JP4289364B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4289364B2
JP4289364B2 JP2006125824A JP2006125824A JP4289364B2 JP 4289364 B2 JP4289364 B2 JP 4289364B2 JP 2006125824 A JP2006125824 A JP 2006125824A JP 2006125824 A JP2006125824 A JP 2006125824A JP 4289364 B2 JP4289364 B2 JP 4289364B2
Authority
JP
Japan
Prior art keywords
valve
exhaust
internal combustion
combustion engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006125824A
Other languages
English (en)
Other versions
JP2007182869A (ja
Inventor
孝史 川合
晃司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006125824A priority Critical patent/JP4289364B2/ja
Priority to EP06834169A priority patent/EP1957764B1/en
Priority to US12/085,168 priority patent/US7813864B2/en
Priority to CN2006800456268A priority patent/CN101321932B/zh
Priority to PCT/JP2006/324414 priority patent/WO2007066706A1/en
Priority to DE602006016851T priority patent/DE602006016851D1/de
Publication of JP2007182869A publication Critical patent/JP2007182869A/ja
Application granted granted Critical
Publication of JP4289364B2 publication Critical patent/JP4289364B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、例えば自動車等のエンジン等である内燃機関の制御装置の技術分野に関する。
この種の内燃機関において、未燃の炭化水素(以下、適宜「HC」ともいう)等を低減し、排気エミッションの悪化を防止する技術に関しては各種の提案がなされている。例えば特許文献1では、エンジンの冷間始動時において、気筒内の燃焼ガスが通常よりも長く存在するように排気バルブ(即ち、排気弁)の開弁時期を遅角する技術が提案されている。特許文献2では、エンジンの始動時及び暖機運転時において、排気バルブをほぼ全閉状態にする技術が提案されている。特許文献3では、エンジンの始動時及びその後のアイドル時において、吸気弁と排気弁との両方が閉じるバルブオーバーラップをほぼ同一としつつ、エンジンの温度が低いほどオーバーラップ中心が進角側となるように設定する技術が提案されている。特許文献4では、エンジンの始動時において、バルブオーバーラップを増大させ、排気ガスを筒内に引き戻して燃焼させることでHCを低減した後に排気バルブを進角させる技術が提案されている。特許文献5では、エンジンの運転条件に基づいて排圧制御弁の開度を調整することで、充填気中の既燃ガス割合を増加させ、HCを再燃焼させる技術が提案されている。
特開2005−147015号公報 特開2001−59428号公報 特開2004−176680号公報 特開2002−206436号公報 特開平5−86908号公報
しかしながら、上述した技術では、エンジンの停止状態で残留既燃ガスが残存する場合やインジェクタ漏れが発生している場合等の始動直後における排気エミッションの悪化を防止することが難しいという技術的問題点がある。更に、排気エミッションを改善するために燃焼時に既燃ガスの割合を大きくした場合に、既燃ガスの割合が大きくなり過ぎると燃焼の悪化やトルク変動が生じてしまうおそれがあるという技術的問題点もある。
本発明は、例えば上述した問題点に鑑みなされたものであり、未燃HCの排出量を低減可能な内燃機関の制御装置を提供することを課題とする。
本発明の第1の内燃機関の制御装置は上記課題を解決するために、吸気弁及び排気弁の動弁特性を変更可能な可変動弁機構を備えた内燃機関の動作状態を制御する内燃機関の制御装置であって、前記内燃機関のクランキング動作中に、前記吸気弁が継続して開弁状態となるように前記可変動弁機構を制御する吸気弁制御手段と、前記クランキング動作中に、前記排気弁及び前記排気弁よりも下流側の排気経路に設けられた排気絞り弁の少なくとも一方が継続して閉弁状態となるように、前記可変動弁機構及び前記排気絞り弁の少なくとも一方を制御する排気制御手段とを備える。
本発明の第1の内燃機関の制御装置によれば、その動作時には、内燃機関のクランキング動作中に、吸気弁制御手段によって吸気弁が継続して開弁状態となるように可変動弁機構が制御されると共に、排気制御手段によって排気弁及び排気絞り弁の少なくとも一方が継続して閉弁状態となるように可変動弁機構及び排気絞り弁の少なくとも一方が制御される。ここで、本発明に係る「吸気弁」が「継続して開弁状態となる」とは、内燃機関の通常の動作状態とは異なり、吸気行程、圧縮行程、膨張行程及び排気行程のうち吸気行程以外の行程を含む複数の連続した行程に相当する期間に亘って、吸気弁の開弁状態が保持されることをいう。また、本発明に係る「排気弁」が「継続して閉弁状態となる」とは、内燃機関の通常の動作状態とは異なり、吸気行程、圧縮行程、膨張行程及び排気行程のうち排気行程を含む複数の連続した行程に相当する期間に亘って、排気弁又は排気絞り弁の閉弁状態が保持されることをいう。このため、クランキング動作によって、内燃機関の気筒内に存在する、クランキング動作前の未燃の炭化水素(以下、適宜「未燃HC」ともいう)を含む残留ガスは、排気弁或いは排気絞り弁を介した排気通路の下流側ではなく、吸気弁を介した吸気通路へ流出される。このように吸気通路へ流出された残留ガスは、クランキング動作終了後の通常の動作状態になった内燃機関の吸気行程において、新たに供給された燃料及び空気と共に再び気筒内に吸気される。よって、クランキング動作前の残留ガスに含まれる未燃HCは、内燃機関の気筒内において燃焼される。従って、クランキング動作前の残留ガスに含まれる未燃HCが、クランキング動作によって内燃機関の外へ排出されてしまうことを抑制或いは防止できる。
尚、本発明では、排気弁及び排気絞り弁の少なくとも一方が上述したように閉弁状態とされればよく、排気弁が継続して閉弁状態となるように排気制御手段によって制御される場合には、内燃機関には、排気絞り弁が備えられていなくてもよい。即ち、排気弁及び排気絞り弁の両者が存在する内燃機関のみならず、排気絞り弁が存在しない内燃機関も本発明の制御対象である。
本発明の第2の内燃機関の制御装置は上記課題を解決するために、吸気弁及び排気弁の動弁特性を変更可能な可変動弁機構を備えた内燃機関の動作状態を制御する内燃機関の制御装置であって、前記内燃機関のクランキング動作中に、前記吸気弁が開弁状態となるように、且つ、前記クランキング動作の終了後から前記内燃機関における既燃ガス濃度が所定値以上となるまでの第1期間中に、排気行程において前記吸気弁が開弁状態となるように、前記可変動弁機構を制御する吸気弁制御手段と、前記クランキング動作中及び前記第1期間中に、前記排気弁及び前記排気弁よりも下流側の排気経路に設けられた排気絞り弁の少なくとも一方が閉弁状態となるように、前記可変動弁機構及び前記排気絞り弁の少なくとも一方を制御する排気制御手段とを備える。
本発明の第2の内燃機関の制御装置によれば、その動作時には、上述した第1の内燃機関の制御装置と同様に、内燃機関のクランキング動作中に、吸気弁制御手段によって吸気弁が開弁状態となるように可変動弁機構が制御されると共に、排気制御手段によって排気弁及び排気絞り弁の少なくとも一方が閉弁状態となるように可変動弁機構及び排気絞り弁の少なくとも一方が制御される。よって、クランキング動作前の残留ガスに含まれる未燃HCが、クランキング動作によって内燃機関の外へ排出されてしまうことを抑制或いは防止できる。
本発明では特に、クランキング動作の終了後から内燃機関における既燃ガス濃度が所定値以上となるまでの第1期間中に、吸気弁制御手段によって吸気弁が開弁状態となるように可変動弁機構が制御されると共に、排気制御手段によって排気弁及び排気絞り弁の少なくとも一方が閉弁状態となるように可変動弁機構及び排気絞り弁の少なくとも一方が制御される。このため、クランキング動作の終了後において、内燃機関の気筒内に存在する残留ガスは、既燃ガス濃度が所定値に未満の場合には、排気弁或いは排気絞り弁を介した排気通路の下流側ではなく、吸気弁を介した吸気通路へ流出される。ここで、本発明に係る「既燃ガス濃度」とは、内燃機関の膨張行程(即ち、燃焼行程)において燃料と空気とが混合した混合気が既に燃焼された後に生成される気体の濃度であり、例えば、気筒内のCO2(二酸化炭素)の濃度である。本発明に係る「所定値」は、既燃ガス濃度の下限を定める値であり、例えば既燃ガス濃度が排気ガス規制の要求を満たす値として予め設定してもよいし、例えば内燃機関の回転数、燃料噴射量等に基づいて変更可能としてもよい。このように吸気通路へ流出された残留ガスは、次の吸気行程において、新たに供給された燃料及び空気と共に再び気筒内に吸気される。よって、残留ガスに含まれる未燃HCは、内燃機関の気筒内において再燃焼され、既燃ガス濃度が増加することになる。このような残留ガスの吸気通路への流出及びこれに続く再燃焼は、既燃ガス濃度が所定値以上になるまで繰り返される。従って、クランキング動作の終了後に、残留ガスに含まれる未燃HCが、内燃機関の外へ排出されてしまうことを抑制或いは防止できる。クランキング動作中及び終了直後の残留ガスには、内燃機関の通常の動作状態における排気ガスに比べ、多くの未燃HCが多く含まれる可能性が高いので効果的である。尚、既燃ガス濃度が所定値以上になった場合には、内燃機関は通常の動作状態となる。
本発明の第2の内燃機関の制御装置の一態様では、前記吸気弁制御手段は、前記既燃ガス濃度を推定する濃度推定手段を有する。
このように構成すれば、推定された既燃ガス濃度に応じて定まる第1期間中に、吸気弁が開弁状態となるように制御できる。
本発明の第2の内燃機関の制御装置の他の態様では、前記濃度推定手段は、前記吸気弁に連通する吸気管における二酸化炭素濃度に基づいて、前記既燃ガス濃度を推定する。
このように構成すれば、吸気管に取り付けられた二酸化炭素濃度センサにより検出された又は該二酸化炭素濃度と特定の関係を有する他のパラメータから推定された二酸化炭素濃を用いて、既燃ガス濃度を推定することが可能となる。
本発明の第2の内燃機関の制御装置の他の態様では、前記吸気弁制御手段は、前記所定値を、前記動作状態を規定する一又は複数のパラメータに応じて可変に設定する。
このように構成すれば、所定値は、例えば、エンジン回転数、燃料量等の、内燃機関の動作状態を規定する一又は複数のパラメータに応じて可変に設定されているので、動作状態に応じてより適切な第1期間を用いることができる。
本発明の第1及び第2の内燃機関の制御装置の他の態様では、前記内燃機関は、複数の気筒に分かれており、前記可変動弁機構は、弁駆動源から出力される回転運動を前記複数の気筒の各々に設けられた運動変換手段により直線運動に変換し、該直線運動を利用して前記複数の気筒の各々の前記排気弁及び前記吸気弁を開閉駆動する動弁装置を有し、該動弁装置は、開弁期間が重ならない複数の気筒によって構成される気筒群に対して前記弁駆動源として共用される電動モータと、前記電動モータの回転を前記気筒群の各々の運動変換手段の回転体に伝達する伝達機構とを備える。
この態様によれば、複数の気筒間で弁駆動源としての電動モータが共用されているので、各気筒毎に電動モータを分けて設けた場合と比較すれば動弁装置が小型化され、車両搭載時の制約が緩和される。また、電動モータが共用される気筒群の気筒間では開弁期間が重ならず、各弁の開弁期間の間に全ての弁が閉じている期間が存在する。従って、電動モータの回転速度や回転方向に変化を与えることにより、同一気筒群に含まれる全ての気筒のうちいずれかの気筒の弁(吸気弁又は排気弁)の動弁特性を変化させた場合、その弁が閉じてから次の気筒の弁が開くまでの期間(全ての弁が閉じている期間)を利用して、電動モータの回転に関し、先に与えた変化を打ち消すような更なる変化を電動モータに与えることにより、先に開かれた弁の動作特性の変化が次に開かれるべき弁の動弁特性に与える影響をなくすことができる。これにより、各気筒に関する動弁特性の制御の自由度を高く維持できる。このような動弁装置を、上述した可変動弁機構として制御することにより未燃HCが内燃機関の外へ排出されてしまうことを抑制或いは防止できる。
本発明の第1及び第2の内燃機関の制御装置の他の態様では、前記吸気弁制御手段は、前記クランキング動作中に、リフト量が所定リフト量に保持されたまま前記吸気弁が継続して開弁状態となるように、前記可変動弁機構を制御する。
この態様によれば、吸気弁のリフト量が所定リフト量に保持されたままクランキングが行われる。従って、始動時であっても、内燃機関の各部の温度が好適に上昇し、燃料の蒸発が促進され、燃料の未燃を回避し、もって、内燃機関の未燃HCの排出量を一段と低減できる。ここで「所定リフト量」は、吸気弁のリフト量と気筒内及び吸気通路内の空気の上昇温度との関係に基き、燃料が蒸発するのに適した温度に上昇するようなリフト量として、予め実験或いはシミュレーションによって定められるとよい。この関係は、リフト量が減少すると、ポンピングロスが増加し、そこでのエネルギー損失が、吸気温度の上昇に寄与することによる。更に、このリフト量に若干のマージンをもたせてもよく、加えて、学習によって事後的に変更されてもよい。尚、「保持されたまま」とは言えども、必ずしもリフト量が所定リフト量に固定されたままである必要はない。即ち、気筒内及び吸気通路内の空気の温度が大なり小なり上昇する限りにおいて、所定リフト量から若干の変動も許容する、包括的な概念である。
このようにリフト量が所定リフト量に保持される態様では、前記内燃機関を冷却する冷却水の実温度を特定する温度特定手段と、前記クランキング動作中に到達すべき前記冷却水の目標温度を設定する目標温度設定手段とを更に備え、前記吸気弁制御手段は、前記実温度と前記目標温度との偏差に基いて、前記所定リフト量を設定してもよい。
この態様によれば、先ず、例えば水温センサ等を有する温度特定手段によって、冷却水の実温度が特定される。ここに「冷却水の実温度」は、気筒内及び吸気通路内の空気の温度を間接的に特定するための物理量の一例である。即ち、内燃機関が、クランキング動作後に噴射される燃料の蒸発温度になっているかを間接的に特定することを目的とする物理量であるとも言え、係る目的を達成しうる限りにおいて、他の物理量を特定してもよい。これと同時に又は相前後して、例えばコントローラ等を有する目標温度設定手段によって、クランキング動作中に到達すべき冷却水の目標温度が設定される。ここに「目標温度」とは、燃料の蒸発が好適に促進され得る冷却水の目標温度として、予め実験或いはシミュレーションによって定められるとよい。更に、この目標温度に若干のマージンをもたせてもよく、加えて、学習によって事後的に変更されてもよい。このようにして、特定或いは設定された冷却水の実温度と目標温度との偏差に基いて、所定リフト量が設定され、クランキングが行われる。
この偏差と所定リフト量との関係は、典型的には予め設定されたマップによって或いは予め設定された関数として、コントローラに把握されている。従って、係る偏差に基づいて簡単或いは迅速に所定リフト量を設定できる。このため、クランキング動作中、吸気弁制御手段による制御下で、このようにして設定された所定リフト量に、リフト量が保持されたまま、吸気弁が継続して開弁状態とされる。よって、比較的効率良く好適に目標温度を達成でき、燃料の蒸発が促進され、燃料の未燃を回避し、もって、内燃機関の未燃HCの排出量を一段と低減できる。
この実温度と目標温度との偏差に基いて所定リフト量が設定される態様では、前記内燃機関での最大ポンピングロスに相当する最大上昇温度に比べて、前記偏差の方が大きい場合には、前記吸気弁制御手段は、前記偏差に基いて設定することに代えて、前記最大ポンピングロスに相当するリフト量を前記所定リフト量として設定してもよい。
この態様によれば、前記偏差の方が大きい場合には、最大ポンピングロスに相当するリフト量を利用するので、クランキング動作中の1行程で上昇可能な温度を極力増加させ、最終的に目標達成に要する行程数を減らすことができる。例えば「最大ポンピングロスに相当する最大上昇温度」が、例えば50[℃/行程]であり、「最大ポンピングロスに相当するリフト量」が、例えば1[mm]であるとする。ここで前記偏差が150[℃]であるとき、リフト量を1[mm]に保持したまま、150[℃]/50[℃/行程]=3[行程](例えば、吸気行程、圧縮行程、膨張行程)に渡ってクランキングを行えば、他のリフト量とした場合に比べて早期に目標温度を達成できる。この際、行程数に端数がある場合には、リフト量を最大ポンピングロスに相当するリフト量から適宜ずらすとよい。
尚、「最大ポンピングロスに相当するリフト量」は、狭義には文字通りポンピングロスが最大となるようなリフト量として、予め実験或いはシミュレーションによって定められるとよい。広義には、ポンピングロスによる上昇温度が大なり小なり見込まれる限りにおいて、ポンピングロスが最大となるようなリフト量に多少のマージンをもたせた範囲内のリフト量としてもよい。加えて、このリフト量は、学習によって事後的に変更されてもよい。
尚、内燃機関での最大ポンピングロスに相当する最大上昇温度に比べて、偏差の方が大きくない場合には、このように最大ポンピングロスに相当するリフト量に設定するのでは熱効率上で有利な設定となるとも限らない。従って、この場合には、吸気弁制御手段は、前述のように、前記偏差に基づく処理を行った上で、リフト量を適宜設定するのがよい。
この目標温度を設定する態様では、前記目標温度設定手段は、前記内燃機関での燃焼に供する燃料の比重に応じて、前記設定された目標温度を補正してもよい。
この態様によれば、燃料の比重と粗悪な燃料の含有率とが相関関係を有し、燃料の比重により燃料の蒸発し難さを間接的に特定可能であることに鑑み、例えば粗悪な燃料のような、比較的蒸発し難い燃料を使用する場合に燃料の比重に応じて目標温度を上昇させるなど、比重に応じて目標温度を補正する。或いは逆に、比較的蒸発し易い燃料を使用する場合に燃料の比重に応じて目標温度を下降させるなど、比重に応じて目標温度を補正する。これにより、燃料の粗悪さによらずに、燃料を十分に蒸発させることができ、もって内燃機関の未燃HCの排出量を一層確実に低減できる。
或いは、この目標温度を設定する態様では、前記目標温度設定手段は、前記燃料の誘電率に応じて、前記設定された目標温度を補正してもよい。
この態様によれば、燃料の誘電率と燃料中のアルコール濃度とが相関関係を有し、燃料の誘電率により燃料の蒸発し難さを間接的に特定可能であることに鑑み、例えばアルコール濃度の高い燃料のような、比較的蒸発し難い燃料を使用する場合に燃料の誘電率に応じて目標温度を上昇させるなど、燃料の誘電率に応じて目標温度を補正する。或いは逆に、例えばアルコール濃度の低い燃料のような、比較的蒸発し易い燃料を使用する場合に燃料の誘電率に応じて目標温度を下降させるなど、燃料の誘電率に応じて目標温度を補正する。これにより、燃料中のアルコール濃度によらずに、燃料を十分に蒸発させることができ、もって内燃機関の未燃HCの排出量を一層確実に低減できる。
本発明の作用及び他の利得は次に説明する実施するための最良の形態から明らかにされよう。
以下では、本発明の実施形態について図を参照しつつ説明する。
<第1実施形態>
第1実施形態に係る制御装置について、図1から図10を参照して説明する。
<<全体構成>>
先ず、本実施形態に係る制御装置を備えたエンジンの全体構成について、図1及び図2を参照して説明する。ここに図1は、本実施形態に係る制御装置を備えたエンジンの構成を示す模式図である。図2は、本実施形態に係る吸気弁及び排気弁の動弁特性を示す説明図である。
図1において、本発明に係る「内燃機関」の一例としてのエンジン200は、レシプロ型の4サイクルエンジンであり、4つの気筒2が一列に配置された直列4気筒型である。尚、図1では、4つの気筒のうちの1つの気筒のみが示されているが、他の気筒についても概ね同様の構成である。
図1に示すように、気筒2には、シリンダ201、吸気管206及び排気管210が形成されている。
シリンダ201は、その内部で燃料と空気とが混合された混合気を点火プラグ202により爆発させることが可能に構成されている。該爆発により生じる図示しないピストンの往復運動が図示しないクランク軸の回転運動に変換される。
吸気管206は、シリンダ201内部と吸気弁203の開閉によって連通状態が制御されている。従って、吸気管206において、外部から吸入された空気(即ち、吸入空気)と、燃料噴射装置であるインジェクタ211から噴射された燃料とが混合され(即ち、混合気を形成し)、吸気弁203を介してシリンダ201に供給されることとなる。尚、吸気弁203及び排気弁204は、各気筒2に2つずつ設けられているが、図1では、夫々1つのみを示している。
外部からの空気は、吸気管234を介して、気筒2の吸気管206へ供給される。吸気管234は、途中で4つに分岐して、4つの気筒2の吸気管206に夫々接続されている。また、吸気管234の途中には、図示しないスロットル及びエアフローメータが設けられている。スロットルは、スロットル開度の大小を電子制御することにより、空気の量を制御可能に構成されている。エアフローメータは、吸気管234においてスロットルの手前に設けられており、吸入された空気の量を計測する。
インジェクタ211は、分岐後の吸気管206に気筒別に設けられており、これらにより気筒別の噴射量制御や失火制御が可能とされている。尚、インジェクタ211は、分岐前の吸気管234に設けられてもよいし、各気筒内に設けられてもよい。
排気管210は、シリンダ201内部で発生する排気ガスを、排気弁204を介して排気することが可能に構成されている。気筒2の排気管210からの排気ガスは、各排気管210と接続されており、排気ガスを集める排気管及び触媒を介して外部へ排気される。触媒は、いわゆる三元触媒であり、排気ガス中のCO(一酸化炭素)、HC(炭化水素)及びNOx(酸化窒素)を低減する機能を有している。触媒は、例えば、白金及びロジウムを含んでいる。
図1に示すように、本実施形態では特に、エンジン200は、動弁装置10を備えている。動弁装置10は、図4を参照して後述するように、4つの気筒2の各々の吸気弁203及び排気弁204の動弁特性を変更可能に構成されている。尚、可変動弁機構は、吸気弁及び排気弁の開閉時期を制御できるものであればよく、カムバイワイヤ、電磁駆動弁等を用いることができる。
図1において、制御装置100は、吸気弁制御部110、排気弁制御部120、点火制御部202C及び燃料噴射制御部211Cを備えており、エンジン200の動作全体を制御する。これらは、好適には、周知の電子制御ユニット(Electronic Control Unit:ECU)、中央処理装置(Central Processing Unit:CPU)、制御プログラムを格納した読み出し専用メモリ(Read Only Memory:ROM)、各種データを格納する随時書き込み読み出しメモリ(Random Access Memory:RAM)等を中心とした論理演算回路として構成されている。更に、各種センサからの入力信号(例えば、エンジン200の回転数Ne、クランク角CA等)を受ける入力ポート及び、動弁装置10等の各種アクチュエータに制御信号を送る出力ポートに対して、バスを介して接続されている。
本発明に係る「吸気弁制御手段」の一例としての吸気弁制御部110は、エンジン200の始動時に行われるクランキング動作中(或いは、エンジン200の始動制御開始から点火前まで)に、吸気弁203が継続して開弁状態となるように動弁装置10を制御することが可能に構成されている。言い換えれば、クランキング動作中に、エンジン200の通常の動作状態とは異なり、吸気、圧縮、膨張及び排気行程に亘る期間において、吸気弁203を開弁状態に保持することが可能となっている。より具体的には本実施形態では、図2に示すように、クランキング動作中である期間T1においては、吸気弁203を継続して開弁状態とすることが可能となっている。
本発明に係る「排気制御手段」の一例としての排気弁制御部120は、クランキング動作中に、排気弁210が継続して閉弁状態となるように、動弁装置10を制御することが可能に構成されている。言い換えれば、クランキング動作中に、エンジン200の通常の動作状態とは異なり、吸気、圧縮、膨張及び排気行程に亘る期間において、排気弁204を閉弁状態に保持することが可能となっている。より具体的には本実施形態では、図2に示すように、クランキング動作中である期間T1においては、排気弁204を継続して閉弁状態とすることが可能となっている。
点火制御部202Cは、点火プラグ202の点火時期等を制御することが可能に構成されている。
燃料噴射制御部211Cは、インジェクタ211の燃料噴射量、燃料噴射時期等を制御することが可能に構成されている。
制御装置100は、クランキング動作の終了後、言い換えれば、エンジン200における点火後には、吸気弁203及び排気弁204を通常の動作状態とするように、動弁装置10を制御する。即ち、図2に示すように、クランキング動作の終了後である期間T2(即ち、期間T2a、T2b、T2c及びT2d)においては、吸気弁203及び排気弁204は通常の動作状態とされる。具体的には、吸気行程に対応する期間T2aには、吸気弁203は開弁状態と、排気弁204は閉弁状態とされ、圧縮及び膨張行程に夫々対応する期間T2b及びT2cには、吸気弁203及び排気弁204は閉弁状態とされ、排気行程に対応する期間T2dには、吸気弁203は閉弁状態と、排気弁204は開弁状態とされる。尚、期間T2aと期間T2bとのオーバーラップ、或いは、期間T2cと期間T2dとのオーバーラップが設定されてもよい。
<<動作処理>>
次に、本実施形態の制御装置の動作処理について図1及び図2に加えて、図3を参照して説明する。ここに図3は、本実施形態に係る制御装置の動作処理を示すフローチャートである。
図3において、先ず、エンジン200が始動制御中であるか否かが判定される(ステップS11)。即ち、クランキング動作が開始されているか否かが制御装置100によって判定される。エンジン200が始動制御中でない(即ち、エンジン200が始動されていない)と判定された場合には(ステップS11:NO)、制御装置100は動作処理を終了する。一方、エンジン200が始動制御中であると判定された場合には(ステップS11:YES)、
エンジン200においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われたか否かが判定される(ステップS12)。即ち、クランキング動作が終了したか否かが判定される。クランキング動作が終了していない(即ち、クランキング動作中である)と判定された場合には(ステップS12:NO)、吸気弁制御部110によって吸気弁203が継続して開弁状態となるように動弁装置10が制御されると共に、排気弁制御部120によって排気弁204が継続して閉弁状態となるように動弁装置10が制御される(ステップS13)。その後再び、上述したステップS11に係る動作処理が行われる。即ち、エンジン200のクランキング動作中には、ステップS11からステップS13までの一連の動作処理が繰り返される。つまり、図2に示すように、クランキング動作中である期間T1においては、吸気弁203は継続して開弁状態となるように、且つ、排気弁204は継続して閉弁状態となるように、制御装置100によって動弁装置10が制御される。このため、クランキング動作によって、エンジン200の各気筒2内に存在する、クランキング動作前の未燃HCを含む残留ガスは、排気弁204を介した排気管210ではなく、吸気弁203を介した吸気管206へ流出される。このように吸気管206へ流出された残留ガスは、後述するクランキング動作終了後の通常の動作状態になったエンジン200の吸気行程において、新たにインジェクタ211から供給された燃料及び空気と共に再び気筒2内に吸気される。よって、クランキング動作前の残留ガスに含まれる未燃HCは、エンジン200の気筒2内において燃焼される。従って、クランキング動作前の残留ガスに含まれる未燃HCが、クランキング動作によってエンジン200の外へ排気管210等の排気通路を介して排出されてしまうことを抑制或いは防止できる。一方、クランキング動作が終了している(即ち、クランキング動作中でない)と判定された場合には(ステップS12:YES)、吸気弁203及び排気弁204は、通常の動作状態となるように、制御装置100によって制御される(ステップS14)。即ち、図2を参照して上述したように、クランキング動作の終了後である期間T2において、吸気弁203及び排気弁204は通常の動作状態とされる。
次に、本実施形態に係る動弁装置の構成及び動作原理について、図4から図10を参照して説明する。
図4は、本実施形態に係る動弁装置を示している。エンジン200は、上述したように、4つの気筒2が一列に配置された直列4気筒型である。図4では各気筒2をそれらの並び方向一端から他端側に向かって#1〜#4の番号を付して区別している。一般に直列4気筒の4サイクルエンジン200では、外側の一対の気筒(#1、#4)2の爆発間隔が360℃A(クランク角を意味する。以下同じ。)ずらされ、内側の一対の気筒(#2、#3)の爆発時期が#1の気筒2の爆発時期を基準として180℃A、540℃Aずらされることにより180℃A毎の等間隔爆発が実現されている。なお、#2の気筒2と#3の気筒2との爆発時期の前後は適宜に定めてよいが、ここでは#3の気筒2の爆発時期が#2の気筒2の爆発時期よりも先として説明する。従って、エンジン200における爆発順序は#1→#3→#4→#2となる。
各気筒2には2本の吸気弁203が設けられている。排気弁204については図示を省略している。吸気弁203は動弁装置10によって開閉駆動される。周知のように、吸気弁203はそのステム203aが不図示のシリンダヘッドのステムガイドに通されることによりステム203aの軸線方向に往復運動可能に設けられている。図7に示したように吸気弁203の上端にはバルブリフター4が吸気弁203と一体的に往復運動可能に取り付けられている。そのバルブリフター4とシリンダヘッドとの間にはバルブスプリング5が装着される。吸気弁203はバルブスプリング5の圧縮に対する反発力によってバルブフェース203bが吸気ポートのバルブシートに密着する方向(閉弁方向)に付勢されている。動弁装置10はそのバルブスプリングの力に抗して吸気弁203を開弁方向に駆動する。
図5(a)は各気筒2の吸気弁203のリフト量(閉弁状態を基準としたときの開弁方向への変位量)とクランク角との対応関係を示している。各吸気弁203の作用角(開弁している期間をクランク角で表わした値)はエンジン200の仕様によって適宜に調整され、また可変動弁機構を備えた動弁装置ではエンジン200の運転状態によっても作用角は変化するが、一般的には吸気弁203の作用角は240℃A程度に設定される。このような作用角の設定によれば、図5(b)に示したように外側の一対の気筒(#1、#4)間では吸気弁の開弁期間が互いに重ならず、図5(c)に示したように内側の一対の気筒(#2、#3)間では吸気弁の開弁期間が互いに重ならない。そこで、図4に示すように、動弁装置10では、外側の一対の気筒2を第1の気筒群、内側の一対の気筒2を第2の気筒群としてそれぞれ区別し、気筒群毎に弁駆動源として第1の電動モータ11及び第2の電動モータ12を設けている。
図6及び図7は動弁装置10の詳細を示している。これらの図に示すように、動弁装置10は、上述した電動モータ11、12の他に、吸気弁203毎に設けられた運動変換手段としてのカム機構13と、電動モータ11、12の回転運動を対応する気筒群のカム機構13にそれぞれ伝達する第1及び第2の伝達機構14、15とを備えている。カム機構13は全て同一構成である。カム機構13は回転体としてのカム16を有し、そのカム16により吸気弁203の上端のバルブリフター4を押し込んで吸気弁203を開弁方向に駆動する。つまり、バルブリフター4はカム16に対する従動節として機能する。カム16の外周のプロファイルは、図8に示したようにベース円16aの一部にこれを膨らませたノーズ部16bが設けられた周知の形状に設定される。ノーズ部16bによりバルブリフター4が押し込まれる。
第1の伝達機構14は、外側の気筒(#1及び#4)のそれぞれのカム16を相互に連結するカムシャフト(第1の伝達軸)17と、そのカムシャフト17に対して電動モータ11の回転を伝達する減速機構18とを有している。減速機構18は電動モータ11の出力軸11aに組み合わされるモータギア19と、カムシャフト17の一端に一体回転可能に取り付けられてモータギア19と噛み合うドリブンギア20とを有している。カムシャフト17は#1気筒のカム16を駆動する第1軸部21と、#4気筒のカム16を駆動する第2軸部22とを組み合わせた連結構造を有している。第1軸部21には#2気筒、及び#3気筒の上方を通過して#4気筒まで延びる連結軸部23が同軸かつ一体に形成されている。その連結軸部23の先端の軸継部24が第2軸部22の軸継穴25に同軸的に嵌ることにより両軸部21、22が同軸的に連結される。軸継部24と軸継穴25との間にはスプライン等の回り止め手段が施され、それにより第1軸部21と第2軸部22とは一体回転可能に連結される。なお、連結軸部23は第1軸部21及び第2軸部22よりも小径である。カム16は第1軸部21及び第2軸部22に対して一体に形成されているが、カム16をこれらの軸部21、22とは別部品として形成して軸部21、22に圧入、焼きばめ等の固定手段を利用して固定してもよい。
一方、第2の伝達機構15は、内側の気筒(#2及び#3)のそれぞれのカム16を相互に連結するカムシャフト(第2の伝達軸)30と、そのカムシャフト30に対して電動モータ12の回転を伝達する減速機構31とを有している。減速機構31は電動モータ12の出力軸12aに組み合わされるモータギア32と、そのモータギア32と噛み合う中間ギア33と、カムシャフト30の中間部に一体回転可能に設けられて中間ギア33と噛み合うドリブンギア34とを有している。カムシャフト30は軸方向に延びる貫通孔30aを備えた中空軸状に形成され、その外周にカム16が一体に形成されている。カムシャフト30の貫通孔30aにはカムシャフト17の連結軸部23が回転自在に挿入される。これによりカムシャフト30はカムシャフト17の外周に回転自在な状態で同軸的に配置される。なお、カムシャフト30の外径はカムシャフト17の第1軸部21及び第2軸部22の外径と同じである。カム16はカムシャフト30とは別部品として形成してカムシャフト30に圧入、焼きばめ等の固定手段を利用して固定してもよい。ドリブンギア34についても同様である。
同一気筒群における一の気筒(#1又は#3)のカム16と、他の一の気筒(#4又は#2)のカム16とはそれぞれのノーズ部16bの頂点16cが周方向に互いに180°ずれるようにしてカムシャフト17又は30に連結されている。これらの気筒2間では吸気弁203の開弁時期が360℃Aずれるためである。この結果、図8から明らかなようにカムシャフト17、30のそれぞれの周方向に関して、カム16のノーズ部16bが重複しない範囲Xが生じる。なお、ベース円16aの直径はバルブリフター4との間に適当な隙間(バルブクリアランス)が生じるように設定される。なお、カム機構13をクランクケース側に設けてそこで得られた直線運動をプッシュロッド等の運動伝達部材により吸気弁203に伝達するようにしてもよい。つまり、エンジン200はOHC形式に限らず、OHV形式でもよい。
伝達機構14、15にはそれぞれトルク低減機構40が設けられている。図9に詳しく示したように、トルク低減機構40は、反位相カム41と、その反位相カム41の外周に摩擦による負荷を加えるトルク負荷装置42とを備えている。なお、図9は#2気筒及び#3気筒用のトルク低減機構40を示すが、#1気筒及び#4気筒用のトルク低減機構40も同一構成である。反位相カム41はカムシャフト17の第2軸部22の端部、及びカムシャフト30の端部にそれぞれ一体回転可能に設けられている。反位相カム41はこれらのシャフト17、30に対して一体成形されてもよいし、シャフト17、30に対して別部品として形成されて圧入、焼きばめ等の固定手段によりシャフト17、30に固定されてもよい。反位相カム41の外周面はカム面として構成されている。そのカム面のプロファイルは図10に示すようにベース円41aの一部に一対の凹部41bを設けた形状に設定される。凹部41bはそれらの底41cが周方向に180°離れるように設けられている。
図9に戻って、トルク負荷装置42は反位相カム41の外周面と対向して配置されたリフタ43と、そのリフタ43の外側に配置されたばね受け44と、リフタ43とばね受け44との間に装着されてリフタ43を反位相カム41に向かって付勢するコイルスプリング45とを備えている。リフタ43の先端にはローラ46が回転自在に取り付けられ、このローラ46がコイルスプリング45の反発力で反位相カム41の外周面に押し付けられている。
カムシャフト17の反位相カム41に対応するリフタ43は、その反位相カム41に設けられた一方の凹部41bの底41cにローラ46が接したときにそのカムシャフト17に設けられた#1気筒用のカム16のノーズ部16bの頂点16cが#1気筒用のバルブリフター4に接し、他方の凹部41bの底41cにローラ46が接したときにそのカムシャフト17に設けられた#4気筒用のカム16のノーズ部16bの頂点16cが#3気筒用のバルブリフター4の凹部41bの底41cに接するようにカムシャフト17の周方向に関して位置決めされている。また、カムシャフト30の反位相カム41に対応するリフタ43は、その反位相カム41に設けられた一方の凹部41bの底41cにローラ46が接したときにそのカムシャフト30に設けられた#3気筒用のカム16のノーズ部16bの頂点16cが#3気筒用のバルブリフター4に接し、他方の凹部41bの底41cにローラ46が接したときにそのカムシャフト30に設けられた#2気筒用のカム16のノーズ部16bの頂点16cが#2気筒用のバルブリフター4の凹部41bの底41cに接するようにカムシャフト30の周方向に関して位置決めされている。
以上のように構成された動弁装置10によれば、電動モータ11、12によりそれぞれのカムシャフト17、30をエンジン200のクランク軸の回転速度の半分の速度で一方向に連続的に駆動することにより、クランク軸からの動力で弁を駆動する一般的な機械式の動弁装置と同様にクランク軸の回転に同期して吸気弁203を開閉駆動することができる。
排気弁204についても、同様に動弁装置10が設けられており、動弁装置10によって開閉駆動することができる。
尚、本実施形態では、図4から図10に例示した可変動弁機構のみならず、吸気弁及び排気弁の開閉時期を制御できるものであれば、既存の或いは今後開発されるカムバイワイヤ、電磁駆動弁等の各種機構を、動弁装置10として採用できる。
<第2実施形態>
次に、第2実施形態に係る制御装置について、図11から図14を参照して説明する。
<<全体構成>>
先ず、本実施形態に係る制御装置を備えたエンジンの全体構成について、図11及び図12を参照して説明する。ここに図11は、第2実施形態における図1と同趣旨の模式図である。図12は、第2実施形態における図2と同趣旨の説明図である。尚、図11及び図12において、図1及び図2に示した第1実施形態に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
図11において、エンジン220は、吸気管206内の吸入空気のCO2濃度を検出するCO2濃度センサ213を備える点で、図1を参照して上述したエンジン200と異なる。
図11において、制御装置102は、吸気弁制御装置112及び排気弁制御部122を備えており、エンジン220の動作全体を制御する。これらは、図1を参照して上述した制御装置100と同様に、好適には、周知のECU、CPU、制御プログラムを格納した読み出しROM、各種データを格納するRAM等を中心とした論理演算回路として構成されている。更に、CO2濃度センサ213等の各種センサからの入力信号を受ける入力ポート及び、動弁装置10等の各種アクチュエータに制御信号を送る出力ポートに対して、バスを介して接続されている。
本発明に係る「吸気弁制御手段」の一例としての吸気弁制御部112は、第1実施形態に係る吸気弁制御部110と同様に、エンジン220の始動時に行われるクランキング動作中に、吸気弁203が継続して開弁状態となるように動弁装置10を制御することが可能に構成されている。よって、図12に示すように、クランキング動作中である期間T1においては、吸気弁203を継続して開弁状態とすることが可能となっている。更に、本実施形態では特に、吸気弁制御部112は、クランキング動作の終了後からエンジン220における、本発明に係る「既燃ガス濃度」の一例としてのCO2濃度が所定値以上となるまでの期間中に、排気行程において吸気弁203が開弁状態となるように動弁装置10を制御することが可能に構成されている。即ち、図12に示すように、クランキング動作の終了後からエンジン220におけるCO2濃度が所定値以上になるまでの期間T3(即ち、期間T3a、T3b、T3c及びT3d)において、吸気弁203を、吸気行程に対応する期間T3a及び排気行程に対応する期間T3dでは開弁状態と、圧縮及び膨張行程に夫々対応する期間T3b及びT3cでは閉弁状態とすることが可能となっている。尚、本実施形態では、エンジン220の燃焼限界となるCO2濃度の値が、所定値として予め設定されている。
本発明に係る「排気制御手段」の一例としての排気弁制御部122は、クランキング動作中に、排気弁204が継続して閉弁状態となるように、動弁装置10を制御することが可能に構成されている。即ち、図12に示すように、クランキング動作中である期間T1においては、排気弁204を継続して閉弁状態とすることが可能となっている。更に、本実施形態では特に、排気弁制御部122は、クランキング動作の終了後からエンジン220におけるCO2濃度が所定値以上となるまでの期間中に、排気弁204が閉弁状態となるように動弁装置10を制御することが可能に構成されている。即ち、図12に示すように、期間T3において、排気弁204を継続して閉弁状態とすることが可能となっている。
制御装置102は、CO2濃度が所定値以上になった場合には、吸気弁203及び排気弁204を通常の動作状態とするように、動弁装置10を制御する。即ち、図12に示すように、クランキング動作の終了後、CO2濃度が所定値以上となった期間T4(即ち、期間T4a、T4b、T4c及びT4d)においては、吸気弁203及び排気弁204は通常の動作状態とされる。具体的には、吸気行程に対応する期間T4aには、吸気弁203は開弁状態と、排気弁204は閉弁状態とされ、圧縮及び膨張行程に夫々対応する期間T4b及びT4cには、吸気弁203及び排気弁204は閉弁状態とされ、排気行程に対応する期間T4dには、吸気弁203は閉弁状態と、排気弁204は開弁状態とされる。尚、期間T4aと期間T4bとのオーバーラップ、或いは、期間T4cと期間T4dとのオーバーラップが適宜設定されてもよい。
<<動作処理>>
次に、本実施形態の制御装置の動作処理について図11及び図12に加えて、図13及び図14を参照して説明する。ここに図13は、第2実施形態おける図3と同趣旨のフローチャートである。図14は、吸気管内のCO2濃度とトルク変動との関係を示すグラフである。尚、図13において、図3に示した第1実施形態に係る動作処理と同様の動作処理に同一の参照符合を付し、それらの説明は適宜省略する。
図13において、制御装置102の動作処理は、エンジン220においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われたと判定された場合において(ステップS12:YES)、吸気弁203及び排気弁204が通常の動作状態となるように、制御装置102によって制御される(ステップS14)前に、ステップS21及びステップS22に係る一連の動作処理が行われる点で、図3を参照して上述した第1実施形態に係る動作処理と異なる。
即ち、本実施形態では特に、エンジン220においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われたと判定された場合には(ステップS12:YES)、先ず、吸気行程に加えて排気行程においても吸気弁203が開弁状態となるように、吸気弁制御部112によって動弁装置10が制御されると共に、排気弁204が継続して閉弁状態となるように、排気弁制御部122によって動弁装置10が制御される(ステップS21)。続いて、吸気管206内のCO2濃度が所定値以上であるか否かが、制御装置100によって判定される(ステップS22)。吸気管206内のCO2濃度が所定値未満の場合には(ステップS22:NO)、再びステップS21に係る動作処理が行われる。一方、吸気管206内のCO2濃度が所定値よりも大きい場合には(ステップS22:YES)には、吸気弁203及び排気弁204は、通常の動作状態となるように、制御装置102によって制御される(ステップS14)。即ち、図12に示すように、クランキング動作の終了後からエンジン220におけるCO2濃度が所定値以上になるまでの期間T3において、吸気弁203は、吸気行程に対応する期間T3a及び排気行程に対応する期間T3dでは開弁状態と、圧縮行程及び膨張行程に夫々対応する期間T3b及びT3cでは閉弁状態とされ、且つ、排気弁204は、継続して閉弁状態とされる。よって、クランキング動作の終了後に、残留ガスに含まれる未燃HCが、エンジン220の外へ排出されてしまうことを抑制或いは防止できる。クランキング動作終了直後の残留ガスには、エンジン220の通常の動作状態における排気ガスに比べ、多くの未燃HCが多く含まれる可能性が高いので効果的である。
ここで、図14に示すように、本実施形態に係る所定値は、トルク変動に基づいて燃焼限界となる吸気管206内におけるCO2濃度が設定されている。即ち、所定値は、トルク変動が許容できる範囲内におけるCO2濃度の最大値として設定されている。よって、CO2濃度が大きくなりすぎて、エンジン220の動作が不安定になってしまわないようにできる。
所定値は、エンジン220の回転数、燃料量に基づいて可変としてもよい。また、CO2濃度が所定値以上であるか否かを判定する動作処理(ステップS22)に替えて、例えば、吸気管206内のO2濃度が所定値未満か否かを判定する動作処理を行ってもよい。この場合には、所定値は、燃焼限界となるO2濃度の値として設定すればよい。
尚、本実施形態では、CO2濃度は、CO2濃度センサ213により検出されるようになっているが、吸気側に設けられたサージタンクの容積と気筒2から吹き返される既燃ガス量とからCO2濃度を制御装置102によって逐次推定するようにしてもよい。
<第3実施形態>
次に、第3実施形態に係る制御装置について、図15から図17を参照して説明する。
<<全体構成>>
先ず、本実施形態に係る制御装置を備えたエンジンの全体構成について、図15及び図16を参照して説明する。ここに図15は、第3実施形態における図1と同趣旨の模式図である。図16は、第3実施形態に係る吸気弁及び排気絞り弁の動弁特性を示す説明図である。尚、図15及び図16において、図1及び図2に示した第1実施形態に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
図15において、エンジン230は、排気管210の途中に排気絞り弁212が設けられている点で、図11を参照して上述したエンジン220と異なる。排気絞り弁212は、排気管210を通過する排気ガスの流量を調整することが可能である。この排気絞り弁211は、制御装置103によって開度が制御される。
図15において、制御装置103は、吸気弁制御装置113及び排気絞り弁制御部130を備えており、エンジン230の動作全体を制御する。これらは、図1を参照して上述した制御装置100と同様に、好適には、周知のECU、CPU、制御プログラムを格納した読み出しROM、各種データを格納するRAM等を中心とした論理演算回路として構成されている。更に、A/Fセンサ等の各種センサからの入力信号を受ける入力ポート及び、動弁装置10、排気絞り弁211等の各種アクチュエータに制御信号を送る出力ポートに対して、バスを介して接続されている。
本発明に係る「吸気弁制御手段」の一例としての吸気弁制御部113は、図11を参照して上述した第2実施形態に係る吸気弁制御部112と同様に、エンジン230の始動時に行われるクランキング動作中に、吸気弁203が継続して開弁状態となるように動弁装置10を制御することが可能に構成されている。よって、図16に示すように、クランキング動作中である期間T1においては、吸気弁203を継続して開弁状態とすることが可能となっている。更に、吸気弁制御部113は、クランキング動作の終了後からエンジン230における、本発明に係る「既燃ガス濃度」の一例としてのCO2濃度が所定値以上となるまでの期間中に、排気行程において吸気弁203が開弁状態となるように動弁装置10を制御することが可能に構成されている。即ち、図16に示すように、クランキング動作の終了後からエンジン230におけるCO2濃度が所定値以上になるまでの期間T3において、吸気弁203を、吸気行程に対応する期間T3a及び排気行程に対応する期間T3dでは開弁状態と、圧縮及び膨張行程に夫々対応する期間T3b及びT3cでは閉弁状態とすることが可能となっている。尚、本実施形態では、エンジン230の燃焼限界となるCO2濃度の値が、所定値として予め設定されている。
本発明に係る「排気制御手段」の一例としての排気絞り弁制御部130は、クランキング動作中に、排気絞り弁212を継続して閉弁状態となるように制御することが可能に構成されている。即ち、図16に示すように、クランキング動作中である期間T1においては、排気絞り弁212を継続して閉弁状態とすることが可能となっている。更に、排気絞り弁制御部140は、クランキング動作の終了後からエンジン230におけるCO2濃度が所定値以上になるまでの期間中に、排気絞り弁212を閉弁状態となるように制御することが可能に構成されている。即ち、図16に示すように、期間T3において、排気絞り弁212を継続して閉弁状態とすることが可能となっている。
制御装置103は、CO2濃度センサ213により検出されるCO2濃度が所定値以上になった場合には、吸気弁203及び排気絞り弁212を通常の動作状態とするように、動弁装置10及び排気絞り弁212を夫々制御する。即ち、図16に示すように、クランキング動作の終了後、CO2濃度が所定値以上になった期間T4においては、吸気弁203及び排気絞り弁212は通常の動作状態とされる。具体的には、吸気行程に対応する期間T4aには、吸気弁203は開弁状態と、排気絞り弁212は閉弁状態とされ、圧縮及び膨張行程に夫々対応する期間T4b及びT4cには、吸気弁203及び排気絞り弁212は閉弁状態とされ、排気行程に対応する期間T4dには、吸気弁203は閉弁状態と、排気絞り弁212は開弁状態とされる。尚、期間T4aと期間T4bとのオーバーラップ、或いは、期間T4cと期間T4dとのオーバーラップが適宜設定されてもよい。
<<動作処理>>
次に、本実施形態の制御装置の動作処理について図15及び図16に加えて、図17を参照して説明する。ここに図17は、第3実施形態おける図3と同趣旨のフローチャートである。尚、図17において、図3に示した第1実施形態に係る動作処理と同様の動作処理に同一の参照符合を付し、それらの説明は適宜省略する。
図17において、制御装置103の動作処理は、図3を参照して上述した第1実施形態に係る動作処理と比較して、エンジン230においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われていないと判定された場合に(ステップS12:NO)、ステップS13に係る動作処理(図3参照)に替えてステップS31に係る動作処理が行われる点、及び、エンジン230においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われたと判定された場合に(ステップS12:YES)、ステップS14に係る動作処理(図3参照)に替えてステップS32からステップS34までに係る一連の動作処理が行われる点で異なる。言い換えれば、制御装置103の動作処理は、図13を参照して上述した第2実施形態に係る動作処理と比較して、排気弁204に係る動作処理(ステップS13、ステップS14、ステップS21及びステップS22)に替えて排気絞り弁212に係る動作処理(ステップS31、ステップS32、ステップS33及びステップS34)が行われる点で異なる。
即ち、本実施形態では特に、エンジン230においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われていない、即ちクランキング動作中であると判定された場合には(ステップS12:NO)、吸気弁制御部113によって吸気弁203が継続して開弁状態となるように動弁装置10が制御されると共に、排気絞り弁制御部130によって排気絞り弁212が継続して閉弁状態となるように制御される(ステップS31)。その後再び、上述したステップS11に係る動作処理が行われる。即ち、エンジン200のクランキング動作中には、ステップS11からステップS13までの一連の動作処理が繰り返される。つまり、図16に示すように、クランキング動作中である期間T1においては、吸気弁203は継続して開弁状態となるように、且つ、排気絞り弁212は継続して閉弁状態となるように、制御装置103によって動弁装置10及び排気絞り弁212が制御される。このため、クランキング動作によって、エンジン230の各気筒2内に存在する、クランキング動作前の未燃HCを含む残留ガスは、排気管210における排気絞り弁212よりも下流側へ流出せず、吸気弁203を介した吸気管206へ流出される。このように吸気管206へ流出された残留ガスは、クランキング動作終了後の通常の動作状態になったエンジン230の吸気行程において、新たにインジェクタ211から供給された燃料及び空気と共に再び気筒2内に吸気される。よって、クランキング動作前の残留ガスに含まれる未燃HCは、エンジン230の各気筒2内において燃焼される。従って、クランキング動作前の残留ガスに含まれる未燃HCが、クランキング動作によってエンジン230の外へ排気管210等の排気通路を介して排出されてしまうことを抑制或いは防止できる。
一方、エンジン230においてインジェクタ211による燃料噴射及び点火プラグ202による点火が行われたと判定された場合には(ステップS12:YES)、先ず、吸気行程に加えて排気行程においても吸気弁203が開弁状態となるように、吸気弁制御部113によって動弁装置10が制御されると共に、排気絞り弁制御部140によって排気絞り弁212が継続して閉弁状態となるように制御される(ステップS32)。続いて、吸気管206内のCO2濃度が所定値以上であるか否かが、制御装置103によって判定される(ステップS33)。吸気管206内のCO2濃度が所定値未満の場合には(ステップS33:NO)、再びステップS32に係る動作処理が行われる。一方、吸気管206内のCO2濃度が所定値よりも大きい場合には(ステップS33:YES)には、吸気弁203及び排気絞り弁212は、通常の動作状態となるように、制御装置103によって制御される(ステップS34)。即ち、図16に示すように、クランキング動作の終了後からエンジン230におけるCO2濃度が所定値以上になるまでの期間T3において、吸気弁203は、吸気行程に対応する期間T3a及び排気行程に対応する期間T3dでは開弁状態と、圧縮及び膨張行程に夫々対応する期間T3b及びT3cでは閉弁状態とされ、且つ、排気絞り弁212は、継続して閉弁状態とされる。よって、クランキング動作の終了後に、残留ガスに含まれる未燃HCが、エンジン230の外へ排出されてしまうことを抑制或いは防止できる。
第3実施形態から明らかなように、排気絞り弁を上述の如くに始動制御中に適宜閉じることが可能な構成を採用すれば、吸気弁及び排気弁のうち吸気弁についてのみ動弁特性を変更可能な可変動弁機構を備えた内燃機関の動作状態を制御することも可能である。言い換えれば、この場合には、仮に排気弁が可変動弁機構を備えていなくても、本発明による効果が大なり小なり得られる。
<第4実施形態>
次に、第4実施形態に係る制御装置について、図18から図22を参照して説明する。
<<全体構成>>
先ず、本実施形態に係る制御装置を備えたエンジンの全体構成について、図18から図21を参照して説明する。尚、図18及び図21において、図1及び図2に示した第1実施形態に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
図18は、第4実施形態における図1と同趣旨の模式図である。
この図18において、エンジン240は、水温センサ2012、目標温度設定部130、比重センサ2231及び誘電率センサ2232を備える点で、図1を参照して上述したエンジン200と異なる。水温センサ2012によって特定される冷却水の実温度と、目標温度設定部130によって設定される目標温度との偏差に基いて、吸気弁制御部114は吸気弁203に係るリフト量が所定リフト量になるよう設定する。この際、目標温度は、比重センサ2231及び誘電率センサ2232の出力に応じて補正される。
本発明に係る「温度特定手段」の一例としての水温センサ2012は、シリンダ201を収容するシリンダブロックのウォータージャケット内に備えられ、エンジン240の冷却水温度を検出し、電気的に接続された制御装置140に伝達する。
本発明に係る「目標温度設定手段」の一例としての目標温度設定部130は、クランキング動作中に到達すべき冷却水の目標温度を、燃料の微粒子化促進の観点から、設定する。具体的には、燃料タンク223内の燃料の温度特性(例えば、蒸発温度)に基いて目標温度を設定する。
比重センサ2231は、燃料タンク223内の燃料における、粗悪な燃料の含有率を検出し、もって燃料の蒸発し難さを定量的に評価する。
誘電率センサ2232は、燃料タンク223内の燃料における、アルコール濃度を検出し、もって燃料の蒸発し難さを定量的に評価する。
図19は、第4実施形態に係る吸気弁のリフト量と上昇温度及びポンピングロスとの関係を示す特性図である。
この図19において、吸気弁203のリフト量が小さければ小さいほど、冷却水の上昇温度ΔTは相対的に大きいという関係が示されている。この関係は、第一に、吸気弁のリフト量とポンピングロスとは、負の相関関係をもつことによる。リフト量が小さくなればなるほど、吸気弁203を通過する際のエネルギー損失は増大すると思料されるからである。第二に、このポンピングロスと冷却水の上昇温度とは、正の相関関係をもつことによる。ポンピングロスでのエネルギー損失は、熱として空気の温度を押し上げると思料されるからである。そして図19は、「最大ポンピングロスに相当する最大上昇温度」ΔTmaxが、例えば50[℃/行程]であり、これを与えるリフト量が、例えば1[mm]であることを示す。即ち、リフト量を1[mm]に設定すれば、1行程当たり冷却水の温度が50℃上昇することが見込まれる。このようなリフト量と上昇温度との関係に基いて、吸気弁203の開弁状態を制御すれば、クランキング動作中の吸気・膨張行程及び圧縮・排気行程において、所望の温度上昇が見込まれる。この様子について図20を用いて説明を加える。ここに、図20は、第4実施形態に係る吸気・膨張行程及び圧縮・排気行程での吸気の流れを示す模式図である。
この図20において、エンジン240のクランキング動作中に、排気弁204が継続して閉弁状態とされ、他方で、リフト量が所定リフト量に保持されたまま、吸気弁203が継続して開弁状態とされている。そして、ピストン2011の上下移動に伴い、(a)吸気・膨張行程と、(b)圧縮・排気行程とが数回に渡って交互に繰り返される。この際、未燃燃料を含む空気は、シリンダ201と吸気管206とを往来する。従って、所定リフト量に保持された吸気弁203を通過する際に、ポンピングロスによるエネルギー損失分、温度がΔTずつ上昇することになる。このように上昇した温度が、目標温度に到達すれば、制御装置100は、クランキング動作を終了する。この様子について図21を用いて説明を加える。ここに、図21は、第4実施形態における図2と同趣旨の説明図である。この図21に示すように、制御装置140は、クランキング動作の終了後、言い換えれば、エンジン240における点火後には、吸気弁203及び排気弁204を通常の動作状態とするように、動弁装置10を制御する。
このように、通常の動作状態とされる前に、上述したクランキングが行われるので、シリンダ201内の温度が適度に上昇し、未燃燃料及び通常の動作状態に供する新たな燃料の蒸発或いは微粒子化が促進される。従って、通常の動作状態としても、燃料の未燃が回避され、もって、エンジン240の未燃HCの排出量を一段と低減できる。
<<動作処理>>
次に、本実施形態の制御装置の動作処理について図3及び図18から図21に加えて、図22を参照して説明する。ここに図22は、第4実施形態における図3の動作処理の一部をサブルーチンとして示すフローチャートである。尚、図22において、図3に示した第1実施形態に係る動作処理と同様の動作処理に同一の参照符合を付し、それらの説明は適宜省略する。
先ず、図3において、エンジン240が始動制御中であると判定され(ステップS11:YES)、クランキング動作が終了していない(即ち、クランキング動作中である)と判定された場合には(ステップS12:NO)、吸気弁制御部114によって吸気弁203が継続して開弁状態となるように動弁装置10が制御されると共に、排気弁制御部120によって排気弁204が継続して閉弁状態となるように動弁装置10が制御される(ステップS13)。この制御(即ち、ステップS13)について、図22のサブルーチンを用いて詳述する。
図22において、先ず、目標温度設定部130によって、典型的には予め、燃料の蒸発・微粒子化促進の観点から、冷却水の目標温度が設定される(ステップS131)。
続いて、比重センサ2231及び誘電率センサ2232によって、燃料タンク223に貯蔵された燃料の比重及び誘電率が測定され、粗悪な燃料の含有率及びアルコール濃度が特定され、もって燃料の蒸発し難さが定量的に評価される(ステップS132)。
そして、目標温度設定部130燃料の比重及び誘電率に基き、目標温度が補正される(ステップS133)。即ち、目標温度を予め設定する際に想定された燃料の蒸発し難さと、実際の燃料の蒸発のし難さとの溝を埋めるために補正される。典型的には、実際の燃料の蒸発のし難さが大きい分、目標温度を上げるように補正される。但し、目標温度を上げ過ぎるて他の部位の動作に悪影響を及ぼす虞がある場合には、適宜上限を設けてもよい。
このように冷却水の目標温度が定まると、続いて、実温度が、水温センサ2012によって検出される(ステップS134)。
この冷却水の目標温度と実温度との温度偏差の大きさに基いて、吸気弁制御部114は所定リフト量を設定する(ステップS135)。
ここで、上述の温度偏差が目標温度からの許容誤差を示すΔTmin以下の場合(ステップS135:YES)、即ち、既に実温度が目標温度の誤差として許容される範囲内である場合、クランキング動作中に温度を上昇させる必要は特にない。よって、本サブルーチンを終了する。
他方、上述の温度偏差がΔTminより大きい場合(ステップS135:NO)、即ち、実温度が目標温度の誤差として許容されない場合、続いて、上述の温度偏差がΔTmax(例えば50[℃/行程])以下であるか否かが判定される(ステップS136)。ここにΔTmaxは、1行程当たりの最大ポンピングロスに相当する最大上昇温度を示す。
ここで、上述の温度偏差が最大上昇温度ΔTmax以下である場合(ステップS136:YES)、例えば吸気行程を1行程行うことで目標温度が達成され得る。そこで、図19の特性図に基づき、温度偏差(即ち、上昇温度)に応じて吸気弁203に係る所定リフト量を設定する(ステップS1371)。この所定リフト量は、典型的にはマップから、或いは「所定リフト量=F(目標温度−実温度)」なる式から、求まる。ここに、関数「所定リフト量=F(上昇温度ΔT)」は、図19の特性図に基づき、目標とする上昇温度ΔTと、それだけの温度を上昇させるための所定リフト量との関係を1対1で表す関数である。
他方、上述の温度偏差が最大上昇温度ΔTmaxよりも大きい場合(ステップS136:NO)、吸気弁203のリフト量が、少なくとも1行程に渡って、最大上昇温度ΔTmaxを与える所定リフト量に保持されても、目標温度を超えることはない。従って、所定リフト量を、最大上昇温度ΔTmaxを与える所定リフト量に設定する(ステップS1372)。この所定リフト量は、典型的にはマップから、或いは「所定リフト量=F(ΔTmax)」なる式から、求まる。
その後、吸気弁制御部114によって、リフト量が上述の所定リフト量に保持されたまま、吸気弁203が継続して開弁状態となるように動弁装置10が制御される。これと同時に又は相前後して、排気弁制御部120によって排気弁204が継続して閉弁状態となるように動弁装置10が制御される(ステップS138)。そして、このまま1行程のクランキングが行われる(ステップS139)。例えば、吸気行程が1行程行われる。この際、図19から図21に示すように、ポンピングロスによって損失するエネルギーを受けて、冷却水の水温がΔT上昇する。即ち、シリンダ201と吸気管206とを往来する未燃燃料を含む空気の温度が、相対的に上昇する。
このようなクランキング動作が、目標温度を達成するまで、典型的には数行程繰り返されて、本サブルーチンが終了する(ステップS135:YES)。
そして、図3に戻り、上記サブルーチンの結果、クランキング動作が終了している(即ち、クランキング動作中でない)と判定された場合には(ステップS12:YES)、吸気弁203及び排気弁204は、通常の動作状態となるように、制御装置140によって制御される(ステップS14)。即ち、図21を参照して上述したように、クランキング動作の終了後である期間T2において、吸気弁203及び排気弁204は通常の動作状態とされる。
以上、第4実施形態から明らかなように、クランキング動作中に、リフト量が所定リフト量に保持されたまま、吸気弁203が継続して開弁状態とされ、他方で排気弁204等が継続して閉弁状態とされれば、未燃燃料及び通常の動作状態に供する新たな燃料の蒸発或いは微粒子化が促進される。従って、通常の動作状態としても、燃料の未燃が回避され、もって、エンジン240の未燃HCの排出量を一段と低減できる。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う内燃機関の制御装置もまた本発明の技術的範囲に含まれるものである。
第1実施形態に係る制御装置を備えたエンジンの構成を示す模式図である。 第1実施形態に係る吸気弁及び排気弁の動弁特性を示す説明図である。 第1実施形態に係る制御装置の動作処理を示すフローチャートである。 第1実施形態に係る動弁装置を示す斜視図である。 第1実施形態に係るエンジンの気筒毎の開弁期間とクランク角との関係を示す図である。 第1実施形態に係る動弁装置の一部分解視図である。 第1実施形態に係る動弁装置の断面図である。 同一気筒群のカムを重ねて示す図である。 トルク低減機構を示す図である。 トルク低減機構に設けられた反位相カムを示す図である。 第2実施形態における図1と同趣旨の模式図である。 第2実施形態における図2と同趣旨の説明図である。 第2実施形態おける図3と同趣旨のフローチャートである。 吸気管内のCO2濃度とトルク変動との関係を示すグラフである。 第3実施形態における図1と同趣旨の模式図である。 第3実施形態に係る吸気弁及び排気絞り弁の動弁特性を示す説明図である。 第3実施形態おける図3と同趣旨のフローチャートである。 第4実施形態における図1と同趣旨の模式図である。 第4実施形態に係る吸気弁のリフト量と上昇温度及びポンピングロスとの関係を示す特性図である。 第4実施形態に係る吸気・膨張行程及び圧縮・排気行程での吸気の流れを示す模式図である。 第4実施形態における図2と同趣旨の説明図である。 第4実施形態における図3の動作処理の一部をサブルーチンとして示すフローチャートである。
符号の説明
2…気筒、10…動弁装置、100…制御装置、110…吸気弁制御部、120…排気弁制御部、200…エンジン、202…点火プラグ、203…吸気弁、204…排気弁、206、234…吸気管、210…排気管、211…インジェクタ、130…目標温度設定部、2012…水温センサ、2231…比重センサ、2232…誘電率センサ

Claims (11)

  1. 吸気弁及び排気弁の動弁特性を変更可能な可変動弁機構を備えた内燃機関の動作状態を制御する内燃機関の制御装置であって、
    前記内燃機関のクランキング動作中に、前記吸気弁が継続して開弁状態となるように前記可変動弁機構を制御する吸気弁制御手段と、
    前記クランキング動作中に、前記排気弁及び前記排気弁よりも下流側の排気経路に設けられた排気絞り弁の少なくとも一方が継続して閉弁状態となるように、前記可変動弁機構及び前記排気絞り弁の少なくとも一方を制御する排気制御手段と
    を備えたことを特徴とする内燃機関の制御装置。
  2. 吸気弁及び排気弁の動弁特性を変更可能な可変動弁機構を備えた内燃機関の動作状態を制御する内燃機関の制御装置であって、
    前記内燃機関のクランキング動作中に、前記吸気弁が開弁状態となるように、且つ、前記クランキング動作の終了後から前記内燃機関における既燃ガス濃度が所定値以上となるまでの第1期間中に、排気行程において前記吸気弁が開弁状態となるように、前記可変動弁機構を制御する吸気弁制御手段と、
    前記クランキング動作中及び前記第1期間中に、前記排気弁及び前記排気弁よりも下流側の排気経路に設けられた排気絞り弁の少なくとも一方が閉弁状態となるように、前記可変動弁機構及び前記排気絞り弁の少なくとも一方を制御する排気制御手段と
    を備えたことを特徴とする内燃機関の制御装置。
  3. 前記吸気弁制御手段は、前記既燃ガス濃度を推定する濃度推定手段を有することを特徴とする請求項2に記載の内燃機関の制御装置。
  4. 前記濃度推定手段は、前記吸気弁に連通する吸気管における二酸化炭素濃度に基づいて、前記既燃ガス濃度を推定することを特徴とする請求項3に記載の内燃機関の制御装置。
  5. 前記吸気弁制御手段は、前記所定値を、前記動作状態を規定する一又は複数のパラメータに応じて可変に設定することを特徴とする請求項3又は4に記載の内燃機関の制御装置。
  6. 前記内燃機関は、複数の気筒に分かれており、
    前記可変動弁機構は、弁駆動源から出力される回転運動を前記複数の気筒の各々に設けられた運動変換手段により直線運動に変換し、該直線運動を利用して前記複数の気筒の各々の前記排気弁及び前記吸気弁を開閉駆動する動弁装置を有し、
    該動弁装置は、開弁期間が重ならない複数の気筒によって構成される気筒群に対して前記弁駆動源として共用される電動モータと、前記電動モータの回転を前記気筒群の各々の運動変換手段の回転体に伝達する伝達機構とを備える
    ことを特徴とする請求項1から5のいずれか一項に記載の内燃機関の制御装置。
  7. 前記吸気弁制御手段は、前記クランキング動作中に、リフト量が所定リフト量に保持されたまま前記吸気弁が継続して開弁状態となるように、前記可変動弁機構を制御する
    ことを特徴とする請求項1から6のいずれか一項に記載の内燃機関の制御装置。
  8. 前記内燃機関を冷却する冷却水の実温度を特定する温度特定手段と、
    前記クランキング動作中に到達すべき前記冷却水の目標温度を設定する目標温度設定手段と
    を更に備え、
    前記吸気弁制御手段は、前記実温度と前記目標温度との偏差に基いて、前記所定リフト量を設定する
    ことを特徴とする請求項7に記載の内燃機関の制御装置。
  9. 前記内燃機関での最大ポンピングロスに相当する最大上昇温度に比べて、前記偏差の方が大きい場合には、前記吸気弁制御手段は、前記偏差に基いて設定することに代えて、前記最大ポンピングロスに相当するリフト量を前記所定リフト量として設定する
    ことを特徴とする請求項8に記載の内燃機関の制御装置。
  10. 前記目標温度設定手段は、前記内燃機関での燃焼に供する燃料の比重に応じて、前記設定された目標温度を補正する
    ことを特徴とする請求項8又は9に記載の内燃機関の制御装置。
  11. 前記目標温度設定手段は、前記燃料の誘電率に応じて、前記設定された目標温度を補正する
    ことを特徴とする請求項8から10のいずれか一項に記載の内燃機関の制御装置。
JP2006125824A 2005-12-05 2006-04-28 内燃機関の制御装置 Expired - Fee Related JP4289364B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006125824A JP4289364B2 (ja) 2005-12-05 2006-04-28 内燃機関の制御装置
EP06834169A EP1957764B1 (en) 2005-12-05 2006-11-30 Control apparatus for internal combustion engine
US12/085,168 US7813864B2 (en) 2005-12-05 2006-11-30 Control apparatus for internal combustion engine
CN2006800456268A CN101321932B (zh) 2005-12-05 2006-11-30 用于内燃发动机的控制设备
PCT/JP2006/324414 WO2007066706A1 (en) 2005-12-05 2006-11-30 Control apparatus for internal combustion engine
DE602006016851T DE602006016851D1 (de) 2005-12-05 2006-11-30 Steuervorrichtung für verbrennungsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005351302 2005-12-05
JP2006125824A JP4289364B2 (ja) 2005-12-05 2006-04-28 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2007182869A JP2007182869A (ja) 2007-07-19
JP4289364B2 true JP4289364B2 (ja) 2009-07-01

Family

ID=37770427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125824A Expired - Fee Related JP4289364B2 (ja) 2005-12-05 2006-04-28 内燃機関の制御装置

Country Status (6)

Country Link
US (1) US7813864B2 (ja)
EP (1) EP1957764B1 (ja)
JP (1) JP4289364B2 (ja)
CN (1) CN101321932B (ja)
DE (1) DE602006016851D1 (ja)
WO (1) WO2007066706A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749981B2 (ja) * 2005-12-28 2011-08-17 日立オートモティブシステムズ株式会社 内燃機関の可変動弁装置
JP4811160B2 (ja) * 2006-07-13 2011-11-09 トヨタ自動車株式会社 内燃機関の始動装置
US20100294224A1 (en) * 2008-01-29 2010-11-25 Mack Trucks Inc. Method for starting an engine, and an engine
JP4941352B2 (ja) * 2008-02-22 2012-05-30 トヨタ自動車株式会社 内燃機関の制御装置
WO2010106640A1 (ja) * 2009-03-17 2010-09-23 トヨタ自動車株式会社 内燃機関の制御装置
DE102009035160B4 (de) * 2009-03-31 2021-02-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Starten eines Verbrennungsmotors
ITMI20101155A1 (it) * 2010-06-25 2011-12-26 Salice Arturo Spa Dispositivo di decelerazione
JP5702993B2 (ja) * 2010-11-24 2015-04-15 株式会社ケーヒン スロットルバルブの全閉基準値設定装置及びエンジンの制御装置
US9038580B2 (en) 2012-02-21 2015-05-26 Ford Global Technologies, Llc Method and system for engine dilution control
GB2504693B (en) * 2012-08-06 2014-12-31 Camcon Auto Ltd Valve control systems for internal combustion engines and methods of operation thereof
US9074543B2 (en) * 2012-08-07 2015-07-07 Ford Global Technologies, Llc Method and system for engine unburned hydrocarbon control
CN104838095A (zh) * 2012-12-18 2015-08-12 雅各布斯车辆系统公司 用于控制发动机阀致动的摇杆闩锁件
JP5943310B2 (ja) * 2013-05-16 2016-07-05 トヨタ自動車株式会社 内燃機関の制御装置
CN106640380B (zh) * 2015-10-28 2019-10-01 长城汽车股份有限公司 车辆的控制方法、系统及车辆
DE102015224758A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Starten eines Verbrennungsmotors
DE102016004820A1 (de) * 2016-04-21 2017-10-26 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Steuern einer Brennkraftmaschine
CN106555682A (zh) * 2016-11-16 2017-04-05 中国北方发动机研究所(天津) 一种降低柴油机启动工况有害排放的可变气门控制方法
JP6848902B2 (ja) * 2018-03-07 2021-03-24 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586908A (ja) 1991-09-24 1993-04-06 Japan Electron Control Syst Co Ltd 内燃機関の排圧制御装置
US5596956A (en) * 1994-12-16 1997-01-28 Honda Giken Kogyo Kabushiki Kaisha Electromagnetically driven valve control system for internal combustion engines
DE19736137C1 (de) * 1997-08-20 1998-10-01 Daimler Benz Ag Verfahren zum Starten eines Verbrennungsmotors
JP3785870B2 (ja) 1999-06-16 2006-06-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3873559B2 (ja) 2000-01-21 2007-01-24 日産自動車株式会社 エンジンの電磁動弁制御装置
US6357409B1 (en) 2000-05-23 2002-03-19 Ford Global Technologies, Inc. Method and system for starting a camless internal combustion engine
JP4591645B2 (ja) 2001-01-12 2010-12-01 三菱自動車工業株式会社 可変バルブタイミング装置
JP4092917B2 (ja) * 2002-01-21 2008-05-28 トヨタ自動車株式会社 内燃機関の電磁駆動弁制御装置
JP3912147B2 (ja) * 2002-03-15 2007-05-09 日産自動車株式会社 内燃機関の可変動弁装置
JP3664249B2 (ja) 2002-06-26 2005-06-22 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2004176680A (ja) 2002-11-29 2004-06-24 Hitachi Unisia Automotive Ltd 内燃機関の可変動弁装置
JP4239797B2 (ja) 2003-11-17 2009-03-18 トヨタ自動車株式会社 内燃機関の制御装置
JP4792215B2 (ja) * 2004-09-09 2011-10-12 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2007182869A (ja) 2007-07-19
CN101321932B (zh) 2010-11-03
DE602006016851D1 (de) 2010-10-21
US7813864B2 (en) 2010-10-12
EP1957764B1 (en) 2010-09-08
CN101321932A (zh) 2008-12-10
EP1957764A1 (en) 2008-08-20
WO2007066706A1 (en) 2007-06-14
US20090292441A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4289364B2 (ja) 内燃機関の制御装置
US7869929B2 (en) Internal combustion engine having variable valve lift mechanism
JP4046086B2 (ja) 可変圧縮比内燃機関
US7444999B2 (en) Control system and method for internal combustion engine
JP4631635B2 (ja) 火花点火式エンジン
JP4931740B2 (ja) 内燃機関の制御装置
JP2006274951A (ja) 4サイクル火花点火式エンジン
KR20050076631A (ko) 내연기관의 제어 방법
US7735477B2 (en) Internal EGR control system for internal combustion engine
JP4716053B2 (ja) 内燃機関
US7503297B2 (en) Valve drive mechanism for engine
JP4998336B2 (ja) 可変圧縮比エンジンの制御装置及び制御方法
JP4591300B2 (ja) 4サイクル火花点火式エンジン
JP2007309266A (ja) 可変動弁機構を備えた内燃機関の制御装置
JP5092956B2 (ja) 車両用の内燃機関を制御する方法及び内燃機関システム
JPH1113521A (ja) 内燃機関の制御装置
JP2006220108A (ja) 内燃機関の可変動弁機構
CN109555572A (zh) 包括不同凸轮凸角轮廓的可变排量发动机
JP2010043551A (ja) 内燃機関の制御装置
JP2010121568A (ja) 内燃機関の制御装置
JP4792952B2 (ja) 内燃機関の制御装置
JP4270083B2 (ja) 内燃機関の制御装置
JP2020007959A (ja) 内燃機関の制御システム及びその制御装置
JP2014206094A (ja) 内燃機関の制御装置
JP2010249094A (ja) 動弁機構制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R151 Written notification of patent or utility model registration

Ref document number: 4289364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees