JP4312419B2 - Semiconductor wafer processing method - Google Patents

Semiconductor wafer processing method Download PDF

Info

Publication number
JP4312419B2
JP4312419B2 JP2002134157A JP2002134157A JP4312419B2 JP 4312419 B2 JP4312419 B2 JP 4312419B2 JP 2002134157 A JP2002134157 A JP 2002134157A JP 2002134157 A JP2002134157 A JP 2002134157A JP 4312419 B2 JP4312419 B2 JP 4312419B2
Authority
JP
Japan
Prior art keywords
wafer
film
adhesive
reinforcing sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002134157A
Other languages
Japanese (ja)
Other versions
JP2003332267A (en
Inventor
米 克 彦 堀
元 公 市 永
橋 和 弘 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2002134157A priority Critical patent/JP4312419B2/en
Publication of JP2003332267A publication Critical patent/JP2003332267A/en
Application granted granted Critical
Publication of JP4312419B2 publication Critical patent/JP4312419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハの加工方法に関し、さらに詳しくはウエハ加工における一連の工程間を移送する際の、ウエハの破損を低減しうる半導体ウエハの加工方法に関する。
【0002】
【従来の技術】
近年、ICカードの普及が進み、さらなる薄型化が望まれている。このため、従来は厚さが350μm程度であった半導体チップを、厚さ50〜100μmあるいはそれ以下まで薄くする必要が生じている。また、生産性を向上するためウエハの大口径化が検討されてきた。
【0003】
回路パターン形成後にウエハ裏面を研削することは従来より行われており、その際、回路面に表面保護シートを貼付して、回路面の保護およびウエハの固定を行い、裏面研削を行っている。その後、表面保護シートを剥離し、ダイシング用粘着シートにウエハを転写し、リングフレームでダイシング用粘着シートの周縁部を支持した形態で収納カセットなどに収められて、次工程であるダイシング工程への移送が行われている。
【0004】
しかし、極薄にまで研削されたウエハは、脆く、わずかな衝撃でも破損しやすい。したがって表面保護シートの剥離時または剥離後にウエハが破損してしまうことがある。さらに表面保護シート自体は軟質であるため、衝撃を受けると、この際の衝撃がウエハにまで伝播し、ウエハの割れや損傷を引き起こす場合もある。
【0005】
このようなウエハの破壊のしやすさについて、本発明者らが市販のダミーウエハ(シリコン、直径200mm、厚み750μm)の柔軟度で評価した。その結果によると、未研磨状態(750μm)では、ウエハの柔軟度は測定限界値(120mN)以上を示し、厚み100μmへの研削加工では44mNを示していたが、厚み50μmに加工すると、柔軟度は約3mNとなり、厚みと比較し極めて小さい値を示した。ウェハの片面に表面保護テープを貼付して50μmの厚みに研削した場合であっても、市販の表面保護テープであれば、積層状態での柔軟度は4〜8mN程度の値であった。この程度の値では、積層体を搬送する条件をいかに注意して設定しても、ウエハの破損は免れなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような従来技術に鑑みてなされたものであって、薄膜ウエハや大口径ウエハの加工・移送においてもウエハの損壊を低減できる半導体ウエハの加工方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明に係る半導体ウエハの加工方法は、
半導体ウエハの回路表面に保護用粘着テープを貼付し、ウエハ裏面を研削して薄肉化し、
続いて、研削したウエハ裏面に補強性シートを接着し、該ウエハの補強性シート側にダイシング用粘着シートを貼付して該ダイシング用粘着シートを介してリングフレームに該ウエハを固定し、該ウエハの表面に貼付された保護用粘着テープを剥離する一連の工程を行うに際して、該ウエハが、保護用粘着テープ、補強性シートあるいはこれらの構成層の少なくとも一部により補強された状態を維持し、
ウエハをダイシングしてチップ化を行い、
該チップをピックアップする工程よりなることを特徴としている。
【0008】
本発明においては、薄肉化されてから、リングフレームに固定されるまでのウエハの柔軟度が、保護用粘着テープ、補強性シートあるいはこれらの構成層の少なくとも一部が積層された状態で、10mN以上であることが好ましい。
また、前記保護用粘着テープが、剛性フィルムと応力緩和性フィルムとが剥離可能に積層された基材と、該基材の応力緩和性フィルム側に設けられた粘着剤層からなることが好ましい。この場合、補強性シートを接着する前または後に、前記保護用粘着テープの剛性フィルムを含む層を剥離し、補強性シートを接着した後に応力緩和性フィルムを含む層を剥離することが好ましい。
【0009】
また、本発明では、ウエハと共に補強性シートのダイシングを行い、補強性シートまたは補強性シートの一部の層が付着した状態でチップのピックアップを行ってもよい。この場合、補強性シートが接着剤層を含み、該接着剤層を介してチップをダイパッド部に接着することが好ましい。
さらに、補強性シートが基材と粘着剤層とからなり、該粘着剤層とチップの界面から剥離してチップのピックアップを行ってもよい。
【0010】
このような本発明の半導体ウエハの加工方法によれば、薄膜ウエハや大口径ウエハの加工・移送においてもウエハの損壊を低減できる。
【0011】
【発明の実施の形態】
以下、図面を参照しながら、本発明についてさらに具体的に説明する。まず、本発明で用いる保護用粘着テープ、補強性シートおよびダイシング用粘着シートについて説明する。
保護用粘着テープ
本発明における保護用粘着テープ1としては、従来半導体加工の用途で用いられてきた各種の表面保護テープを用いることができる。これら従来の表面保護テープが半導体ウエハに貼付した状態でも、半導体ウエハを極薄にまで研削した場合には、搬送する際に半導体ウエハが割れたり破損することがあった。このような場合は、図1に示すように剛性フィルム11と応力緩和性フィルム12とが剥離可能な積層手段13を介して積層された基材1と、該基材1の応力緩和性フィルム12側に設けられた粘着剤層14とからなる保護用粘着テープ1を用いることが好ましい。
【0012】
(剛性フィルム11)
剛性フィルム11は、半導体ウエハの研削加工、あるいはその後の搬送中に、自重で湾曲することがないよう半導体ウエハを保持できるように、保護用粘着テープ1に剛性を付与する。このような性質を有するものであれば、剛性フィルム11の材質としては、特に限定されず、例えばポリエチレンテレフタレートなど、種々のプラスチック材料からなるフィルムを用いることができる。
【0013】
剛性フィルム11の厚みは、好ましくは10μm〜5mmであり、特に好ましくは50〜500μmである。
(応力緩和性フィルム12)
応力緩和性フィルム12は、負荷された応力を速やかに緩和し、内部応力が残留し難いフィルムである。応力緩和性フィルム12を含む保護用粘着テープ1においては、応力緩和により内部に蓄積された応力が減衰するため、ウエハを極薄にまで研削してもウエハが湾曲しにくくなる。
【0014】
応力緩和性フィルム12の応力緩和性とは、具体的には引張試験における10%伸長時の応力緩和率が、1分後で、40%以上、好ましくは50%以上、さらに好ましくは60%以上である。応力緩和率は高いほど好ましく、その上限は、理論的には100%である。応力緩和率の値は、所定長さのサンプルを、速度200mm/minで引っ張り、10%伸長時の応力Aと、伸長停止の1分後の応力Bとから(A−B)/A ×100(%)により算出する。
【0015】
応力緩和性フィルム12の材質としては、上記の物性を満たすものであればどのようなフィルムであってもよく、熱可塑性樹脂を製膜したものであっても、硬化性樹脂を製膜、硬化したものであってもよい。応力緩和性フィルムついては、例えば、特開2000-150432号公報にその詳細が記載されている。
応力緩和性フィルムの12の厚みは、好ましくは30〜1000μm、さらに好ましくは80〜500μmである。
【0016】
(剥離可能な積層手段13)
基材1は、剛性フィルム11と応力緩和性フィルム12とが、剥離可能に積層されてなる。このような基材は、常態では、剛性フィルム11と応力緩和性フィルム12とが剥離可能な積層手段13を介して密着して一体として保持され、所要の処理(たとえば熱処理など)を施すことで、わずかな外力を加えるだけで、剛性フィルム11と応力緩和性フィルム12とが剥離可能となる。
【0017】
このような機能を有する積層手段としては、例えば、
(1)収縮フィルムを基材とし、一方の粘着剤層がエネルギー線硬化性粘着剤である両面粘着フィルムでの積層。
(2)加熱膨張性粘着剤層からなる接着剤による積層。
(3)エネルギー線硬化型粘着剤層からなる接着剤による積層。
があげられる。
【0018】
上記(1)の積層手段を使用すれば、剛性フィルム11を剥離する際にエネルギー線照射を行い、次いで収縮フィルムを収縮させることにより、硬化したエネルギー線硬化性粘着剤の表面が変形し、該変形面の層間で剥離可能となる。このような積層手段については、例えば、特開2000-136362号公報にその詳細な構成について説明されている。なお、収縮フィルムは打抜き加工等により小さく切断されていることが好ましく、またエネルギー線硬化性粘着剤でない側の粘着剤層は、剥離しないように強粘着力を有する粘着剤であることが好ましい。
【0019】
上記(2)の積層手段である加熱膨張性粘着剤層を使用すれば、加熱により該粘着剤層が膨張することにより、粘着剤層の界面の変形または粘着剤層自身の破壊が起こり、剛性フィルム11が剥離可能となる。このような粘着剤は、粘着主剤中に熱膨張性微粒子や加熱発泡剤が分散された粘着剤である。このような加熱膨張性粘着剤については、たとえば実公昭50-13828号公報、特公昭51-24534号公報、特開昭56-61468号公報、特公平1-53989号公報等にその詳細な構成が記載されている。
【0020】
上記(3)の積層手段であるエネルギー線硬化性粘着剤は、硬化によってその粘着性を失い、被着体との接着力が激減する粘着剤である。このような粘着剤については、後述する粘着剤層14に使用されるエネルギー線硬化性粘着剤と同様のものが使用できる。但し、硬化後の接着力が粘着剤層14の接着力よりも大きくなるようにして、剛性フィルム11を含む層の剥離が、応力緩和性フィルム12を含む層の剥離よりも先になるように調節する必要がある。
【0021】
(粘着剤層14)
粘着剤層14は、半導体ウエハの研削加工時にウエハを保持するために用いられる。このような粘着剤層14は、エネルギー線硬化性粘着剤から形成されてもよく、また、ゴム系、アクリル系、シリコーン系、ポリウレタン系、ポリビニルエーテル系等の再剥離型の汎用粘着剤から形成されてもよい。
【0022】
エネルギー線硬化性粘着剤としては、例えば、アクリル系粘着剤とエネルギー線重合性化合物を主成分とするもの、あるいは、側鎖にエネルギー線重合性基を有するエネルギー線硬化型共重合体を主成分とするものからなる。
アクリル系粘着剤とエネルギー線重合性化合物を主成分とするエネルギー線硬化性粘着剤は、たとえば、特開昭60-196956号公報や特開昭60-223139号公報に開示されている。また、側鎖にエネルギー線重合性基を有するエネルギー線硬化型共重合体を主成分とするエネルギー線硬化性粘着剤は、例えば、特開平5-32946号公報、特開平8-27239号公報等にその詳細が記載されている。
【0023】
粘着剤層14の厚さは、粘着剤自身の材質、被着体である半導体ウエハの回路面の凹凸形状、あるいは必要とする接着力の値等によって変わるが、通常は3〜100μm程度であり、好ましくは10〜50μmである。
補強性シート
補強性シート3は、薄肉化された後の半導体ウエハの研削面に接着して、半導体ウエハの強度を補強する。このため、補強性シート3は接着性とある程度の剛性を有する。
【0024】
補強性シート3は、ピックアップ工程以降の製造方法の違いで、次にあげる2種類が使用できる。第1の補強性シートは、補強性シート自身または補強性シートの一部の層 がチップと共にピックアップされ、半導体装置の一部を構成しうる補強性シート3Aであり、第2の補強性シートは、補強性シートとチップとの界面で剥離し、チップのみがピックアップできる補強性シート3Bである。
【0025】
補強性シート3Aは、種々の接着性のシート材料からなる。例えば、熱可塑性の接着フィルムからなり、加熱時に接着性が発揮するシート材料であってよい。熱可塑性の接着フィルムからなる補強性シート3Aは、後述のダイシング用粘着シート4との剥離性を向上させるため、剥離フィルムとの積層体であってもよい。この場合、ピックアップ工程における半導体ウエハを含む積層構造は、半導体ウエハ(チップ)/熱可塑性の接着フィルム/剥離フィルム/ダイシング用粘着シート(粘着剤層)/ダイシング用粘着シート(基材)となり、ピックアップにより、熱可塑性の接着フィルムと剥離フィルムとの間で剥離する。チップに付着した熱可塑性の接着フィルムは、ダイパッド部との接着にも使用できる。
【0026】
また、補強性シート3Aは、耐熱性を有する基材フィルムの両面または片面に、粘接着剤層が設けられているシート材料であってもよい。粘接着剤層の開放面には上述と同様の剥離フィルムが積層されていてもよい。
両面に粘接着剤層が設けられた補強性シート3Aは、一方の面の剥離フィルムが剥離されて半導体ウエハに接着される。この場合、ピックアップ工程における半導体ウエハを含む積層構造は、半導体ウエハ(チップ)/粘接着剤層/耐熱性を有する基材フィルム/粘接着剤層/剥離フィルム/ダイシング用粘着シート(粘着剤層)/ダイシング用粘着シート(基材)となる。これをピックアップすることにより、粘接着剤層と剥離フィルムとの間で剥離するようになる。ピックアップにより開された側の粘接着剤層が、チップとダイパッド部との接着に使用することができる。
【0027】
片面のみに粘接着剤層が設けられた補強性シート3Aの場合、ピックアップ工程における半導体ウエハを含む積層構造は、半導体ウエハ(チップ)/粘接着剤層/耐熱性を有する基材フィルム/ダイシング用粘着シート(粘着剤層)/ダイシング用粘着シート(基材)となる。これをピックアップすることにより、耐熱性を有する基材フィルムとダイシング用粘着シートの粘着剤層との間で剥離するようになる。耐熱性を有する基材フィルム面をダイパッド部に接着するには、通常のダイボンド用の液状接着剤を使用すればよい。
【0028】
補強性シート3Bは、基材フィルムと再剥離性の粘着剤層の積層体よりなる。補強性シート3Bの基材フィルムは、前述の保護用粘着テープ1に使用される剛性フィルム11と同様のプラスチック材料が使用できる。また、補強性シート3Bの再剥離性の粘着剤層は、前述の保護用粘着テープ1に使用される粘着剤層14と同様の粘着剤を用いることができる。補強性シート3Bを使用した場合のピックアップ工程における半導体ウエハを含む積層構造は、半導体ウエハ(チップ)/再剥離性の粘着剤層/基材フィルム/ダイシング用粘着シート(粘着剤層)/ダイシング用粘着シート(基材)となり、半導体チップのみをピックアップすることができる。補強性シート3Bを使用した場合は、通常のダイボンド用の液状接着剤を使用してダイパッド部に接着する。
【0029】
なお、補強性シート3を1枚だけ半導体ウエハの研削面に付着しても、充分な柔軟度の値が得られない場合がある。このような場合は、さらに複数枚の補強性シートを貼付してもよい。このようにすれば、直接半導体ウエハに貼付する補強性シートを市販の様々な機能性を有する接着性シートの中から選択することができるようになるので好ましい。
【0030】
2枚目以降に貼付する補強性シート(第2の補強性シート7と呼ぶ)は、前述の保護用粘着テープ1に使用される剛性フィルム11と同様のプラスチック材料からなる基材フィルムと、強粘着力を示す粘着剤層からなる粘着シートを用いることが好ましい。
ダイシング用粘着シート
本発明の半導体ウエハの加工方法に使用されるダイシング用粘着シート4は、基材フィルムと粘着剤層の積層体よりなる。ダイシング用粘着シート4に使用される基材フィルムは、汎用のダイシング用粘着シートに使用されている基材フィルムが使用できる。ダイシング用粘着シート4に使用される粘着剤層は、使用される補強性シート3の種類によって異なる。
【0031】
すなわち、片面に粘接着剤層が設けられた補強性シート3Aを使用した場合は、耐熱性を有する基材フィルムとダイシング用粘着シート4の粘着剤層との間で剥離させるために、ダイシング用粘着シート4の粘着剤層は再剥離性を有する粘着剤が使用される。このような粘着剤としては、前述の保護用粘着テープ1に使用される粘着剤層14と同様の粘着剤を用いることができる。
【0032】
また、補強性シート3に剥離フィルムが設けられ、剥離フィルム上にダイシング用粘着シート4が積層される場合は、ダイシング用粘着シート4の粘着剤層は強粘着力の粘着剤が使用される。これにより、ダイシング用粘着シート4の粘着剤層と補強性シート3の剥離フィルムが強固に接着し、ピックアップの際、所定以外の層間で剥離が起こるトラブルを防止できる。
【0033】
半導体ウエハの加工方法
次に、本発明に係る半導体ウエハの加工方法の基本的な工程を説明する。
第1工程:半導体ウエハ2の回路表面に保護用粘着テープ1を貼付し、ウエハ裏面を研削して薄肉化する(図1参照)。
裏面研削は、グラインダーなどを用いた常法により行われる。通常は、ウエハの厚みを300μm程度まで研削することが一般的であったため、後工程におけるウエハの損壊を回避することはさほど困難ではなかったが、本発明によれば、ウエハの裏面を100μm以下にまで研削してもウエハの損壊を防止できる。
【0034】
保護用粘着テープ1としては、従来よりこの種の用途に用いられてきた各種の表面保護テープが用いられうるが、好ましくは、図1に示したように、剛性フィルム11と、応力緩和性フィルム12とが、剥離可能に積層されてなる基材と、該基材1の応力緩和性フィルム12上に設けられた粘着剤層14とからなる多層構成の保護用粘着テープ1である。
【0035】
半導体ウエハ回路面への保護用粘着テープ1の貼付は、ラミネーター(貼付装置)を用いて極力張力をかけないように行われるが、完全に張力をかけずに貼付を行うことは実質的に不可能である。したがって、通常の粘着シートではこの際の張力が粘着シート中に残留応力として蓄積することがあるが、応力緩和性フィルム12を含む保護用粘着テープ1においては、応力緩和により内部応力が減衰する。
【0036】
次いで、ウエハの裏面をグラインダー等により、所定の厚さになるまで研削し、必要に応じエッチング等による化学研削を行う。この際、これらウエハは、保護用粘着テープ1により固定されるとともに、保護用粘着テープ1に接している側のウエハ面では表面保護も同時に行われることになる。
このような研削によりウエハは、例えば厚み100μm以下にまで研削される。上記のように、通常の粘着シートでは貼付時の張力が粘着シート中に残留応力として蓄積され、極薄ウエハを湾曲させる原因となるが、応力緩和性フィルム12を含む保護用粘着テープ1においては、応力緩和により内部応力が減衰するため、ウエハを極薄にまで研削してもウエハが湾曲することはない。また剛性フィルム11を含む保護用粘着テープ1では、ウエハを湾曲させることなく保持できるため、ウエハの搬送あるいは保管時にウエハが損傷を受けることもない。
第2工程:次いで、研削したウエハ2裏面に補強性シート3を接着する(図2参照)。なお、図2以降では、保護用粘着テープ1の記載を簡略化しているが、上記のように保護用粘着テープ1は多層構造のものであってもよい。また図示したものは、補強性シート3として、基材31の片面に粘接着剤層32が設けられているものを用いた場合の態様である。補強性シート3の構造は、前述したように他の構造であってもよい。
【0037】
補強性シート3を接着することで、薄肉化されたウエハであっても歪み、反りが低減でき、移送時におけるウエハの損壊を防止できる。
1枚の補強性シート3を接着しただけでは充分な値の柔軟度が得られない場合は、必要に応じて複数枚の補強性シートを貼付してもよい。
このような補強性シート3としては、各種の接着性のシート材料が用いられうるが、本発明においては、プロセスを簡易化する観点から、前述したような接着性のシート材料が特に好ましく用いられる。
第3工程:ウエハ2の補強性シート3側にダイシング用粘着シート4を貼付して該ダイシング用粘着シート4を介してリングフレーム5に該ウエハ2を固定する(図3参照)。
第4工程:ウエハ2の表面に貼付された保護用粘着テープ1を剥離する(図4参照)。
【0038】
剥離の態様は様々であり、ウエハ2に過剰な応力が負荷されないように保護用粘着テープを剥離できる態様であればいずれであってもよい。また、保護用粘着テープ1の基材が、剛性フィルムと応力緩和性フィルムとを剥離可能な積層手段を介して積層されたものである場合には、該構成層を順次に剥離する態様であってもよい。さらにこの場合は、第1工程終了後から第3工程に至るまでのいずれかの段階で、構成層の一部を除去しておいてもよい。
【0039】
たとえば、補強性シート3の貼付に先立ち、剛性フィルムを含む層を剥離し、補強性シート3の貼付後に、応力緩和性フィルムを含む層を剥離してもよい。この際、応力緩和性フィルムを含む層の剥離は、上記第2工程終了後であってもよく、また第3工程終了後であってもよい。
また、補強性フィルム3の貼付後に、剛性フィルム2を含む層、応力緩和性フィルムを含む層を順次剥離してもよい。この場合、これらの層の剥離は、第2工程終了後であってもよく、また第3工程終了後であってもよい。
【0040】
いずれにしろ、ウエハ2が、保護用粘着テープ1、補強性フィルム3、あるいはこれらの構成層の少なくとも一部により補強された状態で、工程間の移送を行う。
このような本発明においては、第1工程において薄肉化されてから、第3工程においてリングフレームに固定されるまでの間、ウエハ2には、保護用粘着テープ1および/または補強性シート3、あるいはこれらの構成層の少なくとも一部が貼着、支持され、補強されている。すなわち本発明では、これらの工程間において、ウエハ2を、他の樹脂層との積層体として補強しているので、ウエハの破損を低減できる。この状態におけるウエハの柔軟性、すなわちウエハ2を含む積層体の柔軟度は、好ましくは10mN以上、さらに好ましくは15mN以上である。この結果、ウエハの移送ないし加工時に、ウエハに衝撃や応力が負荷されても、ウエハの歪み、反りが生じ難くなり、ウエハの損壊を防止できる。
第5工程:ウエハ2をダイシングする(図5参照)。
【0041】
ダイシングは、回転丸刃などを用いた常法により行われる。
第6工程:その後、ダイシングされたチップ6をピックアップし、ダイパッド部へのマウンティングを行う。マウンティングも常法により行われる。
補強性シート3として、前述した補強性シート3Aあるいは補強性シート3Bを用いた場合の剥離の態様は、前記したとおりである。なお、図示したものは、補強性シート3として、基材31の片面に粘接着剤層32が設けられているものを用いた場合の態様である。
【0042】
【発明の効果】
以上説明してきたように、本発明の半導体ウエハの加工方法によれば、薄膜ウエハや大口径ウエハの加工・移送においてもウエハの損壊を低減できる。
【0043】
【実施例】
以下本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
なお、半導体ウエハを含む積層体の柔軟度は、測定対象となる構成の積層体を、実施例の工程と同様の手法で形成した後ダイシングにより25mmx38mmのサイズに切断し、JIS L1096に記載のガーレ法に準じて測定し、半導体ウエハが破壊される値を計測した。
【0044】
【実施例1】
保護用粘着テープ1:
(1) 重量平均分子量5000のウレタンアクリレート系オリゴマー(荒川化学社製)50重量部と、イソボルニルアクリレート25重量部と、フェニルヒドロキシプロピルアクリレート25重量部と、光重合開始剤(チバ・スペシャルティケミカルズ社製、イルガキュア184)2.0重量部と、フタロシアニン系顔料0.2重量部とを配合して、応力緩和性フィルムをキャスト成膜するための光硬化性を有する樹脂組成物を得た。
【0045】
得られた樹脂組成物をファウンテンダイ方式により、ポリエチレンテレフタレート(PET)フィルム(東レ社製:厚み38μm)の上に厚みが110μmとなるよう塗工して樹脂組成物層を形成した。塗工直後に、樹脂組成物層の上にさらに同じPETフィルムをラミネートし、その後、高圧水銀ランプ(160W/cm、高さ10cm)を用いて、光量250mJ/cm2の条件で紫外線照射を行うことにより樹脂組成物層を架橋・硬化させて、両面のPETフィルムを剥離して、厚さ110μm、応力緩和率87%の応力緩和性フィルムを得た。
(2) n−ブチルアクリレート85重量部、2−ヒドロキシエチルアクリレート15重量部からなる重量平均分子量約65万の共重合体100重量部と、メタクリロイルオキシエチルイソシアナート16重量部との反応により得られる側鎖にエネルギー線重合性基を有するエネルギー線硬化型共重合体に硬化剤(トルイレンジイソシアナートとトリメチロールプロパンの付加物)5重量部と、光重合開始剤(イルガキュア184)5重量部を配合した粘着剤を用意した。該粘着剤をPET製の剥離フィルム(リンテック社製、SP-PET3801、厚さ38μm)上にロールナイフコーターで乾燥膜厚が15μmとなるように塗布乾燥し、上記(1)で作成した応力緩和性フィルムに転写し、粘着剤層付き応力緩和性フィルムを作成した。
(3) アクリル系粘着剤(n−ブチルアクリレート90重量部とアクリル酸10重量部との共重合体:重量平均分子量約60万)100重量部と、分子量7000のウレタンアクリレートオリゴマー200重量部、硬化剤(トルイレンジイソシアナートとトリメチロールプロパンの付加物)10重量部と、光重合開始剤(ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド)5重量部とを配合し、エネルギー線硬化型粘着剤組成物を調合した。この組成物をロールナイフコーターにより、別のPET製剥離フィルム(リンテック社製、SP-PET3811、厚さ38μm)に乾燥膜厚が20μmとなるように塗布乾燥し、熱収縮性PETフィルム(厚さ35μm、収縮率65%)に転写した。
【0046】
続いて、別の剥離フィルム(SP-PET3801)上に強粘着性のアクリル系粘着剤(リンテック社製、PA-T1)を、ロールナイフコーターで乾燥膜厚画20μmとなるように塗布乾燥し、上記の熱収縮フィルムの非塗布面側に転写し、収縮性フィルムを基材とする両面粘着フィルムを作成した。
(4) 剛性フィルムとしてPETフィルム(東レ社製、厚さ188μm)を使用した。両面粘着フィルムの剥離フィルム(SP-PET3801)を剥離し、露出した強粘着性のアクリル系粘着剤側を、剛性フィルムの片面に積層した。次に、他面の剥離フィルム(SP-PET3811)を剥離し、抜き刃でエネルギー線硬化型粘着剤層と熱収縮性PETフィルムの層に抜き加工(1mm×1mmの格子状)を施した。直後に、上記(2)で作成した粘着剤層付き応力緩和性フィルムの非塗布面側に、エネルギー線硬化性粘着剤を介して貼り合わせ、保護用粘着テープを作成した。
補強性シート3A:
アルキッド系剥離剤を塗布したPEN25μmからなる剥離フィルム上に、熱可塑性ポリイミド樹脂からなる厚さ30μmの接着剤層を設け、補強性シート3Aとした。
ダイシング用粘着シート4:
厚さ80μmのエチレンメタクリル酸共重合体フィルムに、強粘着性の粘着剤(リンテック社製、PK)を厚さ10μmで塗布し、ダイシング用粘着シートとした。
シリコン(Si)ウエハ:200mmφ、厚み750μm
なお、Siウエハ自体の柔軟度は、測定限界値(120mN)以上であった。
【0047】
上記各部材を用いて、以下の工程を行った。なお、柔軟度は、各工程終了後の積層体の柔軟度を示す。
1.Siウエハの一方の面に、保護用粘着テープ1をテープラミネーター(リンテック社製、Adwill RAD-3500)を用いて貼付した(柔軟度:120mN以上)。
2.Siウエハの他方の面を研削装置(ディスコ社製、DFG-840)を用いて、仕上げ厚50μmまで研削した(柔軟度:40mN)。
3.Siウエハの研削面に、補強性シート3Aを130℃の加熱ローラーで貼付した(柔軟度:50mN)。
4.紫外線照射装置(リンテック社製、Adwill RAD-2000F/8)を用いて、剛性フィルム側よりエネルギー線(紫外線、光量300mJ/cm2)を照射し、150℃の熱風オーブンで2分間加熱した後、テープ剥離装置(リンテック社製、Adwill RAD-3000)を用いて剛性フィルムを剥離した(柔軟度:16mN)。
5.補強性シート3Aの剥離フィルム側に、テープマウンター(リンテック社製、Adwill RAD-2500)を用いてダイシング用粘着シート4を貼付し、リングフレームに固定した。
6.剥離装置(リンテック社製、Adwill RAD-3000)を用いて応力緩和性フィルムを剥離した。
7.ダイシング装置(東京精密社製、AWD4000B)を用い、加工条件(サイズ10mmx10mm、切り込み量:補強性シートの剥離フィルムに対して15μm)でウエハをダイシングした。
8.補強性シート3Aの剥離フィルムから、熱可塑性ポリイミド樹脂層を同伴したチップをピックアップした。
【0048】
【実施例2】
保護用粘着テープ1:
基材の剛性フィルムをPET25μmとし、剛性フィルムと応力緩和性フィルムを強粘着性の粘着剤(リンテック社製、PA-T1、塗布厚15μm)で積層し、収縮フィルムを基材とした両面粘着フィルムを使用しなかった以外は実施例1と同じ保護用粘着テープを用意した。
補強性シート3A:
実施例1と同じ補強性シートを使用した。
第2の補強性シート7:
PET100μmからなる基材フィルムの片面に強粘着性の粘着剤(PA-T1、塗布厚20μm)からなる粘着シートを用意した。
ダイシング用粘着シートおよびSiウエハは、実施例1と同様のものを用いた。
【0049】
上記各部材を用いて、以下の工程を行った。
1.Siウエハの一方の面に、保護用粘着テープ1をテープラミネーターを用いて貼付した(柔軟度:120mN以上)。
2.Siウエハの他方の面を研削装置を用いて、仕上げ厚50μmまで研削した(柔軟度:18mN)。
3.Siウエハの研削面に、補強性シート3Aを130℃の加熱ローラーで貼付した(柔軟度:25mN)。
4.Siウエハの補強性シート面に、第2の補強性シート7をテープラミネーターを用いて貼付した(柔軟度:35mN)。
5.剥離装置を用いて保護用粘着テープ1を剥離した(柔軟度:16mN)。
6.テープマウンターを用いて、第2の補強性シート7のPET側にダイシング用粘着シートを貼付し、リングフレームに固定した。
7.ダイシング装置を用い、加工条件(サイズ10mmx10mm、切り込み量:ダイシング用粘着シート4の粘着面に対し30μm)でウエハをダイシングした。
8.補強性シート3Aの剥離フィルムから、熱可塑性ポリイミド樹脂層を同伴したチップをピックアップした。
【0050】
【実施例3】
保護用粘着テープ1及び第2の補強性シート7は実施例2と同じものを用いた。
補強性シート3B:
PET50μm上に、エネルギー線硬化型粘着剤層15μmを設けた粘着シート(リンテック社製、Adwill D-203)を補強性シートとした。
ダイシング用粘着シートおよびSiウエハは、実施例1と同様のものを用いた。
1.Siウエハの一方の面に、保護用粘着テープ1をテープラミネーターを用いて貼付した(柔軟度:120mN以上)。
2.Siウエハの他方の面を研削装置を用いて、仕上げ厚50μmまで研削した(柔軟度:18mN)。
3.Siウエハの研削面に、補強性シート3Bを貼付装置を用いて貼付した(柔軟度:28mN)。
4.Siウエハの補強性シート3B面に、第2の補強性シート7をテープラミネーターを用いて貼付した(柔軟度:35mN)。
5.テープ剥離装置を用いて保護用粘着テープ1を剥離した(柔軟度:18mN)。
6.テープマウンターを用いて、第2の補強性シートのPET側にダイシング用粘着シート4に貼付し、リングフレームに固定した。
7.ダイシング装置を用い、加工条件(サイズ10mmx10mm、切り込み量:ダイシング用粘着シート4の粘着面に対し30μm)でウエハをダイシングした。
8.紫外線照射装置を用いて、ダイシング用粘着シート4側よりエネルギー線を照射した。続いて補強性シート3Bの粘着剤層上からチップをピックアップした。
【0051】
【実施例4】
保護用粘着テープ1及び第2の補強性シート7は実施例2と同じものを用いた。
補強性シート3A:
耐熱性を有する基材フィルムとしてポリイミドフィルム50μmを使用し、これにアクリル系粘着剤、エポキシ樹脂及びエポキシ硬化剤よりなる粘接着剤30μmを塗布して補強性シートとした。
【0052】
ダイシング用粘着シート4は、紫外線硬化型(リンテック社製、Adwill D-650)のものを用い、ウエハは実施例1と同じものを用いた。
1.Siウエハの一方の面に、保護用粘着テープ1をテープラミネーターを用いて貼付した(柔軟度:120mN以上)。
2.Siウエハの他方の面を研削装置を用いて、仕上げ厚50μmまで研削した(柔軟度:18mN)。
3.Siウエハの研削面に、補強性シート3Aを貼付装置を用いて貼付した(柔軟度:28mN)。
4.Siウエハの補強性シート面に、第2の補強性シート7をテープラミネーターを用いて貼付した(柔軟度:40mN)。
5.テープ剥離装置を用いて保護用粘着テープ1を剥離した(柔軟度:18mN)。
6.テープマウンターを用いて、第2の補強性シート7のPET側にダイシング用粘着シート4を貼付し、リングフレームに固定した。
7.ダイシング装置を用い、加工条件(サイズ10mmx10mm、切り込み量:ダイシング用粘着シート4の粘着面に対し30μm)でウエハをダイシングした。
8.紫外線照射装置を用いて、ダイシング用粘着シート4側よりエネルギー線を照射した。続いて、ダイシング用粘着シート4の粘着剤面より補強性シート3Aのポリイミドフィルムとともに粘接着剤層を同伴したチップをピックアップした。
ウエハ搬送性
各実施例において柔軟度が一番低い値を示す工程の積層体を、ウエハキャリア交換装置(リンテック社製、Adwill RAD-CXV)のウエハ収納部に積層した。該装置の搬送用アームの吸着パッドを用いて、シリコンウエハを200mmウエハ用カセットまで搬送して収納した。
【0053】
10枚のウエハを処理したところ、いずれの実施例においても、カセットケースの収納までの間にシリコンウエハに割れ欠けが全くおきなかった。
【図面の簡単な説明】
【図1】 本発明に係る半導体ウエハの加工方法の1工程を示す。
【図2】 本発明に係る半導体ウエハの加工方法の1工程を示す。
【図3】 本発明に係る半導体ウエハの加工方法の1工程を示す。
【図4】 本発明に係る半導体ウエハの加工方法の1工程を示す。
【図5】 本発明に係る半導体ウエハの加工方法の1工程を示す。
【図6】 本発明に係る半導体ウエハの加工方法の1工程を示す。
【符号の説明】
1…保護用粘着テープ
2…半導体ウエハ
3…補強性シート
4…ダイシング用粘着シート
5…リングフレーム
6…半導体チップ
11…剛性フィルム
12…応力緩和性フィルム
13…剥離可能な積層手段
14…粘着剤層
31…基材
32…粘接着剤層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor wafer processing method, and more particularly to a semiconductor wafer processing method capable of reducing wafer breakage when transferring between a series of processes in wafer processing.
[0002]
[Prior art]
In recent years, IC cards have been widely used, and further reduction in thickness has been desired. For this reason, it is necessary to reduce the thickness of a semiconductor chip, which has conventionally been about 350 μm, to a thickness of 50 to 100 μm or less. In addition, increasing the diameter of the wafer has been studied in order to improve productivity.
[0003]
Grinding the back surface of a wafer after forming a circuit pattern has been conventionally performed. At that time, a surface protection sheet is attached to the circuit surface to protect the circuit surface and fix the wafer, and then perform back surface grinding. After that, the surface protection sheet is peeled off, the wafer is transferred to the dicing adhesive sheet, and the peripheral portion of the dicing adhesive sheet is supported by the ring frame and stored in a storage cassette or the like. Transfer is taking place.
[0004]
However, a wafer that has been ground to an extremely thin thickness is fragile and easily breaks even with a slight impact. Therefore, the wafer may be damaged when the surface protective sheet is peeled off or after peeling. Furthermore, since the surface protection sheet itself is soft, when an impact is received, the impact at this time propagates to the wafer, which may cause cracking or damage to the wafer.
[0005]
The ease of breakage of such a wafer was evaluated by the present inventors based on the flexibility of a commercially available dummy wafer (silicon, diameter 200 mm, thickness 750 μm). According to the results, in the unpolished state (750 μm), the flexibility of the wafer exceeded the measurement limit (120 mN), and when grinding to a thickness of 100 μm, it showed 44 mN, but when processed to a thickness of 50 μm, the flexibility was Was about 3 mN, which was extremely small compared to the thickness. Even when a surface protective tape was applied to one side of the wafer and ground to a thickness of 50 μm, the flexibility in the laminated state was about 4 to 8 mN with a commercially available surface protective tape. With this value, damage to the wafer was inevitable regardless of how carefully the conditions for transporting the laminate were set.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the prior art as described above, and an object of the present invention is to provide a semiconductor wafer processing method capable of reducing wafer breakage even in processing / transfer of thin film wafers and large-diameter wafers. Yes.
[0007]
[Means for Solving the Problems]
A method for processing a semiconductor wafer according to the present invention includes:
Applying protective adhesive tape to the circuit surface of the semiconductor wafer, grinding the back of the wafer to make it thinner
Subsequently, a reinforcing sheet is adhered to the ground wafer back surface, a dicing adhesive sheet is attached to the reinforcing sheet side of the wafer, and the wafer is fixed to the ring frame via the dicing adhesive sheet. When performing a series of steps to peel off the protective adhesive tape affixed to the surface, the wafer is maintained in a state where it is reinforced by at least a part of the protective adhesive tape, the reinforcing sheet or these constituent layers,
Dicing the wafer into chips,
It is characterized by comprising a step of picking up the chip.
[0008]
In the present invention, the flexibility of the wafer after it is thinned and fixed to the ring frame is 10 mN in a state where at least a part of the protective adhesive tape, the reinforcing sheet, or these constituent layers are laminated. The above is preferable.
Moreover, it is preferable that the said protective adhesive tape consists of the base material by which the rigid film and the stress relaxation film were laminated | stacked so that peeling was possible, and the adhesive layer provided in the stress relaxation film side of this base material. In this case, it is preferable that the layer including the rigid film of the protective pressure-sensitive adhesive tape is peeled off before or after the reinforcing sheet is bonded, and the layer including the stress relaxation film is peeled off after the reinforcing sheet is bonded.
[0009]
In the present invention, the reinforcing sheet may be diced together with the wafer, and the chip may be picked up in a state where the reinforcing sheet or a part of the reinforcing sheet is attached. In this case, it is preferable that the reinforcing sheet includes an adhesive layer, and the chip is bonded to the die pad portion via the adhesive layer.
Further, the reinforcing sheet may be composed of a base material and an adhesive layer, and the chip may be picked up by peeling from the interface between the adhesive layer and the chip.
[0010]
According to the semiconductor wafer processing method of the present invention, damage to the wafer can be reduced even in processing / transfer of thin film wafers and large-diameter wafers.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the drawings. First, the protective adhesive tape, reinforcing sheet and dicing adhesive sheet used in the present invention will be described.
Protective adhesive tape
As the protective adhesive tape 1 in the present invention, various surface protective tapes conventionally used for semiconductor processing can be used. Even when these conventional surface protection tapes are attached to a semiconductor wafer, when the semiconductor wafer is ground to an extremely thin thickness, the semiconductor wafer may be broken or damaged during transportation. In such a case, as shown in FIG. 1, the base material 1 laminated through the laminating means 13 capable of peeling the rigid film 11 and the stress relaxation film 12, and the stress relaxation film 12 of the base material 1. It is preferable to use the protective pressure-sensitive adhesive tape 1 composed of the pressure-sensitive adhesive layer 14 provided on the side.
[0012]
(Rigid film 11)
The rigid film 11 gives rigidity to the protective adhesive tape 1 so that the semiconductor wafer can be held so as not to be bent by its own weight during grinding of the semiconductor wafer or subsequent conveyance. If it has such a property, it will not specifically limit as a material of the rigid film 11, For example, the film which consists of various plastic materials, such as a polyethylene terephthalate, can be used.
[0013]
The thickness of the rigid film 11 is preferably 10 μm to 5 mm, and particularly preferably 50 to 500 μm.
(Stress relaxation film 12)
The stress relaxation film 12 is a film that quickly relaxes applied stress and hardly retains internal stress. In the protective pressure-sensitive adhesive tape 1 including the stress relaxation film 12, the stress accumulated inside is attenuated by the stress relaxation, so that even when the wafer is ground to an extremely thin thickness, the wafer is hardly bent.
[0014]
The stress relaxation property of the stress relaxation film 12 specifically means that the stress relaxation rate at 10% elongation in a tensile test is 40% or more, preferably 50% or more, more preferably 60% or more after 1 minute. It is. The higher the stress relaxation rate, the better. The upper limit is theoretically 100%. The value of the stress relaxation rate is obtained by pulling a sample of a predetermined length at a speed of 200 mm / min from the stress A at the time of 10% elongation and the stress B after 1 minute of the elongation stop (A−B) / A × 100 Calculate by (%).
[0015]
The material of the stress relaxation film 12 may be any film as long as it satisfies the above physical properties, and even if a thermoplastic resin is formed, a curable resin is formed and cured. It may be what you did. Details of the stress relaxation film are described in, for example, JP-A-2000-150432.
The thickness 12 of the stress relaxation film is preferably 30 to 1000 μm, more preferably 80 to 500 μm.
[0016]
(Releasable lamination means 13)
The base material 1 is formed by laminating a rigid film 11 and a stress relaxation film 12 so as to be peelable. Such a base material is normally held in close contact with the rigid film 11 and the stress relaxation film 12 through a laminating means 13 that can be peeled off, and subjected to a necessary treatment (for example, heat treatment). The rigid film 11 and the stress relaxation film 12 can be peeled off only by applying a slight external force.
[0017]
As a laminating means having such a function, for example,
(1) Lamination with a double-sided pressure-sensitive adhesive film using a shrink film as a base material and one pressure-sensitive adhesive layer being an energy ray-curable pressure-sensitive adhesive.
(2) Lamination with an adhesive composed of a heat-expandable pressure-sensitive adhesive layer.
(3) Lamination with an adhesive comprising an energy ray curable pressure-sensitive adhesive layer.
Can be given.
[0018]
If the laminating means of (1) is used, the surface of the cured energy ray curable adhesive is deformed by irradiating energy rays when peeling the rigid film 11 and then shrinking the shrinkable film, Separation is possible between the layers of the deformed surface. Such a stacking means is described in detail in, for example, Japanese Patent Application Laid-Open No. 2000-136362. In addition, it is preferable that the shrink film is cut | disconnected small by punching etc., and it is preferable that the adhesive layer of the side which is not an energy-beam curable adhesive is an adhesive which has strong adhesive force so that it may not peel.
[0019]
If the heat-expandable pressure-sensitive adhesive layer which is the lamination means of (2) is used, the pressure-sensitive adhesive layer expands by heating, causing deformation of the interface of the pressure-sensitive adhesive layer or destruction of the pressure-sensitive adhesive layer itself. The film 11 can be peeled off. Such an adhesive is an adhesive in which thermally expandable fine particles and a heating foaming agent are dispersed in an adhesive main agent. Such heat-expandable pressure-sensitive adhesives are described in detail, for example, in Japanese Utility Model Publication No. 50-13828, Japanese Patent Publication No. 51-24534, Japanese Patent Publication No. 56-61468, Japanese Patent Publication No. 1-53989. Is described.
[0020]
The energy ray-curable pressure-sensitive adhesive as the layering means (3) is a pressure-sensitive adhesive that loses its adhesiveness by curing and drastically reduces the adhesive force with the adherend. About such an adhesive, the thing similar to the energy-beam curable adhesive used for the adhesive layer 14 mentioned later can be used. However, the adhesive strength after curing is made larger than the adhesive strength of the pressure-sensitive adhesive layer 14 so that the layer including the rigid film 11 is peeled before the layer including the stress relaxation film 12 is peeled off. It needs to be adjusted.
[0021]
(Adhesive layer 14)
The pressure-sensitive adhesive layer 14 is used to hold the wafer during grinding of the semiconductor wafer. Such a pressure-sensitive adhesive layer 14 may be formed from an energy ray-curable pressure-sensitive adhesive, and is formed from a re-peelable general-purpose pressure-sensitive adhesive such as rubber, acrylic, silicone, polyurethane, and polyvinyl ether. May be.
[0022]
As the energy ray curable adhesive, for example, an acrylic adhesive and an energy ray polymerizable compound as main components, or an energy ray curable copolymer having an energy ray polymerizable group in the side chain as a main component It is made up of.
Energy ray curable pressure sensitive adhesives mainly composed of an acrylic pressure sensitive adhesive and an energy ray polymerizable compound are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 60-196956 and 60-223139. Examples of the energy ray curable pressure-sensitive adhesive mainly composed of an energy ray curable copolymer having an energy ray polymerizable group in the side chain include JP-A-5-32946 and JP-A-8-27239. The details are described in.
[0023]
The thickness of the pressure-sensitive adhesive layer 14 varies depending on the material of the pressure-sensitive adhesive itself, the concavo-convex shape of the circuit surface of the semiconductor wafer that is the adherend, or the value of the required adhesive force, but is usually about 3 to 100 μm. The thickness is preferably 10 to 50 μm.
Reinforcing sheet
The reinforcing sheet 3 is adhered to the ground surface of the semiconductor wafer after being thinned to reinforce the strength of the semiconductor wafer. For this reason, the reinforcing sheet 3 has adhesiveness and a certain degree of rigidity.
[0024]
The reinforcing sheet 3 can be used in the following two types depending on the manufacturing method after the pickup process. The first reinforcing sheet is the reinforcing sheet 3A that can form a part of the semiconductor device by picking up the reinforcing sheet itself or a part of the layer of the reinforcing sheet together with the chip, and the second reinforcing sheet is The reinforcing sheet 3B peels off at the interface between the reinforcing sheet and the chip, and only the chip can be picked up.
[0025]
The reinforcing sheet 3A is made of various adhesive sheet materials. For example, it may be a sheet material made of a thermoplastic adhesive film and exhibiting adhesiveness when heated. The reinforcing sheet 3 </ b> A made of a thermoplastic adhesive film may be a laminate with a release film in order to improve the peelability from the later-described dicing pressure-sensitive adhesive sheet 4. In this case, the laminated structure including the semiconductor wafer in the pickup process is a semiconductor wafer (chip) / thermoplastic adhesive film / peeling film / dicing adhesive sheet (adhesive layer) / dicing adhesive sheet (base material). Is peeled between the thermoplastic adhesive film and the release film. The thermoplastic adhesive film attached to the chip can also be used for bonding to the die pad portion.
[0026]
Further, the reinforcing sheet 3A may be a sheet material in which an adhesive layer is provided on both sides or one side of a heat-resistant base film. A release film similar to that described above may be laminated on the open surface of the adhesive layer.
In the reinforcing sheet 3A provided with the adhesive layer on both sides, the release film on one side is peeled off and bonded to the semiconductor wafer. In this case, the laminated structure including the semiconductor wafer in the pickup process is as follows: semiconductor wafer (chip) / adhesive layer / heat-resistant substrate film / adhesive layer / release film / dicing adhesive sheet (adhesive) Layer) / dicing adhesive sheet (base material). By picking up this, it comes to peel between an adhesive layer and a peeling film. The adhesive layer on the side opened by the pickup can be used for bonding the chip and the die pad part.
[0027]
In the case of the reinforcing sheet 3A provided with the adhesive layer only on one side, the laminated structure including the semiconductor wafer in the pick-up process is as follows: semiconductor wafer (chip) / adhesive layer / heat-resistant substrate film / Dicing pressure-sensitive adhesive sheet (pressure-sensitive adhesive layer) / dicing pressure-sensitive adhesive sheet (base material). By picking this up, it comes to peel between the base film which has heat resistance, and the adhesive layer of the adhesive sheet for dicing. In order to adhere the base film surface having heat resistance to the die pad portion, a normal liquid adhesive for die bonding may be used.
[0028]
The reinforcing sheet 3B is made of a laminate of a base film and a releasable pressure-sensitive adhesive layer. As the base film of the reinforcing sheet 3B, a plastic material similar to the rigid film 11 used in the protective adhesive tape 1 can be used. Moreover, the adhesive similar to the adhesive layer 14 used for the above-mentioned protective adhesive tape 1 can be used for the releasable adhesive layer of the reinforcing sheet 3B. The laminated structure including the semiconductor wafer in the pickup process when the reinforcing sheet 3B is used is as follows: semiconductor wafer (chip) / removable adhesive layer / base film / dicing adhesive sheet (adhesive layer) / dicing It becomes an adhesive sheet (base material), and only the semiconductor chip can be picked up. When the reinforcing sheet 3B is used, it is bonded to the die pad portion using a normal die bonding liquid adhesive.
[0029]
Even if only one reinforcing sheet 3 is attached to the ground surface of the semiconductor wafer, a sufficient flexibility value may not be obtained. In such a case, a plurality of reinforcing sheets may be further attached. This is preferable because the reinforcing sheet directly attached to the semiconductor wafer can be selected from commercially available adhesive sheets having various functionalities.
[0030]
A reinforcing sheet (referred to as a second reinforcing sheet 7) to be applied after the second sheet is a base film made of a plastic material similar to the rigid film 11 used for the protective adhesive tape 1 described above, and a strong film. It is preferable to use an adhesive sheet comprising an adhesive layer exhibiting adhesive strength.
Dicing adhesive sheet
The pressure-sensitive adhesive sheet 4 for dicing used in the method for processing a semiconductor wafer according to the present invention comprises a laminate of a base film and a pressure-sensitive adhesive layer. As the base film used for the dicing pressure-sensitive adhesive sheet 4, a base film used in a general-purpose dicing pressure-sensitive adhesive sheet can be used. The pressure-sensitive adhesive layer used for the dicing pressure-sensitive adhesive sheet 4 varies depending on the type of the reinforcing sheet 3 used.
[0031]
That is, when the reinforcing sheet 3A provided with the adhesive layer on one side is used, dicing is performed between the base film having heat resistance and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet 4 for dicing. For the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet 4, a pressure-sensitive adhesive having removability is used. As such an adhesive, the adhesive similar to the adhesive layer 14 used for the above-mentioned protective adhesive tape 1 can be used.
[0032]
Moreover, when the peeling sheet is provided in the reinforcing sheet 3 and the adhesive sheet 4 for dicing is laminated | stacked on a release film, the adhesive layer of the adhesive sheet 4 for dicing uses a highly adhesive adhesive. Thereby, the adhesive layer of the adhesive sheet 4 for dicing and the peeling film of the reinforcing sheet 3 adhere firmly, and the trouble that peeling occurs between layers other than predetermined at the time of pickup can be prevented.
[0033]
Semiconductor wafer processing method
Next, basic steps of the semiconductor wafer processing method according to the present invention will be described.
1st process: The adhesive tape 1 for protection is affixed on the circuit surface of the semiconductor wafer 2, and the wafer back surface is ground and thinned (refer FIG. 1).
Back surface grinding is performed by a conventional method using a grinder or the like. Usually, since it was common to grind the wafer to a thickness of about 300 μm, it was not so difficult to avoid damage to the wafer in the subsequent process. However, according to the present invention, the back surface of the wafer is 100 μm or less. Even if it is ground up to 5 mm, damage to the wafer can be prevented.
[0034]
As the protective adhesive tape 1, various surface protective tapes conventionally used for this kind of application can be used. Preferably, as shown in FIG. 1, a rigid film 11 and a stress relaxation film are used. 12 is a protective pressure-sensitive adhesive tape 1 having a multilayer structure composed of a base material laminated in a peelable manner and a pressure-sensitive adhesive layer 14 provided on the stress relaxation film 12 of the base material 1.
[0035]
Affixing the protective adhesive tape 1 to the circuit surface of the semiconductor wafer is performed by using a laminator (applying device) so as not to apply tension as much as possible, but it is practically impossible to apply the adhesive without completely applying tension. Is possible. Therefore, in a normal pressure-sensitive adhesive sheet, the tension at this time may accumulate as a residual stress in the pressure-sensitive adhesive sheet. However, in the protective pressure-sensitive adhesive tape 1 including the stress relaxation film 12, the internal stress is attenuated by stress relaxation.
[0036]
Next, the back surface of the wafer is ground to a predetermined thickness by a grinder or the like, and chemical grinding by etching or the like is performed as necessary. At this time, these wafers are fixed by the protective adhesive tape 1, and surface protection is simultaneously performed on the wafer surface in contact with the protective adhesive tape 1.
By such grinding, the wafer is ground to a thickness of 100 μm or less, for example. As described above, in the normal pressure-sensitive adhesive sheet, the tension at the time of sticking is accumulated as residual stress in the pressure-sensitive adhesive sheet and causes the ultrathin wafer to bend. However, in the protective pressure-sensitive adhesive tape 1 including the stress relaxation film 12, Since the internal stress is attenuated by stress relaxation, the wafer does not bend even if the wafer is ground to a very thin thickness. Further, since the protective adhesive tape 1 including the rigid film 11 can hold the wafer without curving it, the wafer is not damaged when the wafer is transported or stored.
Second step: Next, the reinforcing sheet 3 is bonded to the back surface of the ground wafer 2 (see FIG. 2). In FIG. 2 and subsequent figures, the description of the protective adhesive tape 1 is simplified, but the protective adhesive tape 1 may have a multilayer structure as described above. Also, what is illustrated is an aspect in the case where the reinforcing sheet 3 is provided with an adhesive layer 32 provided on one side of the substrate 31. The structure of the reinforcing sheet 3 may be another structure as described above.
[0037]
By bonding the reinforcing sheet 3, distortion and warpage can be reduced even when the wafer is thinned, and damage of the wafer during transfer can be prevented.
If a sufficient value of flexibility cannot be obtained by simply bonding one reinforcing sheet 3, a plurality of reinforcing sheets may be attached as necessary.
As the reinforcing sheet 3, various adhesive sheet materials can be used. In the present invention, the adhesive sheet material as described above is particularly preferably used from the viewpoint of simplifying the process. .
Third step: A dicing adhesive sheet 4 is attached to the reinforcing sheet 3 side of the wafer 2 and the wafer 2 is fixed to the ring frame 5 via the dicing adhesive sheet 4 (see FIG. 3).
Fourth step: The protective adhesive tape 1 affixed to the surface of the wafer 2 is peeled off (see FIG. 4).
[0038]
There are various stripping modes, and any mode may be used as long as the protective adhesive tape can be stripped so that excessive stress is not applied to the wafer 2. Further, when the base material of the protective pressure-sensitive adhesive tape 1 is laminated through a laminating means capable of peeling the rigid film and the stress relaxation film, the constituent layers are sequentially peeled off. May be. Further, in this case, a part of the constituent layers may be removed at any stage from the end of the first process to the third process.
[0039]
For example, the layer containing the rigid film may be peeled off before the reinforcing sheet 3 is attached, and the layer containing the stress relaxation film may be peeled off after the reinforcing sheet 3 is attached. Under the present circumstances, peeling of the layer containing a stress relaxation film may be after the said 2nd process completion | finish, and after the 3rd process completion | finish.
In addition, after the reinforcement film 3 is stuck, the layer including the rigid film 2 and the layer including the stress relaxation film may be sequentially peeled off. In this case, the peeling of these layers may be after the second step or after the third step.
[0040]
In any case, transfer between processes is performed in a state where the wafer 2 is reinforced by the protective adhesive tape 1, the reinforcing film 3, or at least a part of these constituent layers.
In the present invention, the protective adhesive tape 1 and / or the reinforcing sheet 3 is provided on the wafer 2 during the period from the thinning in the first step to the fixing to the ring frame in the third step. Or at least one part of these structural layers is stuck, supported, and reinforced. That is, in the present invention, the wafer 2 is reinforced as a laminate with other resin layers between these steps, so that damage to the wafer can be reduced. The flexibility of the wafer in this state, that is, the flexibility of the laminated body including the wafer 2 is preferably 10 mN or more, more preferably 15 mN or more. As a result, even when an impact or stress is applied to the wafer during the transfer or processing of the wafer, the wafer is less likely to be distorted or warped, and damage to the wafer can be prevented.
Fifth step: The wafer 2 is diced (see FIG. 5).
[0041]
Dicing is performed by a conventional method using a rotating round blade or the like.
Sixth step: Thereafter, the diced chip 6 is picked up and mounted on the die pad portion. Mounting is also performed in the usual way.
The peeling mode when the reinforcing sheet 3A or the reinforcing sheet 3B described above is used as the reinforcing sheet 3 is as described above. In addition, what was illustrated is an aspect at the time of using the thing in which the adhesive layer 32 is provided in the single side | surface of the base material 31 as the reinforcing sheet 3. FIG.
[0042]
【The invention's effect】
As described above, according to the semiconductor wafer processing method of the present invention, damage to the wafer can be reduced even in processing / transfer of thin film wafers and large-diameter wafers.
[0043]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
The flexibility of the laminated body including the semiconductor wafer is determined by forming a laminated body having a configuration to be measured by the same method as in the steps of the embodiment, and then cutting the laminated body into a size of 25 mm × 38 mm by dicing, and then applying the Gurley described in JIS L1096. The value at which the semiconductor wafer was destroyed was measured according to the law.
[0044]
[Example 1]
Protective adhesive tape 1:
(1) Urethane acrylate oligomer having a weight average molecular weight of 5000 (manufactured by Arakawa Chemical Co., Ltd.), 25 parts by weight of isobornyl acrylate, 25 parts by weight of phenylhydroxypropyl acrylate, and photopolymerization initiator (Ciba Specialty Chemicals) Irgacure 184) 2.0 parts by weight and 0.2 parts by weight of a phthalocyanine pigment were blended to obtain a photocurable resin composition for casting a stress relaxation film.
[0045]
The obtained resin composition was coated on a polyethylene terephthalate (PET) film (manufactured by Toray Industries, Inc .: thickness 38 μm) by a fountain die system so as to have a thickness of 110 μm to form a resin composition layer. Immediately after coating, the same PET film is further laminated on the resin composition layer, and then the light intensity is 250 mJ / cm using a high-pressure mercury lamp (160 W / cm, height 10 cm).2The resin composition layer was crosslinked and cured by irradiating with ultraviolet rays under the above conditions, and the PET films on both sides were peeled off to obtain a stress relaxation film having a thickness of 110 μm and a stress relaxation rate of 87%.
(2) Obtained by reacting 100 parts by weight of a copolymer having a weight average molecular weight of about 650,000 consisting of 85 parts by weight of n-butyl acrylate and 15 parts by weight of 2-hydroxyethyl acrylate and 16 parts by weight of methacryloyloxyethyl isocyanate. 5 parts by weight of a curing agent (addition product of toluylene diisocyanate and trimethylolpropane) and 5 parts by weight of a photopolymerization initiator (Irgacure 184) are added to an energy beam curable copolymer having an energy beam polymerizable group in the side chain. A blended adhesive was prepared. The adhesive was applied and dried on a PET release film (Lintec Corporation, SP-PET3801, thickness 38 μm) with a roll knife coater to a dry film thickness of 15 μm, and the stress relaxation prepared in (1) above. The film was transferred to an adhesive film to produce a stress relaxation film with an adhesive layer.
(3) 100 parts by weight of acrylic pressure-sensitive adhesive (copolymer of 90 parts by weight of n-butyl acrylate and 10 parts by weight of acrylic acid: weight average molecular weight of about 600,000), 200 parts by weight of urethane acrylate oligomer having a molecular weight of 7000, curing 10 parts by weight of an additive (toluylene diisocyanate and trimethylolpropane adduct) and 5 parts by weight of a photopolymerization initiator (bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide) A curable pressure-sensitive adhesive composition was prepared. This composition was coated and dried on another PET release film (manufactured by Lintec Corporation, SP-PET3811, thickness 38 μm) with a roll knife coater so that the dry film thickness was 20 μm, and heat-shrinkable PET film (thickness) 35 μm, shrinkage 65%).
[0046]
Subsequently, on another release film (SP-PET3801), a strong adhesive acrylic adhesive (PA-T1 manufactured by Lintec Co., Ltd.) was applied and dried with a roll knife coater to a dry film thickness of 20 μm. It transferred to the non-application surface side of said heat shrink film, and the double-sided adhesive film which made a shrinkable film a base material was created.
(4) A PET film (manufactured by Toray Industries, Inc., thickness 188 μm) was used as the rigid film. The release film (SP-PET3801) of the double-sided adhesive film was peeled off, and the exposed strong adhesive acrylic adhesive side was laminated on one side of the rigid film. Next, the release film (SP-PET3811) on the other side was peeled off, and the energy ray curable pressure-sensitive adhesive layer and the heat-shrinkable PET film layer were punched (1 mm × 1 mm grid) with a punching blade. Immediately afterwards, the pressure-sensitive adhesive film with the pressure-sensitive adhesive layer prepared in the above (2) was bonded to the non-application surface side with an energy ray-curable pressure-sensitive adhesive to prepare a protective pressure-sensitive adhesive tape.
Reinforcing sheet 3A:
An adhesive layer having a thickness of 30 μm made of a thermoplastic polyimide resin was provided on a release film made of PEN 25 μm coated with an alkyd release agent to obtain a reinforcing sheet 3A.
Dicing adhesive sheet 4:
A strong adhesive (Pintech, manufactured by Lintec Co., Ltd.) having a thickness of 10 μm was applied to an ethylene methacrylic acid copolymer film having a thickness of 80 μm to obtain an adhesive sheet for dicing.
Silicon (Si) wafer: 200mmφ, thickness 750μm
The flexibility of the Si wafer itself was not less than the measurement limit value (120 mN).
[0047]
The following steps were performed using the above members. In addition, a softness | flexibility shows the softness | flexibility of the laminated body after completion | finish of each process.
1. A protective adhesive tape 1 was attached to one surface of the Si wafer using a tape laminator (Adwill RAD-3500, manufactured by Lintec Corporation) (flexibility: 120 mN or more).
2. The other surface of the Si wafer was ground to a final thickness of 50 μm (flexibility: 40 mN) using a grinding apparatus (DFG-840 manufactured by Disco Corporation).
3. The reinforcing sheet 3A was attached to the ground surface of the Si wafer with a heating roller at 130 ° C. (flexibility: 50 mN).
4). Using an ultraviolet ray irradiation device (Adwill RAD-2000F / 8, manufactured by Lintec Corporation), energy rays (ultraviolet ray, light quantity 300mJ / cm from the rigid film side)2) And heated in a hot air oven at 150 ° C. for 2 minutes, and then the rigid film was peeled off using a tape peeling device (Adwill RAD-3000, manufactured by Lintec Corporation) (flexibility: 16 mN).
5). The adhesive sheet 4 for dicing was stuck on the peeling film side of the reinforcing sheet 3A using a tape mounter (Adwill RAD-2500, manufactured by Lintec Corporation), and fixed to the ring frame.
6). The stress relaxation film was peeled off using a peeling device (Adwill RAD-3000, manufactured by Lintec Corporation).
7. Using a dicing machine (Tokyo Seimitsu Co., Ltd., AWD4000B), the wafer was diced under the processing conditions (size 10 mm × 10 mm, cutting amount: 15 μm with respect to the release film of the reinforcing sheet).
8). A chip accompanied by a thermoplastic polyimide resin layer was picked up from the release film of the reinforcing sheet 3A.
[0048]
[Example 2]
Protective adhesive tape 1:
Double-sided adhesive film with a base film of PET 25μm, a rigid film and a stress relaxation film laminated with a strong adhesive (PA-T1, manufactured by Lintec Co., Ltd., coating thickness 15μm), and a shrink film as the base material The same protective adhesive tape as in Example 1 was prepared except that was not used.
Reinforcing sheet 3A:
The same reinforcing sheet as in Example 1 was used.
Second reinforcing sheet 7:
A pressure-sensitive adhesive sheet made of strong adhesive (PA-T1, coating thickness 20 μm) was prepared on one side of a base film made of PET 100 μm.
The same dicing adhesive sheet and Si wafer as in Example 1 were used.
[0049]
The following steps were performed using the above members.
1. The protective adhesive tape 1 was attached to one surface of the Si wafer using a tape laminator (flexibility: 120 mN or more).
2. The other surface of the Si wafer was ground to a finished thickness of 50 μm using a grinding device (flexibility: 18 mN).
3. The reinforcing sheet 3A was attached to the ground surface of the Si wafer with a heating roller at 130 ° C. (flexibility: 25 mN).
4). The second reinforcing sheet 7 was attached to the reinforcing sheet surface of the Si wafer using a tape laminator (flexibility: 35 mN).
5). The protective adhesive tape 1 was peeled off using a peeling device (flexibility: 16 mN).
6). Using a tape mounter, a dicing adhesive sheet was applied to the PET side of the second reinforcing sheet 7 and fixed to the ring frame.
7. Using a dicing apparatus, the wafer was diced under processing conditions (size 10 mm × 10 mm, cutting amount: 30 μm with respect to the adhesive surface of the dicing adhesive sheet 4).
8. A chip accompanied by a thermoplastic polyimide resin layer was picked up from the release film of the reinforcing sheet 3A.
[0050]
[Example 3]
The protective adhesive tape 1 and the second reinforcing sheet 7 were the same as those in Example 2.
Reinforcing sheet 3B:
A pressure-sensitive adhesive sheet (Adwill D-203, manufactured by Lintec Co., Ltd.) provided with a 15 μm energy ray-curable pressure-sensitive adhesive layer on 50 μm of PET was used as a reinforcing sheet.
The same dicing adhesive sheet and Si wafer as in Example 1 were used.
1. The protective adhesive tape 1 was attached to one surface of the Si wafer using a tape laminator (flexibility: 120 mN or more).
2. The other surface of the Si wafer was ground to a finished thickness of 50 μm using a grinding device (flexibility: 18 mN).
3. The reinforcing sheet 3B was stuck on the ground surface of the Si wafer by using a sticking device (flexibility: 28 mN).
4). The second reinforcing sheet 7 was attached to the surface of the reinforcing sheet 3B of the Si wafer using a tape laminator (flexibility: 35 mN).
5). The protective adhesive tape 1 was peeled off using a tape peeling device (flexibility: 18 mN).
6). Using a tape mounter, the dicing adhesive sheet 4 was attached to the PET side of the second reinforcing sheet and fixed to the ring frame.
7. Using a dicing apparatus, the wafer was diced under processing conditions (size 10 mm × 10 mm, cutting amount: 30 μm with respect to the adhesive surface of the adhesive sheet 4 for dicing).
8). Energy rays were irradiated from the dicing adhesive sheet 4 side using an ultraviolet irradiation device. Subsequently, a chip was picked up from the adhesive layer of the reinforcing sheet 3B.
[0051]
[Example 4]
The protective adhesive tape 1 and the second reinforcing sheet 7 were the same as those in Example 2.
Reinforcing sheet 3A:
A polyimide film 50 μm was used as a base film having heat resistance, and a tacky adhesive 30 μm composed of an acrylic pressure-sensitive adhesive, an epoxy resin and an epoxy curing agent was applied thereto to obtain a reinforcing sheet.
[0052]
The dicing pressure-sensitive adhesive sheet 4 was an ultraviolet curing type (Adwill D-650 manufactured by Lintec Corporation), and the same wafer as in Example 1 was used.
1. The protective adhesive tape 1 was attached to one surface of the Si wafer using a tape laminator (flexibility: 120 mN or more).
2. The other surface of the Si wafer was ground to a finished thickness of 50 μm using a grinding device (flexibility: 18 mN).
3. The reinforcing sheet 3A was pasted on the ground surface of the Si wafer using a pasting device (flexibility: 28 mN).
4). The second reinforcing sheet 7 was attached to the reinforcing sheet surface of the Si wafer using a tape laminator (flexibility: 40 mN).
5). The protective adhesive tape 1 was peeled off using a tape peeling device (flexibility: 18 mN).
6). Using the tape mounter, the adhesive sheet 4 for dicing was stuck on the PET side of the second reinforcing sheet 7 and fixed to the ring frame.
7. Using a dicing apparatus, the wafer was diced under processing conditions (size 10 mm × 10 mm, cutting amount: 30 μm with respect to the adhesive surface of the adhesive sheet 4 for dicing).
8). Energy rays were irradiated from the dicing adhesive sheet 4 side using an ultraviolet irradiation device. Then, the chip | tip which accompanied the adhesive layer with the polyimide film of the reinforcing sheet 3A was picked up from the adhesive surface of the adhesive sheet 4 for dicing.
Wafer transportability
In each example, the laminated body of the process showing the lowest flexibility was laminated on the wafer storage portion of a wafer carrier exchange device (Adwill RAD-CXV, manufactured by Lintec Corporation). Using the suction pad of the transfer arm of the apparatus, the silicon wafer was transferred to a 200 mm wafer cassette and stored.
[0053]
When 10 wafers were processed, in any of the examples, no cracks occurred on the silicon wafer until the cassette case was stored.
[Brief description of the drawings]
FIG. 1 shows one step of a semiconductor wafer processing method according to the present invention.
FIG. 2 shows one step of a semiconductor wafer processing method according to the present invention.
FIG. 3 shows one step of a semiconductor wafer processing method according to the present invention.
FIG. 4 shows one step of a semiconductor wafer processing method according to the present invention.
FIG. 5 shows one step of a semiconductor wafer processing method according to the present invention.
FIG. 6 shows one step of a method for processing a semiconductor wafer according to the present invention.
[Explanation of symbols]
1… Protective adhesive tape
2 ... Semiconductor wafer
3 ... Reinforcing sheet
4 ... Dicing adhesive sheet
5 ... Ring frame
6 ... Semiconductor chip
11 ... Rigid film
12 ... Stress relaxation film
13 ... Releasable laminating means
14 ... Adhesive layer
31 ... Base material
32 ... Adhesive layer

Claims (5)

半導体ウエハの回路表面に保護用粘着テープを貼付し、ウエハ裏面を研削して薄肉化し、
続いて、研削したウエハ裏面に、ポリエチレンテレフタレートからなり厚みが10μm〜5mmの剛性フィルムと粘着剤層とからなる補強性シートを接着し、該ウエハの補強性シート側にダイシング用粘着シートを貼付して該ダイシング用粘着シートを介してリングフレームに該ウエハを固定し、該ウエハの表面に貼付された保護用粘着テープを剥離する一連の工程を行うに際して、該ウエハが、保護用粘着テープ、補強性シートあるいはこれらの構成層の少なくとも一部により補強された状態を維持し、
ウエハをダイシングしてチップ化を行い、
該粘着剤層とチップの界面から剥離して該チップをピックアップする工程よりなる半導体ウエハの加工方法。
Affixing protective adhesive tape to the circuit surface of the semiconductor wafer, grinding the backside of the wafer to make it thinner
Subsequently, a reinforcing sheet made of polyethylene terephthalate and made of a rigid film having a thickness of 10 μm to 5 mm and an adhesive layer is bonded to the ground back surface of the wafer, and a dicing adhesive sheet is attached to the reinforcing sheet side of the wafer. When the wafer is fixed to the ring frame via the dicing adhesive sheet and the protective adhesive tape affixed to the surface of the wafer is peeled off, the wafer is protected with the protective adhesive tape and the reinforcement. Maintaining the state reinforced by the adhesive sheet or at least a part of these constituent layers,
Dicing the wafer into chips,
A method for processing a semiconductor wafer comprising a step of picking up the chip by peeling from the interface between the pressure-sensitive adhesive layer and the chip.
薄肉化されてから、リングフレームに固定されるまでのウエハの柔軟度が、保護用粘着テープ、補強性シートあるいはこれらの構成層の少なくとも一部が積層された状態で、10mN以上であることを特徴とする請求項1に記載の半導体ウエハの加工方法。  The degree of flexibility of the wafer after it is thinned and fixed to the ring frame is 10 mN or more in a state where at least a part of the protective adhesive tape, the reinforcing sheet, or these constituent layers are laminated. The semiconductor wafer processing method according to claim 1, wherein: 前記保護用粘着テープが、剛性フィルムと応力緩和性フィルムとが剥離可能に積層された基材と、該基材の応力緩和性フィルム側に設けられた粘着剤層からなることを特徴とする請求項1または2に記載の半導体ウエハの加工方法。  The protective adhesive tape comprises a base material on which a rigid film and a stress relaxation film are releasably laminated, and an adhesive layer provided on the stress relaxation film side of the base material. Item 3. A method for processing a semiconductor wafer according to Item 1 or 2. 補強性シートを接着する前または後に、前記保護用粘着テープの剛性フィルムを含む層を剥離し、補強性シートを接着した後に応力緩和性フィルムを含む層を剥離することを特徴とする請求項3に記載の半導体ウエハの加工方法。  The layer including the rigid film of the protective pressure-sensitive adhesive tape is peeled off before or after bonding the reinforcing sheet, and the layer including the stress relaxation film is peeled off after bonding the reinforcing sheet. 2. A method for processing a semiconductor wafer according to 1. 前記応力緩和性フィルムが、その引張試験において、10%伸長時の応力緩和率が、1分後で、40%以上であるフィルムであることを特徴とする請求項3または4に記載の半導体ウエハの加工方法。5. The semiconductor wafer according to claim 3, wherein the stress relaxation film is a film whose stress relaxation rate at 10% elongation is 40% or more after 1 minute in the tensile test. Processing method.
JP2002134157A 2002-05-09 2002-05-09 Semiconductor wafer processing method Expired - Lifetime JP4312419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134157A JP4312419B2 (en) 2002-05-09 2002-05-09 Semiconductor wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134157A JP4312419B2 (en) 2002-05-09 2002-05-09 Semiconductor wafer processing method

Publications (2)

Publication Number Publication Date
JP2003332267A JP2003332267A (en) 2003-11-21
JP4312419B2 true JP4312419B2 (en) 2009-08-12

Family

ID=29696895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134157A Expired - Lifetime JP4312419B2 (en) 2002-05-09 2002-05-09 Semiconductor wafer processing method

Country Status (1)

Country Link
JP (1) JP4312419B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860113B2 (en) * 2003-12-26 2012-01-25 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
JP2005197572A (en) * 2004-01-09 2005-07-21 Renesas Technology Corp Method for manufacturing semiconductor chip and liquid crystal display device
JP2006203000A (en) * 2005-01-20 2006-08-03 Sekisui Chem Co Ltd Adhesive tape for dicing and manufacturing method of semiconductor chip
JP2006319233A (en) * 2005-05-16 2006-11-24 Lintec Corp Brittle member treatment apparatus
JP4754278B2 (en) * 2005-06-23 2011-08-24 リンテック株式会社 Chip body manufacturing method
JP4762671B2 (en) * 2005-10-26 2011-08-31 古河電気工業株式会社 Dicing tape and semiconductor wafer dicing method
US8911583B2 (en) 2006-03-01 2014-12-16 Thin Materials Ag Method for processing, in particular, thin rear sides of a wafer, wafer-carrier arrangement and method for producing said type of wafer-carrier arrangement
DE112006003839T5 (en) 2006-04-21 2009-02-26 Infineon Technologies Ag Method for producing a thin semiconductor chip
JP4781185B2 (en) 2006-07-18 2011-09-28 日東電工株式会社 Heat-resistant dicing tape or sheet
CN102709201A (en) 2007-04-06 2012-10-03 日立化成工业株式会社 Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
US20100148312A1 (en) * 2008-12-16 2010-06-17 Ivi Smart Technologies, Inc. Reinforced smart cards & methods of making same
JP5328422B2 (en) * 2009-03-02 2013-10-30 信越ポリマー株式会社 Electronic component holder
JP2011253939A (en) * 2010-06-02 2011-12-15 Sony Chemical & Information Device Corp Wafer dicing method, connecting method, connecting structure
JP2013105834A (en) * 2011-11-11 2013-05-30 Hitachi Chemical Co Ltd Manufacturing method of semiconductor device, semiconductor device, and electronic component
JP6140441B2 (en) * 2012-12-27 2017-05-31 富士フイルム株式会社 Temporary adhesive for manufacturing semiconductor device, adhesive support using the same, and method for manufacturing semiconductor device
JP5666659B2 (en) * 2013-07-17 2015-02-12 リンテック株式会社 Wafer processing sheet
EP3333882B1 (en) * 2016-12-06 2020-08-05 IMEC vzw Method for bonding thin semiconductor chips to a substrate
KR102563929B1 (en) * 2018-03-09 2023-08-04 삼성전자주식회사 Method of singulating semiconductor die and method of fabricating semiconductor package
JP7108516B2 (en) * 2018-10-25 2022-07-28 リンテック株式会社 Sheet pasting method
JP2020068326A (en) * 2018-10-25 2020-04-30 リンテック株式会社 Adherend processing method
CN111446161B (en) * 2020-03-11 2023-03-21 绍兴同芯成集成电路有限公司 Wafer cutting method
CN114227962B (en) * 2021-12-22 2023-09-05 颀中科技(苏州)有限公司 Wafer cutting method and wafer cutting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521459B2 (en) * 1987-02-23 1996-08-07 日東電工株式会社 Method of manufacturing semiconductor chip
JP2726350B2 (en) * 1992-02-24 1998-03-11 リンテック株式会社 Adhesive sheet for attaching wafer
JPH06283600A (en) * 1993-03-29 1994-10-07 Shinko Electric Ind Co Ltd Tape for dicing and material cutting method using the same
JPH06302572A (en) * 1993-04-12 1994-10-28 Hitachi Ltd Manufacture of semiconductor device and tape adhering and peeling apparatus
JPH0722358A (en) * 1993-06-15 1995-01-24 Sharp Corp Manufacture of semiconductor device
JP2507968B2 (en) * 1993-06-28 1996-06-19 日本電気株式会社 Method for manufacturing semiconductor device
JPH08124881A (en) * 1994-10-28 1996-05-17 Nec Corp Dicing tape and method for assembling semiconductor device using it
JP3280876B2 (en) * 1996-01-22 2002-05-13 日本テキサス・インスツルメンツ株式会社 Wafer dicing / bonding sheet and method of manufacturing semiconductor device
JP3441382B2 (en) * 1998-10-14 2003-09-02 日本電信電話株式会社 Method for manufacturing semiconductor device
JP2000331968A (en) * 1999-05-21 2000-11-30 Tokyo Seimitsu Co Ltd Wafer protection tape
JP3485525B2 (en) * 2000-07-06 2004-01-13 沖電気工業株式会社 Method for manufacturing semiconductor device
JP2002373871A (en) * 2001-06-15 2002-12-26 Sekisui Chem Co Ltd Method of manufacturing ic chip
JP2003324080A (en) * 2002-04-30 2003-11-14 Lintec Corp Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2003332267A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
JP4312419B2 (en) Semiconductor wafer processing method
JP4447280B2 (en) Surface protection sheet and semiconductor wafer grinding method
JP3784202B2 (en) Double-sided adhesive sheet and method of using the same
JP4392732B2 (en) Manufacturing method of semiconductor chip
KR100520333B1 (en) Process for producing chip and pressure sensitive adhessive sheet for said process
JP4219605B2 (en) Adhesive sheet for semiconductor wafer processing and method of using the same
JP4904432B1 (en) Wafer processing tape
KR20210088767A (en) Laminate for resin film formation sheet
JP2003147300A (en) Surface protecting sheet in grinding wafer rear and method for producing semiconductor chip
JP5379377B2 (en) Surface protection sheet and semiconductor wafer grinding method
JP2005116610A (en) Processing method of semiconductor wafer, and adhesive sheet for processing semiconductor wafer
TWI649798B (en) Mask integrated surface protection tape
JP4307825B2 (en) Protective structure for semiconductor wafer, method for protecting semiconductor wafer, laminated protective sheet used therefor, and method for processing semiconductor wafer
KR101820964B1 (en) Wafer processing tape
JP5522773B2 (en) Semiconductor wafer holding method, chip body manufacturing method, and spacer
JP2008311513A (en) Support structure of sheet for surface protection, and grinding method of semiconductor wafer
JP2013222846A (en) Substrate dicing method
KR100555995B1 (en) Method of producing a wafer, and adhesive tape
JP4364368B2 (en) Manufacturing method of semiconductor chip
JP3468676B2 (en) Manufacturing method of chip body
JP3535968B2 (en) Method for manufacturing chip body and pressure-sensitive adhesive sheet for manufacturing chip body
TW201842560A (en) Mask-integrated surface protective tape with release liner
JP4162939B2 (en) Method for peeling surface protective tape from brittle members
JP5598865B2 (en) Wafer processing tape
JP5653675B2 (en) Wafer processing tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4312419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term