JP4292999B2 - メタン発酵装置 - Google Patents

メタン発酵装置 Download PDF

Info

Publication number
JP4292999B2
JP4292999B2 JP2004018379A JP2004018379A JP4292999B2 JP 4292999 B2 JP4292999 B2 JP 4292999B2 JP 2004018379 A JP2004018379 A JP 2004018379A JP 2004018379 A JP2004018379 A JP 2004018379A JP 4292999 B2 JP4292999 B2 JP 4292999B2
Authority
JP
Japan
Prior art keywords
methane fermentation
tank
waste liquid
methane
fermentation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004018379A
Other languages
English (en)
Other versions
JP2005211713A (ja
Inventor
智弘 杉山
美也子 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004018379A priority Critical patent/JP4292999B2/ja
Publication of JP2005211713A publication Critical patent/JP2005211713A/ja
Application granted granted Critical
Publication of JP4292999B2 publication Critical patent/JP4292999B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、嫌気性微生物を用いて有機性廃棄物を処理するメタン発酵装置において、システムの再起動時におけるメタン発酵処理能力の低下を抑え、速やかに安定状態とすることのできるメタン発酵装置に関する。
生ごみ、消化汚泥等の有機性廃棄物のほとんどは、焼却や埋め立て処分されているが、焼却に伴うダイオキシンの発生や埋め立て処分地の逼迫、悪臭などの問題から、環境負荷の少ない処理方法が求められている。これらの問題を解決するために、有機性廃棄物をメタン発酵処理し、発生したメタンガスを燃料電池やガスエンジンを用いて発電するシステムが開発されている。
このメタン発酵は、有機性廃棄物をバイオガスと水とに分解して大幅に減量することができ、嫌気性のため曝気動力が不要であるため省エネルギーな処理法であり、しかも副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。
メタン発酵処理においては、有機性廃棄物を粉砕、破砕、希釈など前処理をした後、この前処理済みの有機性廃棄物をメタン発酵槽に投入し、嫌気性下でメタン菌により発酵処理することで、有機性廃棄物をメタンガスに転換する。そして、投入原料の性状や運転条件などにより様々な処理方法、発酵槽が提案されている。
一方、メタン発酵処理工程において完全に分解発酵しきれなかった発酵残渣や、メタン発酵槽内にて増殖した雑菌体の汚泥からなる発酵廃液がメタン発酵槽から排出される。この発酵廃液には高濃度のアンモニアなどの窒素化合物が含まれているため、脱窒素処理を施し、下水道や河川の放流できる水質レベルまでの浄化処理が行われている。
メタン発酵においては、発酵が安定しているときは、生ゴミ等の有機性廃棄物が規定量投入されていればバイオガスが一定量生成する。しかし、発酵温度やゴミ投入量の変動によって発酵状態も変動し、この変動は発酵性能を低下させる要因となる。発酵性能が低下するのは、主としてメタン発酵に関係する嫌気性細菌群の活性が低下するためであり、活性の低下要因としては、pHや温度の他にアンモニアなどの阻害物質の生成がある。したがって、このアンモニア、特にアンモニア性窒素濃度が所定濃度以下になるように発酵状態を制御する技術が知られている。
例えば、下記特許文献1には、有機性廃水をメタン発酵処理する際に、槽内のアンモニア性窒素の濃度が2000mg/L以下になるよう有機性廃水を希釈することが開示されている。
また、下記特許文献2には、有機性廃棄物を処理するメタン発酵槽内のアンモニア性窒素濃度を検出部にて検知し、この濃度が5000mg/L以下となるように発酵槽内へ水を供給し、希釈することが開示されている。
更に、下記特許文献3には、廃水処理槽で脱窒素処理した廃水を希釈水として生ゴミに注入し、メタン発酵槽内のアンモニア濃度を低下させることが開示されている。
特公平7−115030号公報 特開2003−39039号公報 特開平11−57661号公報
上記のように、メタン発酵の阻害物質の一つであるアンモニアは、メタン発酵に関わる菌の活動を阻害し、その発酵性能を著しく低下させてしまう。上記従来技術では、メタン発酵槽内部のアンモニア性窒素濃度を嫌気性細菌による活動阻害濃度以下にして運転するために、希釈水によってアンモニア性窒素濃度を低下させるようにしている。
しかし、メタン発酵装置を停止、すなわちメタン発酵装置内への有機性廃棄物の供給を停止したときには、メタン発酵槽内では有機性廃棄物を養分として活動を行っている嫌気性細菌の死滅が起る。この嫌気性細菌の死滅に伴いアンモニアが発生するため、メタン発酵槽内には徐々にアンモニア性窒素が蓄積されることになる。
よって、長期間に亘ってメタン発酵装置を停止した場合には、メタン発酵槽内部にアンモニア性窒素が蓄積し、嫌気性細菌の活動に阻害を及ぼすこととなり、嫌気性細菌の生息環境が徐々に悪化していくので、嫌気性細菌の死滅量は時間の経過と共にいっそう激しいものとなる。
すなわち、有機性廃棄物の供給を停止させ、メタン発酵装置の運転を停止させることでメタン発酵槽内の嫌気性細菌は図3に示すように徐々に死滅、減少していき、それに伴い、図4に示すようにメタン発酵槽内のアンモニア性窒素濃度は徐々に高くなっていく。一方、廃液処理槽においてでも、図5に示すように菌の死滅、減少がおこる。
よって、メタン発酵装置の運転を停止させることで嫌気性細菌が養分とする有機性廃棄物の供給がなくなるため、嫌気性細菌の死滅、減少が起こる。そして、嫌気性細菌の死滅、減少に伴い、メタン発酵槽内のアンモニア性窒素は徐々に蓄積され高濃度となる。その結果、メタン発酵処理においては、菌数に見合った負荷量に相当する有機性廃棄物しか処理することができないため、システムの再起動時における処理能力が著しく低下してしまう。更には、メタン発酵槽内のアンモニア性窒素濃度が高まることで、嫌気性細菌の増殖にも阻害が及ぼされてしまい、メタン発酵装置を安定状態へと移行するのに多大な時間を要することになる。
また、廃液処理槽内においても、脱窒素処理を行う菌が養分とするアンモニア等の窒素化合物の供給がなくなるため、脱窒素処理を行う菌の死滅、減少が起こる。その結果、廃液処理能力の低下が起こり、処理水の脱窒素処理が不十分な状態で排水されてしまう恐れがある。
よって、メタン発酵装置の再起動を効果的に実施するためには、メタン発酵装置の運転を停止している間であっても、メタン発酵槽内のアンモニア性窒素濃度を所定量以下とするように制御する必要がある。
しかしながら、従来技術では、メタン発酵装置の起動中において、メタン発酵槽内部のアンモニア性窒素濃度を、嫌気性細菌による活動阻害量以下とするように制御、調整する方法については開示されているが、メタン発酵装置の運転を停止させている間の制御、調整方法については開示がなされていない。
したがって、本発明の目的は、メタン発酵装置を停止することにより蓄積するアンモニア性窒素の増加を制御することで、メタン発酵装置の再起動時におけるメタン発酵を効果的に、そして速やかに安定した運転状態で行えるようにしたメタン発酵装置を提供することにある。
上記目的を達成するため、本発明は、有機性廃棄物を粉砕、破砕、希釈などの処理を行う前処理槽と、前記前処理槽から供給される前処理済みの有機性廃棄物をメタン発酵させるメタン発酵槽と、このメタン発酵槽から排出される廃液を処理する廃液処理槽から主に構成されるメタン発酵装置において、前記廃液処理槽の処理液を前記メタン発酵槽に循環させる手段を設け、前記メタン発酵槽内部と前記廃液処理槽内部の双方に電気伝導率計を設け、有機性廃棄物の供給を停止している際、メタン発酵槽内部と廃液処理槽内部の電気伝導率の差を測定し、それらの差が9mS/cm以上となったら、前記廃液処理槽の処理水を前記メタン発酵槽へ循環させるように構成したことを特徴としている。
本発明によれば、メタン発酵装置の運転を停止している際においてでも、廃液処理槽にて処理の行われた処理水をメタン発酵槽へ循環させ、メタン発酵槽内の発酵液を廃液処理槽内の処理液で希釈することにより、メタン発酵槽内部に過剰濃度のアンモニア性窒素が滞留することを防止できるので、嫌気性細菌の活動に対する阻害を抑え、嫌気性細菌の死滅、減少量を抑えることができる。また、廃液処理槽内に対してはアンモニア類を供給することになるため、脱窒素処理を行う菌に対し養分を補給することができるので、廃液処理槽内の菌の減少を抑制することができる。
また、液体中の塩濃度は電気伝導率として表示されるため、塩基であるアンモニウムイオン濃度は電気伝導率として反映される。しかしながら、例えば、メタン発酵処理システムに投入される、生ゴミ等の有機性廃棄物に当初から含まれる、例えば、Na、K、Ca、Mg等も塩濃度に影響する。そこで、メタン発酵槽に存在するアンモニア性窒素分を精度よく電気伝導率として換算するためには、有機性廃棄物に当初から存在する塩濃度を電気伝導率として計測して、上記の発酵槽測定値から除く必要がある。この場合、廃液処理槽内の電気伝導率は、脱窒によってアンモニウムイオンが減少しているので、有機性廃棄物中に当初から含まれる塩濃度を反映している。そこで、廃液処理槽内の電気伝導率値を処理槽測定値として求め、発酵槽測定値から減ずることで、メタン発酵槽内におけるアンモニア性窒素濃度と相関の取れた電気伝導率値が得られる。
よって、この電気伝導率値の差を監視することで、メタン発酵槽内のアンモニア性窒素濃度を把握することができる。前記電気伝導率の差が所定値を超えた際に、廃液処理槽の処理水をメタン発酵槽へ循環させるような装置構成とすることで、メタン発酵槽内のアンモニア性窒素を所定値以下に保つことができ、更には適切なタイミングで循環操作を実施することができる。
本発明によれば、有機性廃棄物の供給を停止し、メタン発酵装置の運転を停止している際に、廃液処理槽の処理水をメタン発酵槽に循環させるように構成することで、メタン発酵槽内に過剰なアンモニア性窒素が蓄積することを抑制できるので、システムの再起動時におけるメタン発酵処理能力をできる限り損なうことなく、更には速やかに装置を安定させて運転することが可能となる。
また、メタン発酵槽内と廃液処理槽内の電気伝導率を測定し、これらの差が所定値以上となった時に処理水を循環するよう装置を制御させることにより、処理水を循環する適切なタイミングを設定することができる。
以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明のメタン発酵処理装置の一実施形態が示されている。
このメタン発酵処理装置は、有機性廃棄物を粉砕、破砕し希釈などの処理を行う前処理槽10と、メタン発酵槽11と、廃液処理槽12とで主に構成されている。前処理槽10からの配管は、供給ポンプ20を介してメタン発酵整槽11に連結されており、メタン発酵槽11からの配管は、発酵廃液引き抜きポンプ22を介して廃液処理槽12に連結されている。そして、廃液処理槽12からの処理水の一部がメタン発酵槽11へ返送できるように廃液処理槽12からの配管が処理水供給ポンプ21を介してメタン発酵槽11に連結されている。
廃液処理槽12としては脱窒処理が可能であればよく、例えば、微生物によって有機物や窒素を除去する生物処理法を行うための活性汚泥槽や、アンモニアを曝気処理した後に空気と触媒燃焼して窒素ガスに無害化するアンモニアストリッピング法を行う装置等を用いることができる。
更に、メタン発酵槽11の上部には、発生したバイオガスを取り出すための配管が接続されており、このバイオガスは、図示しないガスホルダーで回収される。
メタン発酵槽11には、電気伝導率計30が接続されており、廃液処理槽12には、電気伝導率計31が接続されており、メタン発酵槽11内及び、廃液処理槽12内の電気伝導率が測定可能となっている。ここで、電気伝導率計30及び31としては従来公知のものを用いることができ特に限定されない。
この電気伝導率計30及び31からの測定値は、演算器であるコントローラ40に入力されるように構成されている。
次にこの処理装置を用いた、メタン発酵処理方法について説明する。有機性廃棄物は、前処理槽10にて、粉砕、破砕及び希釈処理がなされ、前処理が行われる。前処理された有機性廃棄物は供給ポンプ20を介してメタン発酵槽11へ供給され、メタン発酵が行われる。メタン発酵槽11には、図示しないメタン菌等の嫌気性微生物が付着・担持された固定化微生物を充填した固定ろ床等が設置されており、ここで前処理済み有機性廃棄物のメタン発酵が行なわれ、嫌気性微生物による有機性廃棄物の分解が行われる。メタン発酵における温度は50〜60℃で行なうことが好ましい。これによれば、より活性の高い、高温メタン菌での発酵が行なえるので、有機性廃棄物の分解速度を更に向上することができる。なお、一定時間毎に供給される有機性廃棄物と同量の発酵廃液が、発酵廃液引き抜きポンプ22によってメタン発酵槽11の底部から引き抜かれ、廃液処理槽に送られる。その結果、メタン発酵槽11内は、常に一定量の発酵液で満たされている。なお、発酵により生成したバイオガスは、図示しないガスホルダーに回収され、燃料電池発電装置、ガスエンジン等の発電機やボイラーの燃料として有効利用されるようになっている。そして、メタン発酵槽での発酵廃液は廃水処理槽12へ移送され、未分解の有機成分や溶解性窒素の処理を行った後、処理水として排水される。
通常の運転時は上記手順でメタン発酵が行われているが、定期点検や修理、故障などの理由によりメタン発酵装置を停止させる際には、下記に示すメタン発酵装置の維持動作が行われる。
次に運転停止中における上記、メタン発酵装置の維持動作について説明する。前述したように、メタン発酵槽11には電気伝導率計30が、廃液処理槽12には電気伝導率計31が設置されており、メタン発酵槽11及び廃液処理槽12内の電気伝導率の測定できるように構成されている。この測定値がコントローラ40へそれぞれ入力される。
そして、コントローラ40では、メタン発酵槽内の電気伝導率と、廃液処理槽内の電気伝導率の差が計算され、前記電気伝導率の差が所定値を超えた場合、処理水循環ポンプ21を作動させて、処理水の一部をメタン発酵槽へ移送させ、メタン発酵槽内部のアンモニア性窒素濃度を所定値以下とするような制御が行われている。
次に、コントローラ40による演算処理及び制御について図2を用いて説明する。メタン発酵装置の運転停止後、まずステップS1では、電気伝導率計30を用いてメタン発酵槽11内の電気伝導率の測定が実施され、測定結果がコントローラ40へ測定値として入力される。ステップS2では、電気伝導率計31を用いて廃液処理槽12内の電気伝導率の測定が実施され、測定結果がコントローラ40へ測定値として入力さる。このステップS1及びステップS2の工程は並行して、ほぼ同時期に行われる。
次に、ステップS3では、ステップS1及びS2の工程で出力された、電気伝導率計30と電気伝導率計31による測定値の差が演算され、演算値の差が所定値未満であるかどうかの判断が行われる。この演算値の差が所定値未満であるならば、ステップS4にて循環操作を停止させて、ステップS1に戻る。しかし、この演算値の差が所定値以上であった場合はステップS5へと進み、処理液循環ポンプ22を作動させて処理水の一部をメタン発酵槽11内へ供給し、メタン発酵槽11の循環操作を行い、ステップS1に戻る。ステップS1及びステップS2での電気伝導率はメタン発酵装置の停止中は、リアルタイムで観測されるので、この循環操作は前記演算値の差が所定値以下となるまで行われる。
このように、廃液処理槽の処理液をメタン発酵槽へ循環させることで、メタン発酵槽内のアンモニア性窒素は所定濃度以下に保つことができ、更には、循環操作によりメタン発酵槽内に滞留しているアンモニア性窒素が廃液処理槽へ移されるため、脱窒素処理を行う菌に対して養分を供給することになり、廃液処理槽の菌の減少を抑制することができる。
また、メタン発酵槽内の電気伝導率と、廃液処理槽内の電気伝導率との差が所定値を超えたら循環するよう制御することが好ましく、前記電気伝導率の差が8mS/cm〜10mS/cmを超えたとき、より好ましくは9mS/cm以上となったら処理水の一部をメタン発酵槽へ移送させ、循環処理することが好ましい。前記電気伝導率の差を9mS/cm未満に保つことにより、メタン発酵槽内のアンモニア性窒素濃度を2000mg/l以下にすることができるため、嫌気性細菌の活動に阻害をおよぼすといわれている濃度以下に保つことが可能である。
このように、本発明では、有機性廃棄物の供給を停止し、メタン発酵装置の運転停止させる際において、メタン発酵槽内のアンモニア性窒素に起因する電気伝導率値が所定値以上となった時に廃液処理槽の処理水をメタン発酵槽に循環するよう制御することで、メタン発酵槽内に過剰なアンモニア性窒素が蓄積することを抑制することができるので、システムの再起動時におけるメタン発酵処理能力をできる限り損なうことなく、更には速やかに装置を安定させて運転することができる。なお、本発明における、メタン発酵槽11内及び廃液処理槽12内の電気伝導率はリアルタイムで測定することが好ましい。
以下、本発明を実施例によって更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
なお、本発明に使用しているメタン発酵槽は容量10リットルの発酵槽を、廃液処理槽は容量20リットルの処理槽を使用した。電気伝導率計としてはHORIBA製の導電率計ES−51を用いた。
また、メタン発酵槽及び廃液処理槽内の菌数については以下の測定方法により測定を行った。
〔メタン発酵槽及び廃液処理槽内の菌数の測定方法〕
メタン発酵槽11及び廃液処理槽12から消化液の一部を5ml採取し、超純水で10倍に希釈した。希釈後、孔径20μmのろ紙に通して、ろ過した後、超音波分散を15分間行なった。
次に、KHPOからなるpH緩衝液を加え、pHを8となるように調整した。
上記のpH調整後の消化液200μlに対して、蛍光試薬である5-カルボキシフルオレセインジアセテート(5−CFDA、フナコシ株式会社製)を24μl加え、再び充分に混合して測定試料を調整した。
この測定試料3μlを、バクテリア計測盤を持つ深さ0.02mmのプレパラートに垂らし、蛍光顕微鏡により観察をした。蛍光顕微鏡の励起波長は380〜420mmの青色を用い、蛍光発光波長は500〜550nmであった。観察画像は市販のソフト(Optimas6.5、MEDIA CYBERNETICS製)で画像解析し、菌数をカウントした。
実施例1
図1に示したメタン発酵装置を用いてメタン発酵を行った。
そして、装置の運転停止後、電気伝導率計30及び電気伝導率計31によりメタン発酵槽11及び廃液処理槽12内の電気伝導率を常時測定し、図2に示したフローチャートに従って、電気伝導率計30と電気伝導率計31の測定値の差が9mS/cm以上となったら廃液処理槽内の処理水の一部をメタン発酵槽へ循環処理するよう制御を行った。
図6、図8には上記の測定方法により求めたメタン発酵槽11及び廃液処理槽12内の菌数の経時変化を示す。また、図7にはイオンクロマトグラフ法から求めたメタン発酵槽のアンモニア性窒素濃度の経時変化を示す。
図6、7の結果より、メタン発酵槽内のアンモニア性窒素濃度に起因する電気伝導率値を9mS/cm以下に保つことにより、アンモニア性窒素の過剰な滞留を防止することができ、更には、メタン発酵槽内の嫌気性細菌の死滅量を抑制することができる。
また、廃液処理槽内の処理水とメタン発酵槽内の発酵液を循環させることで、廃液処理槽内にアンモニア性窒素を供給することになるため、脱窒素処理を行う菌に対し養分を補給することができるので、脱窒素処理を行う菌の死滅も抑制することができる。
本発明のメタン発酵処理装置は、例えば、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物を処理するために好適に用いられる。
本発明に用いるメタン発酵処理装置の一実施形態を示す概略構成図である。 コントローラ40による演算処理、制御方法を示すフローチャート図である。 従来の装置における、メタン発酵装置停止時のメタン発酵槽内の嫌気性細菌数の経時変化である。 従来の装置における、メタン発酵装置停止時のメタン発酵槽内のアンモニア性窒素濃度の経時変化である。 従来の装置における、メタン発酵装置停止時の廃液処理槽槽内部の菌数の経時変化である。 本発明の実施例におけるメタン発酵槽内の嫌気性細菌数の経時変化である。 本発明の実施例におけるメタン発酵槽内のアンモニア性窒素濃度の経時変化である。 本発明の実施例における廃液処理槽槽内部の菌数の経時変化である。
符号の説明
10 前処理槽
11 メタン発酵槽
12 廃液処理槽
20 供給ポンプ
21 処理水循環ポンプ
22 発酵廃液引き抜きポンプ
30、31 電気伝導率計
40 コントローラ

Claims (1)

  1. 有機性廃棄物を粉砕、破砕、希釈などの処理を行う前処理槽と、前記前処理槽から供給される前処理済みの有機性廃棄物をメタン発酵させるメタン発酵槽と、このメタン発酵槽から排出される廃液を処理する廃液処理槽から主に構成されるメタン発酵装置において、
    前記廃液処理槽の処理液を前記メタン発酵槽に循環させる手段を設け、
    前記メタン発酵槽内部と前記廃液処理槽内部の双方に電気伝導率計を設け、
    有機性廃棄物の供給を停止している際、メタン発酵槽内部と廃液処理槽内部の電気伝導率の差を測定し、それらの差が9mS/cm以上となったら、前記廃液処理槽の処理水を前記メタン発酵槽へ循環させるように構成したことを特徴とするメタン発酵装置。
JP2004018379A 2004-01-27 2004-01-27 メタン発酵装置 Expired - Lifetime JP4292999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018379A JP4292999B2 (ja) 2004-01-27 2004-01-27 メタン発酵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018379A JP4292999B2 (ja) 2004-01-27 2004-01-27 メタン発酵装置

Publications (2)

Publication Number Publication Date
JP2005211713A JP2005211713A (ja) 2005-08-11
JP4292999B2 true JP4292999B2 (ja) 2009-07-08

Family

ID=34902918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018379A Expired - Lifetime JP4292999B2 (ja) 2004-01-27 2004-01-27 メタン発酵装置

Country Status (1)

Country Link
JP (1) JP4292999B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642635B2 (ja) * 2005-10-31 2011-03-02 荏原エンジニアリングサービス株式会社 高濃度有機性廃液の処理方法及び装置
JP4671434B2 (ja) * 2006-12-04 2011-04-20 鹿島建設株式会社 アンモニア阻害抑制型メタン発酵装置
JP4858467B2 (ja) * 2008-03-10 2012-01-18 富士電機株式会社 メタン発酵処理方法及びメタン発酵処理装置
JP4834021B2 (ja) * 2008-03-14 2011-12-07 メタウォーター株式会社 メタン発酵処理方法
JP6261534B2 (ja) * 2015-03-11 2018-01-17 株式会社神鋼環境ソリューション 鋼板製消化槽の補修方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149299A (ja) * 1984-12-24 1986-07-07 Matsushita Electric Ind Co Ltd メタン発酵装置
JP3442288B2 (ja) * 1998-07-06 2003-09-02 株式会社クボタ 有機性廃棄物のメタン発酵方法
JP2000263095A (ja) * 1999-03-17 2000-09-26 Meidensha Corp 消化率測定方法及びその装置
JP3724990B2 (ja) * 1999-08-11 2005-12-07 株式会社荏原製作所 有機性廃棄物の処理方法と装置
JP4367876B2 (ja) * 2000-03-31 2009-11-18 アタカ大機株式会社 廃棄物処理方法およびその装置
JP4309607B2 (ja) * 2001-07-30 2009-08-05 株式会社東芝 有機性廃棄物の処理システム
JP2003334512A (ja) * 2002-05-20 2003-11-25 Kubota Corp 廃棄物の洗浄方法

Also Published As

Publication number Publication date
JP2005211713A (ja) 2005-08-11

Similar Documents

Publication Publication Date Title
Gil et al. Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge
Massé et al. Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste
JP4543947B2 (ja) メタン発酵処理方法
Adou et al. Anaerobic mono-digestion of wastewater from the main slaughterhouse in Yamoussoukro (Côte d’Ivoire): Evaluation of biogas potential and removal of organic pollution
JP4512823B2 (ja) 有機性廃棄物の処理方法および処理システム
JP4834021B2 (ja) メタン発酵処理方法
Elyasi et al. A comprehensive evaluation of parameters affecting treating high-strength compost leachate in anaerobic baffled reactor followed by electrocoagulation-flotation process
Asia et al. Treatment of textile sludge using anaerobic technology
JP4292999B2 (ja) メタン発酵装置
Vergote et al. Stability of thermophilic pig manure mono-digestion: effect of thermal pre-treatment and separation
JP2019130486A (ja) 湿式メタン発酵処理施設の運転方法
Brisolara et al. Biosolids and sludge management
JP4403812B2 (ja) メタン発酵処理方法
KR20100028413A (ko) 고농도 유기성 폐수의 처리방법
JP3630165B1 (ja) メタン発酵処理方法
JP4858467B2 (ja) メタン発酵処理方法及びメタン発酵処理装置
JP2004290921A (ja) メタン発酵処理方法及び装置
JP3747923B2 (ja) メタン発酵処理方法及び装置
JP2003136089A (ja) 硫化水素発生抑制方法
JP2005329377A (ja) 有機性廃水の嫌気性処理装置、及び嫌気性処理方法
JP4827021B2 (ja) メタン発酵処理装置およびメタン発酵槽の制御方法
JP2004243259A (ja) メタン発酵処理方法
JP2004025088A (ja) メタン発酵処理方法
Thiyagu et al. Influence of organic loading rate in acclimatization phase of hybrid upflow anaerobic sludge blanket (UASB) reactor treating distillery spent wash
JP2005193122A (ja) 嫌気性水素発酵処理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4292999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term