JP4267180B2 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
JP4267180B2
JP4267180B2 JP2000175565A JP2000175565A JP4267180B2 JP 4267180 B2 JP4267180 B2 JP 4267180B2 JP 2000175565 A JP2000175565 A JP 2000175565A JP 2000175565 A JP2000175565 A JP 2000175565A JP 4267180 B2 JP4267180 B2 JP 4267180B2
Authority
JP
Japan
Prior art keywords
ray
rotation
ray generation
rays
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000175565A
Other languages
English (en)
Other versions
JP2001346791A (ja
Inventor
広則 植木
健一 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2000175565A priority Critical patent/JP4267180B2/ja
Publication of JP2001346791A publication Critical patent/JP2001346791A/ja
Application granted granted Critical
Publication of JP4267180B2 publication Critical patent/JP4267180B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線CT(Computed Tomography) 装置に関し、特に人体等の被検体の3次元CT像を高精度に計測するのに好適な技術に関するものである。
【0002】
【従来の技術】
従来、被検体の3次元CT像を計測する方式として、螺旋スキャン型CT撮影方式がある。この螺旋スキャン型CT撮影方式では、通常撮影系は、X線源と、該X線源からのX線を扇状ビーム(ファンビーム)にコリメートするコリメータと、前記ファンビームを検出する1次元配列X線検出器とから構成される。
【0003】
前記撮影系を被検体の周囲で回転させると同時に、前記被検体と前記撮影系との相対的な位置関係を前記撮影系の回転軸方向に変化させることによって、前記被検体に対して螺旋状の軌跡を持つスキャンを行なうことが可能になり、前記被検体の3次元CT像を得ることができる。
【0004】
また、前記1次元配列X線検出器には、通常イオンチェンバや、蛍光体とフォトダイオードとを組み合わせた固体検出器等が用いられる。
【0005】
前記3次元計測における撮影時間の短縮のためには、前記螺旋スキャン型CT撮影方式において、前記1次元配列検出器を複数段積み重ねて、複数スライスを同時にスキャンするマルチスライスCT撮影方式が有利である。
【0006】
マルチスライスCT撮影方式を採用した装置例として、"マルチスライスCT;日本放射線技術学会雑誌; Vol.55, No.2, (1999); pp.155-164" の例がある(以下、文献1)。
【0007】
本例では、スライス方向に厚さ0.5mmおよび1mmの1次元配列検出器をそれぞれ4段および30段重ねた検出器を使用している。計測速度は0.5秒/回転である。また、マルチスライスCT再構成方法の例としては、特開平04−343836号公報に記載のものがある(以下、文献2)。
【0008】
本例では、再構成点に最も近い2つの投影データを補間して近似的にスライス面に平行な投影データを求め、再構成像を得ている。マルチスライスCT再構成方法の他の例として、特願平10−015793号出願に記載のものがある(以下、文献3)。
【0009】
本例では、再構成点に対して180度あるいは360度位相の異なる投影データを高次補間して近似的にスライス面に平行な投影データを求め、再構成像を得ている。
【0010】
【発明が解決しようとする課題】
マルチスライスCTにおいて計測速度を向上するためには、X線検出器のスライス数を増加し、一度に検出できるデータ量を増やせばよい。例えば、X線検出器の回転軸方向の1スライス幅をwo ,X線検出器の全スライス数をNt とすると、重複なしに計測するには螺旋間隔Lを次式(数1)のように設定してスキャンすればよい。
L=Nt・wo ・・・・(数1)
このとき、1回転当りのZ軸方向の移動量vはX線源の軌跡が描く螺旋の間隔と等しく、次式(数2)で表わされる。
v=Nt・wo [/回転] ・・・・(数2)
従って、Nt を増加するほど移動量も大きくしなければならない。
【0011】
しかし、X線検出器のスライス数Nt が増加すると、X線検出器のX線発生点に対する見込み角度が回転軸方向に増大する問題が生じる。
【0012】
また、X線源軌跡の螺旋間隔が広がるため、逆投影データの回転軸方向の見込み角度が増大する問題が生じる。CT再構成において逆投影に用いるX線透過データは、理想的には、同一スライス面上の透過データでなくてはならない。
【0013】
しかし、スライス数Nt を増加すると、上記前者の問題により、周辺スライスのX線入射角度が増大して、他スライス面のデータが混入する。
【0014】
また、上記後者の問題により、スライス面に対するX線の入射角度が増大し、同様に他スライス面からのデータが混入する。このような入射角度の増大は、前掲の文献2および文献3に記載の補間方法等における近似精度を劣化させ、再構成画像の画質を低下させる問題があった。
【0015】
従って、本発明の目的は、X線検出器のスライス数を増加して計測速度を向上させた場合においても、上記したX線発生点に対するX線検出器の見込み角度を小さく保ち、高画質の3次元CT像の計測を行なうことを可能とする技術を提供することにある。
【0016】
本発明の他の目的は、X線検出器のスライス数を増加して計測速度を向上させた場合においても、上記の螺旋間隔を小さく保ち、高画質の3次元CT像の計測を行なうことを可能とする技術を提供することにある。
【0017】
本発明の更に他の目的は、高濃度分解能かつ高空間分解能を有する3次元CT像の計測を高速に行なうことを可能とする技術を提供することにある。
【0018】
本発明の更に他の目的は、肺癌等の診断能を向上させることが可能なX線CT装置を提供することにある。
【0019】
【課題を解決するための手段】
上記の目的を達成するため、本発明によれば、
(1)放射状にX線を発生するX線発生手段と、被検体内の複数のスライス面を透過した透過X線を同時に検出するX線検出手段と、前記X線発生手段及び前記X線検出手段を搭載する回転板と、前記回転板を前記被検体内を通る回転軸を中心として回転させる回転駆動手段と、前記被検体と前記回転板の回転面との相対位置を前記回転軸の方向で変化させる相対位置変化手段と、前記回転板の回転と前記相対位置の変化とを同期させる同期手段とを有し、前記X線発生手段は前記回転軸に平行な方向に略等しい間隔(間隔d)で配列された複数個(n個)のX線発生点を有してなり、mをnと互いに素の関係にある自然数又は1とし、d/m=Lとしたとき、前記同期手段は、前記相対位置の変化が前記回転板の1回転につき略一定値n・Lとなるように、前記回転駆動手段による前記回転板の回転と前記相対位置変化手段による前記相対位置の変化とを同期させるものであることを特徴とするX線CT装置が提供される。
【0020】
このように、上記X線発生手段を上記回転板の回転軸(Z軸)に平行な方向に配列された複数個(n個)のX線発生点を有する構成として、上記回転板の回転と上記回転板の回転面と上記被検体との相対位置変化とを同期させて螺旋スキャンを行なうことにより、再構成CT画像の画質を劣化させることなく、CT画像の計測速度を向上させることができる。
【0021】
また、本発明によれば、
(2)放射状にX線を発生するX線発生手段と、被検体内の複数のスライス面を透過した透過X線を同時に検出するX線検出手段と、前記X線発生手段及び前記X線検出手段を搭載する回転板と、前記回転板を前記被検体内を通る回転軸を中心として回転させる回転駆動手段と、前記被検体と前記回転板の回転面との相対位置を前記回転軸の方向で変化させる相対位置変化手段と、前記回転板の回転と前記相対位置の変化とを同期させる同期手段とを有し、前記X線発生手段は前記回転軸に平行な方向に略等しい間隔(間隔d)で、かつ前記回転軸を略中心として略等角度間隔で配列された複数個(n個)のX線発生点を有してなり、mをnと互いに素の関係にある自然数又はnとし、d/m=Lとしたとき、前記同期手段は、前記相対位置の変化が前記回転板の1回転につき略一定値n・Lとなるように、前記回転駆動手段による前記回転板の回転と前記相対位置変化手段による前記相対位置の変化とを同期させるものであることを特徴とするX線CT装置が提供される。
【0022】
このように、上記X線発生手段を上記回転板の回転軸(Z軸)に平行な方向に略等間隔(間隔d)で、かつ前記回転軸を略中心として略等角度間隔で配列された複数個(n個)のX線発生点を有する構成として、上記回転板の回転と上記回転板の回転面と上記被検体との相対位置変化とを同期させて螺旋スキャンを行なうことにより、再構成CT画像の画質を劣化させることなく、CT画像の計測速度を向上させることができる。
【0023】
(3)上記(2)に記載のX線CT装置において、前記複数のX線発生点の前記回転軸(Z軸)に平行な方向での配列間隔dを、特にd=0に設定することができる。また、前記X線発生点の軸跡が描く回転軸方向の螺旋間隔がLに設定される。
【0024】
このようにd=0に設定することにより、上記被検体の任意の移動量u[/回転]に対して、上記螺旋スキャンの螺旋間隔Lを常にL=u/nに保つことができ、従って、uの値を任意に設定することによって、Z軸方向の測定分解能を任意にコントロールすることができる。
【0025】
(4)上記(2)または(3)に記載のX線CT装置において、前記X線発生手段は、前記複数のX線発生点を前記回転軸を略中心として略等角度間隔で配列したものをX線発生ユニットとして、該X線発生ユニットを前記回転軸(Z軸)方向に複数ユニット配置してなるものとすることができる。かかる構成を採るとすることにより、CT画像計測をより一層高速化,高画質化できる。
【0026】
(5)上記(1)〜(4)のいずれかに記載のX線CT装置において、前記複数のX線発生点は、前記回転軸から互いに略等距離の位置にそれぞれ配置されてなるのが望ましい。これにより、画像処理が簡素化され、画像処理の高速化,高精度化を図ることができる。
【0027】
(6)上記(1)〜(5)のいずれかに記載のX線CT装置において、前記のX線検出手段は、前記被検体からの透過X線を単数または複数の上記スライス面上で検出する複数の部分スライス検出手段から構成されており、前記複数個のX線発生点のそれぞれに相対応して前記複数の部分スライス検出手段が配置されてなるものとすることができる。
【0028】
(7)上記(6)に記載のX線CT装置において、前記複数個のX線発生点のそれぞれから放射されるX線が前記X線発生点のそれぞれに相対応して配置された一つの部分スライス検出手段のみに照射されるように、前記X線の照射範囲をコリメートするX線コリメート手段をさらに具備させることができる。
【0029】
(8)上記(1)〜(7)のいずれかに記載のX線CT装置において、前記被検体に対する前記回転軸方向のCT画像計測範囲を指定するためのCT画像計測範囲指定手段をさらに具備させることができる。
【0030】
(9)上記(8)に記載のX線CT装置において、前記X線発生手段が前記X線発生点が前記CT画像計測範囲指定手段によって指定された前記CT画像計測範囲内に存在する時にのみ前記X線発生点からX線を発生するように前記X線発生手段からのX線発生を制御するX線制御手段をさらに具備させることができる。
【0031】
(10)上記(7)に記載のX線CT装置において、前記X線コリメート手段は、前記部分スライス検出手段に対する前記回転軸方向のX線照射範囲の最小値を前記のLに制限する機能を具備したものとすることができる。
【0032】
(11)上記(6),(7)又は(10)に記載のX線CT装置において、前記複数のX線発生点は、前記部分スライス検出手段の前記回転軸方向の検出幅をwとした場合、前記複数のX線発生点間の前記回転軸方向の間隔dが略m・wとなるように配置されることができる。
【0033】
(12)上記(6),(7)又は(10)に記載のX線CT装置において、前記複数のX線発生点は、前記部分スライス検出手段の前記回転軸方向の検出幅をwとした場合、前記複数のX線発生点間の前記回転軸方向の間隔dが略wとなるように配置されることができる。
【0034】
(13)上記(1)〜(12)のいずれかに記載のX線CT装置において、前記複数のX線発生点間の前記回転軸方向の相対的な位置関係を変化させるX線発生点位置変化手段をさらに具備させることができる。
【0035】
(14)上記(1)〜(13)のいずれかに記載のX線CT装置において、前記複数のX線発生点のうちから任意の複数のX線発生点を選択して、この選択した複数のX線発生点から同時にX線を発生させるX線発生点制御手段をさらに具備させることができる。
【0036】
(15)上記(14)に記載のX線CT装置において、前記X線発生点制御手段は、前記の選択するX線発生点を時間的に切り替える機能を備えたものとすることができる。
【0037】
(16)上記(15)に記載のX線CT装置において、前記X線発生点制御手段は、同一の電圧発生手段から前記複数のX線発生点に供給される電圧をスイッチングすることによって前記の選択するX線発生点を時間的に切り替える機能を備えたものとすることができる。
【0038】
本発明の上記以外の目的,構成,並びに、それによって得られる作用・効果については、以下の実施例を挙げての詳細な説明の中で順次明らかにされよう。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態につき、実施例を挙げ、図面を参照して詳細に説明する。
【0040】
本願発明に係るX線CT装置の代表的な構成の概要を簡単に説明すれば、以下のとおりである。
【0041】
X線CT装置において、X線発生点を回転軸方向の複数点に配置する。また、前記複数点のX線発生点のそれぞれに対して、1次元配列検出器を回転軸方向に複数段積み重ねたマルチスライスX線検出器(以下、X線検出ユニット)を対向配置する。これにより、個々のX線発生点に対するX線検出器の見込み角度を小さく保ったままX線検出器のトータルの段数を増加することができるので、画像再構成における補間の近似精度を向上させて、再構成画像の画質を改善することができる。
【0042】
また、前記X線CT装置において、X線発生点を回転軸方向に等間隔に、かつ回転面内方向での同一位置に配置して、回転軸方向の移動量を次式(数3)で示される値に保ちながら螺旋スキャンを行なう。
v=n・d/m [/回転] ・・・・(数3)
ただし、X線発生点の数をn,X線発生点の回転軸方向の間隔をd,nと互いに素の関係にある自然数もしくは1をmとする。これにより、X線源の軌跡が描く螺旋の間隔Lを常に次式(数4)で示される等間隔に保つことができる。
L=d/m ・・・・(数4)
さらに、X線発生点の間隔dを設定値に応じて可変とし、mおよびdを任意に設定することにより螺旋間隔を自由に変化できる。例えば、d=m・wとすると、回転軸方向の移動量は次式(数5)となる。
v=n・d/m=n・w=n・w0・Nt /n=Nt・w0 [/回転] ・・・・(数5)
また、数4からこのときの螺旋間隔は次式(数6)となる。
L=m・w/m=w=w0・Nt /n ・・・・(数6)
数2と数5、および数1と数6を比較すると、1回転における回転軸方向の移動量が同一であるにも拘らず、螺旋の間隔が1/nに減少されることがわかる。従って、X線検出器のトータルの段数を増加して計測速度を上げても螺旋間隔を小さく保つできることができるので、再構成における補間の近似精度を向上し、再構成画像の画質を改善することができる。
【0043】
また、前記X線CT装置において、X線発生点を回転軸方向の等間隔位置に、かつ回転面内方向に等角度間隔に配置し、mをnと互いに素の関係にある自然数もしくはnとしてもよい。このとき回転軸方向の移動量vおよび螺旋間隔Lは、それぞれ数3および数4と同一となるため、上記方法と同一の効果を得ることができる。
【0044】
さらに、前記X線CT装置において、X線発生点を回転軸方向の同位置にかつ回転面方向に等角度に配置してもよい。このとき、回転軸方向の任意の移動量uに対して螺旋間隔Lを常に次式(数7)で示される等間隔に保つことができる。
L=u・n ・・・・(数7)
従って、例えばu=n・wと設定すると、回転軸方向の移動量及び螺旋間隔は、それぞれ数5および数6と同一となるため、上記方法と同一の効果を得ることができる。
【0045】
【実施例】
以下、本発明の実施例を挙げ、図面を参照して詳細に説明する。
【0046】
〈実施例1〉
図1は、本発明の一実施例になるX線CT装置の正面模式図である。本実施例1によるX線CT装置は、X線管1,X線フィルタ2,コリメータ3,寝台天板4,X線グリッド5,X線検出器6,回転板7,ガントリー8,計測条件設定手段100,撮影制御手段101,回転板駆動手段102,寝台移動手段103,画像収集手段104,画像処理手段105,画像表示手段106,コリメータ制御手段107等を含んで構成される。なお、ガントリー8の中央部には被検体9を挿入配置するための開口部10が設けられている。上記の各装置部分及び機構部分には周知構成のものを用いている。
【0047】
以下では、X線管1,X線フィルタ2,コリメータ3,X線グリッド5およびX線検出器6からなるX線発生−検出系を撮影系と呼ぶ。撮影系は、回転板7に固定され、図示しない既知の駆動モータによって回転される。以下では、回転板7の回転軸をZ軸とする。また、回転中心Oを原点とする水平および垂直方向の座標軸をそれぞれX軸,Y軸とする。さらに、X線発生点SのX軸に対する回転角度をθとする。
【0048】
図1において、X線発生点Sと回転中心Oとの距離は690mm,回転中心OとX線検出器6のX線入力面との距離は380mm,X線検出器6の回転中心Oを中心とする有効視野は直径480mm,開口部10の開口直径は700mmである。なお、回転板7の1回転のスキャンに要する時間Δtの代表例は0.6秒である。X線検出器6はセラミックシンチレータ素子から構成される固体検出器であり、XY平面方向の素子数は896チャンネルで、Z軸方向の素子数は32チャンネルである。各素子のZ軸方向のサイズは1mmであり、合計32mm幅のスライス厚を持つ。また、各素子はX線発生点Sから略等距離の円弧上に配置される。回転板7の1回転における撮影枚数の代表例は900枚であり、回転板7の0.4度の回転毎に1回の撮影が行なわれる。
【0049】
次に、本実施例1になるX線CT装置の動作を説明する。検者は計測条件設定手段100を通して被検体9のZ軸方向の計測領域,撮影モード等を設定する。なお、撮影モードの説明については後述する。計測条件設定手段100は、上記設定値の情報をコリメータ制御手段107及び撮影制御手段101に入力する。コリメータ制御手段107は、前記設定値に基づきコリメータ3を制御し、X線の照射領域を変化する。撮影制御手段101は、前記設定値に基づきX線管1のX線発生のタイミングとX線検出器6の撮影タイミングを規定する。また、回転板駆動手段102に与える回転シーケンス及び寝台移動手段103に与える移動シーケンスを規定する。さらに、画像収集手段104に与える撮影データの読み出し・保存のシーケンスをも規定する。回転板駆動手段102は、撮影制御手段101より与えられた回転シーケンスに基づき、図示しない既知の駆動モータを用いて回転板7を回転する。寝台移動手段103は、撮影制御手段101に与えられた寝台移動シーケンスに基づき、図示しない既知の駆動モータを用いて寝台天板4および寝台天板4上に配置された被検体9をZ軸方向に移動する。なお、上記X線発生シーケンス,回転シーケンス及び移動シーケンスの詳細については後述する。X線管1から発生されたX線は、X線フィルタ2によって人体に有害な低エネルギー成分が除去され、コリメータ3によって照射領域が制限された後に被検体9に照射される。なお、コリメータ3によるX線照射領域の制限方法については後述する。被検体9を透過したX線は、X線グリッド5により散乱線を除去された後にX線検出器6によって検出され、電気信号に変換される。なお、X線検出器6の詳細については後述する。前記検出電気信号は、図示しない既知のスリップリング機構を介して、画像収集手段104に送られる。画像収集手段104は、図示しない既知のA/D変換器によって前記検出電気信号をデジタルデータに変換して、保存する。画像処理手段105は、前記保存されたデジタルデータに基づき、前掲の文献2及び文献3に示されるような方法を用いて、CT画像の再構成を行ない、結果を画像表示手段106に表示する。
【0050】
図2は、本実施例1になるX線CT装置におけるX線管1及びX線検出器6の構成および配置を説明するための図である。X線管1は、ターゲット200a, 200b、陽極軸201、収束電極202a,202b、フィラメント203a,203b、陰極スリーブ205、陽極回転子206等から構成され、これら全体がガラスバルブ207内に格納されている。ガラスバルブ207内は常に10-7mmHg程度の高真空に保たれる。ターゲット200a,200bは、それぞれ陽極軸201に固定される。陽極軸201およびターゲット200a,200bは、陽極回転子206中の図示しない既知の界磁コイルによる回転磁界によって高速回転される。回転速度の代表例は9000rpmである。陰極は、収束電極202a,202bおよびフィラメント203a,203b等から構成される。フィラメント203a,203bとターゲット200a,200bの間には図示しない既知の外部電源によって40kV〜130kV程度の直流加速電圧が与えられる。フィラメント203a,203bから放出された熱電子はそれぞれ収束電極202a,202bによってターゲット200a,200b上のX線発生点Sa,Sbに収束されて衝突し、X線を発生する。X線発生点SaおよびSbのZ軸方向の距離dは16mmである。
【0051】
X線検出器6はX線検出ユニット6aおよび6bから構成される。各検出ユニットはZ軸方向に16チャンネルの素子から構成される。従って、X線検出器6全体では合計32チャンネルの素子を有し、32スライス分のX線透過データを一度に収集することができる。X線グリッド5a,5bはそれぞれX線検出ユニット6a,6bの前面に配置され、被検体あるいはX線フィルタ2において散乱された散乱X線の一部を除去する。コリメータ3はX線管1から発生されたX線がX線検出ユニット6a,6bの一部または全部に照射されるようにX線照射幅w’を制限する。ただし、w’は各X線検出ユニットの中央2チャンネルを中心にして、左右対称に1チャンネル単位(すなわち、1mm単位)で制御される。なお、コリメータ3によるX線照射領域の設定方法については後述する。
【0052】
図3は、本実施例1によるX線CT装置での螺旋スキャンにおけるX線発生点Sa,Sbの回転角度θとZ軸方向の位置との関係を説明するための図である。なお、図3中で、Z軸は寝台天板4に固定されているものとする。従って、X線発生点の軌跡は寝台天板4に対する相対的な位置を表わす。また、図3中、塗りつぶし円,白抜き円,及びそれらを結ぶ実線は、それぞれX線発生点Saの移動開始位置(始点),移動終了位置(終点),及び移動軌跡を示す。同様に塗りつぶし正方形,白抜き正方形,およびそれらを結ぶ点線は、それぞれX線発生点Sbの移動開始位置(始点),移動終了位置(終点),及び移動軌跡を示す。
【0053】
本実施例1では、X線発生点が回転軸(Z軸)方向に等間隔に、かつ回転面方向の同一位置に配置されている。この場合、数3及び数4より、寝台天板4の移動量を常にv=n・d/m [/回転] とすれば螺旋間隔Lを常にL=d/mに保つことができる。ただし、X線発生点の数をn,X線発生点の回転軸方向の間隔をd,nと互いに素の関係にある自然数もしくは1をmとする。本実施例では、n=2,d=16mmである。一例として、m=1及びm=3におけるX線発生点の軌跡をそれぞれ図3の(A)および(B)に示す。
【0054】
図3の(A)の例では、寝台天板4の移動量vはv=2d[/回転]であり、螺旋間隔LはL=dである。Z軸方向の計測領域Zo は、計測条件設定手段100を通して検者によって設定される。図3の(A)には、一例として、計測領域Zo が3d≦Z≦6dなる範囲に設定された場合が示されている。撮影制御手段101は、X線発生点Sa,Sbのそれぞれが前記計測領域Zo の内部に存在するときにのみX線の発生および画像収集を行なう。また、計測領域Zo の前後の区間はそれぞれ回転板7の加速および減速区間を表わす。この加速および減速区間内にX線発生点が存在する場合は、X線が発生されることはない。なお図3の(A)の例では、加速,減速区間をそれぞれ0≦Z≦3d,6d≦Z≦9dの範囲に設定してあるが、回転板7の回転速度の安定度に応じてこれらを種々変更できることは云うまでもない。
【0055】
図3の(B)の例では、寝台天板4の移動量vはv=2d/3[/回転]であり、螺旋間隔LはL=d/3である。従って、図3の(A)の場合に比べて螺旋間隔Lが小さく、Z軸方向の測定分解能を向上することができる。また、図3の(B)には、一例として、加速区間を0≦Z≦2d,計測領域Zo を2d≦Z≦7d,減速区間を7d≦Z≦9dの範囲に設定した場合を示してある。
【0056】
図4は、本実施例1によるX線CT装置における撮影モードの一例を示した図である。撮影モードは、シングルスキャンモードとボリュームスキャンモードとに大別される。シングルスキャンモードでは、寝台天板4の位置は撮影系に対して固定されている(モード1)。また、ボリュームスキャンモードでは、寝台天板4は撮影系に対してZ軸方向に移動量v[/回転]で移動し、螺旋スキャンが行なわれる。既に説明したように、移動量vはmの値によって決定され、本例では、mの値1,3,5,7,・・・を、それぞれモード2,3,4,5・・・に対応させている。図4中には、各モードにおける移動量v,螺旋間隔L,X線照射幅w’および計測時間が示される。ただし、X線照射幅w’は、X線検出ユニット6a,6bのそれぞれに対して照射されるX線のZ軸方向の照射範囲であり、コリメータ3によって制御される。また、計測時間は、計測領域Zo を10cmとした場合の計測時間である。なお、図4中に示された各数値の導出方法については後述する。ボリュームスキャンモードにおいては、一般にmの値が大きくなる程、Z軸方向の測定分解能が向上するが、計測時間は長くなる。検者は測定対象に応じて測定分解能および計測時間を考慮して最適な撮影モードを選択することができる。
【0057】
図5は、本実施例1になるX線CT装置における計測の開始から終了までの処理の流れを説明するための流れ図である。検者はまず計測条件設定手段100を通して計測領域Zo 及び撮影モード等の計測条件を設定する(ステップ500)。次に、コリメータ制御手段107は上記計測条件に基づいてコリメータ3のX線照射幅w’を制御する(ステップ501)。また、撮影制御手段101は上記計測条件に基づいて寝台天板4の初期位置を決定し、寝台移動手段103を通して寝台位置の初期設定を行なう(ステップ502)。寝台が所定の位置に配置されると同時に撮影スタンバイ状態になる。この状態で、検者が計測開始ボタン109をONにすると計測が開始される(ステップ503)。計測が開始されると同時に、撮影制御手段101は寝台移動手段103および回転板駆動手段102を通して寝台天板4の移動及び回転板7の回転を開始する(ステップ504)。次に、撮影制御手段101はX線発生点Sa,Sbのそれぞれが計測領域の内部に存在するかどうかを判断し(ステップ505)、内部に存在する場合には各X線発生点からX線を発生して、撮影を行なう(ステップ506)。撮影は、撮影系の0.4度の回転毎にパルスX線を発生して行なう。このパルスX線の発生タイミングの詳細については後述する。撮影制御手段101は、X線発生点Sa,Sbが計測領域Zo から外れた時点でそれぞれのX線発生を停止する(ステップ507)。また、全発生点からのX線発生が停止したかどうかを判断し(ステップ508)、停止していないX線発生点が存在する場合には、再びステップ505に戻る。一方、全発生点からのX線発生が停止した時点で、撮影制御手段101は、寝台移動手段103および回転板駆動手段102を通して寝台天板4の移動および回転板7の回転を停止し(ステップ509)、全計測を終了する(ステップ510)。
【0058】
図12は本実施例1に係るX線CT装置において各X線発生点から発生されるパルスX線の発生タイミングを説明するための図である。図12では、撮影系の1回転中における撮影枚数を900枚とした場合の例が示してある。このとき、撮影は撮影系の0.4度の回転毎に行なわれる。また、撮影系の回転周期Δtは0.6[秒/回転]であり、各々のX線発生点Sa,Sbから発生されるパルスX線の周期は2/3msecとなる。パルスX線の発生はX線発生点Sa,Sbから同時に行なってもよいし、時間的に交互に行なってもよい。前者および後者の撮影タイミングの一例を、それぞれ図12の(A)および図12の(B)に示す。図12の(A)の例では、X線発生点SaおよびSbからパルス長0.6msecのパルスX線が2/3msecの周期で同時に発生される。一方、図12の(B)の例では、X線発生点SaおよびSbからパルス長0.3msecのパルスX線が1/3msecの周期で交互に発生される。これらのパルスX線の発生は、図示しない既知の外部電源からX線管1に与えられるパルス電圧の印加タイミングを制御することにより実現される。なお、図12の(B)の例では、図12の(A)の例に対しパルス長が半分であるため、時間平均的に同一強度のX線を発生させるためには管電流を2倍にする必要がある。また、上記の外部電源はX線発生点Sa,Sbの両方に対して同一のものを使用すればよいが、それぞれ個別の外部電源を使用してもよい。
【0059】
〈実施例2〉
図6は本発明の他の一実施例になるX線CT装置の正面模式図である。本実施例によるX線CT装置は、X線管1a,1b,1c、X線フィルタ2a,2b,2c、コリメータ3a,3b,3c、寝台天板4、X線グリッド5a,5b, 5c、X線検出器6a,6b,6c、回転板7、ガントリー8、X線管移動装置60a,60b,60c、計測条件設定手段100、撮影制御手段101、回転板駆動手段102、寝台移動手段103、画像収集手段104、画像処理手段 105、画像表示手段106、コリメータ制御手段107、撮影系位置制御手段108等により構成される。なお、ガントリー8の中央部には、被検体9を挿入配置するための開口部10が設けられている。上記の各装置部分および機構部分には、周知構成のものが用いられる。
【0060】
以下では、X線管1a〜c,X線フィルタ2a〜c,コリメータ3a〜c,X線グリッド5a〜c,およびX線検出器6a〜cからなるX線発生−検出系をそれぞれ撮影系a〜cと呼ぶ。撮影系a〜cは、回転板7上で回転軸を中心とする等角度方向に配置される。回転板7は図示しない既知の駆動モータによって回転される。以下では、回転板7の回転軸をZ軸とする。また、回転中心Oを原点とする水平,垂直方向の座標軸をそれぞれX軸,Y軸とする。さらに、X線発生点Sa〜cのX軸に対する回転角度をθとする。
【0061】
図6において、X線発生点Sa〜cと回転中心Oとの距離は690mm、回転中心OとX線検出器6のX線入力面との距離は380mm、X線検出器6の回転中心Oを中心とする有効視野は直径480mm、開口部10の開口直径は700mmである。回転板7の1回転のスキャンに要する時間Δtの代表例は0.6秒である。X線検出器6a〜cはセラミックシンチレータ素子から構成される固体検出器であり、XY平面方向の素子数は896チャンネル、Z軸方向の素子数は16チャンネルである。前記各素子のZ軸方向のサイズは1mmであり、各X線検出器6a〜cは、それぞれ合計16mm幅のスライス厚を持つ。また、各素子は、それぞれX線発生点Sa〜cから略等距離の円弧上に配置される。回転板7の1回転における撮影枚数の代表例は900枚であり、従って回転板7の0.4度の回転毎に1回の撮影が行なわれる。
【0062】
次に、本実施例に係るX線CT装置の動作を説明する。検者は、計測条件設定手段100を通して被検体9のZ軸方向の計測領域,撮影モード等を設定する。なお、撮影モードの説明については後述する。計測条件設定手段100は、上記設定値の情報をコリメータ制御手段107,撮影系位置制御手段108,および撮影制御手段101に入力する。コリメータ制御手段107は、前記設定値に基づきコリメータ3a〜cを制御し、X線の照射領域を変化する。撮影系位置制御手段108は、前記設定値に基づいて撮影系a〜cのZ軸方向の相対位置を制御する。撮影制御手段101は、前記設定値に基づきX線管1a〜cのX線発生のタイミングと、X線検出器6a〜cの撮影タイミングを規定する。また、回転板駆動手段102に与える回転シーケンス、寝台移動手段103に与える移動シーケンスを規定する。さらに画像収集手段104に与える撮影データの読み出し・保存のシーケンスをも規定する。回転板駆動手段102は、撮影制御手段101より与えられた回転シーケンスに基づき、図示しない既知の駆動モータを用いて回転板7を回転させる。寝台移動手段103は、撮影制御手段101に与えられた寝台移動シーケンスに基づき、図示しない既知の駆動モータを用いて寝台天板4および寝台天板4上に配置された被検体9をZ軸方向に移動する。なお、上記のX線発生シーケンス,回転シーケンス,移動シーケンスの詳細については後述する。X線管1a〜cから発生されたX線は、X線フィルタ2a〜cにより人体に有害な低エネルギー成分を除去され、コリメータ3a〜cによって照射領域を制限された後に、被検体9に照射される。なお、コリメータ3a〜cによるX線照射領域の制限方法については後述する。被検体9を透過したX線は、X線グリッド5a〜cによって散乱線を除去された後に、X線検出器6a〜cにより検出され、電気信号に変換される。なお、X線検出器6a〜cの構成の詳細については後述する。前記の検出電気信号は、図示しない既知のスリップリング機構を介して画像収集手段104に送られる。画像収集手段104は、図示しない既知のA/D変換器によって前記検出電気信号をデジタルデータに変換し、保存する。画像処理手段105は、保存されたデジタルデータに基づき、前掲の文献2及び文献3に示されるような方法を用いてCT画像再構成を行ない、結果を画像表示手段106に表示する。
【0063】
図7は、本実施例2に係るX線CT装置において、X線管1a〜cおよびX線検出器6a〜cの構成および配置を説明するための図である。X線管1a〜cは既知の単焦点X線管であり、それぞれX線発生点Sa〜cからX線を発生する。X線検出器6a〜cは、それぞれZ軸方向に16チャンネルの素子から構成される。従って、各検出器はそれぞれ16スライス分のX線透過データを一度に収集することができる。X線グリッド5a〜cはそれぞれX線検出器6a〜cの前面に固定され、被検体あるいはX線フィルタ2a〜cにおいて散乱された散乱X線の一部を除去する。コリメータ3a〜cは、それぞれX線管1a〜cから発生されたX線がX線検出ユニット6a〜cの一部または全部に照射されるようにX線照射幅w’をZ軸方向に制限する。ただし、w’は各X線検出ユニットの中央2チャンネルを中心にして、左右対称に1チャンネル単位(すなわち1mm単位)で制御される。なお、コリメータ3a〜cによるX線照射領域の設定方法については後述する。X線管移動装置60a〜c及び検出器移動装置70a〜cは、それぞれX線管1a〜c及びX線検出器6a〜cの回転板7に対する相対位置を図示しない既知の移動機構によってZ軸方向に変化させる。ただし、検出器移動装置70a〜cはX線検出器6a〜cのZ軸方向の中間位置が常にX線発生点Sa〜cの正面にそれぞれ配置されるようにX線検出器6a〜cを移動する。従って、X線管移動装置60a〜cによるX線管1a〜cの移動及び検出器移動装置70a〜cによるX線検出器6a〜cの移動は常に同期して行なわれる。また、X線フィルタ2a〜c及びコリメータ3a〜cは、それぞれX線管1a〜cの前面に固定され、X線管1a〜cと共に移動する。従って、X線管移動装置60a〜c及び検出器移動装置70a〜cによって撮影系a〜c全体のZ軸方向の相対位置が制御される。なお、X線発生点Sa−Sb間及びSb−Sc間の距離は互いに等しく保たれ、以下ではこの距離をdで表わす。このX線発生点間距離dの設定方法については後述する。
【0064】
図8は、本実施例2に係るX線CT装置における螺旋スキャンに際してのX線発生点Sa〜cの回転角度θとZ軸方向の位置Zとの関係を説明するための図である。なお、図8中、Z軸は寝台天板4に固定されているものとする。従って、X線発生点の軌跡は寝台天板4に対する相対的な位置を表わす。また、図8中の塗りつぶし円,白抜き円,及びそれらの間を結ぶ実線は、X線発生点Saの移動開始位置(始点),移動終了位置(終点),及びその間の移動軌跡をそれぞれ示す。また、塗りつぶし正方形,白抜き正方形,及びそれらの間を結ぶ点線は、X線発生点Sbの移動開始位置(始点),移動終了位置(終点),及びその間の移動軌跡をそれぞれ示す。また、塗りつぶし三角形,白抜き三角形,及びそれらの間を結ぶ一点鎖線は、X線発生点Scの移動開始位置(始点),終始位置(終点),及びその間の移動軌跡をそれぞれ示す。
【0065】
本実施例2では、X線発生点が回転軸方向に等距離間隔に、かつ回転面内方向に等角度間隔に配置されている。この場合、先の数3および数4より、寝台天板4の移動量をv=n・d/m[/回転]とすれば螺旋間隔Lを常にL=d/mに保つことができる。ただし、X線発生点の数をn、X線発生点の回転軸方向の間隔をd、nと互いに素の関係にある自然数もしくはnをmとする。本実施例では、n=3であり、dの値は可変である。一例として、d=16mmにおいて、m=2及びm=3と設定した場合のX線発生点Sa〜cの移動軌跡を、それぞれ図8の(A)及び(B)に示す。
【0066】
図8の(A)の例では、寝台天板4の移動量vはv=3d/2[/回転]であり、螺旋間隔LはL=d/2である。Z軸方向の計測領域Zo は、計測条件設定手段100を通して検者によって設定される。図8の(A)には、一例として計測領域Zo が3d≦Z≦6dの範囲内に設定された場合が示されている。撮影制御手段101は、X線発生点Sa,Sb,Scのそれぞれが計測領域Zo 内に存在するときにのみ、X線の発生および画像収集を行なう。また、計測領域Zo の前後の区間はそれぞれ回転板7の加速および減速区間を表わす。加速及び減速区間内にX線発生点が存在する場合にはX線が発生されることはない。なお、図8の(A)の例では、加速,減速区間をそれぞれ0≦Z≦3d,6d≦Z≦9dの範囲内に設定してあるが、回転板7の回転速度の安定度に応じてこれらを種々変更できることは云うまでもない。
【0067】
図8の(B)の例では、寝台天板4の移動量vは、v=d[/回転]であり、螺旋間隔Lは、L=d/3である。従って、図8の(A)の場合に比べて螺旋間隔Lが小さいのでZ軸方向の測定分解能を向上することができる。また、図8の(B)には、一例として加速区間を0≦Z≦3d,計測領域Zo を3d≦Z≦6d,減速区間を6d≦Z≦9dに設定した場合を示してある。
【0068】
図14は、本実施例2に係るX線CT装置における螺旋スキャンに際しての、X線発生点Sa〜cの回転角度位置θとZ軸方向位置Zとの関係を説明するための図であり、特にd=0おける上記の関係を示したものである。d=0の場合、先の数7より、寝台天板4の任意の移動量u[/回転]に対して螺旋間隔Lを常にL=u/nに保つことができる。例えば、本実施例2ではn=3であるため、図14中には、螺旋間隔L=u/3の例が示されている。従って、uの値を任意に設定することによって、Z軸方向の測定分解能を任意にコントロールすることができる。なお、図14には、一例として加速区間を0≦Z≦2u,計測領域Zo を2u≦Z≦4u,減速区間を4u≦Z≦6uの範囲内に設定した場合を示してある。
【0069】
図9は、本実施例2に係るX線CT装置における撮影モードの一例を示した図である。撮影モードはシングルスキャンモードとボリュームスキャンモードとに大別される。シングルスキャンモードでは、寝台天板4の位置は撮影系に対して固定されており、X線発生点間隔dの設定によりモード1とモード2との2種類のモードが用意されている。モード1では、X線発生点間隔dは、d=0に設定される。このとき、撮影系の120度の回転により全角度方向からの投影データが収集されるため、1スライスの計測を0.2秒と云う高速でもって行なうことができる。また、モード2では、dの値がX線検出器6a〜cのZ軸方向の検出幅である16mmに設定されており、1回転のスキャンでZ軸方向の48mmの範囲を計測することが可能である。一方、ボリュームスキャンモードでは、寝台天板4を撮影系に対してZ軸方向に移動量v[/回転]で移動させて螺旋スキャンが行なわれる。ボリュームスキャンモードには、d≠0の場合(モード3〜6)と、d=0の場合(モード7〜11)とが存在する。d≠0の場合は、既に説明したように、移動量vはm及びdの設定値により決定される。一例として、図9中に幾つかの設定例に対する移動量v,螺旋間隔L,X線照射幅w’,及び計測時間の値を示した(モード3〜6)が、これらだけに限定されるものではない。ただし、X線照射幅w’は、X線検出器6a〜cのそれぞれに対して照射されるX線のZ軸方向での照射範囲であり、コリメータ3a〜cによってそれぞれ制御される。また計測時間は計測領域Zo を10cmとした場合の計測時間である。一般にmの値が大きくなる程、Z軸方向の測定分解能が向上するが、計測時間が長くなる。一方、d=0の場合、Z軸方向での移動量vは任意に設定することができる。一例として、図9には幾つかの設定例を示した(モード7〜11)が、これらだけに限定されるものではない。なお、図9中に示された各種数値の導出方法については後述する。検者は、測定対象に応じて測定分解能及び計測時間を考慮して、最適な撮影モードを選択することができる。
【0070】
図10は、本実施例2に係るX線CT装置における計測の開始から終了までの処理の流れを示す流れ図である。検者は、先ず計測条件設定手段100を通して計測領域Zo 及び撮影モード等の計測条件を設定する(ステップ1000)。次にコリメータ制御手段107及び撮影系位置制御手段108は、上記設定計測条件に基づいてコリメータ3a〜cによるX線照射幅w’およびX線発生点間隔dをそれぞれ制御する(ステップ1001)。また、撮影制御手段101は、上記設定計測条件に基づき寝台天板4の初期位置を決定し、寝台移動手段103を通して寝台位置の初期設定を行なう(ステップ1002)。寝台が所定位置に配置されると同時に撮影スタンバイ状態になる。この状態で検者が計測開始ボタン109をONにすると、計測が開始される(ステップ1003)。計測が開始されると同時に、撮影制御手段101は、寝台移動手段103及び回転板駆動手段102を通して、寝台天板4の移動および回転板7の回転を開始する(ステップ1004)。次に、撮影制御手段101はX線発生点Sa〜cのそれぞれが計測領域内に存在するかどうかを判断し(ステップ1005)、計測領域内に存在する場合は各X線発生点からX線を発生させて撮影を行なう(ステップ1006)。撮影は、撮影系の0.4度の回転毎にパルスX線を発生させて行なう。なお、パルスX線の発生タイミングの詳細については後述する。撮影制御手段101は、X線発生点Sa〜cが計測領域から外れた時点で、それぞれのX線発生を停止させる(ステップ1007)。また、全てのX線発生点からのX線発生が停止したかどうかを判断し(ステップ1008)、X線発生を停止していないX線発生点が存在する場合には再びステップ1005に戻る。一方、全X線発生点からのX線発生が停止した時点で、撮影制御手段101は寝台移動手段103及び回転板駆動手段102を通して寝台天板4の移動及び回転板7の回転を停止させ(ステップ1009)、全計測を終了する(ステップ1010)。
【0071】
図13は、本実施例2に係るX線CT装置における各X線発生点からのパルスX線の発生タイミングを説明するための図である。図13では、撮影系の1回転における撮影枚数を900枚とした場合の例が示してある。このとき、撮影は、撮影系の0.4度の回転毎に行なわれる。また、撮影系の回転周期Δtは0.6[秒/回転]である。従ってX線発生点Sa〜cの各々から発生されるパルスX線の周期は2/3msecとなる。パルスX線の発生は各X線発生点Sa〜cから同時に行なってもよいし、時間的に交互に行なってもよい。前者及び後者の撮影タイミングの各一例を図13の(A)及び(B)にそれぞれ示す。図13の(A)の例では、全X線発生点Sa〜cからパルス長0.6msecのパルスX線が2/3msecの周期で同時に発生される。一方、図13の(B)の例では、各X線発生点Sa〜cからパルス長0.2msecのパルスX線が2/9msecの周期で交互に発生される。このパルスX線の発生タイミング制御は、図示しない既知の外部電源からX線管1a〜cに印加するパルス電圧の印加タイミングを制御することによって実現される。なお、図13の(B)の例では、図13の(A)の例に比べてパルス長が1/3であるため、時間平均的に同一強度のX線を発生するためには、管電流を3倍にする必要がある。また、外部電源はX線発生点Sa〜cに対して同一のものを使用すればよいが、それぞれに対して個別の外部電源を用意してもよい。
【0072】
図11は、先の実施例1及び本実施例2に係るX線CT装置における寝台天板4の移動量v[/回転],螺旋間隔L,X線照射幅,および計測時間の計算式を示した図である。図11において、各式は、X線発生点間隔dの値をd=w,d=m・w,およびd=0と設定した場合につきそれぞれ示してある。ただし、X線発生点の配置には、X線発生点をXY平面内での同一位置に配置した場合(以下配置A)と、回転軸Zを中心とするXY平面上の円弧上に等角度間隔に配列した場合(以下配置B)との2種類が存在し、d=0なる設定は配置Bのみを対象としている。図11において、寝台天板4の移動量v及び螺旋間隔Lは、d≠0の場合、それぞれ先の数3及び数4から計算できる。また、d=0の場合、移動量vは任意の値uとすることができ、この時の螺旋間隔Lは数7から計算できる。X線照射幅w’は、X線検出器入力面においてX線が重複しないための最小幅であり、理想的には螺旋間隔Lに等しくなる。ただし、X線照射幅w’はX線検出器のZ軸方向のチャンネル幅を単位として変化させる必要があるため、図11中にはX線の重複を最小に抑えるチャンネル数が示されている。さらに、計測時間は計測領域Zo を計測するのに必要な時間である。
【0073】
図11を見ると、X線発生点間隔をd=m・wと設定した場合、寝台天板4の移動量v,螺旋間隔L,X線照射幅w’,及び計測時間は、mの値に依存しないことがわかる。このため、最小のm値に対してdを決定すればX線発生点間隔を最小に抑えることができる。例えば、実施例1では最小のm値は1であり、これは図4中のモード2に相当する。また、実施例2では最小のm値は2であり、これは図9中のモード3に相当する。図9中でd=3w,d=4w等における例を示していないのは、これらが全てモード3による測定と等価になるためである。
【0074】
図11には、X線発生点間隔d=w,d=m・w及びd=0の場合のみを示したが、実施例2のようにdが可変である場合は、この値を種々変更できることは云うまでもない。例えばd≠0の場合、このd値を小さく設定することで被検体に対するX線の多重照射が可能になり、再構成画像の画質を向上させることができる。また、反対にこのd値を大きく設定することで被検体に対するX線の間引き照射が可能になり、被爆線量を軽減することもできる。一方、X線発生点間隔dが可変でない場合も、X線照射幅w’の設定を種々変更することで同様の効果が得られる。例えば、w’の値を大きく設定することにより被検体に対するX線の多重照射が可能になり、再構成画像の画質を向上させることができる。また、反対にw’の値を小さく設定することにより被検体に対するX線の間引き照射が可能になり、被検体のX線被爆線量を軽減することもできる。以上、実施例2のようにX線発生点間隔dが可変である場合、d及びw’の値の組み合わせを種々変更することで様々な用途に対応した撮影モードをプリセットすることが可能である。また、実施例1のようにX線発生点間隔dが固定である場合でも、w’の値を種々変更することで様々な用途に対応した撮影モードをプリセットすることが可能である。
【0075】
以上の説明からわかるように、本実施例のX線CT装置においてはX線発生点を回転軸方向に複数点配置すると同時に、前記複数のX線発生点のそれぞれに対してマルチスライスX線検出ユニットを対向配置する。これにより、個々のX線発生点に対するX線検出器の見込み角度を小さく保ったままでX線検出器のトータルの段数を増加させることができるので、再構成画像の画質を劣化させることなく撮影を高速化することができる。また、X線発生点を回転軸方向に等間隔、かつ回転面内方向での同一位置に配置して、螺旋スキャンにおける回転軸方向の移動量をv=n・d/m[/回転]とすることで、X線源の軌跡が描く螺旋の間隔を常にL=d/mに保つことができる。ただし、nはX線発生点の数,dはX線発生点の回転軸方向の間隔、mはnと互いに素の関係にある自然数もしくは1である。さらに、X線発生点を回転軸方向に等間隔、かつ回転面内方向に等角度に配置し、螺旋スキャンにおける移動量をv=n・d/m[/回転]とすることで、X線源の軌跡が描く螺旋の間隔を常にL=d/mに保つことができる。ただし、mはnと互いに素の関係にある自然数もしくはnである。さらには、X線発生点を回転軸方向に同位置、かつ回転面内方向に等角度間隔に配置することで、螺旋スキャンにおける任意の移動量u[/回転]に対して、X線源の軌跡が描く螺旋の間隔Lを常にL=u/nに保つことができる。これにより、X線源軌跡の螺旋の間隔Lを、従来撮影方式の1/n倍に保つことができるため、X線検出器のトータルの段数を増加させて撮影を高速化させた場合においても、再構成画像の画質の劣化を抑えることができる。
【0076】
以上、実施例を挙げて本発明を具体的に説明したが、本発明これらの実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変形して実施し得るものであることは云うまでもない。例えば、先の実施例1では複数の陰極−陽極対を持つタイプの多焦点X線管を用いたが、焦点位置を陽極上で時間的に切り替えるタイプの多焦点X線管でこれを代用してもよいし、また、実施例1に示したような多焦点X線管を実施例2に示したように回転面方向に等角度間隔に配置することで、計測を更に高速化してもよいことは勿論である。
【0077】
【発明の効果】
本発明によれば、被検体の体軸方向に高い空間分解能を有する3次元CT画像計測を高速に行なうことが可能になり、その結果、3次元CT画像の画質が向上し、微少な濃度差や体積を持つ初期の癌等を早期に発見することが可能になる。
【図面の簡単な説明】
【図1】本発明の実施例1になるX線CT装置の正面模式図である。
【図2】本発明の上記実施例1になるX線CT装置におけるX線管1およびX線検出器6の構成および配置を説明するための図である。
【図3】本発明の上記実施例1になるX線CT装置での螺旋スキャンにおけるX線発生点Sa,Sbの回転角度位置θとZ軸方向位置Zとの関係を説明するための図である。
【図4】本発明の上記実施例1になるX線CT装置における撮影モードの一例を示す図である。
【図5】本発明の上記実施例1になるX線CT装置における計測の開始から終了までの処理の流れを説明するための流れ図である。
【図6】本発明の実施例2になるX線CT装置の正面模式図である。
【図7】本発明の上記実施例2になるX線CT装置におけるX線管1a〜cおよびX線検出器6a〜cの構成および配置を説明するための図である。
【図8】本発明の上記実施例2になるX線CT装置での螺旋スキャンにおけるX線発生点Sa〜cの回転角度位置θとZ軸方向位置Zとの関係を説明するための図である。
【図9】本発明の上記実施例2になるX線CT装置における撮影モードの一例を示す図である。
【図10】本発明の上記実施例2になるX線CT装置における計測の開始から終了までの処理の流れを説明するための流れ図である。
【図11】本発明の上記実施例1及び実施例2になるX線CT装置における寝台天板4の移動量v,螺旋間隔L,X線照射幅,及び計測時間の計算式を示した図である。
【図12】本発明の上記実施例1になるX線CT装置において各X線発生点から発生されるパルスX線の発生タイミングを説明するための図である。
【図13】本発明の上記実施例2になるX線CT装置において各X線発生点から発生されるパルスX線の発生タイミングを説明するための図である。
【図14】本発明の上記実施例2になるX線CT装置におけるX線発生点Sa〜cの回転角度位置θとZ軸方向位置Zとの関係を説明するための図であり、特に、d=0における上記関係を示した図である。
【符号の説明】
1…X線管, 2…X線フィルタ,
3…コリメータ, 4…寝台天板,
5…X線グリッド, 6…X線検出器,
7…回転板, 8…ガントリー,
9…被検体, 60…X線管移動装置,
70…検出器移動装置, 100…計測条件設定手段,
101…撮影制御手段, 102…回転板駆動手段,
103…寝台移動手段, 104…画像収集手段,
105…画像処理手段, 106…画像表示手段,
107…コリメータ制御手段, 108…撮影系位置制御手段。

Claims (3)

  1. 放射状にX線を発生するX線発生手段と、被検体内の複数のスライス面を透過した透過X線を同時に検出するX線検出手段と、前記X線発生手段及び前記X線検出手段を搭載する回転板と、前記回転板を前記被検体内を通る回転軸を中心として回転させる回転駆動手段と、前記被検体と前記回転板の回転面との相対位置を前記回転軸の方向で変化させる相対位置変化手段と、前記回転板の回転と前記相対位置の変化とを同期させる同期手段とを有し、前記X線発生手段は前記回転軸に平行な方向に略等しい間隔(間隔d)に、かつ回転方向の同一位置に配列された複数個(n個)のX線発生点を有してなり、mをnと互いに素の関係にある自然数とし、d/m=Lとしたとき、前記同期手段は、前記相対位置の変化が前記回転板の1回転につき略一定値n・Lとなるように前記回転駆動手段による前記回転板の回転と前記相対位置変化手段による前記相対位置の変化とを同期させるものであることを特徴とするX線CT装置。
  2. 前記X線発生手段は、複数の前記X線発生点を有するX線管を具備し、
    前記X線管は、電子を放出する2つのフィラメントと、
    前記フィラメントと対向し、前記電子の衝突によって前記X線発生点でX線を発生する2つのターゲットと、
    前記2つのターゲットを回転させる駆動手段と、
    前記フィラメントと前記ターゲットの間に、前記フィラメントを陽極として電圧印加するX線電源を具備し、
    前記2つのターゲットは対向し、
    複数の前記X線発生点は、前記回転板の回転軸に対して略等しい間隔で、回転方向に対して略同一位置に配置されることを特徴とする請求項1に記載のX線CT装置。
  3. 前記X線電源は、前記印加電圧を制御し、X線を発生するX線発生点または/及びX線発生の有無を切り替える手段を具備することを特徴とする請求項2に記載のX線CT装置。
JP2000175565A 2000-06-07 2000-06-07 X線ct装置 Expired - Fee Related JP4267180B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175565A JP4267180B2 (ja) 2000-06-07 2000-06-07 X線ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175565A JP4267180B2 (ja) 2000-06-07 2000-06-07 X線ct装置

Publications (2)

Publication Number Publication Date
JP2001346791A JP2001346791A (ja) 2001-12-18
JP4267180B2 true JP4267180B2 (ja) 2009-05-27

Family

ID=18677424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175565A Expired - Fee Related JP4267180B2 (ja) 2000-06-07 2000-06-07 X線ct装置

Country Status (1)

Country Link
JP (1) JP4267180B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000356A (ja) * 2002-06-03 2004-01-08 Hitachi Medical Corp マルチスライスx線ct装置および方法
CN1658796A (zh) * 2002-06-03 2005-08-24 株式会社日立医药 多层面x线ct装置
JP4314008B2 (ja) * 2002-10-01 2009-08-12 株式会社東芝 X線ctスキャナ
US7003077B2 (en) * 2003-10-03 2006-02-21 General Electric Company Method and apparatus for x-ray anode with increased coverage
JP2005270324A (ja) * 2004-03-24 2005-10-06 Toshiba Corp X線コンピュータ断層撮影装置
DE102004017538A1 (de) * 2004-04-08 2005-11-03 Siemens Ag Computertomographie-Gerät mit Aperturblende
JP4820604B2 (ja) * 2004-09-14 2011-11-24 株式会社東芝 X線コンピュータ断層撮影装置
WO2006038142A1 (en) * 2004-10-08 2006-04-13 Koninklijke Philips Electronics N.V. Image reconstruction with voxel dependent interpolation
JP4594699B2 (ja) * 2004-10-29 2010-12-08 株式会社東芝 X線コンピュータ断層撮影装置
DE602006013733D1 (de) 2005-03-07 2010-06-02 Toshiba Kk Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts
JP4828970B2 (ja) * 2006-03-10 2011-11-30 株式会社東芝 X線ct装置及びx線ct装置の制御方法
JP5214916B2 (ja) 2006-07-19 2013-06-19 株式会社東芝 X線ct装置及びそのデータ処理方法
WO2009104156A1 (en) * 2008-02-22 2009-08-27 Philips Intellectual Property & Standards Gmbh High-resolution quasi-static setup for x-ray imaging with distributed sources
US7649973B1 (en) * 2008-10-02 2010-01-19 General Electric Company Apparatus and method for z-location dependent x-ray beam filtration for imaging system
FI125528B (fi) * 2010-04-29 2015-11-13 Planmed Oy Lääketieteellinen röntgenkuvauslaitteisto
FI125531B (fi) * 2010-04-29 2015-11-13 Planmed Oy Lääketieteellinen röntgenkuvauslaitteisto
JP2014226376A (ja) * 2013-05-23 2014-12-08 株式会社東芝 X線ct装置
JP2015159903A (ja) * 2014-02-26 2015-09-07 株式会社東芝 X線ct用x線検出器及びそれを装備したx線コンピュータ断層撮影装置

Also Published As

Publication number Publication date
JP2001346791A (ja) 2001-12-18

Similar Documents

Publication Publication Date Title
JP4267180B2 (ja) X線ct装置
US6229870B1 (en) Multiple fan beam computed tomography system
CA1145484A (en) X-ray transmission scanning system and method and electron beam x-ray scan tube for use therewith
US4672649A (en) Three dimensional scanned projection radiography using high speed computed tomographic scanning system
US7154988B2 (en) X-ray computed tomographic imaging apparatus
US7463715B2 (en) System and method for real time dual energy x-ray image acquisition
EP3053525A2 (en) Panoramic imaging using multi-spectral x-ray source
EP1959835B1 (en) Systems and methods for scanning and data acquisition in computed tomography (ct) applications
JP2006122679A (ja) 多重エネルギー画像を作成するための断層撮影装置および断層撮影装置のための多重エネルギー画像の作成方法
US4712226A (en) Stereoscopic x-ray tube
US8983024B2 (en) Tetrahedron beam computed tomography with multiple detectors and/or source arrays
EP0467532A2 (en) Computed tomography system
JP2006175230A (ja) X線コンピュータ断層撮影装置
JP2002282246A (ja) X線ct装置、ボリューム画像化方法、及び当該ボリューム画像化方法を実現するプログラムを格納するコンピュータが読みとり可能な記録媒体
JP7114525B2 (ja) 異なるエネルギーレベルおよび焦点スポット位置で撮像するように構成されたコンピュータ断層撮影システムおよび方法
JPH06233757A (ja) 3次元撮影装置
US20050163285A1 (en) X-ray CT apparatus
JP2019122772A (ja) コンピュータ断層撮影における空間分解能を向上させるためのシステムおよび方法
JP2002136510A (ja) カバー範囲を拡大させたミリメートル未満のctスライスを得るための方法及び装置
JP7250532B2 (ja) X線ct装置及び撮影計画装置
JP2004236752A (ja) X線コンピュータトモグラフィ装置及びx線撮影装置
JP5716069B2 (ja) X線ct装置
JP2010124832A (ja) X線コンピュータ断層撮影装置及びx線検出器
JP5823178B2 (ja) X線ct装置
Boyd et al. High-speed, multi-slice, x-ray computed tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees