JP4270797B2 - 磁気検出素子 - Google Patents

磁気検出素子 Download PDF

Info

Publication number
JP4270797B2
JP4270797B2 JP2002066594A JP2002066594A JP4270797B2 JP 4270797 B2 JP4270797 B2 JP 4270797B2 JP 2002066594 A JP2002066594 A JP 2002066594A JP 2002066594 A JP2002066594 A JP 2002066594A JP 4270797 B2 JP4270797 B2 JP 4270797B2
Authority
JP
Japan
Prior art keywords
layer
shield layer
magnetic
multilayer film
track width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002066594A
Other languages
English (en)
Other versions
JP2003264324A (ja
Inventor
直也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002066594A priority Critical patent/JP4270797B2/ja
Priority to US10/384,815 priority patent/US6980403B2/en
Publication of JP2003264324A publication Critical patent/JP2003264324A/ja
Application granted granted Critical
Publication of JP4270797B2 publication Critical patent/JP4270797B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CPP(current perpendicular to the plane)型の磁気検出素子に係り、特に狭トラック化においても実効再生トラック幅の広がりを抑えることができ、従来に比べてサイドリーディングの発生を抑制することが可能な磁気検出素子に関する。
【0002】
【従来の技術】
図16は従来における磁気検出素子の構造を記録媒体との対向面側から見た部分断面図である。
【0003】
図16に示す符号1は、下部電極層であり、前記下部電極層1の上面中央に、下から反強磁性層2、固定磁性層3、非磁性材料層4及びフリー磁性層5からなる多層膜6が形成されている。図16に示すように前記多層膜6の上面のトラック幅方向(図示X方向)の幅寸法で光学的トラック幅O−Twが決定される。
【0004】
図16に示すように、前記多層膜6のトラック幅方向(図示X方向)の両側であって前記下部電極層1上には絶縁層7が形成されている。前記絶縁層7は、例えばAl23やSiO2などである。
【0005】
図16に示すように、前記絶縁層7上及び多層膜6上には上部電極層8が形成されている。
【0006】
図16に示す磁気検出素子は、多層膜6の上下に電極層1、8が形成され、前記電極層1、8からのセンス電流が多層膜6の各層の膜面に対し垂直方向から流れるCPP(current perpendicular to the plane)型と呼ばれる構造である。
【0007】
前記CPP型の磁気検出素子は、センス電流を前記多層膜6の膜面と平行な方向から流すCIP(current in the plane)型の磁気検出素子に比べて狭トラック化においても再生出力の向上を図ることができるなど今後のさらなる高記録密度化に適切に対応することが可能な構造となっている。
【0008】
【発明が解決しようとする課題】
ところで最近の高記録密度化に伴い狭トラック化が益々促進されるにつれて以下のような問題点が顕著化してきた。
【0009】
すなわち磁気検出素子を有する磁気ヘッドを記録媒体上に浮上させ、ある記録トラックから発生する記録磁界の読み込みを行っているとき、前記磁気検出素子が前記記録トラックに隣接する記録トラック(以下、隣接トラックという)上に対向した位置になくとも、前記隣接トラックに距離的に近い位置であればあるほど、三次元的に広がる隣接トラックからの漏れ磁界(特に前記多層膜6のトラック幅方向の両側付近で発生している漏れ磁界)が磁気検出素子に侵入しやすくなり、多層膜6の両側部に近い領域において感知されるという現象が生じやすくなったのである。
【0010】
この現象は、磁気検出素子の光学的トラック幅O−Twやトラックピッチ間隔が広ければさほど問題ではなかったが、特に光学的トラック幅O−Twが0.2μm以下になってくるとトラックピッチ間隔も狭くなり、検出対象の記録トラックからの磁界の大きさに対する、前記隣接トラックから侵入してくる漏れ磁界の大きさの割合が大きくなり、その結果、実効再生トラック幅寸法が光学的トラック幅O−Twより大きくなってしまうという現象が生じて、サイドリーディングの不具合を発生させ、磁気検出素子が記録媒体の高記録密度化に適切に対応できなくなるという問題が生じていた。
【0011】
そこで本発明は上記従来の課題を解決するためのものであり、CPP型の磁気検出素子において、特に狭トラック化においても実効再生トラック幅の広がりを抑え、サイドリーディングの発生を適切に抑制することが可能な磁気検出素子を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明は、反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層を有する多層膜が設けられ、前記多層膜の各層の膜面と垂直方向に電流が流れる磁気検出素子において、
前記多層膜の下側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された下部シールド層が設けられ、前記多層膜の上側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された上部シールド層が設けられ、
前記多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、
前記サイドシールド層は磁性材料で形成された単層あるいは多層構造で形成され、前記固定磁性層及びフリー磁性層よりも高い比抵抗値を有する磁性材料で形成されることを特徴とするものである。
【0013】
上記のように本発明では、シールドとなるべき層を、前記多層膜の下側(下部シールド層)と上側(上部シールド層)のみならず前記多層膜のトラック幅方向の両側にも設けることで、前記多層膜の上下及び両側左右を前記シールド層でほぼ囲む構造にすることができる。そしてこのような構造にすることで、狭トラック化の促進により従来問題となった隣接トラックからの漏れ磁界を前記サイドシールド層で適切に吸収することができ、狭トラック化においても従来に比べて実効再生トラック幅の広がりを抑えることができ、サイドリーディングの発生を効果的に抑制することが可能になるのである。
【0014】
また本発明では、前記サイドシールド層と多層膜のトラック幅方向の両側端面間には絶縁層が設けられていることが好ましい。本発明のように多層膜の上下方向から電流を流すCPP型の磁気検出素子では、前記多層膜のトラック幅方向における両側端面とサイドシールド層とが直接接していると、前記電流が前記多層膜から前記サイドシールド層に分流する可能性がある。前記電流の分流は再生出力の低下を招くため好ましくない。
【0015】
特に上記した問題は、前記多層膜を構成する非磁性材料層が絶縁材料で形成されたトンネル型磁気抵抗効果型素子である場合には、前記多層膜内を膜面垂直方向に流れる電流が固定磁性層及びフリー磁性層間を非磁性材料層を介して流れにくくサイドシールド層に分流しやすくなり、再生出力が大きく低下しやすい。したがって本発明では、前記サイドシールド層と多層膜の両側端面間に絶縁層を介在させて、前記多層膜内を適切に電流が流れるようにしたのである。
【0016】
本発明では、前記絶縁層のトラック幅方向における膜厚は、0.003μm以上で0.06μm以下であることが好ましい。後述する実験によれば、前記絶縁層のトラック幅方向における膜厚を0.06μm以下にすることで、実効再生トラック幅(磁気的再生トラック幅とも言う)から光学的トラック幅O−Twを引いた値を0.015μm以下に抑えることができ、狭トラック化においても効果的に実効再生トラック幅の狭小化を図ることができ、サイドリーディングの発生を抑制することが可能になる。
【0017】
また本発明では、前記絶縁層のトラック幅方向における膜厚は、0.003μm以上で0.03μm以下であることがより好ましい。後述する実験によれば、前記絶縁層のトラック幅方向における膜厚を0.03μm以下にすることで、実効再生トラック幅から光学的トラック幅O−Twを引いた値を0.01μm以下に抑えることができる。
【0018】
また本発明では、前記サイドシールド層は磁性材料で形成された単層あるいは多層構造で形成され、前記固定磁性層及びフリー磁性層よりも高い比抵抗値を有する磁性材料で形成されることが好ましい。これにより特にサイドシールド層が多層膜の両側端面に直接接して形成されているとき、電流が適切に固定磁性層及びフリー磁性層間を非磁性材料層を介して流れ、前記サイドシールド層に分流するのを効果的に抑制でき、再生出力の向上を図ることが可能になる。
【0019】
また本発明では、前記サイドシールド層は磁性材料で形成された単層あるいは多層構造で形成され、上部シールド層及び/または下部シールド層と異なる磁性材料で形成されていることが好ましい。本発明では、前記サイドシールド層は上部シールド層及び下部シールド層と分離して形成されていてもよい。本発明では前記サイドシールド層を前記上部シールド層及び下部シールド層と別の磁性材料で形成することが可能になる。これにより前記サイドシールド層の材質の選択性を広げることができ、前記サイドシールド層に前記下部シールド層や上部シールド層よりも高い比抵抗値を有する磁性材料などを使用することが可能になる。
【0020】
例えば、前記サイドシールド層は、それを構成する少なくとも一つの層がCo系アモルファス材料で形成されることが好ましい。
【0021】
また前記サイドシールド層は、それを構成する少なくとも一つの層が組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成されることが好ましい。
【0022】
上記したCo系アモルファス材料やFe−M−O材料は、一般的に下部シールド層や上部シールド層に使用される材質(パーマロイなど)に比べて高い比抵抗値を有している。前記Co系アモルファス材料やFe−M−O材料はスパッタなどで形成される。一方、下部シールド層や上部シールド層は、非常に厚い膜厚で形成される必要があるためにメッキ形成可能なパーマロイ(NiFe合金)などで形成されるが、前記サイドシールド層は、前記下部シールド層や上部シールド層に比べて膜厚が薄く、よってメッキ以外にもスパッタ形成可能な材質で形成することが可能になり、例えば上記したCo系アモルファス材料などを使用することが可能になるのである。
【0023】
また本発明は反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層を有する多層膜が設けられ、前記多層膜の各層の膜面と垂直方向に電流が流れる磁気検出素子において、
前記多層膜の下側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された下部シールド層が設けられ、前記多層膜の上側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された上部シールド層が設けられ、
前記多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、
前記サイドシールド層は、反強磁性層と軟磁性層との積層構造で形成された交換結合膜であることを特徴とするものである。この場合、交換結合磁界があまり強いと、シールドとして機能し得ないので、交換結合磁界は適度に弱くする必要性がある。
【0024】
また本発明では、前記上部シールド層は、前記多層膜の上面に接して形成されることが好ましい。これはすなわち前記上部シールド層が上部電極を兼ね備えた構成である。かかる場合、前記上部シールド層とサイドシールド層間には絶縁層が介在することが好ましい。これにより前記上部シールド層から前記多層膜に流れる電流が、前記上部シールド層から前記サイドシールド層に分流せず、再生出力の向上を適切に図ることが可能になる。
【0025】
また本発明では、前記下部シールド層は、前記多層膜の下面に接して形成されることが好ましい。これはすなわち前記下部シールド層が下部電極を兼ね備えた構成である。かかる場合、前記下部シールド層とサイドシールド層間には絶縁層が介在することが好ましい。これにより前記下部シールド層から前記多層膜に流れる電流が、前記下部シールド層から前記サイドシールド層に分流せず、再生出力の向上を適切に図ることが可能になる。
【0026】
なお、サイドシールド層は、その上面(上部シールド層との間)か下面(下部シールド層との間)のどちらか一方が絶縁されていればよく、必ずしも上下面両方が絶縁されている必要性はない。
【0027】
上記したように下部シールド層及び/または上部シールド層を多層膜と接して形成することで、前記シールド層間の間隔で決定されるギャップ長Glを短くでき、今後の高記録密度化を図る上で効果的である。しかも従来のように電極層をシールド層とは別個に設ける必要がなく、且つ本発明のように前記下部シールド層や上部シールド層を電極層として用いれば、前記多層膜から距離的に遠ざかることなく前記多層膜の上下及び両側左右をシールド層でほぼ囲む構成にすることができ、隣接トラックからの漏れ磁界をより適切に前記シールド層で吸収でき、より効果的に実効再生トラック幅の広がりを抑制することが可能になる。
【0028】
また本発明では、前記サイドシールド層は、上部シールド層あるいは下部シールド層のいずれか一方と一体に形成されていてもよい。
【0029】
また本発明では、一体に形成された前記サイドシールド層及び上部シールド層あるいはサイドシールド層と下部シールド層には、Co系アモルファス材料で形成された磁性領域が存在してもよい。
【0030】
また本発明では、一体に形成された前記サイドシールド層及び上部シールド層あるいはサイドシールド層と下部シールド層には、組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成された磁性領域が存在してもよい。
【0031】
また本発明では、前記上部シールド層は、前記多層膜の上面に接して形成されることが好ましい。
【0032】
また本発明では、前記下部シールド層は、前記多層膜の下面に接して形成されることが好ましい。
【0033】
また本発明は反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層を有する多層膜が設けられ、前記多層膜の各層の膜面と垂直方向に電流が流れる磁気検出素子において、
前記多層膜の下側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された下部シールド層が設けられ、前記多層膜の上側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された上部シールド層が設けられ、
前記多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、
前記フリー磁性層の非磁性材料層と接する面の逆面側に、非磁性層を介してバイアス層が設けられることを特徴とするものである。このようなバイアス層を用いる方式をインスタックバイアス(instack bias)方式と呼ぶ。このインスタックバイアス方式はCPP型の磁気検出素子に効果的に用いることができる。仮にセンス電流を多層膜の膜面と平行な方向から流すCIP型の磁気検出素子に、上記のインスタックバイアス方式を用いると、前記センス電流が前記バイアス層に分流し再生出力の低下を招き好ましくない。一方、CPP型のように電流を多層膜の膜面と垂直方向から流す場合には、前記インスタックバイアス方式は電流の分流経路とはならず、再生出力が低下するといった心配もない。上記したインスタックバイアス方式は、CPP型であって特に狭トラック化が促進されればされるほど効果的なバイアス方式である。
【0034】
なお本発明では、前記非磁性材料層は、非磁性導電材料で形成されてもよいし、あるいは絶縁材料で形成されてもよい。
【0035】
【発明の実施の形態】
図1は、本発明の第1の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。なお、図1ではX方向に延びる素子の中央部分のみを破断して示している。
【0036】
図1に示す磁気検出素子(MRヘッド)は、記録媒体に記録された外部信号を再生するためのものである。また本発明では、前記磁気検出素子の上に記録用のインダクティブヘッドが積層されていてもよい。
【0037】
また前記磁気検出素子は、例えばアルミナ−チタンカーバイト(Al23−TiC)で形成されたスライダのトレーリング端面上に形成される。前記スライダは、記録媒体との対向面と逆面側で、ステンレス材などによる弾性変形可能な支持部材と接合され、磁気ヘッド装置が構成される。
【0038】
図1に示す符号20は、下部シールド層である。この実施形態では前記下部シールド層20が下部電極を兼ねている。前記下部シールド層20は磁性材料で形成される。材質としてはNiFe合金(パーマロイ)やFe−Al−Si(センダスト)などが用いられ、これら材質はメッキあるいはスパッタリングにより形成される。前記シールド層として必要な特性は、高い透磁率や低い磁歪定数などである。
【0039】
図1に示すように前記下部シールド層20の図示X方向における上面中央には、下から反強磁性層21、固定磁性層22、非磁性材料層23、フリー磁性層24及び非磁性層25、バイアス層26及び保護層27がこの順で積層形成されている。
【0040】
なお前記反強磁性層21と前記下部シールド層20間にTa,Hf,Nb,Zr,Ti,Mo,Wのうち少なくとも1種以上で形成された下地層(図示しない)が設けられていてもよい。また前記下地層と反強磁性層21間、あるいは前記反強磁性層21と下部シールド層20間には、CrやNiFeCrなどで形成されたシードレイヤ(図示しない)が設けられていてもよい。前記シードレイヤを形成することで、前記シードレイヤ上に形成される各層の膜面と平行な方向における結晶粒径を大きくでき、耐エレクトロマイグレーションの向上に代表される通電信頼性の向上や抵抗変化率(ΔR/R)の向上などをより適切に図ることができる。
【0041】
図1に示す前記下部シールド層20上に形成された反強磁性層21は、元素X(ただしXは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成されることが好ましい。あるいは前記反強磁性層21は、元素Xと元素X′(ただし元素X′は、Ne,Ar,Kr,Xe,Be,B,C,N,Mg,Al,Si,P,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ag,Cd,Sn,Hf,Ta,W,Re,Au,Pb、及び希土類元素のうち1種または2種以上の元素である)とMnを含有する反強磁性材料により形成されることが好ましい。
【0042】
これらの反強磁性材料は、耐食性に優れしかもブロッキング温度も高く次に説明する固定磁性層22を構成する磁性層28との界面で大きな交換異方性磁界を発生し得る。また前記反強磁性層21は80Å以上で300Å以下の膜厚で形成されることが好ましい。
【0043】
次に前記反強磁性層21上に形成された固定磁性層22はこの実施形態では3層構造で形成されている。
【0044】
前記固定磁性層22を構成する符号28、30の層は磁性層であり、磁性層28と磁性層30との間に、Ruなどで形成された非磁性中間層29が介在し、この構成により、前記磁性層28と磁性層30の磁化方向は互いに反平行状態にされる。これはいわゆる積層フェリ構造と呼ばれる。前記非磁性中間層29は、Ru、Rh、Ir、Cr、Re、Cuのうち1種またはこれらの2種以上の合金で形成されている。特に前記非磁性中間層29はRuによって形成されることが好ましい。
【0045】
前記反強磁性層21と前記固定磁性層22の前記反強磁性層21に接する磁性層28との間には磁場中熱処理によって交換異方性磁界が発生し、例えば前記磁性層28の磁化がハイト方向(図示Y方向)に固定された場合、もう一方の磁性層30はRKKY相互作用により、ハイト方向とは逆方向(図示Y方向と逆方向)に磁化され固定される。この構成により前記固定磁性層22の磁化を安定した状態にでき、また前記固定磁性層22全体と前記反強磁性層21との間で発生する交換異方性磁界を見かけ上大きくすることができる。
【0046】
なお例えば、前記磁性層28、30の膜厚は10〜70Å程度、非磁性中間層29の膜厚は3Å〜10Å程度で形成で形成される。
【0047】
また前記磁性層28と磁性層30はそれぞれ単位面積当たりの磁気モーメントが異なっている。前記磁気モーメントは飽和磁化Ms×膜厚tで設定され、前記磁性層28と磁性層30の磁気モーメントを異ならせることで適切に前記磁性層28と磁性層30を積層フェリ構造にすることが可能である。
【0048】
前記磁性層30の上には非磁性材料層23が形成されている。前記非磁性材料層23は例えばCuなどの電気抵抗の低い導電性材料によって形成される。前記非磁性材料層23は例えば25Å程度の膜厚で形成される。
【0049】
前記非磁性材料層23がCuなどの非磁性導電材料で形成されるとき、図1の磁気検出素子は、CPP型のスピンバルブGMR型磁気抵抗効果素子(CPP−GMR)となる。あるいは前記非磁性材料層23はAl23やSiO2などの絶縁材料で形成されてもよい。前記非磁性材料層23が絶縁材料で形成された磁気検出素子は、トンネルMR効果(TMR効果)を利用したスピンバルブトンネル型磁気抵抗効果型素子(CPP−TMR)となる。
【0050】
次に前記非磁性材料層23の上にはフリー磁性層24が形成される。この実施形態では、前記フリー磁性層24は磁性層の2層構造で形成される。また前記フリー磁性層24の全体の膜厚は、20Å以上で100Å以下程度の膜厚で形成されることが好ましい。
【0051】
前記フリー磁性層24を構成する磁性層31、32は、CoFe合金、CoFeNi合金、NiFe合金、Coのいずれかの1種であることが好ましい。磁性層31はCoFe合金、磁性層32はNiFe合金で形成されることがより好ましい。前記磁性層31は、前記フリー磁性層24と非磁性材料層23間で元素の拡散を防止するための拡散防止層であり、またCoFe合金からなる磁性層31を設けることで、抵抗変化率(ΔR/R)のさらなる向上を図ることができる。
【0052】
図1に示す前記フリー磁性層24上に設けられた非磁性層25は、非磁性導電材料で形成されることが好ましい。具体的には、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の合金で形成されていることが好ましい。なお前記非磁性層25は、例えばAl23やSiO2などの絶縁材料で形成されてもよいが、かかる場合、前記非磁性層25を薄く形成して、前記上部シールド層と下部シールド層20間に流れる電流が、前記非磁性層25の部分で遮断されないようにすることが必要である。前記非磁性層25の膜厚は20〜100Åで形成されることが好ましい。
【0053】
そして前記非磁性層25上には例えば永久磁石製のバイアス層(かかる場合ハードバイアス層という)26が設けられている。前記バイアス層26はCoPtCr合金やCoPt合金などで形成される。前記バイアス層26は、他に軟磁性層と反強磁性層からなる交換結合膜であってもよい。
【0054】
この実施形態では、前記フリー磁性層24上に非磁性層25を介して形成されたバイアス層26(上記の交換結合膜でバイアス層26が構成される場合、軟磁性層)の両側端部から前記フリー磁性層24に向けて縦バイアス磁界が供給されて(矢印で示す)、前記フリー磁性層24の磁化が図示X方向に向けられるようになっている。
【0055】
図1に示す前記バイアス層26の上に形成された保護層27はTaなどの非磁性材料で形成される。
【0056】
なおこの明細書では図1に示す反強磁性層21から保護層27までの各層で構成された積層体を多層膜33と呼ぶ。
【0057】
図1に示す実施形態では、前記多層膜33のトラック幅方向(図示X方向)の両側端面33aよりもさらにトラック幅方向(図示X方向)に延出した下部シールド層20の上面20aから前記多層膜33の前記両側端面33aにかけて絶縁層34が形成されている。前記絶縁層34は例えばAl23やSiO2などの絶縁材料からなりスパッタ成膜される。
【0058】
そして前記絶縁層34上にサイドシールド層35が形成されている。前記サイドシールド層35は磁性材料からなる。材質や膜構成等については後述する。
【0059】
図1に示すように前記サイドシールド層35上には絶縁層36が形成されている。前記絶縁層36は例えばAl23やSiO2などの絶縁材料からなりスパッタ成膜される。
【0060】
図1に示すように前記絶縁層36上から前記多層膜33の最上層である保護層27上にかけて上部シールド層37が形成される。前記上部シールド層37はこの実施形態では上部電極の役割も有する。前記上部シールド層37は磁性材料で形成される。前記上部シールド層37は例えばNiFe合金(パーマロイ)やセンダストなどからなりメッキやスパッタリングにより形成される。
【0061】
この実施形態では、前記多層膜33が形成された部分の下部シールド層20と上部シールド層37間の間隔、すなわち反強磁性層21の下面から保護層27の上面までの図示Z方向の長さ寸法でギャップ長Glが決定されている。
【0062】
図1に示す磁気検出素子は、電極として機能する下部シールド層20及び上部シールド層37が前記多層膜33の上下に接して形成され、前記シールド層20、37から流れる電流が前記多層膜33内を膜面と垂直方向(図示Z方向)に流れるCPP(current perpendicular to the plane)型と呼ばれる構造である。
【0063】
以下、図1に示す磁気検出素子の特徴的部分について説明する。図1に示すように、前記多層膜33のトラック幅方向(図示X方向)の両側であって、前記下部シールド層20と上部シールド層37間には、サイドシールド層35が形成されている。
【0064】
このように本発明では前記多層膜33の両側にもシールド層(サイドシールド層35)を設けたことで、前記多層膜33の上下、および両側左右はほぼシールド層で囲まれた形状になる。したがって狭トラック化が進むにつれて従来問題とされた記録媒体の隣接トラックからの漏れ磁界は、前記サイドシールド層35で適切に吸収され、前記漏れ磁界が前記多層膜33内に侵入することを極力防ぐことができる。
【0065】
ここで図1に示す実施形態では前記多層膜33の上面のトラック幅方向(図示X方向)における幅寸法が光学的なトラック幅O−Twである。光学的なトラック幅O−Twとは光学顕微鏡あるいは電子顕微鏡で測定した幅寸法のことである。
【0066】
一方、実効再生トラック幅(あるいは磁気的再生トラック幅ともいう)は、例えば、フルトラックプロファイル法やマイクロトラックプロファイル法によって測定される。
【0067】
フルトラックプロファイル法は、図15に示すように記録媒体上に磁気検出素子Rの素子幅よりも幅広の記録トラック幅Wwの記録トラックで信号を記録しておき、磁気検出素子を、記録トラック上でトラック幅方向(X方向)に走査させて、磁気検出素子の記録トラック幅方向(X方向)の位置と再生出力との関係を測定する。その測定結果は、図15の上側に示されている。
【0068】
この測定結果の再生波形を見ると、記録トラックの中央付近では、再生出力が高くなり、記録トラックの中央から離れるにつれて再生出力は低くなることがわかる。
【0069】
再生波形上の再生出力が最大値の50%となる点Pa及び点Pbにおける接線とX軸との交点を、それぞれ点Pc、点Pdとする。点Pcと点Pdの間の距離Aと点Paと点Pb間の距離(半値幅)Bの差(RW)が磁気検出素子の実効再生トラック幅となる。ここで、半値幅B=実効記録トラック幅Wwとなる。
【0070】
実効再生トラック幅は実際にトラック幅として機能する幅寸法である。従って前記実効再生トラック幅と光学的なトラック幅O−Twとがイコールの関係にあれば最も好ましい。
【0071】
本発明では前記多層膜33のトラック幅方向(図示X方向)の両側にサイドシールド層35を設けたことで、記録媒体の隣接トラックからの漏れ磁界を適切に前記サイドシールド層35で吸収することができ、前記多層膜33に侵入してくる前記漏れ磁界量を従来に比べて小さくできる。したがって本発明では前記実効再生トラック幅を従来に比べて光学トラック幅O−Twの幅寸法に近い大きさにでき、従来、狭トラック化によって顕著になった実効再生トラック幅の広がりを抑制でき、サイドリーディングの発生などの不具合を効果的に減少させることが可能になる。
【0072】
本発明ではさらに上記した実効再生トラック幅の広がりを効果的に抑制すべく以下のような工夫がなされている。
【0073】
本発明では前記多層膜33のトラック幅方向(図示X方向)における両側端面33aとサイドシールド層35間の距離を適切に調整している。この実施形態では前記多層膜33の両側端面33aとサイドシールド層35間に絶縁層34が介在しているが本発明ではこの絶縁層34の膜厚を適切に調整することでより適切に実効再生トラック幅の広がりを抑制している。
【0074】
本発明では前記多層膜33の両側端面33aとサイドシールド層35間に介在する絶縁層34のトラック幅方向(図示X方向)における膜厚は、0.06μm以下であることが好ましい。これにより実効再生トラック幅から光学的トラック幅O−Twを引いた値が、0.015μm以下になることが後述する実験により確認されている。
【0075】
また本発明では、前記多層膜33の両側端面33aとサイドシールド層35間に介在する絶縁層34のトラック幅方向(図示X方向)における膜厚は、0.03μm以下であることがより好ましい。これにより実効再生トラック幅から光学的トラック幅O−Twを引いた値が、0.01μm以下になることが後述する実験により確認されている。
【0076】
本発明では、上記のように多層膜33の両側端面33aとサイドシールド層35間に介在する絶縁層34の膜厚を調整することで、実効再生トラック幅の広がりを適切に抑えることができ、サイドリーディングの発生を効果的に抑制することができる。
【0077】
本発明では前記多層膜33の両側端面33aに形成された前記絶縁層34の図示X方向への膜厚は、0.003μm以上であることが好ましい。前記絶縁層34は、前記多層膜33内を膜面と垂直方向に流れる電流が前記サイドシールド層35に分流するのを抑制するために設けられたものである。従って前記絶縁層34はある程度の膜厚を有している必要性があり、それが0.003μmなのである。
【0078】
本発明では前記多層膜33を構成する非磁性材料層23がAl23やSiO2などの絶縁材料で形成されたトンネル型磁気抵抗効果型素子である場合、特に前記多層膜33の両側端面33aとサイドシールド層35間に絶縁層34の存在は重要となる。なぜなら前記多層膜33の両側端面33aとサイドシールド層35とが直接接して形成され、あるいは前記絶縁層34の膜厚が非常に薄い場合などには前記多層膜33を膜面と垂直方向に流れる電流がフリー磁性層24と固定磁性層22間を流れるとき、絶縁材料で形成された非磁性材料層23よりも電気的な抵抗値の小さいサイドシールド層35側に主に流れてしまい(すなわち分流してしまい)、再生出力が極端に小さくなってしまうからである。
【0079】
前記非磁性材料層23がCuなどの非磁性導電材料で形成されたスピンバルブGMR型磁気抵抗効果素子の場合でも、前記多層膜33の両側端面33aとサイドシールド層35間に絶縁層34を介在させることが前記サイドシールド層35への電流の分流を抑える上で好ましいが、前記絶縁層34の必要性はトンネル型磁気抵抗効果型素子の場合に比べて低い。ただし絶縁層34の有無は、単にスピンバルブGMR型磁気抵抗効果素子の構成であるか否かのみで判断することはできず、サイドシールド層35の材質も重要な要素である。例えばサイドシールド層35の比抵抗値が、特に多層膜33を構成するフリー磁性層24と固定磁性層22の比抵抗値よりも低い場合には、多層膜33の両側端面33aとサイドシールド層35とが例えば直接接して形成されていると、前記多層膜33内を流れるべき電流は前記フリー磁性層24及び固定磁性層22から前記サイドシールド層35に分流しやすくなるからである。よって本発明では、前記サイドシールド層35が前記固定磁性層22及びフリー磁性層24よりも高い比抵抗値を有する磁性材料で形成されることが好ましい。
【0080】
次に図1に示す実施形態では、前記下部シールド層20は、多層膜33の下面に接して形成され、前記下部シールド層20が下部電極としての役割を有している。例えば前記下部電極は下部シールド層20と別個に設けることもできる(その実施形態は図7で説明する)。
【0081】
しかし、前記下部シールド層20を下部電極として使用すると、下部電極と下部シールド層とを別々に設ける必要性がないから磁気検出素子の製造過程を簡単にでき、さらに下部シールド層20と上部シールド層37間の図示Z方向の間隔で決定されるギャップ長G1を短くでき、高記録密度化に適切に対応可能な磁気検出素子を製造することができる。
【0082】
しかも前記下部シールド層20と多層膜33とが接して形成されるから、図示Y方向から侵入してくる隣接トラックからの漏れ磁界のうち、前記多層膜33の下面付近で発生する漏れ磁界を効果的に前記下部シールド層20に吸収させることができ、サイドリーディングによるオフトラック時のエラーの発生が少ない再生特性により優れた磁気検出素子を提供することができる。
【0083】
図1に示す実施形態では、前記下部シールド層20と同様に前記上部シールド層37は前記多層膜33の上面に接して形成されている。よって図示Y方向から侵入してくる隣接トラックからの漏れ磁界のうち、前記多層膜33の上面付近で発生する漏れ磁界を効果的に前記上部シールド層37に吸収させることができ、サイドリーディングの発生が少ない再生特性により優れた磁気検出素子を提供することができる。
【0084】
また上記したように、下部シールド層20及び上部シールド層37を電極層兼用にして磁気検出素子の上下に接して形成することで、前記多層膜33の上下、および両側左右を、より前記多層膜33から遠ざけることなくシールド層20、35、37で囲む構成にでき、記録媒体からの余分な漏れ磁界を拾わない、サイドリーディングの発生を従来よりも極端に抑え、線分解能を高めることが可能な磁気検出素子を提供することが可能になる。
【0085】
例えば前記多層膜33の膜面と平行な方向に電流を流すCIP型の磁気検出素子の場合、図1のような構成を実現することができない。なぜなら下部シールド層20と上部シールド層37を電極層として兼用することがそもそもできず、またCIP型の場合には、例えば少なくともフリー磁性層24のトラック幅方向の両側にハードバイアス層を設ける構成が一般的であり(例えば前記フリー磁性層24上に反強磁性層を設けたエクスチェンジバイアス方式というものがあるが、かかる方式では、多層膜33を図1のような略台形状に形成せず、前記多層膜33のトラック幅方向の幅寸法を光学的トラック幅O−Twよりも長く延ばして形成するので、本発明のようにサイドシールド層35を設けるスペースがない)、したがって前記多層膜33の両側全体をサイドシールド層35で埋める構成にできないからである。
【0086】
図1に示す実施形態では、既に説明したように、フリー磁性層24上に非磁性層25を介してバイアス層26が設けられている。そしてこのバイアス層26からの縦バイアス磁界が前記フリー磁性層24に流入することで、前記フリー磁性層24の磁化が図示X方向に単磁区化されている。
【0087】
このバイアス方式は、インスタックバイアス(instack bias)方式と呼ばれるものであるが、このバイアス方式は、CPP型の磁気検出素子でしか実用価値がない。CPP型の場合は、電流が多層膜33の膜面と垂直方向に流れるから、前記バイアス層26をフリー磁性層24上に設けても前記バイアス層26の存在が電流を分流する経路にはならない。しかしCIP型では電流が多層膜33の膜面と平行な方向に流れるため、仮にCIP型に、本発明のようなインスタックバイアス方式を用いると、前記バイアス層26に流れる電流が分流ロスとなり、したがって再生出力の低下を招いてしまう。したがって、このインスタックバイアス方式は、CPP型の磁気検出素子に有効なバイアス手段であり、特に前記インスタックバイアス方式を用いることで、狭トラック化に適切に対応できる磁気検出素子を製造することが可能になる。
【0088】
ただし、前記バイアス層26から前記フリー磁性層24に流入する縦バイアス磁界が強すぎると前記フリー磁性層24がトラック幅方向に強く磁化され、記録媒体からの外部磁界に対し感度良く磁化反転できなくなるから、前記縦バイアス磁界の強さを適切に調整する必要性がある。前記縦バイアス磁界の強さは、前記バイアス層26とフリー磁性層24間に介在する非磁性層25の膜厚に影響を受け、前記非磁性層25の膜厚が薄ければ薄いほど前記縦バイアス磁界は強くなる。したがって前記非磁性層25の膜厚を適切に調整して前記バイアス層26からフリー磁性層24に流入する縦バイアス磁界の大きさを調整しなければならない。本発明では前記非磁性層25の膜厚を0.002〜0.01μmで形成することが好ましい。
【0089】
次に図1に示すように、前記下部シールド層20の上面20aには前記絶縁層34が形成されており、すなわち前記サイドシールド層35と下部シールド層20間には絶縁層34が介在することが好ましい。これによって前記下部シールド層20と上部シールド層37間を流れる電流が前記下部シールド層20からサイドシールド層35に分流することがなくなり、再生出力の大きい磁気検出素子を製造することが可能になる。前記下部シールド層20とサイドシールド層35間に形成された絶縁層34の膜厚は0.003μm〜0.01μmであることが好ましい。
【0090】
同様に図1に示す実施形態では、前記サイドシールド層35と上部シールド層37間にも絶縁層36が介在する。前記絶縁層36はAl23やSiO2などの絶縁材料から形成される。これによって前記上部シールド層37と下部シールド層20間を流れる電流が前記上部シールド層37からサイドシールド層35に分流することがなくなり、再生出力の大きい磁気検出素子を製造することが可能になる。前記上部シールド層37とサイドシールド層35間に形成された絶縁層36の膜厚は0.003μm〜0.01μmであることが好ましい。
【0091】
次に前記サイドシールド層35の材質について以下に説明する。前記サイドシールド層35は、下部シールド層20や上部シールド層37と同じ材質でもよいが、異なる材質で形成されていてもよい。
【0092】
図1に示すように前記サイドシールド層35は前記下部シールド層20や上部シールド層37から分離形成されている。よって前記サイドシールド層35を上部シールド層37及び下部シールド層20と異なる材質で形成することが可能になる。
【0093】
前記サイドシールド層35を上部シールド層37や下部シールド層20と異なる材質で形成することで、次のように前記サイドシールド層35を形成することが可能になる。
【0094】
すなわち非常に膜厚が厚い下部シールド層20や上部シールド層37は、パーマロイ(NiFe合金)などの材質でメッキ形成されるのが一般的であるが、前記サイドシールド層35は前記下部シールド層20や上部シールド層37に比べて非常に薄い膜厚なので、前記サイドシールド層35をスパッタや蒸着可能な材質で形成することが可能になる。なお図1では、下部シールド層20や上部シールド層37に比べて、前記サイドシールド層35の方が厚い膜厚で図示されているが、実製品では、前記下部シールド層20や上部シールド層37の方が前記サイドシールド層35よりも厚い膜厚で形成される。具体的には、前記下部シールド層20や上部シールド層37は、1μm〜3μm程度の膜厚であるが、前記サイドシールド層35の膜厚は、0.01μm〜0.1μm程度の膜厚である。なおギャップ長G1が短くなればなるほど前記サイドシールド層35の膜厚が小さくなっていくのは言うまでもない。
【0095】
上記したように本発明では前記サイドシールド層35をスパッタなどでも形成することができるから、前記サイドシールド層35の材質の選択性を広げることができる。
【0096】
前記サイドシールド層35は、ニッケルの組成比が約80at%のNiFe合金やその他の軟磁性材料で形成される。前記サイドシールド層35には、下部シールド層20や上部シールド層37と同様に、高い透磁率や低い磁歪定数などの特性が必要であるから、そのような特性を有する軟磁性材料を選択する必要性がある。
【0097】
その他の軟磁性材料には、例えばCo系アモルファス材料や組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料を選択できる。これら材質で形成されたサイドシールド層35はいずれもスパッタや蒸着法で形成できる。
【0098】
Co系アモルファス材料としては、例えばCo−X(但し元素Xは、Ti、Mo、W、Si、P、Zr、Nb、Hf、Ta、Bから選ばれる1種または2種以上)がある。Fe−M−O材料は、アモルファス相とbcc−Feの微結晶相とが入り交じった相組織となっている。
【0099】
これらCo系アモルファス材料やFe−M−O材料は、NiFe合金などに比べて高い比抵抗値を有する。図1に示す実施形態では、多層膜33の両側端面33aとサイドシールド層35間に絶縁層34が介在するものの、前記サイドシールド層35をCo系アモルファス材料などの高比抵抗材料で形成し、多層膜33から前記サイドシールド層35に分流する電流をさらに抑制できるようにすることがより好ましい。
【0100】
比抵抗値に関しては、前記サイドシールド層35の比抵抗が、多層膜33を構成するフリー磁性層24や固定磁性層22の比抵抗よりも高いことが好ましい。前記フリー磁性層24や固定磁性層22の比抵抗値よりも高い比抵抗値を有する材質で前記サイドシールド層35を形成すれば、前記サイドシールド層35に分流する電流ロスをより適切に低減させることができ、再生出力の高い磁気検出素子を製造することが可能になる。なお上記したCo系アモルファス材料やFe−M−O材料で形成されたサイドシールド層35は、NiFe合金などの磁性材料で形成されたフリー磁性層24や固定磁性層22よりも高い比抵抗値を有し、具体的にには100〜100,000μΩ・cm程度である。
【0101】
次に前記サイドシールド層35の上面35aの形成位置について以下に説明する。図1に示すように、好ましくは前記サイドシールド層35の上面35aは、前記多層膜33の上面33bと同じ高さで形成されるか、あるいは前記多層膜33の上面33bよりも高い位置に形成されることである。これによって前記多層膜33のトラック幅方向(図示X方向)の両側は、前記絶縁層34を介して前記サイドシールド層35が確実にトラック幅方向で対向し、よって実効再生トラック幅の広がりを効果的に抑制でき、サイドリーディングの発生を適切に抑制することができる。ただし、前記サイドシールド層35の上面35aが前記多層膜33の上面33bよりも低い位置であっても、従来のようにサイドシールド層35が形成されていない場合に比べて、効果的に実効再生トラック幅の広がりを抑制し、サイドリーディングの発生を抑制することが可能になる。なお前記サイドシールド層35の上面35aが前記多層膜33の上面33bよりも低い位置で形成される場合、前記サイドシールド層35の形成位置については、前記サイドシールド層35が少なくともフリー磁性層24のトラック幅方向の両側に確実に対向するように前記サイドシールド層35を形成することが好ましい。
【0102】
また前記サイドシールド層35は、下部シールド層20及び上部シールド層37と同様にトラック幅方向(図示X方向)が磁化容易軸となるような、一軸異方性が付与されている必要がある。このため、前記サイドシールド層35は、磁場中でスパッタ成膜されたりあるいは磁場中アニールされて、一軸異方性が付与されている。これによって前記サイドシールド層35のシールド機能を向上させることができ、磁気検出素子の実効再生トラック幅の広がりを効果的に抑制することが可能になるとともに、シールドの磁区構造の不安定性に起因する再生波形の不安定性を回避することができる。
【0103】
図2以降は、本発明における磁気検出素子の別の実施形態である。図2は、本発明の第2の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。なお、図2ではX方向に延びる素子の中央部分のみを破断して示している。
【0104】
図2の実施形態において図1と異なる点は、図2では、図1のように、多層膜33のトラック幅方向(図示X方向)の両側に延出形成された下部シールド層20の上面20aから前記多層膜33の両側端面33aにかけて絶縁層34が形成されていないことである。
【0105】
図2に示す実施形態は特に、非磁性材料層23にCuなどの非磁性導電材料を使用して構成されたスピンバルブGMR型磁気検出素子に有効なものである。すなわち前記スピンバルブ型磁気抵抗効果素子では、下部シールド層20及び上部シールド層37から前記多層膜33に流れる電流が、前記多層膜33を膜面と垂直方向に流れたとき前記電流は、前記サイドシールド層35の方に分流しにくく大きな再生出力を維持することができるのである。
【0106】
図2では、前記サイドシールド層35が前記多層膜33の両側端面33aに直接接して形成されているが、電流がフリー磁性層24と固定磁性層22間に流れる際に、電気的な抵抗の低いCuなどで形成された非磁性材料層23を介さずに、電気的な抵抗の高いサイドシールド層35に流れるということは、非磁性材料層23が絶縁材料で形成されたトンネル型磁気抵抗効果型素子に比べて起こり難い。このため本発明では、特にスピンバルブGMR型磁気検出素子の場合、前記多層膜33の両側端面33aに絶縁層34を設けなくてもよいものと考えられる。これによってより効果的に実効再生トラック幅の広がりを抑えることができ、サイドリーディングの発生を従来に比べて抑制することが可能である。
【0107】
図2に示す実施形態でより好ましいのは、前記サイドシールド層35が、固定磁性層22及びフリー磁性層24よりも高い比抵抗値を有する磁性材料で形成されていることである。これによってより適切に前記多層膜33内を膜面と垂直方向に流れる電流が前記サイドシールド層35に分流しにくくなる。
【0108】
そこで本発明では、図2に示す実施形態の場合、前記サイドシールド層35は、Co系アモルファス材料や組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成されることがより好ましい。
【0109】
これら磁性材料は、フリー磁性層24や固定磁性層22として使用されるNiFe合金やCoFe合金に比べて高い比抵抗値を有し、前記Co系アモルファス材料やFe−M−O材料で形成されたサイドシールド層35を用いることで、より効果的に前記サイドシールド層への分流ロスを無くすことができ再生出力の大きい磁気検出素子を形成することが可能になるのである。
【0110】
図2に示す実施形態では、前記サイドシールド層35の上面35aに絶縁層36が設けられている。これによって前記上部シールド層37とサイドシールド層35間に前記絶縁層36が介在することになり、前記上部シールド層37から前記多層膜33に電流が流れる際に、前記電流が前記上部シールド層37から前記サイドシールド層35に分流するのを適切に防ぐことができ、再生出力のさらなる向上を図ることができる。
【0111】
また図3(図3は、本発明の第2の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図)に示すように、前記多層膜33の両側端面33aからトラック幅方向(図示X方向)に延出した下部シールド層20の上面20aにも絶縁層34が設けられている方が、前記電流が前記下部シールド層20から前記多層膜33に流れる際に、前記電流が前記下部シールド層20から前記サイドシールド層35に分流するのを適切に防ぐことができ、再生出力のさらなる向上を図ることができて好ましい。
【0112】
なお前記絶縁層34は前記下部シールド層20とサイドシールド層35の間にのみ設けられ、前記上部シールド層37とサイドシールド層35間に設けられていない実施形態でもよい。
【0113】
さらに本発明では、前記下部シールド層20とサイドシールド層35間、および上部シールド層37とサイドシールド層35間の双方に前記絶縁層が設けられていない実施形態でもよい。
【0114】
図4は、本発明の第4の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。
【0115】
図1ないし図3に示す実施形態では、前記サイドシールド層35は磁性材料の単層構造であったが、図4に示す実施形態では、サイドシールド層45が第1シールド層43と第2シールド層44の積層構造となっている。
【0116】
例えば下層にあたる第1シールド層43をNiFe合金などで形成し、上層にあたる第2シールド層44をCo系アモルファス材料やFe−M−O材料(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)などからなる磁性材料で形成する。
【0117】
前記第2シールド層44を第1シールド層43よりも高い比抵抗値を有する磁性材料で形成することで、前記サイドシールド層45側に電流が分流するのを適切に抑えることができ、これによって再生出力の高い磁気検出素子を製造することが可能になる。特に図2や図3のように、多層膜33の両側端面33aとサイドシールド層45間に絶縁層が設けられない構成の場合には効果的である。
【0118】
前記第2シールド層44を高い比抵抗とともにシールド機能に優れた特性(すなわち高い透磁率及び低い磁歪定数など)を有する磁性材料で形成できればそれに超したことはないが、比抵抗値を優先するあまり透磁率など若干、下部シールド層20や上部シールド層37に劣る場合には、第1シールド層43に、シールド機能に優れた特性を有する磁性材料を使用することで、記録媒体の隣接トラックからの漏れ磁界が多層膜33に侵入するのを適切に防ぐことができ、よって実効再生トラック幅の広がりを抑え、サイドリーディングの発生を抑制できると共に、分流ロスがなく再生出力も高い磁気検出素子を製造することが可能になる。
【0119】
なお図4に示す実施形態では、前記サイドシールド層45が第1シールド層43と第2シールド層44の2層構造であるが、これが3層以上の積層構造であってもよいことは言うまでもない。
【0120】
図5は、本発明の第5の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。
【0121】
図5の磁気検出素子の実施形態は、図1ないし4の磁気検出素子の実施形態と異なり、サイドシールド層42が、反強磁性層40と軟磁性層41とからなる交換結合膜で形成された構成となっている。
【0122】
図5で反強磁性層40と軟磁性層41からなる交換結合膜を使用できるのは、本発明では前記サイドシールド層42が前記下部シールド層20や上部シールド層37とは分離された構成だからである。
【0123】
前記反強磁性層40は、多層膜33を構成する反強磁性層21と同様に元素X(ただしXは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成されていてもよいし、あるいは元素Xと元素X′(ただし元素X′は、Ne,Ar,Kr,Xe,Be,B,C,N,Mg,Al,Si,P,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ag,Cd,Sn,Hf,Ta,W,Re,Au,Pb、及び希土類元素のうち1種または2種以上の元素である)とMnやIrMnを含有する反強磁性材料により形成されていてもよい。
【0124】
あるいは前記反強磁性層40はNiMnやα−Fe23、さらには熱処理を加えなくても前記軟磁性層41との間で交換結合磁界を発生させることができるFeMnなどで形成されていてもよい。
【0125】
前記反強磁性層40は、多層膜33を構成する反強磁性層21と異なって、前記反強磁性層40上に形成された軟磁性層41を強く磁化するためのものではなく、前記軟磁性層41に一軸異方性を付与するために設けられたものである。前記軟磁性層41が強く磁化され、例えば固定磁性層22のように磁化が固定されてしまうと前記軟磁性層41をサイドシールド層42として機能させることができなくなってしまう。
【0126】
一般的に前記反強磁性層40と軟磁性層41間で発生する交換結合磁界は、前記反強磁性層40の膜厚が厚くなり、一方、軟磁性層41の膜厚が薄くなると大きくなることが知られているから、前記反強磁性層40及び軟磁性層41の膜厚を適切に調整して、軟磁性層41にさほど強くない交換結合磁界を与えることで一軸異方性あるいは一方向異方性が付与されるようにしなければならない。例えば前記反強磁性層40の膜厚は50〜100Å程度、軟磁性層41の膜厚は200〜1000Å程度である。
【0127】
次に前記軟磁性層41は、従来から一般的に強磁性材料として使用されているNiFe合金、CoFe合金、CoFeNi合金などで形成されてもよいが、Co系アモルファス材料や組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料であってもよい。
【0128】
また前記軟磁性層41は単層構造ではなく、図4に示すような2層以上の積層構造であってもかまわない。
【0129】
磁場中成膜あるいは磁場中熱処理によって反強磁性層40と軟磁性層41との間で交換結合磁界が発生すると前記軟磁性層41は図示X方向に一軸異方性あるいは一方向異方性が付与され、サイドシールド層として機能する。
【0130】
また前記多層膜33の両側端面33aとサイドシールド層42との間に介在する絶縁層34は形成されていなくてもよい。
【0131】
図6は、本発明の第6の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。
【0132】
図6に示す実施形態では、前記多層膜33よりもトラック幅方向(図示X方向)に延出した下部シールド層20の上面20aから前記多層膜33の両側端面33aにかけて絶縁層34が形成され、前記絶縁層34上にサイドシールド層35が形成されている。さらにこの実施形態では前記サイドシールド層35上にバイアス下地層50が形成され、前記バイアス下地層50の上にハードバイアス層51が形成されている。
【0133】
図6に示す実施形態では、図1ないし図5に示す実施形態のように、フリー磁性層24上に非磁性層25を介してバイアス層26が設けられた構成ではない。図6に示す実施形態では、多層膜33が下から反強磁性層21、固定磁性層22、非磁性材料層23、フリー磁性層24及び保護層27の順に積層された構成となっている。
【0134】
そして図6に示すように、前記フリー磁性層24のトラック幅方向(図示X方向)の両側にはハードバイアス層51が設けられており、前記ハードバイアス層51からの縦バイアス磁界により前記フリー磁性層24の磁化が図示X方向に単磁区化される。
【0135】
図6に示す実施形態では、前記サイドシールド層35の上面35aが、前記フリー磁性層24の下面に比べて下側に形成されている。前記多層膜33の両側にはできるだけ前記サイドシールド層35を厚い膜厚で形成しておく方が好ましいが、サイドシールド層35の上面35aが前記フリー磁性層24の下面よりも上方に位置すると、前記フリー磁性層24のトラック幅方向の両側に対向するハードバイアス層51の膜厚が薄くなり、前記ハードバイアス層51から前記フリー磁性層24に適度な大きさの縦バイアス磁界が流入せず、前記フリー磁性層24の磁化を適切に単磁区化できなくなるので好ましくない。
【0136】
前記サイドシールド層35には、図1で説明した材質、すなわちNiFe合金や、Co系アモルファス材料、Fe−M−O材料などを使用することができる。
【0137】
前記サイドシールド層35上に形成されたバイアス下地層50は、前記ハードバイアス層51とサイドシールド層35間の磁気的な干渉を弱める(あるいは絶縁する)ために設けられたものである。このバイアス下地層50はAl23やSiO2などの絶縁材料で形成されてもよいが、Taなどの非磁性材料であってもよい。あるいは前記バイアス下地層50をCrで形成することで前記ハードバイアス層51の角形比や保磁力を向上させることができることがわかっている。
【0138】
前記バイアス下地層50上に形成されたハードバイアス層51は、CoPtCrやCoPtなどの既存の永久磁石膜で形成される。
【0139】
図6に示す実施形態では、前記ハードバイアス層51上にAl23やSiO2などの絶縁材料で形成された絶縁層36が形成されている。前記ハードバイアス層51上に前記絶縁層36を設けることで、前記上部シールド層37から前記多層膜33に流れる電流が前記ハードバイアス層51に分流するのを防ぐことができ再生出力の大きな磁気検出素子を製造することが可能になる。
【0140】
また図6に示す実施形態では、前記多層膜33の両側端面33aとサイドシールド層35及びハードバイアス層51との間に絶縁層34が設けられているが、これは図1で説明したように、特に多層膜33を構成する非磁性材料層23がAl23などの絶縁材料で形成されたトンネル型磁気抵抗効果型素子である場合、電流が非磁性材料層23を介さずに前記サイドシールド層35等に分流するのを防ぐためであった。それに加えて図6に示す実施形態では、前記多層膜33の両側端面33aとハードバイアス層51間に絶縁層34が介在しているから、前記ハードバイアス層51からの強い縦バイアス磁界が前記絶縁層34を介すことで弱められ、前記フリー磁性層24の磁化が前記ハードバイアス層51からの縦バイアス磁界によって強く磁化されて感度が低下するといったことを抑制できる。特に狭トラック化が促進されると、前記ハードバイアス層51から強い縦バイアス磁界が前記フリー磁性層24に流入した場合、前記フリー磁性層24全体が強く磁化されて再生感度が大きく低下するため深刻な問題となり、したがって今後の狭トラック化の促進のためには、前記多層膜33の両側端面33aとハードバイアス層51間に絶縁層34を介在させておくのが好ましい。
【0141】
図7は、本発明の第7の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。
【0142】
図7に示す実施形態では、多層膜33の下側に下部電極層54が形成されている。前記下部電極層54は、前記多層膜33の両側端面33aよりもさらにトラック幅方向(図示X方向)の両側に延びて形成され、その延出された下部電極層54の上面54aに絶縁層34を介してサイドシールド層35が形成されている。前記下部電極層54は、例えばα−Ta、Au、Cr、Cu(銅)やW(タングステン)などで形成されている。
【0143】
図7に示すように、前記下部電極層54の下にはAl23などで形成された下部ギャップ層53を介して磁性材料製の下部シールド層52が形成されている。
【0144】
また図7に示すように、前記多層膜33上及びサイドシールド層35上には上部電極層55が形成され、前記上部電極層55の上にAl23などで形成された上部ギャップ層56を介して上部シールド層57が形成されている。また図7に示すように前記上部電極層55とサイドシールド層35との間にはAl23などで形成された絶縁層36が形成されている。また前記上部電極層55は、下部電極層54と同様に、例えばα−Ta、Au、Cr、Cu(銅)やW(タングステン)などで形成されている。
【0145】
図7に示す実施形態では、前記下部シールド層52及び上部シールド層57とは別に、下部電極層54及び上部電極層55が設けられている。図1ないし図6に示す実施形態のように、下部シールド層20及び上部シールド層37を電極層としても機能させる場合に比べて、製造が煩雑化するが、図7に示す実施形態においても、前記多層膜33のトラック幅方向(図示X方向)の両側にサイドシールド層35が設けられていることで、従来に比べて実効再生トラック幅の広がりを抑え、サイドリーディングの発生を適切に抑制することが可能になる。
【0146】
図8は、本発明の第8の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。
【0147】
この実施形態では、多層膜33の膜構成は図1のものと同じである。この実施形態では、下部シールド層20の上に前記多層膜33が形成されている。さらに前記多層膜33のトラック幅方向の両側端面から前記下部シールド層20上にかけて絶縁層34が形成されている。
【0148】
そして前記絶縁層34上から前記多層膜33の上面にかけてシールド層70が形成されている。前記シールド層70は図1に示すサイドシールド層35と上部シールド層37とが一体で形成されたものである。
【0149】
このようにサイドシールド層35と上部シールド層37とを一体で形成する場合、図1のように前記サイドシールド層35と上部シールド層37とを別々で形成する場合に比べて製造工程を容易化することができる。
【0150】
また前記シールド層70は、NiFe合金など一般的にシールド層として用いる材質の他、Co系アモルファス材料や組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成される。前記Co系アモルファス材料としては、例えばCo−X(但し元素Xは、Zr、Nb、Hf、Ta、Ti、Mo、W、P、Si、Bから選ばれる1種または2種以上)である。Fe−M−O材料は、アモルファス相とbcc−Feの微結晶相とが入り交じった相組織となっている。
【0151】
なお前記シールド層70は、単層構造であってもよいし多層構造であってもよい。また多層構造の場合、上記したCo系アモルファス材料や組成式がFe−M−Oの磁性材料で形成された領域が一部に含まれていればよい。
【0152】
なお図8では、図1に示す上部シールド層37として機能するシールド層70の部分を、多層膜33の上面に容易に接して形成できる。すなわち本発明では、前記シールド層70の上部シールド層70として機能する部分を、上部電極との兼用層として容易に形成することができる。
【0153】
また図9は、本発明の第9の実施の形態の磁気検出素子を記録媒体との対向面側からみた断面図である。
【0154】
この実施形態では、多層膜33の膜構成は図1のものと同じである。この実施形態では、シールド層71が形成され、このシールド層71上に前記多層膜33が形成される。前記多層膜33の両側にはサイドシールド層35となるべきシールド層71が形成されている。この実施形態では図1に示す下部シールド層20とサイドシールド層35とが一体で形成されている。
【0155】
前記シールド層71は、前記多層膜33の上面とほぼ同程度の高さまで形成され、前記多層膜33のトラック幅方向両側のシールド71上面には絶縁層36が形成され、前記絶縁層36上から前記多層膜33上にかけて上部シールド層37が形成されている。
【0156】
前記シールド層71は、NiFe合金など一般的にシールド層として用いる材質の他、Co系アモルファス材料や組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成される。前記Co系アモルファス材料としては、例えばCo−X(但し元素Xは、Zr、Nb、Hf、Ta、Ti、Mo、W、P、Si、Bから選ばれる1種または2種以上)である。Fe−M−O材料は、アモルファス相とbcc−Feの微結晶相とが入り交じった相組織となっている。
【0157】
なお前記シールド層71は、単層構造であってもよいし多層構造であってもよい。また多層構造の場合、上記したCo系アモルファス材料や組成式がFe−M−Oの磁性材料で形成された領域が一部に含まれていればよい。
【0158】
なお図9では、図1に示す下部シールド層20として機能するシールド層71の部分を、多層膜33の下面に容易に接して形成できる。すなわち本発明では、前記シールド層70の下部シールド層20として機能する部分を、下部電極との兼用層として容易に形成することができる。
【0159】
また図8あるいは図9のように、サイドシールド層35を上部シールド層37あるいは下部シールド層20と一体に形成した構造では、前記フリー磁性層24の磁化制御は前記フリー磁性層24上に非磁性層25を介して形成された例えば永久磁石製のバイアス層(かかる場合ハードバイアス層という)26で行う必要がある。
【0160】
前記バイアス層26の機能については図1のところで説明したので詳細な説明は省略する。
【0161】
図8あるいは図9において、フリー磁性層24の膜厚方向にバイアス層26を設けなければならないのは、前記フリー磁性層24のトラック幅方向の両側にハードバイアス層を置くことができないからである。
【0162】
以上、図1ないし図9を用いて本発明における磁気検出素子の構造について説明してきたが、本発明は図1ないし図9に示す磁気検出素子の構造に限定されるものではなく、様々な形態のCPP型の磁気検出素子に適用可能なものである。例えば図1ないし図9に示す磁気検出素子では、多層膜33が下から反強磁性層21、固定磁性層22、非磁性材料層23及びフリー磁性層24の順に積層形成されているが、これが逆積層であってもよい。また前記多層膜33がデュアル型のCPP型磁気検出素子であってもよい。また前記多層膜33を構成する個々の層構造についても、例えば固定磁性層22は積層フェリ構造であるが、これが磁性材料層のみで構成されていてもかまわないし、またフリー磁性層24が積層フェリ構造であってもよい。
【0163】
また図5のようにサイドシールド層42に反強磁性層40と軟磁性層41からなる交換結合膜を使用するとき、図4では下から反強磁性層40、軟磁性層41の順に積層されているが、逆積層、すなわち下から軟磁性層41及び反強磁性層40の順に積層形成されたものであってもかまわない。
【0164】
また図1ないし図6及び図8、図9に示す実施形態では、下部シールド層20及び上部シールド層37が共に電極をも兼ね備えたものであるが、一方が、図7のようにシールド層、ギャップ層及び電極層の膜構成あるいはシールド層と電極層が電気的に接続されていてもよい。
【0165】
なお本発明における磁気検出素子は、ハードディスク装置に搭載される薄膜磁気ヘッドにのみ使用可能なものではなく、テープ用磁気ヘッドや磁気センサなどにも使用可能なものである。
【0166】
次に本発明における磁気検出素子の製造方法について以下に説明する。図10ないし図12は本発明における磁気検出素子の製造過程を示す一工程図であり、各図は製造中の磁気検出素子を記録媒体との対向面と平行な方向から切断した部分断面図である。
【0167】
図10に示す工程では、まず下部電極を兼ね備えた下部シールド層20上に、下から反強磁性層21、固定磁性層22、非磁性材料層23、フリー磁性層24、非磁性層25、バイアス層26及び保護層27をこの順に積層形成する。成膜にはスパッタや蒸着法が使用される。スパッタにはDCマグネトロンスパッタ、RFスパッタ、イオンビームスパッタ法、ロングスロースパッタ法、コリメーションスパッタ法などを使用できる。
【0168】
本発明では、前記反強磁性層21をPt−Mn(白金−マンガン)合金膜により形成することが好ましい。あるいは前記Pt−Mn合金に代えて、X―Mn(ただしXは、Pd,Ir,Rh,Ruのいずれか1種または2種以上の元素である)で、あるいはPt―Mn―X′(ただしX′は、Pd,Ir,Rh,Ru,Au,Agのいずれか1種または2種以上の元素である)で形成してもよい。
【0169】
また前記PtMn合金及び前記X−Mnの式で示される合金において、PtあるいはXが37〜63at%の範囲であることが好ましい。また、前記PtMn合金及び前記X−Mnの式で示される合金において、PtあるいはXが47〜57at%の範囲であることがより好ましい。特に規定しない限り、〜で示す数値範囲の上限と下限は以下、以上を意味する。
【0170】
また、Pt−Mn−X’の式で示される合金において、X’+Ptが37〜63at%の範囲であることが好ましい。また、前記Pt−Mn−X’の式で示される合金において、X’+Ptが47〜57at%の範囲であることがより好ましい。さらに、前記Pt−Mn−X’の式で示される合金において、X’が0.2〜10at%の範囲であることが好ましい。ただし、X’がPd,Ir,Rh,Ru,Os,Ni,Feのいずれか1種または2種以上の元素である場合には、X’は0.2〜40at%の範囲であることが好ましい。
【0171】
また本発明では前記反強磁性層21の膜厚を80Å以上で300Å以下で形成することが好ましい。
【0172】
前記固定磁性層22は、例えばCoFe合金などで形成された磁性層28と磁性層30と、両磁性層28、30間に介在するRuなどの非磁性中間層29との積層フェリ構造である。前記フリー磁性層24は、CoFe合金などの拡散防止層31とNiFe合金などの磁性材料層32との積層構造である。
【0173】
また前記非磁性材料層23を、Cuなどの非磁性導電材料で形成してもよいし、Al23やSiO2などの絶縁材料で形成してもよい。前記非磁性材料層23を非磁性導電材料で形成した場合、本発明における磁気検出素子はCPP型のスピンバルブGMR型磁気抵抗効果素子(CPP−GMR)の構成となり、前記非磁性材料層23を絶縁材料で形成した場合、本発明における磁気検出素子はスピンバルブトンネル型磁気抵抗効果型素子(CPP−TMR)の構成となる。
【0174】
また図10に示すように、前記フリー磁性層24上に非磁性層25及びバイアス層26を形成するが、本発明では前記非磁性層25をTaやCuなどの非磁性導電材料で形成することが好ましく、また前記バイアス層26をCoPtCrやCoPtなどの永久磁石膜で形成することが好ましい。あるいは前記バイアス層26を反強磁性層と軟磁性層からなる交換結合膜で形成してもよい。
【0175】
図10では、バイアス層26を形成する前に磁場中アニールを施して、反強磁性層21と固定磁性層22を構成する磁性層28との間で交換結合磁界を生じさせることが好ましい。これによって前記固定磁性層22をハイト方向(図示Y方向)に磁化固定する。そして前記バイアス層26を形成した後、前記バイアス層26が反強磁性層と軟磁性層とからなる交換結合膜である場合、再び磁場中アニールを施すが、このときの印加磁界は、反強磁性層21の交換異方性磁界よりも小さく、しかも熱処理温度は、前記反強磁性層21のブロッキング温度よりも低い温度とする。この磁場中アニールによって前記バイアス層26を構成する軟磁性層は、トラック幅方向に磁化される。また前記バイアス層26が永久磁石膜で形成されているとき、前記バイアス層26はトラック幅方向(図示X方向)に着磁される。これによって前記軟磁性層及び永久磁石製のバイアス層26からの縦バイアス磁界が前記フリー磁性層24に流入することで、前記フリー磁性層24の磁化が図示X方向に揃えられる。
【0176】
次に図10に示す工程では前記保護層27の上面にレジスト層を形成し、このレジスト層を露光現像することによって図10に示す形状のレジスト層60を前記保護層27上に残す。前記レジスト層60は例えばリフトオフ用のレジスト層である。
【0177】
次に前記レジスト層60に覆われていない、反強磁性層21から保護層27までの多層膜33の両側を矢印A方向からのイオンミリングで削る(図10に示す点線部分に沿って多層膜33が削られる)。
【0178】
次に図11に示す工程では、前記多層膜33のトラック幅方向(図示X方向)の両側端面33aよりもさらにトラック幅方向(図示X方向)に延出した下部シールド層20の上面20aから前記多層膜33の両側端面33aにかけてAl23やSiO2などの絶縁材料による絶縁層34をスパッタ成膜する。
【0179】
前記絶縁層34の形成は図11に示すスパッタ角度(下部シールド層20表面に垂直な方向(図示Z方向)に対しての角度)がθ1となる矢印B方向から行う。前記スパッタ角度θ1は例えば30°〜70°である。
【0180】
前記スパッタ角度θ1を上記した角度程度に大きくすることで、前記多層膜33の両側端面33aに前記絶縁層34が付着しやすくなり、前記多層膜33の両側端面33aに付着した絶縁層34dの膜厚は、前記下部シールド層20の上面20aに付着した絶縁層34cの膜厚よりも大きくなりやすい。
【0181】
前記下部シールド層20の上面20aから前記多層膜33の両側端面33aにかけて絶縁層34を成膜した後、前記絶縁層34上にサイドシールド層35を形成する。前記サイドシールド層35は例えばスパッタで成膜する。
【0182】
前記サイドシールド層35として用いる材質としてはNiFe合金など一般的にシールド層として用いる材質の他、Co系アモルファス材料や組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料を選択できる。Co系アモルファス材料としては、例えばCo−X(但し元素Xは、Zr、Nb、Hf、Ta、Ti、Mo、W、P、Si、Bから選ばれる1種または2種以上)である。Fe−M−O材料は、アモルファス相とbcc−Feの微結晶相とが入り交じった相組織となっている。
【0183】
なお前記サイドシールド層35を成膜するときは、磁場中で行う。磁場中成膜することで前記サイドシールド層35にトラック幅方向(図示X方向)に一軸異方性を付与することができる。あるいは磁場中アニールを施して、サイドシールド層35に一軸異方性を付与してもよいが、このときの熱処理温度は、前記反強磁性層21のブロッキング温度以下である必要がある。
【0184】
なお前記レジスト層60の上面には絶縁層34を成膜したときの絶縁材料層34aやサイドシールド層35を成膜したときのシールド材料層35bが付着している。
【0185】
次に図12に示す工程では、前記サイドシールド層35上にAl23やSiO2などの絶縁材料からなる絶縁層36をスパッタ成膜する。前記絶縁層36の形成は図12に示すスパッタ角度(下部シールド層20表面に垂直な方向(図示Z方向)に対しての角度)がθ2となる矢印C方向から行う。前記スパッタ角度θ2は例えば10°〜50°である。前記絶縁層36で完全に前記サイドシールド層35上を覆う。
【0186】
図12に示す工程によって絶縁層36を成膜したときの絶縁材料層36aが前記レジスト層60上のバイアス材料層35b上に付着する。その後、前記レジスト層60を除去する。
【0187】
そして前記絶縁層36上から前記保護層27上にかけて上部シールド層37をメッキ形成する。なお前記上部シールド層37の形成は、まず下地となる同一材質の層を予めスパッタでつけておいてから、下地層に通電して前記上部シールド層37のメッキ膜を成長させて行う。
【0188】
以上が図1に示す磁気検出素子の製造方法であるが、図2に示す磁気検出素子の製造方法は、図11に示す製造工程で、絶縁層34を成膜せず、前記下部シールド層20の上面20aから前記多層膜33の両側端面33aにかけて直接、サイドシールド層35を成膜すればよい。
【0189】
また図3に示す磁気検出素子の製造方法は、図11に示す製造工程で、絶縁層34を成膜するときのスパッタ角度θ1を、より図示Z方向に近い角度にして前記絶縁層34が前記多層膜33の両側端面33aに付着しないようにすればよい。
【0190】
また図4に示す磁気検出素子の製造方法は、図11に示す製造工程で、サイドシールド層45を成膜するときに第1シールド層43及び第2シールド層44を連続してスパッタ成膜すればよい。
【0191】
また図5に示す磁気検出素子の製造方法は、図11に示す製造工程で、絶縁層34をスパッタ成膜した後、前記絶縁層34上に反強磁性層40を成膜し、さらに前記反強磁性層40の上に軟磁性層41をスパッタ成膜すればよい。
【0192】
前記反強磁性層40及び軟磁性層41からなるサイドシールド層42を成膜した後、磁場中アニールを施して前記反強磁性層40と軟磁性層41間に交換結合磁界を生じさせる。なお磁場中アニールを施さなくても交換結合磁界が生じる場合、例えば反強磁性層40にFeMnやIrMn合金などを使用した場合のように、磁場中成膜によって交換結合磁界が生じる場合には、アニールの必要性はない。
【0193】
磁場中アニールを施すとき、その磁場の大きさを多層膜33を構成する反強磁性層21と固定磁性層22間で発生する交換結合磁界よりも小さいものとし、また熱処理温度を前記反強磁性層21のブロッキング温度以下とする。あるいは前記バイアス層26が反強磁性層と軟磁性層との交換結合膜である場合、前記磁場の大きさを前記バイアス層26の反強磁性層の交換結合磁界よりも小さい値とする。また熱処理温度を前記バイアス層26の反強磁性層のブロッキング温度以下とする。ただし、バイアス層26に働く交換結合磁界の方向がアニール時の磁場方向と同一である場合は特に制限がない。
【0194】
図6に示す磁気検出素子の製造方法は、図11に示す工程で前記下部シールド層20の上面20aから多層膜33の両側端面33a上にかけて絶縁層34を成膜した後、前記絶縁層34上にサイドシールド層35をスパッタ成膜し、さらに前記サイドシールド層35上に、バイアス下地層50及びハードバイアス層51の形成を行えばよい。
【0195】
図7に示す磁気検出素子の製造方法は、まず下部シールド層52をメッキ形成した後、前記下部シールド層52上に下部ギャップ層53をスパッタ成膜し、さらに前記下部ギャップ層53上に下部電極層54を形成した後、図10以降の工程を施し、さらに図12工程の次に、上部電極層55、上部ギャップ層56及び上部シールド層57の形成を行う。
【0196】
また図8に示す磁気検出素子の製造方法は、まず図10に示す工程を施した後、図11に示す工程で、絶縁層34を形成する。その後、図11に示すレジスト層60を除去し、図13に示す工程で、前記多層膜33の両側から前記多層膜33の上面にかけてサイドシールド層35と上部シールド層37とが一体とされたシールド層70を矢印D方向から例えばスパッタ成膜する。
【0197】
図8に示す磁気検出素子の製造方法では、前記サイドシールド層35と上部シールド層37とを一体で形成するので、前記サイドシールド層35と上部シールド層37とを別々に形成する場合に比べて、製造工程を非常に容易化することが可能である。
【0198】
以上の製造方法によれば、多層膜33のトラック幅方向の両側にサイドシールド層35を容易に且つ確実に対向させることができ、実効再生トラック幅の広がりを抑え、サイドリーディングの発生を抑制することが可能な磁気検出素子を製造することができる。
【0199】
【実施例】
図1に示す実施形態の磁気検出素子を用い、多層膜33の両側端面33aとサイドシールド層35間に介在する絶縁層34のトラック幅方向への膜厚を変化させたとき、前記絶縁層34の膜厚と実効再生トラック幅との関係について調べた(実施例)。
【0200】
また比較例として図16に示す磁気検出素子のようにサイドシールド層が形成されていない形態のものを用いて実効再生トラック幅について測定した。
【0201】
まず実施例及び比較例の磁気検出素子の実験に際して共通する寸法や膜構造について説明する。
【0202】
実施例及び比較例ともに、光学的トラック幅O−Twを0.15μmとした。また反強磁性層21にはPtMnを用い、固定磁性層22は、CoFe/Ru/CoFeの積層フェリ構造とした。また非磁性材料層23にはCuを用いた。フリー磁性層24への縦バイアス磁界の供給は、前記フリー磁性層24上に非磁性層25を介して永久磁石膜のバイアス層26が設けられたインスタックバイアス手段を用いて行った(図1を参照)。
【0203】
実験では実施例(サイドシールド層あり)の磁気検出素子の多層膜33の両側端面33aに成膜されている絶縁層34のトラック幅方向への膜厚を徐々に変化させ、そのときの実効再生トラック幅の幅寸法を、図15で説明したオフトラックプロファイル法を用いて測定した。
【0204】
前記絶縁層34の膜厚と実効再生トラック幅との関係は図14に示されている。図14に示すように前記絶縁層34の膜厚が大きくなるほど、前記実効再生トラック幅が大きくなることがわかった。
【0205】
また比較例の磁気検出素子では、多層膜33の両側端面33aにサイドシールド層が形成されておらず、このような形態であると実施例に比べて極端に実効再生トラック幅が広がることがわかった。
【0206】
上記したように、光学的トラック幅O−Twは、0.15μmである。そこで実効再生トラック幅から前記光学的トラック幅O−Twを引いた値が、0.015μmとなるときの絶縁層34の膜厚を調べてみたところ図14に示すグラフから0.06μm以下であることがわかった。前記絶縁層34の膜厚を0.06μm以下(このときの実効再生トラック幅は0.165μm以下となる)にすれば、実効再生トラック幅から光学的トラック幅O−Twを引いた値を0.015μm以下にできる。
【0207】
また、実効再生トラック幅から前記光学的トラック幅O−Twを引いた値が、0.01μmとなるときの絶縁層34の膜厚を調べてみたところ図14に示すグラフから0.03μm以下(このときの実効再生トラック幅は0.16μm以下となる)であることがわかった。前記絶縁層34の膜厚を0.03μm以下にすれば、実効再生トラック幅から光学的トラック幅O−Twを引いた値を0.01μm以下にできる。
【0208】
以上の実験によって本発明では、前記多層膜33の両側端面33aに形成された絶縁層34のトラック幅方向への膜厚を好ましくは0.06μm以下、より好ましくは0.03μm以下に設定し、これにより従来に比べて効果的に実効再生トラック幅の広がりを抑えることができ、サイドリーディングの発生を適切に抑制することが可能になる。
【0209】
【発明の効果】
以上詳細に説明した本発明によれば、多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、これにより狭トラック化においても実効再生トラック幅の広がりを抑え、従来に比べてサイドリーディングの発生を抑制することが可能になる。
【0210】
また本発明では、前記サイドシールド層と多層膜間に絶縁層を介在させ、この絶縁層のトラック幅方向における膜厚を適切に調整することで、より効果的に実効再生トラック幅を光学的トラック幅に近づけることができ、サイドリーディングの発生をより適切に抑制することが可能になる。
【0211】
また本発明では、前記サイドシールド層の比抵抗値を前記多層膜を構成するフリー磁性層や固定磁性層に比べて高い比抵抗値を有する磁性材料で形成することで、電極を兼ねた上部シールド層及び下部シールド層から前記多層膜に流れる電流を前記サイドシールド層に分流しないようにすることができ、再生出力の大きい磁気検出素子を製造することが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図2】本発明の第2の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図3】本発明の第3の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図4】本発明の第4の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図5】本発明の第5の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図6】本発明の第6の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図7】本発明の第7の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図8】本発明の第8の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図9】本発明の第9の実施の形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図10】図1に示す磁気検出素子の製造方法を示す一工程図、
【図11】図10の次に行なわれる一工程図、
【図12】図11の次に行なわれる一工程図、
【図13】図8に示す磁気検出素子の製造方法を示す一工程図、
【図14】本発明のCPP型の磁気検出素子の多層膜とサイドシールド層間の間隔と実効再生トラック幅との関係を示すグラフ、
【図15】実効再生トラック幅の測定をオフトラックプロファイル法で行った場合の、実効再生トラック幅の測定の仕方を説明するための図、
【図16】従来のCPP型磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【符号の説明】
20、52 下部シールド層
21、40 反強磁性層
22 固定磁性層
23 非磁性材料層
24 フリー磁性層
25 非磁性層
26 バイアス層
33 多層膜
34、36 絶縁層
35、42、45 サイドシールド層
37、57 上部シールド層
41 軟磁性層
51 ハードバイアス層
54 下部電極層
55 上部電極層
70、71 シールド層

Claims (20)

  1. 反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層を有する多層膜が設けられ、前記多層膜の各層の膜面と垂直方向に電流が流れる磁気検出素子において、
    前記多層膜の下側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された下部シールド層が設けられ、前記多層膜の上側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された上部シールド層が設けられ、
    前記多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、
    前記サイドシールド層は磁性材料で形成された単層あるいは多層構造で形成され、前記固定磁性層及びフリー磁性層よりも高い比抵抗値を有する磁性材料で形成されることを特徴とする磁気検出素子。
  2. 前記サイドシールド層と多層膜のトラック幅方向の両側端面間には絶縁層が設けられている請求項1記載の磁気検出素子。
  3. 前記絶縁層のトラック幅方向における膜厚は、0.003μm以上で0.06μm以下である請求項2記載の磁気検出素子。
  4. 前記絶縁層のトラック幅方向における膜厚は、0.003μm以上で0.03μm以下である請求項2記載の磁気検出素子。
  5. 前記サイドシールド層は上部シールド層及び/または下部シールド層と異なる磁性材料で形成されている請求項1ないしのいずれかに記載の磁気検出素子。
  6. 前記サイドシールド層は、それを構成する少なくとも一つの層がCo系アモルファス材料で形成される請求項1ないし5のいずれかに記載の磁気検出素子。
  7. 前記サイドシールド層は、それを構成する少なくとも一つの層が組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成される請求項1ないし5のいずれかに記載の磁気検出素子。
  8. 反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層を有する多層膜が設けられ、前記多層膜の各層の膜面と垂直方向に電流が流れる磁気検出素子において、
    前記多層膜の下側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された下部シールド層が設けられ、前記多層膜の上側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された上部シールド層が設けられ、
    前記多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、
    前記サイドシールド層は、反強磁性層と軟磁性層との積層構造で形成された交換結合膜であることを特徴とする磁気検出素子。
  9. 前記上部シールド層は、前記多層膜の上面に接して形成される請求項1ないしのいずれかに記載の磁気検出素子。
  10. 前記上部シールド層とサイドシールド層間には絶縁層が介在する請求項記載の磁気検出素子。
  11. 前記下部シールド層は、前記多層膜の下面に接して形成される請求項1ないし10のいずれかに記載の磁気検出素子。
  12. 前記下部シールド層とサイドシールド層間には絶縁層が介在する請求項11記載の磁気検出素子。
  13. 前記サイドシールド層は、上部シールド層あるいは下部シールド層のいずれか一方と一体に形成されている請求項1ないしのいずれかに記載の磁気検出素子。
  14. 一体に形成された前記サイドシールド層及び上部シールド層あるいはサイドシールド層と下部シールド層には、Co系アモルファス材料で形成された磁性領域が存在する請求項13記載の磁気検出素子。
  15. 一体に形成された前記サイドシールド層及び上部シールド層あるいはサイドシールド層と下部シールド層には、組成式がFe−M−O(ただし元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)からなる磁性材料で形成された磁性領域が存在する請求項13記載の磁気検出素子。
  16. 前記上部シールド層は、前記多層膜の上面に接して形成される請求項13ないし15のいずれかに記載の磁気検出素子。
  17. 前記下部シールド層は、前記多層膜の下面に接して形成される請求項13ないし16のいずれかに記載の磁気検出素子。
  18. 反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層を有する多層膜が設けられ、前記多層膜の各層の膜面と垂直方向に電流が流れる磁気検出素子において、
    前記多層膜の下側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された下部シールド層が設けられ、前記多層膜の上側には、前記多層膜のトラック幅方向の両側端面よりもトラック幅方向に延びて形成された上部シールド層が設けられ、
    前記多層膜のトラック幅方向の両側であって、前記下部シールド層と上部シールド層間には、サイドシールド層が設けられており、
    前記フリー磁性層の非磁性材料層と接する面の逆面側に、非磁性層を介してバイアス層が設けられることを特徴とする磁気検出素子。
  19. 前記非磁性材料層は、非磁性導電材料で形成される請求項1ないし18のいずれかに記載の磁気検出素子。
  20. 前記非磁性材料層は、絶縁材料で形成される請求項1ないし18のいずれかに記載の磁気検出素子。
JP2002066594A 2002-03-12 2002-03-12 磁気検出素子 Expired - Fee Related JP4270797B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002066594A JP4270797B2 (ja) 2002-03-12 2002-03-12 磁気検出素子
US10/384,815 US6980403B2 (en) 2002-03-12 2003-03-10 Magnetic sensing element with side shield layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066594A JP4270797B2 (ja) 2002-03-12 2002-03-12 磁気検出素子

Publications (2)

Publication Number Publication Date
JP2003264324A JP2003264324A (ja) 2003-09-19
JP4270797B2 true JP4270797B2 (ja) 2009-06-03

Family

ID=28034904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066594A Expired - Fee Related JP4270797B2 (ja) 2002-03-12 2002-03-12 磁気検出素子

Country Status (2)

Country Link
US (1) US6980403B2 (ja)
JP (1) JP4270797B2 (ja)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837102B2 (ja) 2002-08-20 2006-10-25 Tdk株式会社 電磁変換素子、薄膜磁気ヘッド、磁気ヘッドアセンブリおよび磁気再生装置、ならびに電磁変換素子の製造方法
US20050099737A1 (en) * 2002-10-09 2005-05-12 Fujitsu Limited Current-perpendicular-to-the-plane structure magnetoresistive element and head slider including the same
JP4051271B2 (ja) * 2002-11-26 2008-02-20 株式会社日立グローバルストレージテクノロジーズ 磁気記録ヘッド及び磁気記録再生装置
JP3818596B2 (ja) 2003-01-06 2006-09-06 Tdk株式会社 磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US7324309B1 (en) * 2003-03-06 2008-01-29 Maxtor Corporation Cross-track shielding in a GMR head
JP2004319060A (ja) * 2003-03-28 2004-11-11 Tdk Corp 薄膜磁気ヘッドおよびその製造方法
JP4343006B2 (ja) * 2003-06-27 2009-10-14 株式会社東芝 磁気素子、磁気情報再生用ヘッド及び磁気情報再生装置
JP2005050842A (ja) * 2003-07-29 2005-02-24 Alps Electric Co Ltd 交換結合膜及びこの交換結合膜の製造方法並びに前記交換結合膜を用いた磁気検出素子
JP2005203063A (ja) * 2004-01-19 2005-07-28 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及び磁気記録再生装置
JP2005209301A (ja) * 2004-01-23 2005-08-04 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及びその製造方法
US7301735B2 (en) * 2004-03-15 2007-11-27 Hitachi Global Technologies Netherlands B.V. Higher flip threshold structure for in-stack bias layer
WO2005101378A1 (en) * 2004-04-02 2005-10-27 Tdk Corporation Composite free layer for stabilizing magnetoresistive head
US7606008B2 (en) 2004-04-02 2009-10-20 Tdk Corporation Stabilizer for magnetoresistive head and method of manufacture
JP2007531179A (ja) 2004-04-02 2007-11-01 Tdk株式会社 安定化スピンバルブヘッドとその製造方法
JP2007531182A (ja) * 2004-04-02 2007-11-01 Tdk株式会社 膜面垂直通電モード磁気抵抗ヘッド用安定化器とその製造方法
US7369373B2 (en) * 2004-04-26 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. CPP GMR with hard magnet in stack bias layer
JP2005353666A (ja) * 2004-06-08 2005-12-22 Fujitsu Ltd 磁気抵抗効果素子
JP2006012272A (ja) 2004-06-24 2006-01-12 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及びその製造方法
US7428129B2 (en) * 2004-06-30 2008-09-23 Hitachi Global Storage Technologies Amsterdam Methods and apparatus for improved hard magnet properties in magnetoresistive read heads using a multi-layered seed layer structure
JP2008505940A (ja) * 2004-07-14 2008-02-28 スリーエム イーエスピーイー アーゲー 不飽和ハロゲン化アリールアルキルエーテル成分を含む歯科用組成物
JP2006041120A (ja) * 2004-07-26 2006-02-09 Tdk Corp 磁気抵抗効果装置およびその製造方法、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
US7324312B2 (en) * 2004-08-30 2008-01-29 Hitachi Global Storage Technologies Netherlands B.V. Sensor with in-stack bias structure providing exchange stabilization
US20060042938A1 (en) * 2004-09-01 2006-03-02 Heraeus, Inc. Sputter target material for improved magnetic layer
JP2006086275A (ja) * 2004-09-15 2006-03-30 Tdk Corp 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置
US7570461B2 (en) * 2005-02-28 2009-08-04 Seagate Technology Llc Magnetic sensor with in-stack biasing
JP2006351083A (ja) * 2005-06-14 2006-12-28 Hitachi Global Storage Technologies Netherlands Bv 薄膜磁気ヘッドの製造方法
US20060286414A1 (en) * 2005-06-15 2006-12-21 Heraeus, Inc. Enhanced oxide-containing sputter target alloy compositions
US20060291107A1 (en) * 2005-06-22 2006-12-28 Tdk Corporation Magnetoresistive element with tilted in-stack bias
US7652853B2 (en) * 2005-07-28 2010-01-26 Hitachi Global Storage Technologies Netherlands B.V. Thin shield structure for reduced protrusion in a magnetoresistive head
CN1331975C (zh) * 2005-12-08 2007-08-15 南开大学 纳米晶铁锗颗粒薄膜磁敏材料
US7446984B2 (en) * 2005-12-14 2008-11-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetic random access memory (MRAM) having increased reference layer anisotropy through ion beam etch of magnetic layers
US20070253103A1 (en) * 2006-04-27 2007-11-01 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target
JP2008021360A (ja) * 2006-07-12 2008-01-31 Tdk Corp 薄膜磁気ヘッド、磁気ヘッドアセンブリ、磁気ディスクドライブ装置及び薄膜磁気ヘッドの製造方法
JP2008071442A (ja) * 2006-09-15 2008-03-27 Fujitsu Ltd 薄膜磁気ヘッド、磁気記録装置、および薄膜磁気ヘッドの製造方法
JP2008084446A (ja) * 2006-09-28 2008-04-10 Fujitsu Ltd 磁気ヘッドおよびその製造方法
US7916430B2 (en) * 2007-08-09 2011-03-29 Tdk Corporation Thin-film magnetic head and manufacturing method thereof
US7826179B2 (en) * 2007-09-17 2010-11-02 Tdk Corporation Magneto-resistive effect device of the CPP structure and magnetic disk system
US7383993B1 (en) * 2007-11-02 2008-06-10 International Business Machines Corporation Combined magnetic shield member and pressure pad for a magnetic reader
US8015692B1 (en) 2007-11-07 2011-09-13 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording (PMR) head
US8793866B1 (en) 2007-12-19 2014-08-05 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording head
US8139320B2 (en) * 2007-12-28 2012-03-20 Hitachi Global Storage Technologies Netherlands B.V. Write head having independent side shield and trailing shield throat height
US8711524B2 (en) * 2008-02-05 2014-04-29 Headway Technologies, Inc. Patterned MR device with controlled shape anisotropy
US8166632B1 (en) 2008-03-28 2012-05-01 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording (PMR) transducer
US8276258B1 (en) 2008-08-26 2012-10-02 Western Digital (Fremont), Llc Method for fabricating a magnetic recording transducer
US8166631B1 (en) 2008-08-27 2012-05-01 Western Digital (Fremont), Llc Method for fabricating a magnetic recording transducer having side shields
US8720044B1 (en) 2008-09-26 2014-05-13 Western Digital (Fremont), Llc Method for manufacturing a magnetic recording transducer having side shields
US8077435B1 (en) 2008-11-20 2011-12-13 Western Digital (Fremont), Llc Current perpendicular-to-plane read sensor with back shield
US8231796B1 (en) 2008-12-09 2012-07-31 Western Digital (Fremont), Llc Method and system for providing a magnetic recording transducer having side shields
US8582251B2 (en) * 2009-08-26 2013-11-12 Seagate Technology Llc Magnetic sensor with non-rectangular geometry
US20110050211A1 (en) * 2009-08-26 2011-03-03 Seagate Technology Llc Trapezoidal reader for ultra high density magnetic recording
CN101789488B (zh) * 2010-03-12 2012-02-22 南开大学 用于霍尔元件的新型薄膜材料
US8451567B2 (en) * 2010-12-13 2013-05-28 Headway Technologies, Inc. High resolution magnetic read head using top exchange biasing and/or lateral hand biasing of the free layer
US8441756B1 (en) 2010-12-16 2013-05-14 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled writer
US20120156390A1 (en) * 2010-12-21 2012-06-21 Hitachi Global Storage Technologies Netherlands B.V. Multi-angle hard bias deposition for optimal hard-bias deposition in a magnetic sensor
US9123359B1 (en) 2010-12-22 2015-09-01 Western Digital (Fremont), Llc Magnetic recording transducer with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields and method of fabrication
US8760819B1 (en) 2010-12-23 2014-06-24 Western Digital (Fremont), Llc Magnetic recording sensor with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields
US20120250189A1 (en) * 2011-03-29 2012-10-04 Tdk Corporation Magnetic head including side shield layers on both sides of a mr element
US8922950B2 (en) 2011-05-06 2014-12-30 Seagate Technology Llc Multi-layer magnetoresistive shield with transition metal layer
US8630068B1 (en) 2011-11-15 2014-01-14 Western Digital (Fremont), Llc Method and system for providing a side shielded read transducer
US8451563B1 (en) 2011-12-20 2013-05-28 Western Digital (Fremont), Llc Method for providing a side shield for a magnetic recording transducer using an air bridge
JP5475819B2 (ja) * 2012-03-20 2014-04-16 株式会社東芝 不揮発性記憶装置
US8780508B2 (en) * 2012-06-29 2014-07-15 Seagate Technology Llc Magnetic element with biased side shield lamination
US8964336B2 (en) * 2012-09-06 2015-02-24 HGST Netherlands B.V. Easy axis hard bias structure
US8797692B1 (en) 2012-09-07 2014-08-05 Western Digital (Fremont), Llc Magnetic recording sensor with AFM exchange coupled shield stabilization
US8922951B2 (en) * 2012-12-11 2014-12-30 Seagate Technology Llc Data storage device with variable anisotropy side shield
US8980109B1 (en) 2012-12-11 2015-03-17 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a combined main pole and side shield CMP for a wraparound shield scheme
US8902544B2 (en) * 2012-12-13 2014-12-02 HGST Netherlands B.V. Spin torque oscillator (STO) reader with soft magnetic side shields
US8914969B1 (en) 2012-12-17 2014-12-23 Western Digital (Fremont), Llc Method for providing a monolithic shield for a magnetic recording transducer
US8885300B2 (en) * 2013-02-07 2014-11-11 Seagate Technology Llc Magnetic element with a bi-layer side shield
CN103177869A (zh) * 2013-02-28 2013-06-26 溧阳市生产力促进中心 一种磁性材料的制造方法
US8780505B1 (en) 2013-03-12 2014-07-15 Western Digital (Fremont), Llc Method and system for providing a read transducer having an improved composite magnetic shield
US9013836B1 (en) 2013-04-02 2015-04-21 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled return pole
US9431047B1 (en) 2013-05-01 2016-08-30 Western Digital (Fremont), Llc Method for providing an improved AFM reader shield
US20150092303A1 (en) 2013-10-01 2015-04-02 HGST Netherlands B.V. Graded side shield gap reader
US9472214B1 (en) 2013-10-14 2016-10-18 Seagate Technology Llc Reader side shield
KR101827294B1 (ko) * 2013-10-31 2018-02-08 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 스핀 제어 기구 및 스핀 디바이스
US9190081B2 (en) 2014-02-28 2015-11-17 HGST Netherlands B.V. AF-coupled dual side shield reader with AF-coupled USL
US9349397B2 (en) 2014-03-26 2016-05-24 HGST Netherlands B.V. Higher stability read head utilizing a partial milling process
US9263068B1 (en) 2014-11-05 2016-02-16 International Business Machines Corporation Magnetic read head having a CPP MR sensor electrically isolated from a top shield
US9773512B2 (en) * 2014-12-19 2017-09-26 Seagate Technology Llc Storage device head using high magnetic moment material including a rare earth material and a transition metal
US10074387B1 (en) 2014-12-21 2018-09-11 Western Digital (Fremont), Llc Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields
US9280991B1 (en) 2015-01-07 2016-03-08 International Business Machines Corporation TMR head design with insulative layers for shorting mitigation
US10490732B2 (en) * 2016-03-11 2019-11-26 Toshiba Memory Corporation Magnetic memory device with sidewall layer containing boron and manufacturing method thereof
US9607635B1 (en) 2016-04-22 2017-03-28 International Business Machines Corporation Current perpendicular-to-plane sensors having hard spacers
TWI688001B (zh) 2016-09-14 2020-03-11 東芝記憶體股份有限公司 半導體裝置及其製造方法
US9947348B1 (en) 2017-02-28 2018-04-17 International Business Machines Corporation Tunnel magnetoresistive sensor having leads supporting three-dimensional current flow
US9997180B1 (en) 2017-03-22 2018-06-12 International Business Machines Corporation Hybrid dielectric gap liner and magnetic shield liner
US10614838B2 (en) * 2018-08-23 2020-04-07 Seagate Technology Llc Reader with side shields decoupled from a top shield
US10803889B2 (en) 2019-02-21 2020-10-13 International Business Machines Corporation Apparatus with data reader sensors more recessed than servo reader sensor
US11074930B1 (en) 2020-05-11 2021-07-27 International Business Machines Corporation Read transducer structure having an embedded wear layer between thin and thick shield portions
US11114117B1 (en) 2020-05-20 2021-09-07 International Business Machines Corporation Process for manufacturing magnetic head having a servo read transducer structure with dielectric gap liner and a data read transducer structure with an embedded wear layer between thin and thick shield portions
CN114562133B (zh) * 2022-02-24 2023-02-07 北京航空航天大学 一种具有无磁轨道的可重构式磁屏蔽房

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633771A (en) 1993-09-29 1997-05-27 Kabushiki Kaisha Toshiba Magnetoresistance effect type head and separate recording-reproducing type magnetic head
US5712751A (en) 1994-03-17 1998-01-27 Kabushiki Kaisha Toshiba Magnetic sensor and magnetic recording-reproducing head and magnetic recording-reproducing apparatus using same
US6680829B2 (en) * 2000-09-13 2004-01-20 Seagate Technology Llc MR structures for high areal density reader by using side shields
US6680832B2 (en) * 2001-05-11 2004-01-20 International Business Machines Corporation CPP magnetoresistive sensors with in-stack longitudinal biasing and overlapping magnetic shield
US7130165B2 (en) * 2002-06-05 2006-10-31 Seagate Technology Llc Side shielded current in plane spin-valve
US6943993B2 (en) * 2003-02-11 2005-09-13 Western Digital (Fremont), Inc. Magnetic recording head with a side shield structure for controlling side reading of thin film read sensor

Also Published As

Publication number Publication date
US20030174446A1 (en) 2003-09-18
JP2003264324A (ja) 2003-09-19
US6980403B2 (en) 2005-12-27

Similar Documents

Publication Publication Date Title
JP4270797B2 (ja) 磁気検出素子
US8576518B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with exchange-coupled side shield structure
US20070252588A1 (en) GMR magnetic sensing element having an antiferromagnetic layer extending beyond the track width and method for making the same
US20120063034A1 (en) Current-perpendicular-to-the-plane (cpp) magnetoresistive (mr) sensor with improved insulating structure
US6714388B2 (en) Magnetic sensing element having improved magnetic sensitivity
JP2003086860A (ja) 磁気検出素子及びその製造方法
US20080273274A1 (en) Magnetic detection element and manufacturing method thereof
JP2003309305A (ja) 磁気検出素子
US20120161263A1 (en) Current perpendicular to plane (CPP) magnetoresistive sensor having dual composition hard bias layer
US9245548B2 (en) Magnetic head using a synthetic ferri free structure
US6901652B2 (en) Method for manufacturing magnetic sensing element having improved magnetic field sensitivity
US20010012188A1 (en) Spin-valve thin-film magnetic element and method for making the same
US6979500B2 (en) GMR magnetic sensing element provided with second free layer extended to outside of track width and method for manufacturing the same
JP3706793B2 (ja) スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
US7092218B2 (en) Magnetic head comprising magnetic domain control layer formed on ABS-side of magnetic flux guide for GMR element and method of manufacturing the magnetic head
US7008703B2 (en) Magnetic detecting element having second antiferromagnetic layer overlying second free magnetic layer extending in track width direction beyond track width
JP3939514B2 (ja) 磁気検出素子の製造方法
JP3699000B2 (ja) スピンバルブ型薄膜素子およびその製造方法
JP3774375B2 (ja) 磁気検出素子及びその製造方法、ならびに前記磁気検出素子を用いた薄膜磁気ヘッド
US7068476B2 (en) Magnetic sensing element having no variation in track width and capable of properly complying with track narrowing
JP2008016738A (ja) 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置、および磁気メモリ
US6586121B2 (en) Spin-valve thin-film magnetic element
US20080112091A1 (en) Current-confined-path type magnetoresistive element and method of manufacturing same
JP2001160208A (ja) 磁気抵抗効果素子及びその製造方法
JP3823034B2 (ja) 磁気検出素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees