JP4310071B2 - 共振コンバータ用制御装置 - Google Patents

共振コンバータ用制御装置 Download PDF

Info

Publication number
JP4310071B2
JP4310071B2 JP2002134408A JP2002134408A JP4310071B2 JP 4310071 B2 JP4310071 B2 JP 4310071B2 JP 2002134408 A JP2002134408 A JP 2002134408A JP 2002134408 A JP2002134408 A JP 2002134408A JP 4310071 B2 JP4310071 B2 JP 4310071B2
Authority
JP
Japan
Prior art keywords
voltage
resonant converter
output
output voltages
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002134408A
Other languages
English (en)
Other versions
JP2003018838A (ja
Inventor
エルフェリッヒ ラインホルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10122534A external-priority patent/DE10122534A1/de
Priority claimed from DE10143251A external-priority patent/DE10143251A1/de
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2003018838A publication Critical patent/JP2003018838A/ja
Application granted granted Critical
Publication of JP4310071B2 publication Critical patent/JP4310071B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制御システムを具える共振コンバータと、共振コンバータの制御方法と、スイッチモード電源とに関する。
【0002】
【従来の技術】
スイッチコンバータは、入力側におけるDC電圧を出力側における1つ以上のDC電圧に変換し、スイッチコンバータにおいて、前記入力側電圧をまず切断し、すなわち、スイッチドAC電圧に変換し、このスイッチドAC電圧によって、少なくとも1個のキャパシタを具える共振回路にパワーを供給し、前記キャパシタは、トランスの一次側を具える。二次側において、前記トランスは、1つ又は種々の巻線を具え、これらの電圧を整流し、DC出力電圧を発生する。
【0003】
既知のスイッチモード電源は、幹線及びスイッチコンバータに接続する電源入力回路を具える。このスイッチモード入力回路は、中間回路DC電圧を、DC電圧を供給される前記スイッチコンバータに利用可能にする。前記中間回路DC電圧を、前記コンバータによって1つ以上の出力DC電圧に変換する。
【0004】
スイッチコンバータに関する多くの回路が既知である。これは、共振コンバータに加えて、共振回路を使用しない回路も具える。この形式のコンバータに関して、安価で、小型で、軽量な電源ユニット/スイッチモード電源を製造することができ、セットトップボックス、衛星受信機、テレビジョン受像機、コンピュータモニタ、ビデオレコーダ及び小型オーディオシステムのような消費者向けエレクトロニクス装置において有利に使用することができる。これらの用途において、しばしば、1つの入力DC電圧から多コンバータ出力部における多出力電圧を発生するコンバータに対する必要性が存在する。
【0005】
少なくとも1つの前記出力電圧を、慣例的には、設定値に制御する。複数の出力電圧を発生し、前記出力電圧の各々がトランスの二次巻線に割り当てられた最新技術のコンバータにおいて、種々の出力電圧を互いに無関係に制御することはできない。これらのような回路において、制御装置を、出力電圧の1つのみに関して設ける。巻線の数の比について制御された電圧に関する他の電圧を、これらの電圧と共に制御するとする。しかしながら、これは、強く異なる負荷の場合において、個々の出力部において相当の損失を有する。
【0006】
コンバータの既知のトポロジは、負荷共振コンバータと言われるものを具える。これに関する既知の回路において、DC電圧を供給されるハーフブリッジをインバータとして使用し、このインバータブリッジは、共振キャパシタとトランスの一次側との直列の組み合わせに給電する。前記共振キャパシタは、前記トランスの漏れインダクタンスと、さらに二次側インダクタンス又はキャパシタンスと共に、共振回路を形成する。前記二次側において、前記負荷共振コンバータは、1つ以上の二次巻線を含む。このようにして、整流後、少なくとも1つの容量性フィルタによって慣例的にフィルタ処理された多数の出力DC電圧を供給する。
【0007】
このような共振コンバータの出力電圧を制御するために、前記インバータの駆動を変化することが知られている。前記インバータの切り替えを、予め規定されたパラメータ(例えば周波数)を有するAC電圧、多くの場合においてパルス幅変調電圧が発生されるように駆動する。この電圧の周波数の変化によって、前記出力電圧の値を制御することができる。前記出力電圧が上昇すると、前記周波数は、前記共振回路の前記共振周波数により近くなる。LLCコンバータは、一般的に超臨界的な領域において動作し、すなわち、前記共振周波数以上に上昇する周波数を有する電圧が前記共振回路に供給される。この場合において、前記出力電圧を、前記電圧の周波数を低下させることにおいて上昇させることができる。既知の負荷共振コンバータにおいて、1つの出力電圧のみを直接制御することができる。他の出力電圧を制御された出力電圧に巻線の数の比を介して直接結合し、したがって一緒に制御する。
【0008】
消費者向けエレクトロニクス装置において優勢なコンバータの形式は、フライバックコンバータである。これは、非共振コンバータである。一次側において、一般的に1つのみのスイッチング素子が、前記インバータに必要である。前記フライバックインバータは、その出力部の各々において一方向整流を行う。前記出力部の1つを直接制御する。
【0009】
前記フライバックコンバータが、直接制御しなければならない第2の出力電圧を有する必要がある場合、ステップダウンコンバータ又はバックコンバータとして知られる他のコンバータを前記フライバックコンバータの出力部の1つに接続し、前記他のコンバータに前記フライバックコンバータの第1出力電圧を供給し、前記第2出力電圧を別個の制御で発生することが知られている。このような2つのコンバータを具える回路は、しかしながら非常に高価である。
【0010】
2つの制御された出力電圧を利用可能にする前記フライバックコンバータトポロジの他の拡張は、例えば、IEEE−PESC 1988、142ページ、ジェイ セバスチャン他による“ダブルフォワードフライバックコンバータの完全な研究”において記載されている。基本的なフライバックトポロジに関して、これは共振回路ではないが、簡単なスイッチを経て発生された一次側AC電圧は、前記トランスの一次側に直接給電する。二次側において、前記トランスの二次巻線と一方向整流素子(ダイオード)とによって各々形成された2つの二次ユニットが存在する。結果として生じる二次電圧を、一方の二次ユニットによって容量的に、他方の二次ユニットによって誘電的にフィルタ処理する。このようにして、一方の(誘電的にフィルタ処理された)出力電圧をパルス幅変調電圧のデューティ比によって、他方の(容量的にフィルタ処理された)出力電圧をパルス幅変調電圧の周波数によって制御することができる。しかし、この“ハードスイッチング”トポロジは、相当なスイッチングロスを有する。
【0011】
【発明が解決しようとする課題】
現代の消費者向けエレクトロニクス装置において、2つの電源電圧を別々に制御することができることは、さらに必要である。
【0012】
したがって、本発明の目的は、費用効果的に実現することができ、それにもかかわらず複数の出力電圧の制御の可能性を提供することができる共振コンバータ及び制御方法を提供することである。
【0013】
【課題を解決するための手段】
この目的は、請求項1において請求した共振コンバータと、請求項13において請求した制御方法と、請求項14において請求したスイッチモード電源とによって達成される。従属請求項は、本発明の有利な実施形態に関する。
【0014】
本発明によって、共振トポロジを提案し、すなわち、共振回路にインバータによって給電し、この共振回路は、例えば直列のキャパシタンス及びトランスの一次側を具える。さらにまた、二次側素子を前記共振回路の一部としてもよい。このような共振トポロジにおいて、前記出力電圧を、一次側AC電圧の周波数によって制御することができる。超臨界的な動作によって、このような共振コンバータによって、ソースにおける前記共振回路が誘導負荷として動作し、ロスのないスイッチング(ゼロ電圧スイッチング)が可能になるようにすることを達成することができる。
【0015】
異なった出力電圧の別々の制御は、本発明によって、トランスの二次巻線と少なくとも1個の整流素子とによって各々形成された2つの形式の二次ユニットを設けることにおいて可能になる。第1二次ユニット(それぞれ第1形式の二次ユニット)及び第2二次ユニット(それぞれ第2形式の二次ユニット)は、ここでは反対の方向を有する。この方向を、ここでは、前記整流素子を有する配線に関係する巻線の向きとして理解すべきである。例えば、反対の形式の2つの二次ユニットを、そうでなければ同じ回路であるが、共通トランスコアにおける巻線の向きが反対であることにおいて識別することができる。2つの二次巻線が同じ巻線方向を有する場合、第1及び第2形式の二次ユニットを、個々の変換された配線によって識別することもできる。配線を、ここでは、1つのブランチ内に組み込まれた好適には一方向整流素子、例えばダイオードである前記整流素子の接続を意味すると理解されたい。
【0016】
2つの反対を向いた形式の二次ユニットにおける区別は、前記2つの二次ユニットがこれらの励起に直接依存して動作することを与える。AC電圧によって動作された場合、前記第1及び第2形式の二次ユニットは、連続的に給電される。本質的に、前記トランスの一次側における正電圧ピーク中、電流は前記第1形式の二次ユニットを流れる。以下に詳細に説明するように、この区別を、多かれ少なかれ電力が前記第1又は第2形式の二次ユニットによって適宜に意味のある励起によって供給される意味のある方法において用いることができる。
【0017】
前記二次ユニットをDC絶縁してもよい。しかし、2つの二次ユニットに関して、共通タッピングポイントを有することもできる。
【0018】
二次電圧は、前記二次ユニットにおいて、前記整流素子による整流の結果として上昇する。これらの二次電圧を、慣例的に(好適には容量的)フィルタ処理の後、出力電圧として直接使用することができる。二次ユニット単独で前記出力電圧を発生するこのような出力を、ここでは直接出力と呼ぶ。しかし、例えば直列に接続された、前記第1形式の二次ユニットの1つ以上の二次電圧と、前記第2形式の二次ユニットの1つ以上の二次電圧とによって出力電圧が降下する“スタック出力”を与えることもできる。これらのようなトポロジの例を、以下に図面の参照と共に説明する。
【0019】
本発明による制御システムは、前記第1及び第2出力電圧の双方を所望の値に、インバータを駆動することによって制御する。前記インバータは、スイッチドAC電圧、好適には、慣例的には一定の振幅のパルス幅変調電圧を発生する。好適には、2つの制御変数を前記2つの出力電圧の別々の制御に使用し、前記制御値は、前記パルス幅変調電圧の波形を予め規定する。種々の提案は、これに関して、一方において、前記パルス幅変調信号の予め決められたスイッチング周波数及びデューティ比と、他方において、正及び負電圧パルスに関する予め規定されたスイッチオン時間とを与える。
【0020】
パルス信号を前記インバータのスイッチを駆動することに関して予め規定することにおいて、前記インバータを前記制御装置の予め規定された値に基づいて駆動する変調器を好適には使用する。低電圧に関して特に、ハーフブリッジが、費用効果的な理由のため、インバータとして好適であり、このハーフブリッジによって、電圧パルスが入力DC電圧から2つのスイッチを交互にスイッチングすることによって発生される。
【0021】
制御を種々のトポロジに関して結合する一般的なモデルを、図面の参照と共に以下に説明する。以後、制御を具体的にすることに関する本発明のいくつかの他の実施形態を考察する。
【0022】
第1提案によれば、制御誤差サイズを、2つの出力電圧に、これら2つの出力電圧の別々の制御に関して決定する。これは、制御差の形成と、好適にはスケーリングも含む。このようなスケーリングは、前記2つの電圧が相当異なっている場合、特に有利である。さらに、合計及び差サイズを前記制御誤差から決定し、前記合計サイズは前記制御誤差の合計に依存し、前記差サイズは前記制御誤差間の差に依存する。“依存する”によって、ここでは、他の動作、例えばスケーリング又は他の動作を前記個々の誤差に、又は合計又は差に、適切なように用いることができることを意味する。合計及び差サイズは、前記制御誤差の差の合計と直接等しくてもよい。最終的に、前記合計サイズは前記パルス幅変調電圧の周波数を予め規定し、前記差サイズはデューティ比を予め規定し、好適には、一次元制御ユニット、例えば、I、PI又はPIDコントローラを使用する。
【0023】
第2提案によれば、2つの電圧を別々に制御し、最初には、上述したように、制御誤差の大きさを、前記2つの制御すべき出力電圧に関して決定する。前記パルス変調電圧の第1正電圧パルスの継続期間に関するデフォルト値を、前記第1制御誤差サイズから、好適には一次元コントローラ、例えばPIDコントローラによって決定し、前記第2制御誤差サイズから、(フルブリッジを使用する場合)負電圧パルスの継続時間に関する、又は、(ハーフブリッジを使用する場合)前記パルス幅変調電圧の値がゼロに等しくなる継続時間に関するデフォルト値を決定する。この制御を、好適には、個々の電圧パルスに関する最短及び/又は最長継続時間のデフォルトと結合し、前記スイッチング周波数の動作範囲を規定する。超臨界領域、すなわち、前記共振周波数/前記共振回路の周波数を超えるスイッチング周波数の領域において、前記正電圧パルスの継続時間を設定することによって、(本質的に、前記負電圧パルス中に給電される)前記第2形式の二次ユニットの二次電圧を制御し、そしてこの逆をするように割り当てを選択すべきである。
【0024】
前記提案を実現する制御ユニットを、多くの異なった様に設計してもよい。集積された又は別個のアナログ又はディジタル回路を考えてもよい。前記制御ユニットを、マイクロプロセッサにおいて動作するディジタル制御アルゴリズムとして完全に実現してもよい。費用効果的な解決法に関しては、誤差サイズ信号の形成用の少なくとも1個の誤差ユニットと、スイッチング信号を発生して前記インバータを制御する少なくとも1個のマルチバイブレータとを具えるアナログ回路が特に好適である。
【0025】
本発明による共振コンバータは、互いに別々の2つの制御可能な出力信号を発生することができる。3つ以上の出力電圧がある用途に必要な場合、これらを2つのグループに分割し、各グループの電圧を他のグループの電圧とは別々に制御することができる。これらのグループの形成を、前記第1形式の二次ユニットが第1グループの出力電圧を発生し、前記第2形式の二次ユニットが第2グループの出力電圧を発生するように行う。代わりに、前記第2グループの出力電圧が、前記第1及び第2形式双方の二次ユニットによって供給される電圧を含むこともできる(スタック出力)。
【0026】
本発明のこれら及び他の態様を、非限定的な例として、以下に説明する実施形態の参照によって明らかにする。
【0027】
【発明の実施の形態】
図1は、共振コンバータ10の第1実施形態の回路図を示す。共振コンバータ10は、非対称スイッチングハーフブリッジとして配置されたインバータ12を具え、インバータ12は、キャパシタンスC及びトランス16の一次側の形態における共振回路14に給電する。図1は、一次側直列インダクタンスLを示す。このインダクタンスは、前記トランスの一次側漏れインダクタンスと、ありうる外部直列インダクタンスとを結合する。トランスの主インダクタンスをLhと呼ぶ。インダクタンスL及びLhは、共振キャパシタンスCと共に、直列共振回路を形成する。簡単にするために、共振キャパシタンスCとトランス16の一次側とを有する回路を、共振回路14と呼ぶ。実際には、明らかに、加えて、前記二次側回路のリアクティブ素子が一次側において給電され、特に共振回路14の共振動作に決定的に影響することができることを見落としてはならない。
【0028】
共振コンバータ10は、2つの二次ユニット20a、20bを有する。前記二次ユニットの各々は、二次巻線18a、18bとダイオードDa、Dbを有する。二次ユニット20a、20bの出力部において存在する二次電圧Va、VbをフィルタキャパシタCa、Cbによって平滑化し、共振コンバータ10の出力電圧(直接出力)を形成する。負荷La、Lbを、コンバータ10の出力部に、伝達抵抗Rによって特徴付けられる端子(例えば、プラグ、ライン等)を経て接続する。
【0029】
図1の例において、二次ユニット20a、20bを、二次巻線18a、18bがトランス16の共通コアにおいて異なった巻線方向を有することにおいて区別する。これを、点による通常のやり方において示す。残りに関して、二次ユニット20a、20bは同一であり、すなわち、個々の二次巻線18a、18bは、個々の整流ダイオードDa、Dbに関して同じ方向を有する。
【0030】
より下の二次ユニット20aを、以下において、第1形式の二次ユニットと呼ぶ。図1における上部に示す二次ユニット20bを、第2形式の二次ユニットと呼ぶ。上述したように、同じ配線を有する前記第1及び第2形式の二次ユニット間の違いは、反対の巻線方向から成る。同じ効果を、巻線方向が同じ場合、配線を交換する、すなわち、ダイオードDa又はDbを、各々、他の配線端に接続する、又は、その電極を交換する(図示せず)ことにおいて得ることもできる。この効果は、第1形式の二次ユニット20aによって、電流がダイオードDaを本質的に正電圧スイング中に流れることであり、これは、第2形式の二次ユニット20bにおける負電圧スイング中の場合である。これを、各々の二次ユニット20a、20bにおいて、個々の二次巻線18a、18bにおける電圧を半波整流することにおいて達成し、第1形式の二次ユニット20aにおいて、電流がダイオードDaは正電圧スイングに関してのみ流れることができ、ダイオードDaは負電圧スイングに関してブロックする。前記第2形式の二次ユニットに関しては、逆が保たれる。
【0031】
インバータ12は、動作時に、例えばFETによって実現されるその2個の制御されるスイッチの交互のスイッチングによって発生されるAC電圧を発生する。インバータ12を、次に、パルス幅変調スイッチドAC電圧を共振システム14に印加するように駆動する。
【0032】
インバータ12を、出力電圧Va、Vbを制御する制御システム22によって駆動する。出力電圧Va、Vbを測定する。前記出力電圧を、図1に示すような個々の出力端子において測定することができる。代わりに、前記電圧を、前記負荷において検知することができる。特に、より大きい電流において、これはより正確である。
【0033】
電圧Va、Vbの測定の結果を、制御システム22に測定信号VA、VBとして供給する。制御システム22は、測定された電圧信号VA、VBを設定値(図示せず)と比較し、インバータ12を、出力電圧Va、Vbが前記所望の設定値に調節されるように駆動する。
【0034】
この目的のため、インバータ12を制御システム22によって、パルス幅変調電圧を発生するように駆動する。このようなパルス幅変調電圧の波形を、図4aにおいて上部に示す。長さt0の期間において、最初に、前記ハーフブリッジの上側スイッチを閉じ、振幅+VZを有する正電圧パルスが起こるようにする。このパルスは、継続時間tsHを有する。その後、前記上側スイッチを開き、下側スイッチを閉じ、ゼロ電圧が継続時間tsLの間に印加されるようにする。個々のDC電圧によって予め規定される一定振幅VZによって、前記パルス幅変調電圧の波形は、スイッチング周波数f、f=1/t0と、デューティ比δ、δ=tsH/t0とによって決定される。代わりに、前記波形は、時間tsH、tsLを予め規定することによっても完全に決定される。図4aの例において、デューティ比は50%である。
【0035】
図4aに示す波形は、明らかに理想化してある。実際には、逆転中に、短絡を回避するためのデッドタイムが存在し、このデッドタイムにおいて、前記スイッチのいずれも閉じない。加えて、パルスエッジは、実際には瞬時に立ち上がることはできず、有限の立ち上がり時間を有する波形が存在し、電圧パルスは、本質的に台形になる。
【0036】
図1に示す共振コンバータによって、2つの電圧Va、Vbを別々に制御することができる。2つの電圧Va、Vbを、反対の形式の2つの二次ユニット20a、20bによって直接供給する。したがって、以下に説明するように、前記パルス幅変調電圧のパラメータ(f、δ又はtsH、tsLそれぞれ)の適切な省略時設定は、出力電圧Va、Vbを、互いに関係なく個々の公称値に制御することができるように、駆動を予め規定することができる。
【0037】
上述したように、コンバータ10は、直列キャパシタCを有する共振トポロジである。このトポロジは、負荷依存共振周波数を有し、無負荷状態における共振周波数は、使用される構成要素に基づいて少なくとも近似的に知られる。前記回路を、個々の共振周波数より明らかに上であるスイッチング周波数fにおいて動作する。この動作範囲において、すでに電圧のいくぶんの増加がある。共振回路14を、前記共振周波数により近くなる、より低い周波数で駆動することによって、共振の増加がより強くなり、出力電圧Va、Vbは上昇するようになる。2つの反対の形式の二次ユニット20a、20bによって、デューティ比δを追加で予め規定することによって、出力電圧Va、Vbを互いに関して上昇又は下降させることができる。これを、図4a−4cの参照と共にさらに説明する。
【0038】
図4a、4b、4cは、出力電圧Va及びVbの制御を、周波数f又は周期t0=1/f及びデューティ比δの適合によって可能にする方法を示す。インバータ12の出力電圧(共振回路14における励起電圧)の波形と、キャパシタCを流れる電流Icの波形と、トランス16の主インダクタンスを流れる磁化電流Ihの波形と、二次巻線18aによって流される電流Iaの波形と、二次巻線18bによって流される電流Ibの波形とを、2つの期間t0に関して示す。図4a、4b、4cに示す波形を、前記2つの出力を互いに無関係に制御する原理を説明するためにのみ使用すべきである。示した波形は、すべての巻線比が1に等しく、2つの二次ユニット20a、20bの大きさが同じである、すなわち、Va=Vbであるという仮定の下での各々の大きさを示す。さらに、出力側における直列インダクタンスを、同一であるとする。
【0039】
図4aは、周波数f0=1/t0をfrの1.47倍とし、frを無負荷コンバータ10の共振周波数とし、
【数1】
Figure 0004310071
として近似的に決定し、CをキャパシタCのキャパシタンスとし、Lを一次側直列インダクタンスの値とし、Lhをトランス16の主インダクタンスの値とした動作状態を示す。上記式は、しかしながら、出力側コンバータが無負荷の場合に関してのみ有効である。出力側負荷の場合において、出力側漏れインダクタンスの1つと、一般的に前記負荷に応じたシフトも存在する。負荷時コンバータ10に関する正確な共振周波数を決定することは、比較的費用が掛かる。したがって、上記で示した共振周波数frのみを、前記周波数に関する基準の大きさとして使用する。
【0040】
動作の場合におけるデューティ比を、図4aに従って50%であると選択する。時間空間tsH及びtsL中に(実質的に)同一の半波を有するIa及びIbの電流特性を、各々、動作のこの状態における時間空間tsH又はtsLにおいて発生する。図4bによる動作の状態により、周波数f0=1/t0はfrの1.53倍に増加する。図4aにおける動作の状態に比べて、電流特性Iaは、本質的に同じままである。電流特性Ibは、ここで、振幅が減少した半波を有し、二次巻線18bによって第2二次ユニット20bの出力部に運ばれる電力が減少するようになる。図4cは、frの1.55倍に等しい周波数f0=1/t0と65%デューティ比とによる動作を示す。この場合において、電流Iaは本質的にゼロに減少し、Ibの半波の振幅は図4と比べて増加し、この場合において、二次巻線18aは電力を第1二次ユニット20aに運ばなくなり、二次巻線18bは、図4bと比べて増加した電力を二次巻線18bから二次ユニット20bの出力部に運ぶようになる。
【0041】
図4a−4cによる動作状態の例は、図1に示すコンバータ回路によって、種々のコンバータ出力の異なった負荷に対する高度な可変調節が可能になることを示す。このようなコンバータにより、特に、現代のマイクロプロセッサにおいて必要とされるような低出力電圧及び高出力電圧の場合においても、出力電圧の小さな公差を達成することができる。
【0042】
図2は、共振コンバータ30を第2実施形態において示す。コンバータ30は、図1のコンバータ10と大部分類似した構造を有し、同様の要素を同様の参照符によって示す。以下において、したがって、違いのみを考察する。
【0043】
図1のコンバータ10と異なり、図2のコンバータ30による出力電圧を、前記回路の異なった点から分岐する。第1出力電圧Vaを、双方の場合において、第1二次ユニット20aの出力電圧とする(直接出力)。しかしながら、コンバータ20に関して、第2出力電圧Vabを使用し、この第2出力電圧Vabは、前記第1二次ユニット及び第2二次ユニット20bの直列結合を経て降下する。この形態の出力を、“スタック”出力と呼ぶ。このようなスタック出力の使用は、きわめて高い電力レベルがこの出力において必要な場合、特に有利である。出力電圧Vabを、追加のフィルタキャパシタンスCabによってフィルタ処理する。
【0044】
コンバータ30の第2実施形態においても、2つの出力電圧、この場合においてVa、Vabを、制御システム22によって別々に制御することができる。
【0045】
図1及び図2に示す第1及び第2実施形態は、別々に制御することができる2つの出力電圧のみを有する個々のコンバータを示す。しかしながら、実際には、しばしば、複数の出力電圧、例えば、10以上の異なった出力電圧を発生することができるコンバータが必要である。これは、点によって示したように二次巻線および整流素子を具える他の二次ユニットを追加した図1及び2からのコンバータ10及び30によって各々可能である。前記出力電圧を2つのグループに分け、第1グループの出力電圧を前記第1形式の二次素子において発生し、第2グループの出力電圧を前記第2形式の二次素子において発生する。前記2つのグループの出力電圧を、他のグループと別々に制御することができる。しかしながら、前記グループ内において、前記出力電圧は、個々の前記二次巻線の巻線数比によって強く相関する。したがって、前記第1グループの1つの電圧と、前記第2グループの1つの電圧のみを制御に関して考慮する。他の電圧を、“一緒に制御する”。
【0046】
図1及び2に示す二次ユニットの配線の種々の方法を、ここで結合してもよい。図3は、コンバータ40の個々の第3実施形態を例として示す。このコンバータ40は、3つの負荷La、Lb、Lcに個々の出力電圧Va、Vb、Vcに供給する。出力電圧Va及びVbは、二次素子20a、20bの二次電圧に各々対応する。加えて、“スタック出力”は、前記第1形式の二次ユニットである二次ユニット20cと、前記第2形式の二次ユニットである二次ユニット20bとの直列接続によって電力を供給される出力電圧Vcを発生する。示した例において、出力電圧Va、Vbのみを、制御システム22によって測定し、制御する。負荷Lcに供給する出力電圧を、実際的には、“一緒に制御する”。代わりに、他の出力電圧を、例えば、Vc及びVb又はVa及びVcを(直接)制御してもよい。
【0047】
制御システム22を、以下により詳細に説明する。この制御システムの基本的構造をあらわすブロック図を図5において示す。
【0048】
制御システム22は、2つの電圧測定信号を、2つの入力V1、V2においてピックアップする。例えば、コンバータ10の第1実施形態において、信号VA、VBを測定し、コンバータ30の第2実施形態において、測定信号VA及びVABを測定する。その後、これらの信号を比較し、個々の基準電圧V1ref,V2refとの制御差を形成するようにする。これらを、基準電圧源又は制御システム22におけるプリセット値によってプリセットしてもよい。代わりに、これらのプリセット値を入力信号として選ぶこともできる。これに続いて、係数c1及びc2で標準化し、これらの係数を、好適には、c1/c2=V2ref/V1refとなるように設定する。このスケーリングは、互いに大きく異なる2つの設定値V1ref、V2refをプリセットできるようにする。このようなスケーリングなしでは、より大きな設定値からの比例的にわずかな制御偏差は、前記制御にきわめて強い影響を有し、より小さい設定値からの比例的に重大な偏差は、わずかな影響しか持たない。このようにしてスケーリングされた偏差を、Δa、Δbと呼ぶ。
【0049】
これらのスケーリングされた制御偏差Δa、Δbを、デカップリングユニット50において減結合する。“減結合”は、ここでは、偏差Δa、Δbにおける結合された情報の、一方において周波数に属し、他方においてデューティ比に属する情報への再分として理解される。数学的に、これを、制御偏差(Δa,Δb)のベクトルの減結合行列Aによる掛け算によって表すことができる。前記減結合動作の結果は、大きさΔf及びΔδであり、これらを、周波数(Δf)及びデューティ比(Δδ)の適合に関するプリセット値として各々使用する。
【0050】
前記デカップラの2つの出力値Δf及びΔδを、各々、一次元コントローラ52、54に供給する。コントローラ52は、前記パルス幅変調電圧のスイッチング周波数fを制御し、コントローラ54は、前記パルス幅変調電圧のデューティ比δを制御する。
【0051】
コントローラ52、54の構造を、図5a及び5bにおいて、ブロック図の形態において示す。周波数に関するプリセット値Sfを供給するコントローラ52と、デューティ比に関するプリセット値Sδを供給するコントローラ54の双方は、制御補正を加えた周波数に関する初期値f0及びデューティ比に関する初期値δ0を利用する。デューティ比に関するプリセット値Sδを供給するコントローラ54の場合において、前記制御補正を、I、PI又はPIDコントローラによって、信号Δδから決定し、例えば50%をプリセット値δ0に加える。周波数に関するコントローラ50は、同じ構造を有する。ここでも、補正を、大きさΔfから、I、PI又はPIDコントローラによって決定し、この補正を、初期値f0に加える。使用する前記コントローラの整数部分は、持続する制御誤差を、前記プリセット値f0又はδ0の精度が各々決定的にならないように補正してもよい。
【0052】
デューティ比コントローラ54においても、最初に一定係数c3による乗算がある。この係数を、ここでは、前記制御方法を制御すべき個々の利用可能なコンバータ回路に応じて規定するために使用する。図5において、測定信号V1が前記第1形式の二次ユニットの出力電圧であり、測定信号V2が前記第2形式の二次ユニットの出力電圧である場合、定数c3は、値1を採用する。この比率を逆にした場合、すなわち、V1が前記第2形式の二次ユニットの出力電圧であり、V2が前記第1形式の二次ユニットの出力電圧である場合、定数C3は値−1を有する。
【0053】
コントローラ52、54のプリセット制御値は、インバータ12に関する駆動信号を発生する変調器Mを駆動する。図1−3に示す例において、インバータ12は、ハーフブリッジドライバを有する非対称スイッチングハーフブリッジを具える。前記ハーフブリッジドライバにパルス信号を供給し、前記上側スイッチが、前記パルス信号のハイレベルの場合において閉じ、ロウレベルの場合において、前記ハーフブリッジの下側スイッチが閉じ、前記上側スイッチが開く。変調器Mは、このようなパルス信号を、スイッチング周波数に関して予め規定されたコントローラ52と、デューティ比に関して予め規定されたコントローラ54とに従って発生する。
【0054】
図5において示すブロック図は、一般的に、前記2つの電圧の制御を、前記パルス幅変調電圧の周波数及びデューティ比を予め規定することによって保つ。以下の例において示すように、制御された電圧V1、V2の形式に応じて、異なったデカップラ50を使用する。
【0055】
例1:2つの独立した“直接”出力電圧。
反対の形式の2つの二次ユニット20a、20bの二次電圧が出力電圧Va、Vbを直接形成する、図1に示すようなコンバータ10の第1実施形態に関して、周波数コントローラ52におけるプリセット値Δfを、スケーリングされた制御偏差Δa、Δbの合計とし、デューティ比コントローラ54の予め規定された値Δδを、これらスケーリングされた制御偏差間の差とする。この場合においてデカップラ50によって行われる動作を行列乗算として表すと、
【数2】
Figure 0004310071
を減結合行列として使用する。コントローラ54の定数c3の上述した選択に注意すべきである。
【0056】
例2:“直接”出力電圧、“スタック”出力。
出力電圧Vaを前記第1形式の二次ユニット20aによって直接得、しかしながら、第2出力電圧Vabを、前記第1形式の二次ユニット20aと共通の前記第2形式の二次ユニット20bによって得る(スタック出力)、図2に示すようなコンバータ30の第2実施形態に関して、好適には、デカップラの偏差関数を使用する。スケーリングされた制御偏差Δa(スタック出力の制御偏差)を、周波数コントローラ52に関するプリセット値Δfとして使用すべきであり、デューティ比コントローラ54に関するプリセット値Δδとして、スケーリングされた制御偏差Δb(直接出力の制御偏差)を使用すべきである。行列として書くと、単位行列、
【数3】
Figure 0004310071
に等しい減結合行列を展開する。
【0057】
図6は、図5の一般的な制御システム22の実現化に関する第1実施形態を示す。上述した第1実施形態によれば、制御システム60は、図1に示すようなコンバータ10の第1実施形態の出力電圧Va、Vbに関する測定信号VA、VBによって動作する。これら2つの出力電圧に関して、固定された設定値VAref、VBrefを内部で規定する。測定された電圧VA、VBを、前記設定値から減じ、前記制御差を得る。その後、
【数4】
Figure 0004310071
を保持して係数c1、c2によるスケーリングを行う。このようにスケーリングされた制御偏差の和を形成し、PIDコントローラ62(周波数コントローラ)に供給する。コントローラ62の構造は、図5aの参照と共に上述した。VAは前記第1形式の二次ユニットの出力電流の測定信号であり、VBは前記第2形式の二次ユニットの出力電流の測定信号であるため、内部定数c3は値1を有する。
【0058】
同時に、差を形成し、PIDコントローラ64(デューティ比コントローラ)に供給する。デューティ比コントローラ64は、図5bに対応する。周波数コントローラ62は、変調器Mに、変調器Mによって発生されるパルス信号の周波数fを予め規定する値を供給する。デューティ比コントローラ64は、信号68を変調器Mに供給し、この信号は、変調器Mによって発生されるパルス信号のデューティ比δを予め規定する。変調器Mは、インバータ12をドライバによって駆動し、前記インバータが、周波数及びデューティ比に関して個々の予め規定された値を有するパルス幅変調信号を発生するようにし、このインバータによって共振回路14を励起する。
【0059】
例えば、コンバータ10の出力部において測定された出力電圧VAが予め規定された設定値VArefより低い場合、これは、(正の)制御差を招く。前記制御差の和も正であるため、一方において、コントローラ62によって設定された周波数は減少する。他方において、前記制御偏差の差は負であるため、変調器Mによって発生されたパルス信号のデューティ比であるコントローラ64によって予め規定されたデューティ比も減少する(したがってインバータ12の出力電圧も低下する)。図4bに示すように、これは、出力電圧Vaが出力電圧Vbと比べて上昇することを伴う。
【0060】
図7は、図5に示す一般的な制御システム22の実現化に関する第2実施形態を示す。制御システム70を、図2に示すようなコンバータ30の第2実施形態の制御に使用し、このコンバータにおいて、出力電圧Vaを“直接”出力し(出力電圧Vaを前記第1形式の二次ユニット20aの出力電圧とする)、しかしながら、第2出力電圧Vabは、電圧が前記第1形式の二次ユニット20aと前記第2形式の二次ユニット20bとの直列接続によって降下する“スタック”出力における出力電圧である。出力電圧Va、Vabを測定し、制御システム70に、測定信号VA、VABとして供給する。前記電圧を、設定値VAref、VABrefと各々比較する。この特別な場合において、前記減結合を省くため(図5の第2例、減結合行列は恒等行列である)、スケーリングは必要ない。前記スタック出力の電圧Vabの制御偏差を、周波数fを制御するPIDコントローラ72に直接供給する。出力電圧Vaの制御偏差を、デューティ比δの予め規定された値に関するPIDコントローラ74に直接供給する。前記コントローラの構造は、上述したコントローラ52、54の構造に対応する。
【0061】
例えば、前記スタック出力における電圧Vabが設定値VABrefより下に降下する場合、これは、PIDコントローラ72に供給される正の制御差を招く。これは、周波数fの減少を招き、共振回路14の共振周波数により近い給電周波数を使用することによって、前記2つの出力電圧と、したがって前記スタック出力における出力電圧Vabとが上昇するようになる。出力電圧Vaの予め規定された設定値VArefからの結果として生じる偏差を、その後、この制御偏差を供給されたデューティ比コントローラ74によって、デューティ比δの増加によって調節する。
【0062】
図8は、制御システム80の第3実施形態を示す。図6及び7の制御システム60、70と異なり、制御システム80は、前記パルス幅変調電圧の周波数及びデューティ比を、インバータ12の駆動の予め決められた値に関するパラメータとして使用せず、前記個々のスイッチがインバータ12のハーフブリッジの上側又は下側スイッチに関するtsH、tsLを調節する。制御システム80の構造はきわめて単純である。それにもかかわらず、図1のコンバータ10を、この構造で有効に制御することができる。
【0063】
最初に、予め規定された設定値VAref、VBrefからの制御偏差を、2つの出力電圧Va、Vbに関して、測定信号VA、VBから決定する。このようにして形成された測定電圧VAの制御偏差を、コントローラ84に、下側スイッチtsLに関するスイッチ時間に関する予め規定された値として供給する。同様に、測定電圧VBからの制御偏差を、コントローラ82に、上側スイッチtsHのスイッチ時間の予め規定された値として供給する。次に、変調器Mは、パルス信号を予め規定された値tsH、tsLから発生し、インバータ12を駆動する。
【0064】
スイッチタイムtsL、tsHに関するコントローラ82、84は、tsL、tsHに関する最小及び/又は最大値に関する予め規定された値を任意に発生してもよい。結果として、最小及び最大値を前記スイッチング周波数に関して予め規定し、動作が常に規定された周波数範囲内で起こるようにする。
【0065】
以下に、制御システム80の動作に関する例を与える。
【0066】
図1のコンバータ10の出力電圧Vaの測定電圧VAが予め規定された設定値VArefより下に降下した場合、コントローラ84に供給される(正の)制御さが存在する。次に、コントローラ84は、前記パルス幅変調電圧の“負”電圧パルスに関するスイッチ継続時間tsH、すなわち、ハーフブリッジを使用する場合、電圧がゼロの時間空間を増加する。図4a−4cと個々の説明とからわかるように、これは、出力Vaにおける電力の増加を導き、前記制御偏差を調節できるようにする。
【0067】
すでに述べたように、上述したシステムを制御する実施形態の例を、きわめて異なった方法において実現してもよい。さらに特に、前記制御アルゴリズムを、単一のプロセッサ又はマイクロプロセッサにおいて動作するプログラムとして実現してもよい。以下に、図8の制御システム80の例を、図9の参照と共に説明し、この制御システムをきわめて簡単なアナログ回路として配置した。このアナログ回路の個々の構成要素は、いずれにせよ費用効果的な標準モジュールとして利用可能であるため、きわめて費用効果的な実現がこの方法において可能である。
【0068】
図9は、インバータ12を駆動するパルス信号を発生する回路90を示し、前記パルス信号は、図1のコンバータ10の出力電圧の測定信号VA、VBに基づく。
【0069】
測定電圧としてアナログ形態において利用可能な測定信号VA、VBを、最初に、各々、入力部92におけるインピーダンスZ1a、Z2a、又は、入力部94におけるZ1b、Z2bの形態における分圧器によってスケーリングする。このようなスケーリングは、特定の値においてのみ利用可能な内部基準電圧を使用する場合、必要である。測定信号VA、VBを、前記インピーダンスの適切な選択によってフィルタ処理してもよい。
【0070】
入力部92、94の各々においてダウンコンバートされた電圧を、最初に、個々の誤差増幅器に入力する。これらの増幅器を、点線の箱によって示し、これらは、集積されたモジュールとして利用可能である。これらを、“431”で示す集積された標準回路とする。これらの中に含まれる演算増幅器の反転入力部において、内部基準電圧VAref、VBrefが利用可能であり、これらと、スケーリングされた測定電圧VA、VBとを、インピーダンスZ1a、Z2a及びZ1b、Z2bによって各々比較する。誤差増幅器96に、インピーダンスZ3a、Z3bを経てフィードバックし、調節可能(PID)制御動作が、インピーダンスZ3a、Z3bの値によって展開するようにする。このようにして、図9における電流i1a及びi1bの値を制御する。
【0071】
電流i1a又はi1bがLEDを流れる光結合素子98を、誤差増幅器96に常に結合する。しばしば電源の用途に規定される、入力部92、94を有する回路90の右手部分の、回路90の左手部分からのDC絶縁を、しばしば光結合素子98によって行う。光結合素子98の各々は、電流i1a及びi1bの形態におけるアナログ信号を伝送する。代わりに、DC絶縁を、回路90全体を前記二次側において配置し、(ディジタル)パルス信号のみをインバータ12に(ディジタル)光結合素子を経て伝送することにおいて達成してもよい。
【0072】
図9における回路90の左側において、集積タイマモジュール100(例えば、“555”と呼ばれる既知の集積モジュールを使用してもよい)を、マルチバイブレータとして配置し、このマルチバイブレータは、ハイ及びロウ状態のパルス信号をそのQ出力部において発生する。図9による回路において、電流i1a、i1bと、光結合素子98の反対側のi2a、i2bは、各々、(i2aによって予め規定された)ロウレベルの時間と、(i2bによって予め規定された)ハイレベルの時間とを示す。
【0073】
示した回路において、Q出力部におけるロウ出力レベルによるハイレベルへの切り替え、又はその逆までの時間を、キャパシタンスCa、Cbの充電時間によって予め規定する。これらのキャパシタンスCa、Cbにおける電圧を、各々、タイマモジュール100内の内部構成要素によって、ダウンコンバートされた電源電圧102と比較する。比較した電圧が調和した場合、スイッチングパルスを発生し、フリップフロップが反転するようにする。次に、放電出力部(図9においてスイッチとして表す)を経て、前記キャパシタンスを急に放電する(Ca)か、電源電圧102に充電する(Cb)。
【0074】
次に、キャパシタンスCaを、電流i2aによって充電する。これと同時に、キャパシタンスCaの充電も、電源電圧102に接続された抵抗Raを経て行う。同様に、キャパシタンスCbを、i2bを経てグランドに放電し、同時に、抵抗Rbによる放電も存在する。このようにして、ハイ又はロウに関する最大スイッチオン時間と、したがって最低周波数とを、抵抗Ra、Rbとによって予め規定することができる。これを、時定数Ra*Ca又はRb*Cbから計算することもできる。
【0075】
図9に示す回路からのいくつかの電圧の波形を図10に示す。図9のキャパシタンスCaにおける電圧VCaと、キャパシタンスCbにおける電圧VCbとの各々の周期的波形を示す。図10の下部において、マルチバイブレータモジュール100の出力部Qにおけるパルス信号VQを最終的に示す。前記電圧を、電源電圧V0に対してスケーリングして示す。
【0076】
図10は、キャパシタンスCaにおける電圧を、電流i2aによって、2/3V0まで充電する方法を示す。2/3V0において、マルチバイブレータモジュール100の上側比較器は、パルスが前記フリップフロップの反転R入力部において放出されるように切り替わる。次に、パルス信号電圧VQは、ハイからロウレベルにジャンプする。次に、キャパシタンスCaを、前記放電出力部(図9においてスイッチとして示す)を経て急に放電する。VQがハイレベルを有する間は、元は電源電圧V0の値に充電されたキャパシタンスCbは、電流i2bによって放電される。1/3V0に達した場合、前記フリップフロップは、反転S入力部のスイッチングパルスによって反転し、VQが再びロウレベルに変化するようになる。
【0077】
このようにして、図10に示す動作において、電流i2a、i2bは、キャパシタンスCa、Cbの各々の充電又は放電曲線と、個々のスイッチングしきい値に達するまでの期間とを決定する。
【0078】
回路90による制御の動作を、以下に例を参照して説明する。
【0079】
最初に、各々分圧器Z1a、Z2a及びZ1b、Z2bによってダウンコンバートされた測定電圧VA、VBが、誤差増幅器96に含まれる演算増幅器の反転入力部において存在する内部基準電圧VAref、VBrefと等しいとする。例えば、出力電圧Vbが上昇し、ダウンコンバートされた測定電圧VBがVBrefを超えた場合、電流i1bは増加し、したがって電流i2bも増加する。これは、キャパシタンスCbをより速く放電させ、ハイレベルのスイッチオン時間を短くさせる。これは、Q出力部におけるパルス信号を、周波数及びデューティ比に関してパルス幅変調電圧とみなす場合、周波数の上昇と、同時に、デューティ比の減少とを生じる。結果として、前記2つの出力電圧は(上昇した周波数の結果として)降下するが、VaはVbと比較して(減少したデューティ比の結果として)上昇する。このようにして、前記制御偏差を調節する。
【0080】
この点で、本発明を、共振コンバータ及び共振コンバータの制御方法を提案することにおいて要約してもよい。前記共振コンバータは、トランスを有する共振回路を具え、この回路に、スイッチドAC電圧、好適にはパルス幅変調電圧を、インバータによって供給する。前記回路は、前記トランスの二次巻線と少なくとも1個の整流素子(ダイオード)を各々が具える複数の二次ユニットを具える。前記二次ユニットを第1形式及び第2形式の二次ユニットに再分し、前記第1形式の二次ユニットと前記第2形式の二次ユニットとは、反対の方向を有する。反対の形式の二次ユニットは、好適には、同じ配線で異なった巻線方向を有するか、反対の配線で同じ巻線方向を有する。前記共振コンバータは、少なくとも2つの出力電圧を発生し、第1出力電圧は、前記第1二次ユニットの電圧に依存し(直接出力)、第2出力電圧は、前記第2二次ユニットの電圧か、前記第1及び第2二次ユニットの電圧(スタック出力)かのいずれかに依存する。前記コンバータは、前記2つの出力電圧を別々に制御する制御システムを追加で有し、これらの出力電圧をインバータ駆動によって予め規定する。種々の実施形態において、前記インバータは、発生すべきパルス幅変調電圧の周波数及びデューティ比又はパルス継続時間のいずれかの予め規定された値を受け、設定値としてのこれら2つのパラメータによって、前記2つの出力電圧を互いに無関係に制御できるようにする。異なったコントローラを、異なった出力構成に関して提案する。
【図面の簡単な説明】
【図1】 共振コンバータの第1実施形態の回路図である。
【図2】 共振コンバータの第2実施形態の回路図である。
【図3】 共振コンバータの第3実施形態の回路図である。
【図4a】 理想化された仮定の下での図1に示す回路の電流及び電圧の波形を表す図である。
【図4b】 bはより低いデューティ比及び上昇した周波数でのaの波形に対応する図である。
【図4c】 cはより高いデューティ比及びさらに上昇した周波数でのa及びbに示すような図である。
【図5】 制御装置の一般的なブロック図であり、aは周波数コントローラのブロック図であり、bはデューティ比コントローラのブロック図である。
【図6】 制御システムの第1実施形態を示す図である。
【図7】 制御システムの第2実施形態を示す図である。
【図8】 制御システムの第3実施形態を示す図である。
【図9】 図8に示す制御システムの可能な実現の回路図である。
【図10】 図9の電圧の波形を表す図である。
【符号の説明】
10 共振コンバータ
12 インバータ
14 共振回路
16 トランス
18a、18b 二次巻線
20a、20b 二次ユニット
22 制御システム

Claims (14)

  1. 第1及び第2のスイッチを有しAC電圧を発生するインバータと、前記AC電圧を印加され、少なくとも1個のキャパシタ及び少なくとも1個のトランスを具える共振回路と、前記トランスの少なくとも1つの二次巻線及び少なくとも1個の整流素子によって各々形成されて設けられた少なくとも2つの二次ユニットとを具える共振コンバータにおいて、前記2つの二次ユニットの第1二次ユニット及び第2二次ユニットが反対の巻線方向を有し、
    少なくとも2つの出力電圧を供給し、これら2つの出力電圧のうち第1出力電圧を前記第1二次ユニットによって供給し、第2出力電圧を前記第2二次ユニットか、前記第1及び第2二次ユニットによって供給し、
    加えて、前記少なくとも2つの出力電圧の基準電圧からの偏差に基づき定められた周波数及びデューティ比を有する単一のパルス幅変調電圧により、前記第1及び第2のスイッチを別個に制御し、それにより前記第1及び第2出力電圧を制御する制御システムを設けたことを特徴とする共振コンバータ
  2. 請求項1に記載の共振コンバータにおいて、2つの形式の二次ユニットを設け、第1形式の前記二次ユニットは、第2形式の前記二次ユニットと反対の巻線方向を有することを特徴とする共振コンバータ。
  3. 請求項2に記載の共振コンバータにおいて、
    2つのグループの出力電圧を供給し、各グループが1つ以上の出力電圧を含み、
    前記出力電圧の第1グループを、前記第1形式の1つ以上の二次ユニットによって供給し、
    前記出力電圧の第2グループを、前記第2形式の1つ以上の二次ユニットか、前記第1及び第2形式の二次ユニットの双方かによって供給することを特徴とする共振コンバータ。
  4. 請求項3に記載の共振コンバータにおいて、
    前記第1グループの出力電圧及び第2グループの出力電圧を設定値に制御する前記制御システムを設けたことを特徴とする共振コンバータ。
  5. 請求項1ないし4のいずれか1項に記載の共振コンバータにおいて、前記インバータをパルス信号によって駆動し、前記共振回路に供給するパルス幅変調電圧を供給するようにしたことを特徴とする共振コンバータ。
  6. 請求項5に記載の共振コンバータにおいて、
    前記制御システムを、前記パルス幅変調電圧の波形を予め規定する2つの設定値を供給するように配置したことを特徴とする共振コンバータ。
  7. 請求項6に記載の共振コンバータにおいて、前記2つの設定値を、第1及び第2電圧パルスに関するスイッチオン時間とし、
    このスイッチオン時間の間、第1電圧パルスが正であり、前記第2電圧パルスがゼロか負であることを特徴とする共振コンバータ。
  8. 請求項6に記載の共振コンバータにおいて、
    前記2つの設定値をスイッチング周波数及びデューティ比としたことを特徴とする共振コンバータ。
  9. 請求項8に記載の共振コンバータにおいて、
    前記制御システムを、制御すべき前記第1及び第2出力電圧に関する第1及び第2制御誤差サイズを決定し、
    前記制御誤差サイズの合計に依存する累積的な合計と、前記制御誤差サイズの差に依存する累積的な差とを計算するように配置し、
    前記累積的な合計を前記パルス幅変調電圧の周波数に関するコントローラに供給し、前記累積的な差を前記パルス幅変調電圧のデューティ比に関するコントローラに供給することを特徴とする共振コンバータ。
  10. 請求項8に記載の共振コンバータにおいて、
    前記制御システムを、制御すべき前記第1及び第2出力電圧に関する第1及び第2制御誤差サイズを決定するように配置し、
    前記第1制御誤差サイズを前記パルス幅変調電圧のデューティ比に関するコントローラに供給し、
    前記第2制御誤差サイズを前記パルス幅変調電圧の周波数に関するコントローラに供給することを特徴とする共振コンバータ。
  11. 請求項7に記載の共振コンバータにおいて、
    前記制御システムを、制御すべき前記第1及び第2出力電圧に関する第1及び第2制御誤差サイズを決定するように配置し、
    前記パルス幅変調電圧の第1電圧パルスの継続時間に関する予め規定された値を前記第1制御誤差サイズから決定し、
    前記パルス幅変調電圧の第2電圧パルスの継続時間に関する予め規定された値を前記第2制御誤差サイズから決定することを特徴とする共振コンバータ。
  12. 請求項7又は11に記載の共振コンバータにおいて、
    前記制御システムを、誤差サイズ信号を形成する少なくとも2つの誤差ユニットと、
    パルス信号を発生し、前記インバータを制御する少なくとも1つのマルチバイブレータとを具えるアナログ回路として実現し、
    前記インバータによって発生されたパルス幅変調電圧のパルスのパルス継続時間を、前記誤差サイズ信号に応じて予め規定することを特徴とする共振コンバータ。
  13. 共振コンバータ制御方法において、
    前記コンバータが、AC電圧を発生する少なくとも1つのインバータと、
    少なくとも1個のキャパシタ及び少なくとも1個のトランスを具え、前記AC電圧を供給される共振回路とを具え、
    前記トランスの少なくとも1つの二次巻線及び少なくとも1個の整流素子によって各々形成された少なくとも2つの二次ユニットを設け、
    前記2つの二次ユニットの第1二次ユニット及び第2二次ユニットが反対の巻線方向を有し、少なくとも2つの出力電圧を発生し、これら出力電圧のうちの第1出力電圧を前記第1二次ユニットによって供給し、第2出力電圧を、前記第2二次ユニットか、前記第1及び第2二次ユニットかによって供給し、
    前記インバータの駆動を、前記第1及び第2出力電圧を公称値に制御することによって予め規定することを特徴とする共振コンバータ制御方法。
  14. 幹線に接続し、中間DC電圧を得る電源入力回路と、
    前記中間DC電圧を供給される請求項1ないし12のいずれか1項に記載の共振コンバータとを具えるスイッチモード電源。
JP2002134408A 2001-05-09 2002-05-09 共振コンバータ用制御装置 Expired - Fee Related JP4310071B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10122534:2 2001-05-09
DE10122534A DE10122534A1 (de) 2001-05-09 2001-05-09 Resonanter Konverter
DE10143251A DE10143251A1 (de) 2001-09-04 2001-09-04 Regelvorrichtung für einen resonanten Konverter
DE10143251:8 2001-09-04

Publications (2)

Publication Number Publication Date
JP2003018838A JP2003018838A (ja) 2003-01-17
JP4310071B2 true JP4310071B2 (ja) 2009-08-05

Family

ID=26009257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134408A Expired - Fee Related JP4310071B2 (ja) 2001-05-09 2002-05-09 共振コンバータ用制御装置

Country Status (3)

Country Link
US (1) US6822881B2 (ja)
EP (1) EP1257048B1 (ja)
JP (1) JP4310071B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7573729B2 (en) * 2003-11-13 2009-08-11 Koninklijke Philips Electronics N.V. Resonant power LED control circuit with brightness and color control
JP4627150B2 (ja) * 2004-05-24 2011-02-09 三菱電機株式会社 信号処理装置
US20050288739A1 (en) * 2004-06-24 2005-12-29 Ethicon, Inc. Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry
CN101065994B (zh) * 2004-11-29 2014-04-02 皇家飞利浦电子股份有限公司 用于led操作的方法和驱动电路
KR101050025B1 (ko) * 2005-10-03 2011-07-19 산켄덴키 가부시키가이샤 다출력 스위칭 전원 장치
JP5174819B2 (ja) * 2006-09-07 2013-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 大電力led照明のための低電圧二次側制御を有する共振ドライバー
AU2006352157B2 (en) * 2006-12-21 2014-04-10 Osram Gmbh A cell arrangement for feeding electrical loads such as light sources, corresponding circuit and design method
JP4222421B2 (ja) * 2007-02-28 2009-02-12 サンケン電気株式会社 多出力スイッチング電源装置
CN101647318B (zh) * 2007-03-13 2012-05-23 皇家飞利浦电子股份有限公司 电源电路
US8259477B2 (en) * 2007-05-30 2012-09-04 The Regents Of The University Of California Multiphase resonant converter for DC-DC applications
US7772782B2 (en) * 2007-12-05 2010-08-10 Leadtrend Technology Corp. Light emitting diode (LED) driving device
RU2516435C2 (ru) * 2008-03-05 2014-05-20 Конинклейке Филипс Электроникс Н.В. Возбуждение светодиода
EP2204898A1 (en) * 2008-12-31 2010-07-07 STMicroelectronics Srl Switching power supply system comprising cascaded PFC and resonant converters
JP4680306B2 (ja) * 2009-02-05 2011-05-11 三菱電機株式会社 電源回路及び照明装置
KR20100109765A (ko) * 2009-04-01 2010-10-11 삼성전자주식회사 전류 밸런싱 장치, 전원공급장치, 조명 장치 및 그 전류 밸런싱 방법
RU2570653C2 (ru) 2010-02-08 2015-12-10 Конинклейке Филипс Электроникс Н.В. Схема возбуждения для возбуждения схемы нагрузки
JP5447651B2 (ja) * 2010-03-16 2014-03-19 株式会社村田製作所 スイッチング電源装置
EP2493264B1 (en) 2011-02-28 2017-07-12 Silergy Corp. Electrical load driving circuit
EP2538535B1 (en) * 2011-06-24 2021-08-11 STMicroelectronics S.r.l. Control device for a resonant converter
CN102891608B (zh) * 2011-07-21 2016-03-30 山特电子(深圳)有限公司 一种高效率低成本正反激dc-dc变换器拓扑
EP2693619A2 (en) * 2012-08-03 2014-02-05 Samsung Electro-Mechanics Co., Ltd Single stage forward-flyback converter and power supply apparatus
KR101388766B1 (ko) * 2012-12-10 2014-04-25 삼성전기주식회사 다중 출력 전원 공급 장치
JP6467967B2 (ja) * 2015-02-16 2019-02-13 Tdk株式会社 共振インバータおよびスイッチング電源装置
DE102015206982A1 (de) * 2015-04-17 2016-10-20 Tridonic Gmbh & Co Kg Leuchtmittelkonverter mit symmetrierten Ausgangsströmen
US10064249B2 (en) 2015-04-17 2018-08-28 Tridonic Gmbh & Co Kg Converter for light sources
CN109757124A (zh) * 2016-08-01 2019-05-14 皇家飞利浦有限公司 多电平谐振dc-dc转换器
US10021744B2 (en) * 2016-12-09 2018-07-10 Nxp B.V. Dual output power converter and method for operating a dual output power converter
CN108123604A (zh) * 2017-12-28 2018-06-05 深圳Tcl新技术有限公司 谐振电源及电子设备
US10116199B1 (en) 2018-01-25 2018-10-30 Nxp B.V. Apparatus and method for linearization of the control inputs for a dual output resonant converter
US10554135B2 (en) 2018-01-25 2020-02-04 Nxp B.V. Apparatus and method for improved small load performance of a dual output resonant converter
US10811981B2 (en) 2018-01-25 2020-10-20 Nxp B.V. Apparatus and method for a dual output resonant converter to ensure full power range for both outputs
US10819240B2 (en) 2018-01-25 2020-10-27 Nxp B.V. Apparatus and method for adaptively setting the proper range for the VCM control variable based upon clipping of the main regulation loop
CN110579720B (zh) * 2018-06-08 2022-08-30 台达电子工业股份有限公司 电源监控器
JP7208068B2 (ja) * 2019-03-11 2023-01-18 Ntn株式会社 パルス信号発生回路
CN110649816A (zh) * 2019-09-20 2020-01-03 广州金升阳科技有限公司 一种降压型开关变换器
TWI762005B (zh) * 2020-01-20 2022-04-21 通嘉科技股份有限公司 非對稱電源轉換器及其操作方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189680B1 (en) * 1984-12-28 1993-02-10 Kabushiki Kaisha Toshiba Stabilizing power source apparatus
US4628426A (en) * 1985-10-31 1986-12-09 General Electric Company Dual output DC-DC converter with independently controllable output voltages
DE3912849A1 (de) * 1988-04-19 1989-11-02 Ceag Licht & Strom Stromversorgungsgeraet
DE3828959A1 (de) * 1988-08-26 1990-03-08 Ant Nachrichtentech Schaltregler
US5619403A (en) * 1992-07-24 1997-04-08 Canon Kabushiki Kaisha Multi-output power supply apparatus
DE4328458B4 (de) * 1992-08-25 2005-09-22 Matsushita Electric Industrial Co., Ltd., Kadoma Schalt-Spannungsversorgung
ES2105957B1 (es) * 1994-12-30 1998-06-01 Alcatel Standard Electrica Convertidor multisalida de energia continua-continua.
JPH08266050A (ja) * 1995-03-24 1996-10-11 Canon Inc 電圧共振型電源装置
JP2002514378A (ja) * 1997-01-24 2002-05-14 シンクォール・インコーポレーテッド 高効率電力変換装置
DE19711817A1 (de) * 1997-03-21 1998-09-24 Abb Daimler Benz Transp Schaltnetzteil
US5986895A (en) * 1998-06-05 1999-11-16 Astec International Limited Adaptive pulse width modulated resonant Class-D converter
US6151222A (en) * 1999-03-02 2000-11-21 Delco Electronics Corp. Dual voltage automotive electrical system with sub-resonant DC-DC converter
JP3678047B2 (ja) * 1999-04-02 2005-08-03 日立工機株式会社 充電装置の電源回路
JP2000324831A (ja) * 1999-05-11 2000-11-24 Sony Corp スイッチング電源回路
US6018467A (en) * 1999-07-28 2000-01-25 Philips Electronics North America Corporation Resonant mode power supply having an efficient low power stand-by mode
JP2002136138A (ja) * 2000-10-27 2002-05-10 Sony Corp スイッチング電源回路
US6344979B1 (en) * 2001-02-09 2002-02-05 Delta Electronics, Inc. LLC series resonant DC-to-DC converter
WO2008098360A1 (en) 2007-02-16 2008-08-21 Koninklijke Philips Electronics N.V. Optical system for luminaire

Also Published As

Publication number Publication date
US20020186026A1 (en) 2002-12-12
EP1257048A2 (de) 2002-11-13
JP2003018838A (ja) 2003-01-17
US6822881B2 (en) 2004-11-23
EP1257048B1 (de) 2017-10-04
EP1257048A3 (de) 2006-05-31

Similar Documents

Publication Publication Date Title
JP4310071B2 (ja) 共振コンバータ用制御装置
US10218256B2 (en) Primary side control of primary resonant flyback converters
JP4910078B1 (ja) Dc/dc変換器およびac/dc変換器
US6829151B2 (en) Regulating device for a resonant converter
US9287790B2 (en) Electric power converter
US9906135B2 (en) Multiphase DC/DC converters and control circuits for controlling converters using fixed and/or variable frequencies
JP4198388B2 (ja) 共振形コンバータ
US7821801B2 (en) Power factor correction method for AC/DC converters and corresponding converter
JP2001197740A (ja) スイッチング電源装置
CN111585443B (zh) Dc-dc转换器
US20110194317A1 (en) Stacked flyback converter with independent current loop control
CN104955672A (zh) 模块化的高频逆变器及其运行方法
US6697268B2 (en) Dc-Dc power supply
CN1192473C (zh) 谐振型开关电源
CN103959629A (zh) 用于多相无接触式能量传输系统的倍增器整流器
US11251690B2 (en) Systems, methods, and apparatus for dead-time control in resonant converters
JP2004533198A (ja) 制御ループを具える回路形態
US8411476B2 (en) Charge mode control
US10917000B2 (en) Driver unit, electric power converter, vehicle and method for operating an electric power converter
JP4258939B2 (ja) 非接触電力伝達装置
JPH09163734A (ja) 電源回路
US11444531B2 (en) Voltage converter
JP2000069750A (ja) 電流共振型コンバータ
JP2002281756A (ja) スイッチングコンバータ回路
CN115133784A (zh) 输出稳定化电路和直流-直流转换器电路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4310071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees