JP4268463B2 - 時間分解測定装置および位置検出型電子増倍管 - Google Patents

時間分解測定装置および位置検出型電子増倍管 Download PDF

Info

Publication number
JP4268463B2
JP4268463B2 JP2003181546A JP2003181546A JP4268463B2 JP 4268463 B2 JP4268463 B2 JP 4268463B2 JP 2003181546 A JP2003181546 A JP 2003181546A JP 2003181546 A JP2003181546 A JP 2003181546A JP 4268463 B2 JP4268463 B2 JP 4268463B2
Authority
JP
Japan
Prior art keywords
microchannel plate
stack
pulse
time
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003181546A
Other languages
English (en)
Other versions
JP2005019635A (ja
Inventor
伸幸 平井
充哲 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003181546A priority Critical patent/JP4268463B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to US10/561,917 priority patent/US7619199B2/en
Priority to KR1020057020478A priority patent/KR101067933B1/ko
Priority to CNB2004800176268A priority patent/CN100476408C/zh
Priority to TW093118221A priority patent/TWI333057B/zh
Priority to PCT/JP2004/009282 priority patent/WO2004113890A1/ja
Priority to EP04746751.9A priority patent/EP1640712B1/en
Publication of JP2005019635A publication Critical patent/JP2005019635A/ja
Application granted granted Critical
Publication of JP4268463B2 publication Critical patent/JP4268463B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2444Electron Multiplier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Electron Tubes For Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、位置検出型電子増倍管(Position-Sensitive Electron Multiplier Tube: PS−EMT)、および位置検出型電子増倍管を利用する時間分解測定装置に関する。
【0002】
【従来の技術】
発光現象の時間分解測定を行って、その二次元位置および時間を取得するための二次元時間分解測定装置が知られている(例えば、特許文献1および2ならびに非特許文献1)。
【0003】
非特許文献1に開示される装置では、試料から発した光子が複数のマイクロチャンネルプレート(MCP)によって増倍される。光子の検出タイミングを示すパルス信号は、光電子増倍管においてアノードに最も近いMCPから取り出される。
【0004】
【特許文献1】
特開昭61−266942号公報
【特許文献2】
特開平10−150086号公報
【0005】
【非特許文献1】
エス・シャーボンノー(S. Charbonneau)、ほか4名、「レジスティブアノード光電子増倍管を用いた100ps分解能での二次元時間分解撮像(Two-dimensional time-resolved imaging with 100-ps resolution using a resistive anode photomultiplier tube)」、Rev. Sci. Instrum. 63(11), (米国)、アメリカン・インスティチュート・オブ・フィジックス(American Institute of Physics)、1992年11月、5315−5319頁
【0006】
【発明が解決しようとする課題】
この発明は、時間分解測定における時間精度を高めることを課題とする。
【0007】
【課題を解決するための手段】
この発明の時間分解測定装置は、試料の励起によって発する量子線の位置情報およびタイミング情報を取得する。この装置は、試料の励起に同期して基準時間パルスを生成する信号発生器と、光を検出し検出位置に応じた位置信号および検出タイミングに同期した検出タイミングパルスを生成する検出装置と、位置信号を用いて検出位置を算出する位置演算器と、基準時間パルスと検出タイミングパルスとの時間差を計測する時間差測定器と、位置演算器によって算出された検出位置と時間差測定器によって計測された時間差とを対応付けて記憶するデータ処理装置とを備えている。検出装置は、位置検出型電子増倍管を有している。電子増倍管は、量子線が入射する入射窓、アノード、ならびに入射窓とアノードの間に挟まれた第1および第2のマイクロチャンネルプレートを有している。第1マイクロチャンネルプレートは、カソードと離れて対向する入力面と、第2マイクロチャンネルプレートと離れて対向する出力面とを有している。第2マイクロチャンネルプレートは、第1マイクロチャンネルプレートの出力面と離れて対向する入力面と、アノードと離れて対向する出力面とを有している。検出タイミングパルスは、マイクロチャンネルプレートによって増倍された電子が第1マイクロチャネルプレートの出力面から放出されるときの電位変化に応答して発生し、時間差測定器へ送られる。
【0008】
量子線には、電子、イオン、α線、β線などの荷電粒子や、紫外線、X線、γ線などの光子、さらには中性子などが含まれる。試料の励起に伴う量子線の発生は、原子、分子などがエネルギーの低い状態から、熱、光、放射線などの外部刺激によって、より高いエネルギーの状態に移り、その状態が元に戻る際に、2つの状態のエネルギーの差を光等の量子線として放出する現象である(上記特許文献1および非特許文献1を参照のこと)。半導体デバイスが自発的に、あるいは外部トリガ(信号パルス、動作開始パルス等)に応答して作動すると、デバイス中のトランジスタのスイッチング動作に伴ってトランジェント発光が起きることも知られている(上記特許文献2を参照のこと)。本発明において試料の励起に伴う量子線の発生には、原子または分子が2つの状態のエネルギーの差を光等の量子線として放出する現象に加えて、半導体デバイスの動作時に観察されるトランジェント発光も含まれる。
【0009】
マイクロチャンネルプレートから取り出される検出タイミングパルスには、マイクロチャンネルプレートからの増倍電子の放出に起因するプラス極性の成分のほかに、マイクロチャンネルプレートへの量子線の入射に起因するマイナス極性の成分が含まれる。本発明と異なり第2マイクロチャンネルプレートから検出タイミングパルスを取り出す場合、そのプラス成分は第1および第2マイクロチャンネルプレートによって増倍された電子の量に応じた大きさを有し、そのマイナス成分は第1マイクロチャンネルプレートによって増倍された電子の量に応じた大きさを有する。第1および第2マイクロチャンネルプレートは互いに相関のない増倍揺らぎを有している。このため、検出タイミングパルスのプラス成分とマイナス成分は検出のたびに異なる比率を有することになる。したがって、検出タイミングパルスがグランドレベルを横切るタイミング、すなわちゼロクロスタイミングも検出のたびに異なる。この結果、基準時間パルスと検出タイミングパルスとの時間差に揺らぎが生じ、時間分解測定の時間精度が低下してしまう。
【0010】
これに対し、本発明では、第2マイクロチャンネルプレートの前方に配置された第1マイクロチャンネルプレートから検出タイミングパルスが取り出される。この検出タイミングパルスのマイナス成分は、第1マイクロチャンネルプレートへの量子線の入射に応答して発生する。このため、マイナス成分の大きさは、第1および第2マイクロチャンネルプレートによる電子増倍の影響を受けない。したがって、検出タイミングパルス中のマイナス成分は小さい。この結果、検出タイミングパルスのゼロクロスタイミングの変動が抑えられ、時間分解測定の時間精度が高まる。
【0011】
本発明の時間分解測定装置は、第1マイクロチャンネルプレート、および第1マイクロチャンネルプレートの入力面に重ね合わされた一枚以上のマイクロチャンネルプレートを有する第1のスタックと、第2マルチチャネルプレート、および第2マイクロチャンネルプレートの入力面に重ね合わされ、第1マイクロチャンネルプレートと離れて対向する一枚以上のマイクロチャンネルプレートを有する第2のスタックとをさらに備えていてもよい。検出タイミングパルスのプラス成分は、第1スタック中の複数のマイクロチャンネルプレートによって増倍された電子によって形成される。一方、マイナス成分は、第1スタックへの量子線の入射によって生成され、第1スタック中のマイクロチャンネルプレートによる電子増倍の影響を受けない。このため、マイナス成分はプラス成分よりも極めて小さくなる。したがって、検出タイミングパルスのゼロクロスタイミングの変動がさらに抑えられ、時間分解測定の時間精度が高まる。
【0012】
第1スタックは、入射窓と第1スタックとの間に別のマイクロチャンネルプレートを挟むことなく入射窓と対向していることが好ましい。この場合、検出タイミングパルスのマイナス成分は、第1スタック中のマイクロチャンネルプレートによる電子増倍だけでなく、別のマイクロチャンネルプレートによる電子増倍の影響も受けない。このため、検出タイミングパルスのマイナス成分は極めて小さくなる。これにより、時間分解測定の時間精度が高まる。
【0013】
第1スタックは第2スタックより高い光電子増倍率を有していてもよい。これは電子増倍の飽和を防ぐうえで有利である。これにより、光電子が効率良く増倍され、S/Nの高い位置信号を得ることができる。検出タイミングパルスのマイナス成分の大きさは第1スタックによる電子増倍に影響されないので、第1スタックの増倍率にかかわらずマイナス成分は小さい。したがって、高い位置検出精度と高い時間精度の双方を達成することができる。
【0014】
位置検出型電子増倍管は、量子線を光電効果によって光電子に変換するフォトカソードを、入射窓と第1マイクロチャンネルプレートの入力面との間にさらに備えていてもよい。第1マイクロチャンネルプレートは、フォトカソードに対向させて配置され、フォトカソードから光電子を受け取って二次電子を生成し増倍する。この場合、光電子が第1マイクロチャンネルプレートに入射する。検出タイミングパルスのマイナス成分は、光電子の入射量に応じた大きさを有する。一方、検出タイミングパルスのプラス成分は、第1マイクロチャンネルプレートによって増倍された二次電子の量に応じた大きさを有する。このため、マイナス成分はプラス成分よりも極めて小さくなる。したがって、検出タイミングパルスのゼロクロスタイミングの変動が抑えられ、時間分解測定の時間精度が高まる。
【0015】
この発明の位置検出型電子増倍管は、量子線を透過させる入射窓と、量子線の入射窓への入射位置に応じた位置に電子を生成し、その位置を維持しながら電子を増倍する第1および第2のマイクロチャンネルプレートと、第2マイクロチャンネルプレートと対向するアノードと、第1マイクロチャンネルプレートに接続され、第1マイクロチャンネルプレートによって増倍された電子が第1マイクロチャンネルプレートから放出されるときの電位変化に応じたパルス信号を第1マイクロチャンネルプレートから取得するパルス読み出し回路とを備えている。第1マイクロチャンネルプレートは、入射窓と離れて対向する入力面と、第2マイクロチャンネルプレートと離れて対向する出力面を有している。第2マイクロチャンネルプレートは、第1マイクロチャンネルプレートの出力面と離れて対向する入力面と、アノードと離れて対向する出力面とを有している。パルス読み出し回路は、第1マイクロチャンネルプレートの出力面に接続されている。
【0016】
パルス読み出し回路は、第2マイクロチャンネルプレートではなく、第1マイクロチャンネルプレートに接続されている。パルス読み出し回路によって取得されるパルス信号のマイナス成分は、第1マイクロチャンネルプレートへの量子線の入射に応答して発生する。このため、マイナス成分の大きさは、第1および第2マイクロチャンネルプレートによる電子増倍の影響を受けない。この結果、パルス信号中のマイナス成分は小さく、これにより検出タイミングパルスのゼロクロスタイミングの変動が抑えられる。したがって、このパルス信号を、量子線の検出タイミングを示す信号として使用すれば、時間精度の高い時間分解測定が可能である。
【0017】
【発明の実施の形態】
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0018】
(第1実施形態)
図1は、実施形態に係る時間分解測定装置100の構成を示すブロック図である。装置100は、試料10から発する光子15を検出し、発光の二次元位置およびタイミングを測定する。装置100は、半導体テスタ12、位置検出型光電子増倍管(Position Sensitive Photomultiplier Tube:PS−PMT)14、位置演算器16、時間電圧変換器(Time-to-Amplitude Converter:TAC)17およびデータ処理装置18を有している。
【0019】
本実施形態では、試料10の一例として、半導体集積回路(IC)を搭載するチップを用意する。半導体テスタ12は、試料10に動作開始パルスを与えて発光を生じさせるための励起装置である。テスタ12は、試料10上のICに駆動電圧を供給してICを駆動する。ICに含まれるトランジスタは、そのスイッチング動作時に低い確率で発光する。したがって、装置100を用いて発光の二次元位置とタイミングを測定することにより、トランジスタの動作タイミングを解析することができる。テスタ12は、試料10に与える動作開始パルスに同期して基準時間パルスRTを生成する信号発生器を含んでいる。このパルスRTは時間電圧変換器17へ送られる。
【0020】
図2は、位置検出型光電子増倍管14の構造を示す概略図である。光電子増倍管14は、試料10から発した光子15を電子に変換し、その電子をその二次元位置を保持しながら増幅する。光電子増倍管14は、外囲器20および外囲器20に接続された電圧分割回路80を備えている。外囲器20内には、フォトカソード22、マイクロチャンネルプレート(Micro Channel Plate:MCP)23〜27およびレジスティブアノード28が収容されている。外囲器20の前面には、透明の入射窓29が設置されている。フォトカソード22は入射窓29の内面に形成されている。フォトカソード22とレジスティブアノード28は互いに離れて対向するように配置されている。MCP23〜27は、フォトカソード22とレジスティブアノード28の間に配置されている。
【0021】
フォトカソード22は、入射窓29を透過した光子15を受け取り、光電効果によって光電子に変換する。フォトカソード22は「光電面」と呼ばれることがある。
【0022】
MCP23〜27は、フォトカソード22から光電子を受け取って二次電子を生成および増倍する板状の電子増倍器である。MCPの平面形状は円形であってもよいし、矩形であってもよい。各MCPの前面および後面には、電極として導電性材料が蒸着されている。各MCPの前面は光電子または二次電子を受け取る入力面であり、後面は二次電子を放出する出力面である。光電子は、まず、最前方のMCP23に入射する。光電子の入射位置は、光15のフォトカソード22への入射位置に対応している。MCP23は、光電子の入射位置に二次電子を生成し、その二次電子をその二次元位置を保持しながら増倍する。後続のMCP24〜27も二次元位置を保持しながら二次電子を増倍する。
【0023】
MCP23〜27は、二次電子を通すための多数のチャンネルを有しており、二次電子はチャンネル内を移動する間に増倍される。具体的には、MCPは内壁を抵抗体とした非常に細いガラスパイプを多数束ねた二次元構造を有している。このガラスパイプがチャンネルである。それぞれのチャンネルは独立した二次電子増倍器を形成している。MCPの入力面への量子の入射に応じてチャンネルの壁から放出される二次電子は、MCPの両端に印加された電圧により生成された電界により加速され、放物線軌道を描きつつ壁の反対側の部分に衝突する。この衝突により再び二次電子が壁から放出される。このような過程がチャンネルに沿って多数回繰り返される結果、MCPの出力面から多数の電子が放出される。
【0024】
MCP23〜27は、第1および第2のMCPスタック30および32を構成している。第1スタック30は、互いに重ね合わされた2枚のMCP23および24からなる(MCP:2段)。第1スタック30は、フォトカソード22との間に他のMCPを挟むことなくフォトカソード22と直接対向している。MCP23および24は、それぞれフォトカソード22と離れて対向する入力面を有している。MCP23の出力面は、MCP24の入力面に重ね合わされている。MCP24の出力面は、MCP25の入力面と離れて対向する。第2スタック32は、互いに重ね合わされた3枚のMCP25〜27からなる(MCP:3段)。MCP25の出力面はMCP26の入力面に重ね合わされ、MCP26の出力面はMCP27の入力面に重ね合わされている。MCP27の出力面は、レジスティブアノード28の入力面と離れて対向する。
【0025】
MCP23〜27を二つのスタック30および32に分けるのは、光電子の効率の良い増倍のためである。すべてのMCPを近接させて重ね合わせると、光電子が少数のチャンネルに集中するため、増倍作用が飽和しやすい。これに対し、MCP23〜27を二つのスタック30および32に分けると、前側のスタック30によって増倍された電子群は、スタック30から放出され、拡散しながら後側のスタック32に向かう。この拡散により、後側のスタック32では、より多数のチャンネルで光電子が増倍されることになる。このため、増倍作用の飽和を防ぎ、効率良く光電子を増倍できる。
【0026】
スタック30および32のように、MCPを多段に重ねて使用する場合、チャンネルの軸がMCPの垂直軸に対し適当なバイアス角を有するようにMCPを配置することが好ましい。このような配置を採用することによって、ゲインの増大と共に生じるイオンフィードバックによるノイズを低減し、かつ、高い利得を得ることができる。
【0027】
第1スタック30で光電子を非常に高い倍率で増倍できるので、第2スタック32の増倍率は第1スタック30よりも低い。本実施形態では、第1スタック30の増倍率は約106であり、第2スタック32の増倍率は約102である。これらの増倍率は完全に一定ではなく、ある程度の揺らぎを持っている。したがって、スタック30および32は、増倍のたびに異なる増倍率を示す。
【0028】
レジスティブアノード28は位置検出型アノードの一種である。レジスティブアノード28は、片面に均一な抵抗層が設けられた導体板である。レジスティブアノード28の四隅には、信号読み出し用の電極28aが設けられている。これらの電極28aは、図1に示されるように、プリアンプ40を介して位置演算器16に電気的に接続されている。レジスティブアノード28に二次電子が入射すると、これらの読み出し電極28aは電荷パルスを出力する。レジスティブアノード28に入射した二次電子の二次元位置は、これらの電荷パルスが有する電荷量に基づいて求められる。このようにレジスティブアノード28は、光子15の検出位置に応じた信号DPを生成し、位置演算器16に送る。
【0029】
フォトカソード22、第1および第2MCPスタック30および32、ならびにレジスティブアノード28は、電圧分割回路80に接続されている。回路80は、カソード22およびアノード28間に電圧を印可するとともに、その電圧を分割して第1および第2MCPスタック30および32に印可する。また、回路80は、レジスティブアノード28から光子15の検出位置に応じた信号DPを受け取り、増幅して位置演算器16に送る。さらに、回路80は、光子15の検出タイミングを示すパルス信号を取得するパルス読み出し回路としても機能する。
【0030】
図2に示されるように、第1スタック30においてMCP23の入力面およびMCP24の出力面には、それぞれ円環状の電極33および34が取り付けられ、これらの電極がリード線によって高圧電源42に接続されている。同様に、第2スタック32においてMCP25の入力面およびMCP27の出力面には、それぞれ円環状の電極35および37が取り付けられ、これらの電極がリード線によって高圧電源42に接続されている。高圧電源42は、フォトカソード22およびレジスティブアノード28にも接続されている。
【0031】
高圧電源42は、フォトカソード22、第1スタック30、第2スタック32およびレジスティブアノード28に電圧を印可し、これらの間に電位勾配を形成する。この電位勾配により、レジスティブアノード28、第2スタック32、第1スタック30、およびフォトカソード22の順に高い電位が与えられる。各MCPスタック内にも電位勾配が形成される。第1スタック30では、MCP24の出力面に近い位置ほど高い電位が与えられる。第2スタック32では、MCP27の出力面に近い位置ほど高い電位が与えられる。
【0032】
より具体的に説明すると、フォトカソード22と高圧電源42との間には抵抗器81〜85が直列に接続されている。抵抗器81の両端にはフォトカソード22および電極33が接続されており、これにより両者の間に電位勾配が形成される。抵抗器82の両端には電極33および34が接続されており、これにより第1MCPスタック30の入力面および出力面間に電位勾配が形成される。抵抗器83の両端には電極34および35が接続されており、これにより第1MCPスタック30と第2MCPスタック32との間に電位勾配が形成される。抵抗器84の両端には電極35および37が接続されており、これにより第2MCPスタック32の入力面および出力面間に電位勾配が形成される。抵抗器85の両端には電極37およびレジスティブアノード28が接続されており、これにより第2MCPスタック32とレジスティブアノード28との間に電位勾配が形成される。
【0033】
後で詳細に説明するように、MCP24の出力面では、光子の検出タイミングに同期してパルス信号DTが生成される。以下では、このパルス信号DTを「検出タイミングパルス」と呼ぶ。図2に示されるように、MCP24の出力面に設けられた電極34は、電圧分割回路80を介して時間電圧変換器17に接続されている。検出タイミングパルスDTは電極34および回路80を通じて時間電圧変換器17に送られる。
【0034】
回路80は、検出タイミングパルスDTを取得するために、互いに直列に接続された抵抗器86および高圧遮断用コンデンサ87を有している。電極34は抵抗器86とコンデンサ87の間に接続されている。コンデンサ87は、後述するプリアンプ41、アンプ43および44、CFD45ならびにTAC17を高圧電源42から分離し、高圧電源42によって生成される高い電圧からCFD45およびTAC17を保護する。
【0035】
位置演算器16は、光電子増倍管14のレジスティブアノード28に電気的に接続されている。位置演算器16は、レジスティブアノード28から送られる位置信号DPを用いて光子15の検出位置を算出する。位置演算器16の出力端子はラッチ回路49に接続されている。算出された検出位置はディジタルデータとしてラッチ回路に送られる。
【0036】
時間電圧変換器(TAC)17は、二つの入力信号の時間差を計測する時間差測定器である。TAC17は、テスタ12および光電子増倍管14の双方に電気的に接続されている。TAC17のスタート端子は、プリアンプ41、アンプ43および44、ならびにコンスタントフラクション弁別器(CFD)45を介してMCP24上の電極34に接続されている。TAC17は、光電子増倍管14からの検出タイミングパルスDTをスタート端子にて受け取る。一方、TAC17のストップ端子は、アンプ46および遅延回路47を介してテスタ12に接続されている。TAC17は、テスタ12からの基準時間パルスRTをストップ端子にて受け取る。TAC17は、基準時間パルスRTと検出タイミングパルスDTとの時間差に応じた波高を有するアナログ電圧信号を生成する。この時間差は、基準時間パルスを基準とした光子15の検出時刻を示す。TAC17の出力端子は、A/D変換器48を介してラッチ回路49に接続されている。検出時刻を示すアナログ信号は、A/D変換器48に送られ、そこでディジタルデータに変換される。検出時刻を示すこのデータは、ラッチ回路49に送られる。
【0037】
ラッチ回路49は、位置演算器16からの検出位置データおよびTAC17からの検出時刻データを受け取り、一組のデータとしてデータ処理装置18に転送する。データ処理装置18は、ラッチ回路49からデータを受け取り、記憶する。処理装置18は、例えばパーソナルコンピュータである。処理装置18は、CPU、記憶装置、ハードディスク、キーボードおよびマウス、ならびにディスプレイを有している。記憶装置には、データ処理に必要なプログラムおよびデータが格納されている。ラッチ回路49から送られた検出位置および検出時刻は、互いに対応付けてこの記憶装置に格納される。
【0038】
本実施形態では、データ処理装置18は、時間分解測定装置100の制御装置としても機能する。位置演算器16は、レジスティブアノード28からの位置信号DPを、プリアンプ40を経由して受け取り、光子15の検出位置を演算し、それをデジタル変換してラッチ回路49へ送る。また、装置18は、位置演算器16に高圧制御信号を送る。位置演算器16は高圧電源42に接続されており、高圧制御信号に応答して高圧電源42の出力電圧を投入または遮断する。装置18は、TAC17に時定数制御信号を送る。TAC17は、この信号に応答して時間−振幅変換の時定数を設定する。装置18は、遅延回路47にディレイ制御信号を送る。遅延回路47は、この信号に応答してディレイを設定する。
【0039】
以下では、時間分解測定装置100の動作を説明する。テスタ12が試料10上のICを駆動すると、ある確率で光子15が発する。光電子増倍管14は光子15をフォトカソード22にて受け取る。フォトカソード22は、光電効果によって光子15を光電子に変換する。この光電子は、フォトカソード22および第1スタック30間の電位勾配によってMCP23の入力面に入射する。スタック30中のMCP23および24は、光電子を約106倍に増倍する。増倍された電子はスタック30内の電位勾配によってMCP24の出力面に到達する。その後、電子は、第1および第2スタック30および32間の電位勾配によってMCP24の出力面から放出され、MCP25の入力面に入射する。スタック32中のMCP25〜27は、電子を約102倍に増倍する。電子はスタック32内の電位勾配によってMCP27の出力面に到達する。その後、電子は、第2スタック32およびレジスティブアノード28間の電位勾配によってMCP27の出力面から放出され、レジスティブアノード28に収集される。
【0040】
レジスティブアノード28は、電子の二次元位置に応じた電荷パルスDPを四隅の電極28aから位置演算器16へ送る。位置演算器16は、これらの電荷パルスDPを受け取り、重心検出によって電子の二次元位置を算出する。この二次元位置は、光子15の検出位置であり、試料10上での発光位置と対応している。算出された検出位置はデータ処理装置18に送られる。
【0041】
さらに、光電子増倍管14は、光子15の検出タイミングに同期してパルスを生成する。この検出タイミングパルスDTは電圧分割回路80によってMCP24から取り出される。MCP24の出力面からMCP25に向けて電子が放出されると、MCP24の出力面において電位が瞬間的に上昇する。続いて、高圧電源42からMCP24に電子が流入し、出力面の電位は所定の定常電位に戻される。この電子の流れはチャージ電流と呼ばれる。チャージ電流は、高圧電源42から抵抗器83〜85を通ってMCP24の電極34に向かう。電極34と抵抗器83との間には、抵抗器86が配置されている。これにより、インピーダンスが増加するので、高圧電源42から電極34への単位時間あたりの電子流入量が低減される。高周波領域では、コンデンサ87を含む経路のほうが抵抗器83〜86を含む経路よりもインピーダンスが低い。このため、瞬間的には、コンデンサ87の一端から電極34に電子が流入することになる。コンデンサ87の他端はアンプを介してCFD45に接続されているので、電極34への電子の流れは電流パルスとしてCFD45へ流入する。この電流パルスが検出タイミングパルスDTである。このようにして、回路80は、MCP24の出力面の瞬間的な電位上昇に同期して検出タイミングパルスDTを取り出すことができる。この検出タイミングパルスDTはCFD45を通じてTAC17へ送られる。
【0042】
TAC17は、試料10上のICの駆動に同期した基準時間パルスRTをテスタ12から受け取るとともに、CFD45から検出タイミングパルスDTを受け取る。TAC17は、基準時間パルスRTと検出タイミングパルスDTの時間差を計測する。上述のように、この時間差は基準時間パルスRTを基準とする光子15の検出時刻を示す。この検出時刻はデータ処理装置18に送られる。
【0043】
データ処理装置18は、検出位置および検出時刻を受け取り、互いに対応付けて記憶装置に格納する。試料10上のトランジスタがスイッチングの際に発光する確率は非常に小さいので、試料10は繰り返し励起され、検出位置および検出時刻がデータ処理装置18に蓄積される。蓄積されたデータはさまざまに利用することができる。たとえば、データ処理装置18は、特定の時間にわたって検出位置ごとに発光回数を計数し、得られたカウント数に応じた輝度を検出位置に対応する画素に割り当てた二次元画像を生成することができる。また、データ処理装置18は、蓄積された検出時刻を用いて、特定の検出位置における検出時刻のヒストグラムを作成することができる。このヒストグラムでは、横軸が検出時刻であり、縦軸が発光回数である。ヒストグラムのピークは、特定の検出位置において発光が高い頻度で検出された時刻を示している。したがって、ピークに対応する検出時刻は、その検出位置に対応するトランジスタがスイッチングを行うタイミングとみなすことができる。トランジスタのスイッチングタイミングを取得することにより、試料10上のICの動作解析が可能となる。
【0044】
本実施形態の特徴は、前側スタック30の最後方に位置するMCP24から検出タイミングパルスDTを読み出すことである。以下では、従来技術との比較を交えながらこの点を詳細に説明する。
【0045】
時間分解測定装置において光電子増倍管から検出タイミングパルスを取得する場合、どこから検出タイミングパルスを読み出すかを決める必要がある。アノードからタイミングパルスを読み出す場合、アノードが位置検出型であると、アノード周辺の信号読み出し経路に付随する抵抗や静電容量のため、タイミングパルスの読み出し速度が遅い。また、信号読み出し経路が高インピーダンス回路となるため、タイミングパルスが外来ノイズの影響を受けやすい。したがって、外部回路を最適化しても十分な時間精度を得ることが難しい。さらに、タイミングパルスを取得するための付加回路によって信号のS/Nが低下する。このため、時間精度のみならず位置分解能までもが劣化してしまう。
【0046】
これに対し、従来技術では、アノードと直接対向するMCPの出力面から検出タイミングパルスを取得している。つまり、最も後方に配置された最終MCPの出力面からアノードに向かって電子が放出されたときに発生する電位上昇パルスが検出タイミングパルスとして読み出される。電位上昇量は放出される電荷量に比例し、その電荷量は最終MCPにおいて最大となる。したがって、最終MCPからはS/Nの高い検出タイミングパルスを読み出すことができる。
【0047】
しかし、このような利点の反面、最終MCPからの検出タイミングパルスの読み出しには不利益が伴うことに本発明者は気づいた。以下では、図3および図4を参照しながらこの不利益を説明する。図3は、最終MCP27上の電極37から検出タイミングパルスDTが読み出される光電子増倍管14aの構造を示す概略図である。電極37は、本実施形態における電極34と同様に、アンプおよびコンスタントフラクション弁別器を介してTAC17に接続されている。図4(a)は電極37における電位の経時変化を示し、図4(b)は電極37から取り出されるタイミングパルスDTを示している。
【0048】
MCP23〜27によって増倍された電子がMCP27の出力面から放出されると、図4(a)に示されるように、電極37上に電位上昇パルス60が現れる。電位上昇パルス60は、光子が検出されるたびに発生する。試料から3個の光子が順次に発すると、図4(a)に示されるように、3個の電位上昇パルス60a〜60cが発生する。上述のように、第1および第2MCPスタック30および32の増倍率は、ある程度の揺らぎを持っている。このような増倍揺らぎに応じて、電位上昇パルス60a〜60cはさまざまな波高を有する。
【0049】
本発明者は、電位上昇パルス60a〜60cの直前に別のパルス62a〜62cが電極37上に現れることを見いだした。このパルス62は、光電子増倍管14が互いに離間した二つのMCPスタック30および32を有することに起因する。第1スタック30によって増倍された電子は、MCP24の出力面から放出されて、第2スタック32の入力面、すなわち第2スタック32において最前方に位置するMCP25の入力面に入射する。このとき、第2スタック32の入力面上の電極35および出力面上の電極37間の容量結合が、電極37上にパルス62を生成する。以下では、このパルス62を「電子入力パルス」と呼ぶ。電子入力パルス62の波高は、第1スタック30の増倍率に依存する。第1スタック30の増倍揺らぎに応じて、電子入力パルス62a〜62cはさまざまな波高を有する。
【0050】
電位上昇パルス60はプラスの極性を有し、電子入力パルス62はマイナスの極性を有する。第1スタック30から第2スタック32への電子の入射によって電子入力パルス62が生成され、第2スタック32による電子の増倍の後、電位上昇パルス60が発生する。このため、電位上昇パルス60は、電子入力パルス62から約300psec遅れて電極37上に現れる。パルス60および62は部分的に重なり合い、図4(b)に示されるように一つのパルス70として電極37から読み出される。このパルス70が上述した検出タイミングパルスDTである。
【0051】
第2スタック32が102程度の増倍率を有することから、電位上昇パルス60は電子入力パルス62の10〜100倍程度の波高を有する。しかし、電位上昇パルス60の波高は、スタック30および32の双方の増倍揺らぎから影響を受けるのに対し、電子入力パルス62の波高は、スタック30の増倍揺らぎからしか影響を受けない。このため、これらのパルス60および62の波高は、互いに相関のない揺らぎを有する。したがって、プラスの電位上昇パルス60とマイナスの電子入力パルス62とが、光子の検出のたびに異なる波高比率で合成され、検出タイミングパルスを形成することになる。
【0052】
CFD45は、パルス70がグランドレベルを横切るタイミング71を判定する。これは、ゼロクロスタイミングと呼ばれる。TAC17は、このゼロクロスタイミングをパルス70の受信タイミングとして扱う。パルス70は電子入力パルス62に対応するマイナス成分を有するため、ゼロクロスタイミング71は、第2スタック32に光電子が入射するタイミング72に比べて遅れる。電位上昇パルス60と電子入力パルス62とが光子の検出のたびに異なる波高比率を有するため、ゼロクロスタイミング71の電子入射タイミング72からの遅延時間は一定でない。これは、複数の光子検出における検出タイミングパルスを重ね合わせて示す図5を参照するといっそう明らかになる。このようなゼロクロスタイミング71の遅延の不均一のため、検出時刻に200psec以上の揺らぎ(ジッタ)が生じ、時間精度が低下してしまう。
【0053】
これに対し、本実施形態の時間分解測定装置100では、第1スタック30の最後方のMCP24から検出タイミングパルスが読み出される。第1スタック30に入射するのは1個の光子から変換された光電子であり、まったく増倍されていない。このため、MCP24の電極34に発生する電子入力パルスは非常に小さい。図6(a)に示されるように、MCP24上の電極34には、事実上、電位上昇パルス64のみが現れる。したがって、複数の光子検出における検出タイミングパルスを重ね合わせて示す図6(b)を参照すると明らかなように、ゼロクロスタイミングの揺らぎを抑えることができる。光電子は、第1スタック30によって106倍に増倍された後、MCP24から放出される。これらの光電子の電荷量は、最終MCP27から放出される電荷量の約1/100であるが、それでも十分な波高の電位上昇パルス64を生成することができる。したがって、検出タイミングパルスのS/Nおよび時間精度の低下が防止される。この結果、60psec程度の良好な時間精度を得ることが可能である。
【0054】
なお、検出タイミングパルスを取得するために電極34に電気的に接続される出力端子の数は1本に限定されず、複数本設置してもよい。その際、複数の出力端子は同じ長さを有することが好ましい。
【0055】
(第2実施形態)
本実施形態の時間分解測定装置は、第1実施形態の装置100において光電子増倍管14の代わりに他の光電子増倍管を設置した構成を有する。図7は、本実施形態で使用する位置検出型光電子増倍管90の構造を示す概略図である。光電子増倍管90は、第1実施形態の光電子増倍管14と異なる電圧分割回路92を有する。
【0056】
回路92は、MCP24から検出タイミングパルスDTを取得するための構成が第1実施形態の電圧分割回路80と異なる。すなわち、回路92は、MCP24の電極34に接続された抵抗器86およびコンデンサ87に加えて、高圧遮断用コンデンサ88および同軸ケーブル94を有している。同軸ケーブル94は、コンデンサ87を介して抵抗器86の一端に接続された内部導体(芯線)と、コンデンサ88を介して抵抗器86の他端に接続された外部導体を有している。
【0057】
すでに述べたように、MCP24の出力面からMCP25に向けて電子が放出されると、MCP24の出力面において電位が瞬間的に上昇する。これに応じて、高圧電源42からMCP24にチャージ電流が供給される。しかし、高圧電源42およびMCP24間の経路は、抵抗器86によってインピーダンスが高められている。このため、高周波領域では、コンデンサ87および88ならびに同軸ケーブル94を含む経路のほうが抵抗器86を含む経路よりもインピーダンスが低い。したがって、瞬間的には、同軸ケーブル94を含む経路から電極34に電子が流入することになる。同軸ケーブル94のうちコンデンサ87に接続される端部と反対側の端部には、CFD45が接続されている。このため、電極34への電子の流れは電流パルスとしてCFD45へ流入する。この電流パルスが検出タイミングパルスDTである。このようにして、回路92は、MCP24の出力面の瞬間的な電位上昇に同期して検出タイミングパルスDTを取り出すことができる。
【0058】
本実施形態は、第1実施形態と同じ利点を有する。さらに、検出タイミングパルスDTを同軸ケーブル94によって伝送するので、パルスDTの波形の劣化が少ない。したがって、時間分解測定の時間精度をさらに高めることができる。
【0059】
(第3実施形態)
本実施形態の時間分解測定装置も、第1実施形態の装置100において光電子増倍管14の代わりに他の光電子増倍管を設置した構成を有する。図8は、本実施形態で使用する位置検出型光電子増倍管95の構造を示す概略図である。光電子増倍管95は、第1実施形態の光電子増倍管14と異なる電圧分割回路96を有する。
【0060】
回路96は、MCP24から検出タイミングパルスDTを取得するための構成が第1および第2実施形態の電圧分割回路80および92と異なる。すなわち、回路96は、抵抗器86ならびにコンデンサ87および88に代えて、高周波トランス98を有している。トランス98は、MCP24の電極34と同軸ケーブル94との間に接続されている。トランス98は、CFD45およびTAC17を高圧電源42から分離し、高圧電源42によって生成される高い電圧からCFD45およびTAC17を保護する。電極34はトランスの一次側に接続され、同軸ケーブル94はトランスの二次側に接続されている。
【0061】
MCP24の出力面からMCP25に向けて電子が放出されると、MCP24の出力面において電位が瞬間的に上昇する。これに応じて、高圧電源42からMCP24にチャージ電流が瞬間的に供給される。チャージ電流の経路には高周波トランス98の一次側が接続されている。このため、チャージ電流のAC成分に対応する起電力がトランス98の二次側に発生する。この起電力によりパルス電流が発生し、トランス98の二次側に接続された同軸ケーブル94によって伝送される。この電流パルスが検出タイミングパルスDTである。同軸ケーブル94のうちトランス98に接続される端部と反対側の端部には、CFD45が接続されている。このため、検出タイミングパルスDTはCFD45へ流入する。このようにして、回路96は、MCP24の出力面の瞬間的な電位上昇に同期して検出タイミングパルスDTを取り出すことができる。
【0062】
本実施形態は、第1実施形態と同じ利点を有する。さらに、検出タイミングパルスDTを同軸ケーブル94によって伝送するので、パルスDTの波形の劣化が少ない。したがって、時間分解測定の時間精度をさらに高めることができる。
【0063】
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
【0064】
上記実施形態は、位置検出型光電子増倍管(PS−PMT)を使用する。しかし、本発明では、試料から発する量子線の種類に応じて他の任意の位置検出型電子増倍管(PS−EMT)を使用することができる。マイクロチャンネルプレートが電子線のみならず、紫外線(UVおよびVUV)、X線、α線、荷電粒子、中性子などに直接感度を示すことはよく知られている。PS−PMTを用いるかPS−EMTを用いるかは、検出対象物からの量子線の種類に応じて適宜選択される。
【0065】
上記実施形態では、位置検出型のアノードとしてレジスティブアノード28が使用されている。このほかに、他の任意の位置検出型アノード、たとえばマルチアノード、CRチェーンアノード、クロスワイヤアノード、または半導体位置検出素子(PSD)を使用してもよい。また、光電子を光学像に変換する蛍光板をアノードとして使用し、その光学像をイメージセンサを用いて撮像することにより光電子の位置を測定してもよい。また、蛍光板とイメージセンサとをファイバープレートを介してファイバーカップリングしてもよい。これらの位置検出は、一次元であっても二次元であってもよい。
【0066】
上記実施形態では、半導体集積回路の動作解析を取り上げている。しかし、本発明に係る時間分解型検出を利用可能なアプリケーションは幅広く、Time Of Flight(TOF)応用をはじめとした様々な計測手法、例えば、二次イオン質量分析(SIMS)、イオン散乱分光(ISS)や、アトムプローブなどになどに本発明を適用することができる。
【0067】
第2および第3実施形態では、同軸ケーブル94を用いて検出タイミングパルスDTを伝送する。しかし、検出タイミングパルスDTの伝送距離が短い場合は、同軸ケーブル94に代えて、同軸ケーブル94の芯線および外部導体に相当する平行な2本の信号線を使用することができる。
【0068】
【発明の効果】
この発明の時間分解測定装置は、アノードと直接対向する最後方のマイクロチャンネルプレートではなく、より前方に配置されたマイクロチャンネルプレートから検出タイミングパルスを読み出す。これにより、検出タイミングパルスに含まれるマイナス成分を低減して、時間分解測定の時間精度を高めることができる。
【図面の簡単な説明】
【図1】第1実施形態に係る時間分解測定装置の構成を示すブロック図である。
【図2】第1実施形態に係る光電子増倍管の構造を示す概略図である。
【図3】比較例の光電子増倍管の構造を示す概略図である。
【図4】(a)は、第2スタックの最後方MCPの電極における電位の経時変化を示し、(b)は、その電極から取り出される検出タイミングパルスを示している。
【図5】複数の検出で得られた検出タイミングパルスを重ね合わせて示す図である。
【図6】(a)は、第1スタックの最後方MCPの電極における電位の経時変化を示し、(b)は、複数の検出で得られた検出タイミングパルスを重ね合わせて示す図である。
【図7】第2実施形態に係る光電子増倍管の構造を示す概略図である。
【図8】第3実施形態に係る光電子増倍管の構造を示す概略図である。
【符号の説明】
10…試料、12…テスタ、14…位置検出型光電子増倍管、15…光子、16…位置演算器、17…時間電圧変換器、18…データ処理装置、22…フォトカソード、23〜27…マイクロチャンネルプレート、28…レジスティブアノード、33、34、35および37…電極、60a〜60c…電位上昇パルス、62a〜62c…電子入力パルス、70…検出タイミングパルス、71…ゼロクロスタイミング、80…パルス読み出し回路としての電圧分割回路、100…時間分解測定装置。

Claims (10)

  1. 試料の励起によって発する量子線の位置情報およびタイミング情報を取得する時間分解測定装置であって、
    前記試料の励起に同期して基準時間パルスを生成する信号発生器と、
    前記量子線を検出し、検出位置に応じた位置信号および検出タイミングに同期した検出タイミングパルスを生成する検出装置と、
    前記位置信号を用いて前記検出位置を算出する位置演算器と、
    前記基準時間パルスと前記検出タイミングパルスとの時間差を計測する時間差測定器と、
    前記位置演算器によって算出された前記検出位置と、前記時間差測定器によって計測された前記時間差とを対応付けて記憶するデータ処理装置と、
    を備え、
    前記検出装置は、位置検出型電子増倍管を有しており、
    前記電子増倍管は、前記量子線を透過させる入射窓、前記量子線の前記入射窓への入射位置に応じた位置に電子を生成し、その位置を維持しながら前記電子を増倍する第1および第2のマイクロチャンネルプレート、ならびにアノードを有しており、
    前記第1マイクロチャンネルプレートは、前記入射窓と離れて対向する入力面と、前記第2マイクロチャンネルプレートと離れて対向する出力面とを有しており、
    前記第2マイクロチャンネルプレートは、前記第1マイクロチャンネルプレートの出力面と離れて対向する入力面と、前記アノードと離れて対向する出力面とを有しており、
    前記検出タイミングパルスは、前記第1マイクロチャンネルプレートによって増倍された電子が前記第1マイクロチャネルプレートから放出されるときの電位変化に応答して発生し、前記時間差測定器へ送られる、
    時間分解測定装置。
  2. 前記第1マイクロチャンネルプレート、および前記第1マイクロチャンネルプレートの入力面に重ね合わされた一枚以上のマイクロチャンネルプレートを有する第1のスタックと、
    前記第2マイクロチャンネルプレート、および前記第2マイクロチャンネルプレートの入力面に重ね合わされ、前記第1マイクロチャンネルプレートと離れて対向する一枚以上のマイクロチャンネルプレートを有する第2のスタックと、
    をさらに備える請求項1に記載の時間分解測定装置。
  3. 前記第1スタックは、前記入射窓と前記第1スタックとの間に別のマイクロチャンネルプレートを挟むことなく前記入射窓と対向している、請求項2に記載の時間分解測定装置。
  4. 前記第1スタックは前記第2スタックよりも高い電子増倍率を有している、請求項2または3に記載の時間分解測定装置。
  5. 前記位置検出型電子増倍管は、前記量子線を光電効果によって光電子に変換するフォトカソードを前記入射窓と前記第1マイクロチャンネルプレートの入力面との間にさらに備える位置検出型光電子増倍管であり、
    前記第1マイクロチャンネルプレートは、前記フォトカソードに対向させて配置され、前記フォトカソードから前記光電子を受け取って二次電子を生成し増倍する、
    請求項1〜4のいずれかに記載の時間分解測定装置。
  6. 量子線を透過させる入射窓と、
    前記量子線の前記入射窓への入射位置に応じた位置に電子を生成し、その位置を維持しながら前記電子を増倍する第1および第2のマイクロチャンネルプレートと
    前記第2マイクロチャンネルプレートと対向するアノードと、
    前記第1マイクロチャンネルプレートによって増倍された電子が前記第1マイクロチャンネルプレートから放出されるときの電位変化に応答してパルス信号を取得するパルス読み出し回路と、
    を備える位置検出型電子増倍管であって、
    前記第1マイクロチャンネルプレートは、前記入射窓と離れて対向する入力面と、前記第2マイクロチャンネルプレートと離れて対向する出力面を有し、
    第2マイクロチャンネルプレートは、前記第1マイクロチャンネルプレートの出力面と離れて対向する入力面と、前記アノードと離れて対向する出力面とを有し、
    前記パルス読み出し回路は、前記第1マイクロチャンネルプレートの出力面に接続されている、
    位置検出型電子増倍管。
  7. 前記第1マイクロチャンネルプレート、および前記第1マイクロチャンネルプレートの入力面に重ね合わされた一枚以上のマイクロチャンネルプレートを有する第1のスタックと、
    前記第2マイクロチャンネルプレート、および前記第2マイクロチャンネルプレートの入力面に重ね合わされ、前記第1マイクロチャンネルプレートと離れて対向する一枚以上のマイクロチャンネルプレートを有する第2のスタックと、
    をさらに備える請求項6に記載の位置検出型電子増倍管。
  8. 前記第1スタックは、前記入射窓と前記第1スタックとの間に別のマイクロチャンネルプレートを挟むことなく前記入射窓と対向している、請求項7に記載の位置検出型電子増倍管。
  9. 前記第1スタックは前記第2スタックよりも高い電子増倍率を有している、請求項7または8に記載の位置検出型電子増倍管。
  10. 前記入射窓と前記第1マイクロチャンネルプレートとの間に配置され、前記量子線を光電効果によって光電子に変換するフォトカソードをさらに備える請求項6〜9のいずれかに記載の位置検出型電子増倍管であって、
    前記第1マイクロチャンネルプレートは、前記フォトカソードに対向させて配置され、前記フォトカソードから前記光電子を受け取って二次電子を生成し増倍する、
    請求項6〜9のいずれかに記載の位置検出型電子増倍管。
JP2003181546A 2003-06-25 2003-06-25 時間分解測定装置および位置検出型電子増倍管 Expired - Fee Related JP4268463B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003181546A JP4268463B2 (ja) 2003-06-25 2003-06-25 時間分解測定装置および位置検出型電子増倍管
KR1020057020478A KR101067933B1 (ko) 2003-06-25 2004-06-24 시간 분해 측정 장치 및 위치 검출형 전자 증배관
CNB2004800176268A CN100476408C (zh) 2003-06-25 2004-06-24 时间分解测定装置及位置检测型电子倍增管
TW093118221A TWI333057B (en) 2003-06-25 2004-06-24 Time resolution device and location detection type electronic multiplier tube
US10/561,917 US7619199B2 (en) 2003-06-25 2004-06-24 Time-resolved measurement apparatus and position-sensitive election multiplier tube
PCT/JP2004/009282 WO2004113890A1 (ja) 2003-06-25 2004-06-24 時間分解測定装置および位置検出型電子増倍管
EP04746751.9A EP1640712B1 (en) 2003-06-25 2004-06-24 Time-resolved measurement device and position-sensitive electron multiplier tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181546A JP4268463B2 (ja) 2003-06-25 2003-06-25 時間分解測定装置および位置検出型電子増倍管

Publications (2)

Publication Number Publication Date
JP2005019635A JP2005019635A (ja) 2005-01-20
JP4268463B2 true JP4268463B2 (ja) 2009-05-27

Family

ID=33535203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181546A Expired - Fee Related JP4268463B2 (ja) 2003-06-25 2003-06-25 時間分解測定装置および位置検出型電子増倍管

Country Status (7)

Country Link
US (1) US7619199B2 (ja)
EP (1) EP1640712B1 (ja)
JP (1) JP4268463B2 (ja)
KR (1) KR101067933B1 (ja)
CN (1) CN100476408C (ja)
TW (1) TWI333057B (ja)
WO (1) WO2004113890A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632754B1 (ko) * 2007-09-24 2016-06-22 노바트랜스 그룹 에스에이 나이트 비전용 이미지 센서 셀
JP5159393B2 (ja) * 2008-03-31 2013-03-06 サイエナジー株式会社 電子増幅器及びこれを使用した放射線検出器
EP2199830B1 (en) 2008-12-19 2014-07-02 Leibniz-Institut für Neurobiologie A position resolved measurement apparatus and a method for acquiring space coordinates of a quantum beam incident thereon
EP2202777A1 (en) 2008-12-19 2010-06-30 Leibniz-Institut für Neurobiologie A time resolved measurement apparatus and a time sensitive detector with improved time measurement
EP2278609B1 (en) * 2009-07-21 2012-12-05 École Polytechnique Fédérale de Lausanne (EPFL) Microchannel plate and its manufacturing method
JP5582493B2 (ja) * 2009-12-17 2014-09-03 独立行政法人理化学研究所 マイクロチャネルプレート組立体及びマイクロチャネルプレート検出器
US9230791B2 (en) * 2011-11-28 2016-01-05 Korea Basic Science Institute Anion generating and electron capture dissociation apparatus using cold electrons
CN103163549A (zh) * 2011-12-19 2013-06-19 中国科学院西安光学精密机械研究所 一种基于微通道板拼接的大面积x射线脉冲探测装置
US9425030B2 (en) * 2013-06-06 2016-08-23 Burle Technologies, Inc. Electrostatic suppression of ion feedback in a microchannel plate photomultiplier
JP6169451B2 (ja) * 2013-09-13 2017-07-26 株式会社日立ハイテクノロジーズ 荷電粒子線装置および荷電粒子線の計測方法
US9524855B2 (en) * 2014-12-11 2016-12-20 Thermo Finnigan Llc Cascaded-signal-intensifier-based ion imaging detector for mass spectrometer
JP6416544B2 (ja) * 2014-08-27 2018-10-31 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置
US9966224B2 (en) * 2014-10-22 2018-05-08 Sciencetomorrow Llc Quantitative secondary electron detection
JP6289339B2 (ja) * 2014-10-28 2018-03-07 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び情報処理装置
US9568612B1 (en) * 2016-02-25 2017-02-14 King Saud University 3D image generation with position-sensing gamma probe
RU2625601C1 (ru) * 2016-10-13 2017-07-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля импульсного электронного пучка
CN106970412A (zh) * 2017-04-07 2017-07-21 西北核技术研究所 一种基于聚乙烯的mcp中子探测器
CN110416056B (zh) * 2019-07-11 2021-10-22 西北核技术研究院 一种基于微通道板的高增益混合型光电倍增管
CN110608802B (zh) * 2019-09-23 2021-07-02 北方夜视技术股份有限公司 一种微通道板日盲紫外波段光谱灵敏度测量装置及方法
US20230197427A1 (en) * 2020-04-17 2023-06-22 Shimadzu Corporation Ion analyzer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266942A (ja) 1985-05-21 1986-11-26 Hamamatsu Photonics Kk 2次元微弱発光測定装置
US5103083A (en) * 1990-02-15 1992-04-07 Charles Evans & Associates Position sensitive detector and method using successive interdigitated electrodes with different patterns
JPH07211280A (ja) * 1994-01-19 1995-08-11 Hamamatsu Photonics Kk 位置検出型光電子増倍管
JPH08292090A (ja) * 1995-04-21 1996-11-05 Ishikawajima Harima Heavy Ind Co Ltd 超高速ゲート作動の画像増強管
US5940545A (en) 1996-07-18 1999-08-17 International Business Machines Corporation Noninvasive optical method for measuring internal switching and other dynamic parameters of CMOS circuits
JPH11132953A (ja) * 1997-10-29 1999-05-21 Bunshi Bio Photonics Kenkyusho:Kk 蛍光寿命測定方法および装置
JP2000304697A (ja) * 1999-04-19 2000-11-02 Bunshi Biophotonics Kenkyusho:Kk 蛍光寿命測定方法および装置
KR100403221B1 (ko) * 2001-07-23 2003-10-23 한국수력원자력 주식회사 방사성 전자 방출 마이크로채널 판
JP4268461B2 (ja) * 2003-06-24 2009-05-27 浜松ホトニクス株式会社 時間分解測定装置
US7129464B2 (en) * 2004-10-19 2006-10-31 Buchin Michael P Low-photon flux image-intensified electronic camera

Also Published As

Publication number Publication date
CN100476408C (zh) 2009-04-08
WO2004113890A1 (ja) 2004-12-29
TWI333057B (en) 2010-11-11
EP1640712A1 (en) 2006-03-29
EP1640712B1 (en) 2013-06-19
US7619199B2 (en) 2009-11-17
EP1640712A4 (en) 2012-05-30
JP2005019635A (ja) 2005-01-20
CN1809742A (zh) 2006-07-26
KR101067933B1 (ko) 2011-09-26
KR20060024367A (ko) 2006-03-16
US20070263223A1 (en) 2007-11-15
TW200506344A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP4268463B2 (ja) 時間分解測定装置および位置検出型電子増倍管
US10930480B2 (en) Ion detectors and methods of using them
US10872751B2 (en) Detectors and methods of using them
US8533137B2 (en) Position resolved measurement apparatus and a method for acquiring space coordinates of a quantum beam incident thereon
JP5684273B2 (ja) 荷電粒子を検出する検出装置、荷電粒子を検出する方法および質量分析計
EP2202777A1 (en) A time resolved measurement apparatus and a time sensitive detector with improved time measurement
US7425694B2 (en) Time-resolved measurement apparatus
Yang et al. Single electron counting using a dual MCP assembly
Aviv et al. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions
TW201140641A (en) Particle detection system
Anton et al. A hybrid photodetector using the Timepix semiconductor assembly for photoelectron detection
Anashin et al. Development of vacuum photoelectron devices at Budker Institute
Rodionov et al. Hybrid gaseous photomultipliers
Oba et al. Microchannel plate as a detector of minimum ionizing particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Ref document number: 4268463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees