される排気の温度を上昇させる。温度が上昇した排気は前段触媒21及びフィルタ20に到達し、PMを酸化除去することができる。
【0066】
また、本実施の形態では、気筒2内への燃料噴射時期を遅延させることにより排気の温度を上昇させることもできる。燃料噴射時期を通常よりも遅延させると、通常の時期に噴射された燃料よりもピストンの運動に消費されるエネルギ量が少なくなる。これにより、排気の温度を高くすることが可能となり、前段触媒21及びフィルタ20に堆積したPMを酸化除去することが可能となる。
【0067】
前述のように、フィルタ20の再生を行う方法として、燃料噴射弁3からの燃料噴射により排気の温度を高める方法と、燃料添加弁28からの燃料噴射により排気中へ炭化水素を供給する方法と、がある。ここで、燃料噴射弁3から燃料を噴射して排気の温度を高める方法では、ピストンが上死点となった後に燃料の噴射が行われるため、噴射された燃料がシリンダ壁まで到達することがある。これにより、エンジン潤滑油と燃料とが混ざり合って該エンジン潤滑油を希釈させたり、シリンダ壁面に付着した潤滑油が燃料により洗い流される所謂ボアフラッシングが起こったりして、ピストンの焼き付き等を誘発する虞がある。また、排気の温度を上昇させると、該排気が排気枝管18及び排気管19を通過する際に、排気枝管18及び排気管19の壁面から大気中へ熱が放出され、排気の温度が低下してしまう。従って、フィルタ20の温度を上昇させるために燃料が多く消費され、燃費が悪化する虞がある。
【0068】
一方、燃料添加弁28からの燃料噴射により排気中へ燃料を添加する方法では、フィルタ20及び前段触媒21に担持された吸蔵還元型NOx触媒において、燃料が酸化する際に発生する熱によりPMが酸化される。このように、吸蔵還元型NOx触媒で熱が発生するため、フィルタ20においては効率良くPMを酸化させることができる。
【0069】
ところで、前段触媒21は、フィルタ機能を有するものではないが、前述したように、端部では格子状となるように形成されているので、排気中のPM等が上流端に付着し易い。このように上流端に付着したPMは、燃料添加弁28による燃料添加で酸化除去するのは困難である。これは、燃料添加により前段触媒21の上流側で発生した熱は、排気と共に下流側へと流されるため、該前段触媒21の上流端では温度上昇が緩慢となるからである。これにより、前段触媒21の上流側、特に上流端では、PMが酸化されずに残存することがある。
【0070】
ここで、図3は、前段触媒内での排気の温度とPM酸化速度との関係を示した図である。ある温度以下でPMの酸化速度は略0となり、PMはほとんど除去されず、一方、ある温度以上となると、排気の温度が高くなるほどPMの酸化速度が増し、除去されるPMの量が増加する。また、Aで示される温度において、ある運転条件では、PMの付着量と酸化量とが釣り合い、この温度よりも低い場合には、前段触媒21に付着するPM量が、酸化され除去されるPM量よりも多くなり、PMが堆積することとなる。また、Aに示される温度よりも高い場合には、前段触媒21に付着するPM量よりも酸化されるPM量が多くなり、PMを除去することができる。そして、燃料添加弁28による燃料添加では、前段触媒21の上流端は、Aで示される温度まで達しないでPMが堆積することとなる。
【0071】
一方、排気の温度を高めると、前段触媒21の上流端の温度を上昇させ、該上流端に付着したPMを除去することができる。そして、図3に示されるように、温度が高くなるほどPMの酸化速度が速くなり、単位時間当たりのPMの除去量が多くなる。
【0072】
そこで、本実施の形態では、フィルタ20に捕獲されたPMは、燃料添加弁28から噴射した燃料が前段触媒21及びフィルタ20で反応したときに発生する熱により酸化させる(以下、燃料添加弁28によるPM除去という。)。一方、前段触媒21の上流端に付着したPMは、燃料噴射弁3により噴射された燃料を気筒2内で燃焼させて発生した熱により酸化させる(以下、燃料噴射弁3によるPM除去という。)。ここで、フィルタ20に捕獲されるPM量よりも、前段触媒21の上流端に付着するPM量は少ないため、燃料噴射弁3によるPM除去は燃料添加弁28によるPM除去よりも実施頻度を少なくすることができる。これにより、前記潤滑油の希釈やボアフラッシング等の回数を減少させ、ピストンの焼き付き等を抑制することができる。
【0073】
ここで、前段触媒21の上流端の温度は、燃料添加弁28によるPM除去を行う場合よりも、燃料噴射弁3によるPM除去を行う場合のほうが高くなる。従って、燃料添加弁28によるPM除去を行うときに除去することができなかった前段触媒21の上流端に付着したPMを、燃料噴射弁3によるPM除去により除去することが可能となる。
【0074】
本実施の形態においては、例えば、燃料添加弁28によるPM除去を予め定めた回数行った後に燃料噴射弁3によるPM除去を行う。
【0075】
ここで、図4は、前段触媒21の上流端に付着したPM量、前段触媒21に流入する排気の温度(入ガス温度)、フィルタ20に堆積しているPM量、の時間推移を示したタイムチャート図である。図4中の(1)及び(2)は、燃料添加弁28によるPM除去を示し、(3)は、燃料噴射弁3によるPM除去を示している。
【0076】
燃料添加弁28によるPM除去では、前段触媒21の入ガス温度が低く、前段触媒21の上流端に付着したPMはほとんど減少しない。一方、燃料噴射弁3によるPM除去を行った場合には、燃料添加弁28によるPM除去のときよりも前段触媒21の入ガス温度が高くなり、前段触媒21の上流端に付着したPM及びフィルタ20に堆積したPMを同時に除去することができる。
【0077】
フィルタ20に堆積したPMの除去は、予め定めておいた一定の間隔で行っても良く、また、フィルタ20に堆積したPMの量が予め定めておいた量となったときに行っても良い。フィルタ20に捕獲されたPMの量は、例えば、フィルタ20前後の差圧を検出する差圧センサ23を排気管に取り付けて、該差圧センサ23の検出値に応じたPM量を予め実験等により求めておくことにより求めることができる。また、エンジン1の運転状態(排気温度、燃料噴射量、エンジン回転数)に応じたPM付着量を予め実験等により求めてマップ化しておき、このマップにより求められるPM付着量を積算してPMの堆積量とすることもできる。更に、車両走行距離若しくは走行時間に応じてPMの堆積量を推定しても良い。
【0078】
そして、本実施の形態では、燃料添加弁28によるPM除去を2回行った後に、燃料噴射弁3によるPM除去を1回行う。この燃料噴射弁3によるPM除去を行う頻度は、予め実験等により求められる前段触媒21の上流端に付着するPMの量により定めても良い。
【0079】
このようにして、燃料噴射弁3によるPM除去の実施回数を減少させることができる。
【0080】
また、本実施の形態では、前段触媒21の上流端に付着したPM量が多くなった場合に、燃料添加弁28によるPM除去に代えて、燃料噴射弁3によるPM除去を行うようにしても良い。ここで、例えば、前段触媒21前後の差圧を検出する差圧センサ24を排気管に取り付けて、該差圧センサ24の検出値に応じたPM量を予め実験等により求めておくことにより、前段触媒21に付着したPMの量を求めることができる。また、運転状態に応じたPM排出量と排気の温度と前段触媒21に付着するPM量との関係を予め実験等により求めてマップ化しておき、このマップにより前段触媒21に付着したPMの量を得ても良い。即ち、高い温度の排気が前段触媒21に流入すると、該前段触媒21の上流端に付着しているPMの量が減少するため、PM除去の実施間隔を長くすることが可能となる。更に、車両走行距離若しくは走行時間に応じてPMの堆積量を推定しても良い。
【0081】
また、通常のエンジン運転状態では、排気の温度が低いために前段触媒21に付着したPMの量はほとんど減少しないが、図4に示されるように、燃料添加弁28によるPMの除去を行った場合には、前段触媒21の上流端に付着したPMも多少ではあるが減少する。そこで、燃料添加弁28によるPM除去を行った回数や、そのときに前段触媒21に流入する排気の温度の履歴から、前段触媒21の上流端に堆積しているPMの量を求めても良い。また、同様にして、燃料噴射弁3によるPMの除去を実施する時期を直接得るようにしても良い。
【0082】
前段触媒21の上流端に付着したPMの量は、機関回転数と燃料噴射量とPM付着量との関係を予め実験等により求めておき、この値を積算して得られる。一方、前段触媒21の上流端に堆積したPMの減少量は、燃料添加弁28によるPM除去1回当たりのPM減少量を予め実験等により求めておき、前回の燃料噴射弁3によるPM除去から現在までの燃料添加弁28によるPM除去の実施回数を前記一回当たりのPM減少量に乗じて求められる。また、排気温度とPMの減少量との関係を予め実験等により求めマップ化しておき、燃料添加弁28によるPM除去の実施毎に、排気温度センサ22から求まる排気の温度を該マップに代入して求められるPM減少量を積算し、前段触媒21の上流端に堆積したPMの減少量を得るようにしても良い。
【0083】
更に、本実施の形態では、燃料添加弁28によるPM除去とは関係なく、前段触媒21の上流端に付着したPM量が多くなった場合に、燃料噴射弁3によるPM除去を直ちに行うようにしても良い。このようにすることで、前段触媒21に堆積したPMの量が許容範囲を超えた場合に、速やかにPMの除去を行うことができる。
【0084】
以上説明したように、本実施の形態によれば、通常は燃料添加弁28からの燃料添加によりフィルタ20に堆積したPMを除去し、前段触媒21の上流端に付着したPMを除去する場合には、燃料噴射弁3により噴射された燃料を気筒2内で燃焼させて排気の温度を上昇させる。そして、燃料噴射弁3によるPM除去の間隔を、燃料添加弁28によるPM除去の間隔よりも長くすることにより、潤滑油が希釈される回数及びボアフラッシングが起こる回数を低減させることができ、ピストンの焼き付き等を抑制することができる。
<第2の実施の形態>
本実施の形態では、第1の実施の形態と比較して、前段触媒21の上流端に付着したPMの量に基づいて、フィルタ20の再生時に前段触媒21に流入する排気の温度を決定する点で相違する。尚、本実施の形態においては、適用対象となるエンジンやその他ハードウェアの基本構成については、第1の実施の形態と共通なので説明を割愛する。
【0085】
ここで、前段触媒21の上流端に付着したPMの除去は、燃料添加弁28からの燃料添加では困難である一方、フィルタ20に堆積したPMの酸化は、燃料噴射弁3からの燃料噴射による排気温度の上昇、若しくは燃料添加弁28からの燃料噴射の何れかによっても可能であり、これらを同時に行うことも可能である。
【0086】
そこで、本実施の形態では、フィルタ20の再生時に、前段触媒21の上流端に付着したPMの量が多いほど、該前段触媒21に流入する排気の温度を高くする。即ち、燃料添加弁28からの燃料添加を行いつつ、燃料噴射弁3により排気の温度を上昇させる。これにより、前段触媒21及びフィルタ20を同時に再生することが可能となる。また、排気の温度上昇を必要最小限に抑えることができる。
【0087】
ここで、前段触媒21の上流端に付着しているPM量は、エンジン回転数及び燃料噴射量と、前段触媒21に流入する排気の温度と、の履歴に相関がある。即ち、エンジン回転数が高く、また、燃料噴射量が多い場合にはPMの排出量が多いため、前段触媒21の上流端に付着するPM量が多くなる。一方、排気の温度が高くなるほど、前段触媒21の上流端に付着したPMが酸化され減少する量が多くなる。したがって、前段触媒21の上流端に付着するPM量と、減少する量と、を積算することにより前段触媒21の上流端に付着しているPM量を算出することができる。また、前段触媒21前後の差圧を検出する差圧センサ24を排気管に取り付けて、該差圧センサ24の検出値に応じたPM量を予め実験等により求めておくことにより求めることができる。更に、車両走行距離若しくは走行時間に応じてPMの堆積量を推定しても良い。
【0088】
そして、前段触媒21の上流端に付着しているPM量が多いほど、フィルタ20の再生時の排気の温度を高くする。これは、第1の実施の形態での図3に示されるように、排気の温度が高いほどPMの酸化速度が速くなり、単位時間当たりに除去されるPM量が増加するためである。従って、フィルタ20の再生時間が限られている場合でも、排気の温度を調整することにより前段触媒21の上流端に付着しているPMを酸化除去することが可能となる。
【0089】
排気の温度は、副噴射の量や、主噴射の遅延時間により調整することが可能である。即ち、排気の温度を上昇させる場合には、副噴射の量を増量し、若しくは主噴射の遅延時間を長くする。副噴射の量や、主噴射の遅延時間は、回転数と負荷と目標となる排気温度との関係を予め実験等により求めてマップ化したものを用いる。また、排気温度センサ22の出力信号が、目標となる排気温度となるように、副噴射の量若しくは主噴射の遅延時間のフィードバック制御を行っても良い。尚、排気温度センサ22の出力信号によるフィードバック制御に代えて、前段触媒21の下流の排気温度を検出し、この検出値が目標排気温度となるように、副噴射の量若しくは主噴射の遅延時間のフィードバック制御を行っても良い。
【0090】
以上説明したように、本実施の形態によれば、フィルタ20の再生時において、前段触媒21の上流端に付着したPMの量が多いほど排気の温度を高くし、前段触媒21及びフィルタ20に堆積したPMを同時に除去することができる。また、排気温度の高さを必要最小限に抑えることができるので、潤滑油の希釈やボアフラッシングも最小限に抑えることができ、ピストンの焼き付きや燃費の悪化を抑制することができる。
【0091】
【発明の効果】
本発明に係る内燃機関の排気浄化システムでは、内燃機関の潤滑油の希釈や、ボアフラッシングを抑制しつつ、前段触媒の上流端の堆積物を除去することができる。
【図面の簡単な説明】
【図1】 第1の実施の形態に係る内燃機関の排気浄化システムを適用するエンジンとその吸排気系とを併せ示す概略構成図である。
【図2】 フィルタの断面図である。図2(A)は、フィルタの横方向断面を示す図である。図2(B)は、フィルタの縦方向断面を示す図である。
【図3】 前段触媒内での排気の温度とPM酸化速度との関係を示した図である。
【図4】 前段触媒の上流端に付着したPM量、前段触媒に流入する排気の温度(入ガス温度)、フィルタに堆積しているPM量、の時間推移を示したタイムチャート図である。
【符号の説明】
1 エンジン
1a クランクプーリ
1b 排気ポート
2 気筒
3 燃料噴射弁
4 コモンレール
5 燃料供給管
6 燃料ポンプ
6a ポンププーリ
7 ベルト
8 吸気枝管
9 吸気管
11 エアフローメータ
13 吸気絞り弁
14 吸気絞り用アクチュエータ
15 遠心過給機
15a コンプレッサハウジング
15b タービンハウジング
18 排気枝管
19 排気管
20 パティキュレートフィルタ
21 前段触媒
22 排気温度センサ
28 燃料添加弁
29 添加燃料供給路
33 クランクポジションセンサ
35 ECU
36 アクセル開度センサ

Claims (5)

  1. 内燃機関の排気通路に設けられ酸化能力を有する触媒と、
    前記酸化能力を有する触媒の下流に設けられ排気中の粒子状物質を捕獲するパティキュレートフィルタと、
    前記酸化能力を有する触媒の上流から排気中に燃料を供給する燃料供給手段と、
    前記燃料供給手段により燃料を供給して前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生手段と、
    前記酸化能を有する触媒の上流で排気の温度を上昇させて該酸化能を有する触媒に堆積した堆積物を除去する前段触媒再生手段と、
    を備え、
    前記前段触媒再生手段により堆積物を除去する間隔は、フィルタ再生手段により粒子状物質を除去する間隔よりも長いことを特徴とする内燃機関の排気浄化システム。
  2. 前記酸化能力を有する触媒に堆積した堆積物を除去する時期を判定する前段触媒再生時期判定手段を更に備え、前記前段触媒再生時期判定手段により堆積物を除去する時期であると判定された場合には、前記フィルタ再生手段によりフィルタに堆積した粒子状物質が除去されるときに、前記前段触媒再生手段は排気の温度を上昇させることを特徴とする請求項1に記載の内燃機関の排気浄化システム。
  3. 前記酸化能力を有する触媒に堆積した堆積物の量を推定する堆積量推定手段を更に備え、フィルタ再生手段によりフィルタに堆積した粒子状物質を除去するときに前記前段触媒再生手段は、堆積量推定手段により推定された堆積物の量が多くなるほど排気の温度を高くすることを特徴とする請求項1または2に記載の内燃機関の排気浄化システム。
  4. 前記酸化能力を有する触媒に堆積した堆積物の量を推定する堆積量推定手段を更に備え、該堆積量推定手段により推定された堆積物の量が許容範囲を超えた場合に前記前段触媒再生手段による堆積物の除去を行うことを特徴とする請求項1からの何れかに記載の内燃機関の排気浄化システム。
  5. 前記酸化能力を有する触媒に流入する排気の温度を検出する排気温度検出手段を更に備え、前記堆積量推定手段は、前記排気温度検出手段により検出された排気の温度が高くなるほど前記酸化能力を有する触媒に堆積する堆積物の量が少なくなると判定することを特徴とする請求項に記載の内燃機関の排気浄化システム。
JP2003046162A 2003-02-24 2003-02-24 内燃機関の排気浄化システム Expired - Fee Related JP4333160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046162A JP4333160B2 (ja) 2003-02-24 2003-02-24 内燃機関の排気浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046162A JP4333160B2 (ja) 2003-02-24 2003-02-24 内燃機関の排気浄化システム

Publications (2)

Publication Number Publication Date
JP2004257267A JP2004257267A (ja) 2004-09-16
JP4333160B2 true JP4333160B2 (ja) 2009-09-16

Family

ID=33112785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046162A Expired - Fee Related JP4333160B2 (ja) 2003-02-24 2003-02-24 内燃機関の排気浄化システム

Country Status (1)

Country Link
JP (1) JP4333160B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556587B2 (ja) * 2004-09-22 2010-10-06 マツダ株式会社 排気ガス浄化装置
JP4642546B2 (ja) * 2005-05-13 2011-03-02 本田技研工業株式会社 内燃機関の排気浄化装置
JP5051393B2 (ja) * 2008-12-24 2012-10-17 三菱自動車工業株式会社 排気浄化装置
EP3372301A1 (en) * 2009-12-24 2018-09-12 Johnson Matthey Public Limited Company Exhaust system for a vehicular positive ignition internal combustion engine
JP5621322B2 (ja) * 2010-05-25 2014-11-12 いすゞ自動車株式会社 排気ガス浄化システム
JP5776619B2 (ja) * 2012-04-16 2015-09-09 トヨタ自動車株式会社 排気浄化装置
JP5949870B2 (ja) * 2014-10-07 2016-07-13 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2016094845A (ja) 2014-11-12 2016-05-26 いすゞ自動車株式会社 内燃機関及び内燃機関の粒子状物質除去方法
JP6891629B2 (ja) 2017-05-19 2021-06-18 いすゞ自動車株式会社 エンジン及びその制御方法

Also Published As

Publication number Publication date
JP2004257267A (ja) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4333289B2 (ja) 排気ガス浄化システム
JP4613961B2 (ja) 内燃機関の排気浄化装置および排気浄化方法
US7775037B2 (en) Exhaust gas temperature control method, exhaust gas temperature control apparatus, and internal combustion engine system
EP1582721A2 (en) Control method for an exhaust gas purification system and an exhaust gas purification system
EP1400664B1 (en) Exhaust gas purifying method and exhaust gas purifying system
JP2004162613A (ja) 内燃機関の排気浄化装置
JP3896870B2 (ja) 内燃機関の排気浄化装置
JP4333160B2 (ja) 内燃機関の排気浄化システム
JP3757853B2 (ja) 排気浄化装置の再生制御方法
JP4273985B2 (ja) 多気筒内燃機関の制御装置
JP4012043B2 (ja) パティキュレートフィルタの再生方法
JP2004190667A (ja) 内燃機関の排気浄化装置
JP4692376B2 (ja) 内燃機関の排気浄化装置
JP4424159B2 (ja) 内燃機関の排気浄化装置
JP2003020930A (ja) 内燃機関の排気浄化装置
JP4210555B2 (ja) 排気浄化装置
JP2006274979A (ja) 排気浄化装置
JP2004028030A (ja) 内燃機関の排気浄化装置
JP4259068B2 (ja) 内燃機関の排気浄化装置
JP4660446B2 (ja) 内燃機関の排気浄化装置
JP4489504B2 (ja) ディーゼルエンジンの排気浄化装置
JP2004162612A (ja) 内燃機関の排気浄化装置
JP4083478B2 (ja) 内燃機関
JP4236896B2 (ja) 排気浄化装置
JP2009030490A (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees