JP4264464B2 - 撮像装置及び半導体回路素子 - Google Patents

撮像装置及び半導体回路素子 Download PDF

Info

Publication number
JP4264464B2
JP4264464B2 JP2008550304A JP2008550304A JP4264464B2 JP 4264464 B2 JP4264464 B2 JP 4264464B2 JP 2008550304 A JP2008550304 A JP 2008550304A JP 2008550304 A JP2008550304 A JP 2008550304A JP 4264464 B2 JP4264464 B2 JP 4264464B2
Authority
JP
Japan
Prior art keywords
imaging signal
imaging
temperature
unit
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008550304A
Other languages
English (en)
Other versions
JPWO2009001563A1 (ja
Inventor
友邦 飯島
悟史 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP4264464B2 publication Critical patent/JP4264464B2/ja
Publication of JPWO2009001563A1 publication Critical patent/JPWO2009001563A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0266Field-of-view determination; Aiming or pointing of a photometer; Adjusting alignment; Encoding angular position; Size of the measurement area; Position tracking; Photodetection involving different fields of view for a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Measurement Of Optical Distance (AREA)
  • Studio Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)

Description

本発明は、距離計測可能な撮像装置及びその撮像装置に用いられる半導体回路素子に関する。
距離計測が可能な従来の撮像装置として、特許文献1の撮像装置がある。図38は、特許文献1の撮像装置の分解斜視図である。また、図39は、同じく撮像装置の撮像ブロックを説明するための図である。図38及び図39に示すように、複眼撮像系である撮像装置901は、絞り部材902と、光学レンズアレイ903と、遮光ブロック904と、光学フィルタ906と、撮像ユニット907とを備えている。この撮像装置901において、4つの開口部902−1、902−2、902−3、902−4を持つ絞り部材902と、4つの光学ブロック(レンズ)903−1、903−2、903−3、903−4を持つ光学レンズアレイ903とにより、4つの撮像光学系が構成されており、それぞれを通過した光線がそれぞれ撮像ユニット907上の4つの撮像ブロック907−1、907−2、907−3、907−4に結像する。CCDセンサなどで形成された撮像ユニット907は、当該撮像ユニット907を駆動する駆動回路908と、これら複数の撮像ブロック907−1〜907−4により撮像された画像間の視差情報を算出する視差算出回路909と共に、半導体基板910上に形成される。
上述したように、絞り部材902の開口部902−1〜902−4を通過した光線は、それぞれレンズ903−1〜903−4により屈折作用を受けた後、遮光ブロック904内および光学フィルタ906を通過し、撮像ブロック907−1〜907−4に結像する。そして、例えば、撮像ブロック907−1により撮像された画像と撮像ブロック907−2により撮像された画像との類似度をブロックマッチングを用いて演算し、その類似度に基づき視差dを求めた後、下記式(1)のように、視差dから距離Lを求める。ここで、fはレンズ903−1および903−2の焦点距離であり、Bはレンズ903−1及び903−2の光軸の間隔であり、pはレンズ903−1と903−2との光軸を結ぶ方向の撮像ユニット907の画素間隔である。
L = f B /p d …(1)
しかしながら、レンズアレイ903は温度変化により変形し、それに伴いレンズの光軸の間隔Bが変化するため、温度が変化すると正しく距離を求められない。
このような温度変化に対応する撮像装置が特許文献2に開示されている。その構造は温度センサを有している点を除いて特許文献1の撮像装置と同様であるため、図38を参照しながら説明すると、特許文献2の撮像装置は、等間隔に配置されたレンズ903−1〜903−4と、それらのレンズ903−1〜903−4近傍の温度Tを測定する温度センサとを備え、その温度Tを用いて、撮像ブロック907−1〜907−4により撮像された画像I1〜I4を補正する。
より詳細に説明すると、この撮像装置は、下記式(2)のように、基準温度T0に対する温度変化量(T−T0)を演算し、レンズアレイの熱線膨張率aLと撮像ユニット907の線膨張率aSとの差(aL−aS)に基づき、温度変化による各レンズの光軸の間隔Bの変化量zを求める。そして、下記式(3)のように、撮像ブロック907−1により撮像された画像I1を基準として、下記式(4)、(5)及び(6)のように、撮像ブロック907−2、907−3、907−4により撮像された画像I2、I3、I4を、各レンズの光軸の間隔の変化分だけ補正する。ここで、レンズ903−1及び903−2、並びにレンズ903−3及び903−4がそれぞれ互いにx軸方向に離れて配置され、レンズ903−1及び903−3、並びにレンズ903−2及び903−4がそれぞれ互いにy軸方向に離れて配置されている。そして、pは撮像ユニット907の画素間隔であり、x軸方向とy軸方向とで同一である。I1(x,y)、I2(x,y)、I3(x,y)、I4(x,y)は座標(x、y)における各画像の輝度を示す。温度変化により、レンズ903−1と比較してレンズ903−2はx軸方向にz/p画素だけ移動するため、式(4)のように、I2(x,y)をx軸方向にz/pだけ移動するように補正する。また、温度変化により、レンズ903−3は、レンズ903−1と比較してy軸方向にz/p画素だけ移動するため、式(5)のように、I3(x,y)をy軸方向にz/pだけ移動するように補正する。さらに、温度変化により、レンズ903−4は、レンズ903−1と比較してx軸方向にz/p画素、y軸方向にz/p画素だけ移動するため、式(6)のように、I4(x,y)をx軸方向にz/p画素、y軸方向にz/p画素だけ移動するように補正する。
z = B (aL - aS) (T - T0) …(2)
I1(x, y) = I1(x, y) …(3)
I2(x, y) = I2(x+z/p, y) …(4)
I3(x, y) = I3(y, x+z/p) …(5)
I4(x, y) = I4(x+z/p, y+z/p) …(6)
特開2003−143459号公報 特開2002−204462号公報
前述のように、特許文献2に記載された従来の撮像装置は、撮像ブロック907−1により撮像された画像I1を基準として、式(4)、(5)及び(6)のように、撮像ブロック907−2、907−3、907−4により撮像された画像I2、I3、I4を、レンズの光軸の間隔の変化分だけ補正する。
しかしながら、レンズアレイの温度変化により、光軸中心は全てのレンズにおいて変化するため、画像I1を基準とすると、光軸の間隔は正しく補正されるが、光軸中心の座標は正しく補正されない。例えば、レンズアレイの温度変化により、画像I1を撮像する撮像ブロック907−1に対応するレンズ903−1の光軸中心は変化するが、式(3)のように、画像I1の場合は補正が行われないため、当該レンズ903−1の光軸は補正されない。歪曲は、光軸中心に同心円状に存在するため、光軸が正しく補正されなければ、正しく歪曲補正をすることができない。すなわち、式(3)から(6)のように、画像I1を基準とした補正では、正しく光軸補正をすることができないため、正しく歪曲補正することができない。それゆえ、距離計測の精度が悪化する。
本発明は、上記問題に鑑みなされたもので、温度が変化しても、適切な光軸補正を行うことにより正しく歪曲補正でき、その結果、高精度な距離計測を可能にする撮像装置及びその撮像装置に用いられる半導体回路素子を提供することを目的とする。
上記課題を解決するために、本発明の撮像装置は、複数のレンズを含むレンズアレイと、 前記複数のレンズと一対一に対応して設けられ、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量に応じて前記撮像領域において生成された撮像信号を補正する温度補償/撮像信号補正部と、前記温度補償/撮像信号補正部により補正された前記撮像信号に基づき視差を演算する視差演算部と、を備える。
上記発明に係る撮像装置において、前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を推定する移動量推定部と、前記移動量推定部により推定された前記光軸の移動量に基づいて、前記撮像領域において生成された撮像信号を補正する撮像信号補正部と、を含み、前記視差演算部は、前記撮像信号補正部により補正された前記撮像信号に基づき視差を演算するよう構成されていてもよい。
上記発明に係る撮像装置において、前記移動量推定部が、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量に基づいて、前記光軸の移動量を推定するように構成されていてもよい。ここで、当該移動量推定部が、前記算出された変化量の半分を前記光軸の移動量と推定するように構成されていてもよい。
また、前記撮像信号補正部は、前記移動量に基づき、光軸位置を補正し、その光軸周りの歪曲を補正するように構成されていてもよい。また、前記撮像信号補正部は、前記移動量に基づき、切り出し領域を変化させるように構成されていてもよい。
また、上記発明に係る撮像装置において、前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を含む補正係数を作成する補正係数作成部と、前記補正係数に基づいて、前記撮像領域において生成された撮像信号を補正し補正後撮像信号を作成する撮像信号補正部と、を含み、視差演算部は、前記補正後撮像信号に基づき視差を演算するように構成されていてもよい。
上記発明に係る撮像装置において、前記補正係数作成部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量の半分を前記光軸の移動量として前記補正係数を作成するように構成されていてもよい。
この構成により、温度センサにより検知された温度に基づき複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量に基づいて、算出された変化量の半分を光軸の移動量とするように補正係数を作成し、この補正係数に撮像信号を補正する。このことにより、温度が変化しレンズアレイが変形しても、光軸の位置を正しく補償することができるため、温度の影響を低減した視差を得て、この視差に基づき正しい距離計測ができる。また、温度センサにより検知された温度に基づき複数のレンズ部の間隔の変化量を求め、複数のレンズの光軸原点をその変化量の半分だけ移動させて、光軸原点周りの歪みをなくすように画像を補正することにより、正しく歪みの影響を低減できるため、視差の検知及び距離測定を高精度に行うことができる。また、温度によりレンズ部の光軸の位置が変化すると、撮影される画像が移動することになる。例えば、自動車の前方監視に撮像装置を利用する場合、その撮像装置により得られた画像中心を運転者が見た画像の中心に合わせても、温度が変化すると画像中心がずれる。そのため、運転者は違和感を覚える。これに対し、本発明の撮像装置の場合、温度が変化しても、画像中心の変化を抑制することができる。そのため、自動車の前方監視にも適した撮像装置を実現することができる。
また、上記発明に係る撮像装置において、前記温度に応じた複数組の補正係数を複数の補正係数保存値として保存する補正係数保存部を有し、前記補正係数作成部は、前記複数組の補正係数保存値から前記温度に応じた補正係数保存値を選択し前記補正係数を作成するように構成さていてもよい。
この構成により、予め各温度に応じた補正係数を保存する。このことより、補正式から補正係数を演算することが不要になるため、その分だけ演算時間や演算回路が不要となり、低コストな撮像装置を実現する。また、温度に応じて複雑な非線形な変化をする補正係数について、実験で求めた値を保存し用いることにより、補正式で表現される変化と実際の変化との誤差を防止し、正しく歪みの影響を低減できるため、視差の検知及び距離測定を高精度に行うことができる。
また、上記発明に係る撮像装置において、前記温度センサの信号を入力しデジタル値である温度値を作成する温度センサ信号入力部を有し、前記補正係数保存部は、前記温度値よりも分解能が粗い組の前記補正係数保存値を保存するように構成されており、前記補正係数作成部は、前記温度値に基づき複数組の前記補正係数保存値を選択し補間処理して、前記補正係数を作成するように構成されていてもよい。
この構成により、予め各温度に応じた補正係数を保存するにあたり、全ての温度に対応した補正係数を保存せずに温度に対して間引いた補正係数を保存し、温度に対して補間した補正係数を用いる。このことにより、間引いた分だけ記憶領域を省略することができるため、その分だけ回路規模を縮小した低コストな撮像装置を実現することができる。
また、上記発明に係る撮像装置において、前記撮像信号補正部は、前記補正係数に基づき参照先座標を求め、前記参照先座標が示す複数の撮像信号を参照し補間処理を施して、補正後撮像信号を作成するように構成されていてもよい。
予め参照先座標を演算し保持する場合、補正後撮像信号の全ての画素に関し参照先座標が必要となるため、膨大な記憶容量が必要となり、その分だけ高コストとなる。特に、温度により参照先座標を変化させる必要がある場合、温度毎の参照先座標が必要であり、さらに膨大な記憶容量が必要となる。本発明の構成により、逐次、補正係数から参照先座標を求め、補正後撮像信号を作成する。このことにより、補正係数のみに記憶領域を割り当てればよく、大きな記憶容量は不要であるため、低コストな撮像装置を実現する。特に、温度より参照先座標を変化させる必要がある場合、その効果は顕著である。
また、本発明の回路素子は、複数のレンズを含むレンズアレイと、前記複数のレンズと一対一に対応して設けられ、対応する前記レンズの光軸方向に対して略垂直な受光面をそれぞれ有する複数の撮像領域とを有する撮像装置に用いられる半導体回路素子であって、前記レンズアレイの近傍に配置された温度センサによって検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量に応じて前記撮像領域において生成された撮像信号を補正する温度補償/撮像信号補正部と、前記温度補償/撮像信号補正部により補正された前記撮像信号に基づき視差を演算する視差演算部と、を備える。
上記本発明に係る回路素子において、前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を推定する移動量推定部と、前記移動量推定部により推定された前記光軸の移動量に基づいて、前記撮像領域において生成された撮像信号を補正する撮像信号補正部と、を含み、前記視差演算部は、前記撮像信号補正部により補正された前記撮像信号に基づき視差を演算するよう構成されていてもよい。
ここで、前記移動量推定部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量に基づいて、前記光軸の移動量を推定するように構成されていてもよい。また、前記移動量推定部は、前記算出された変化量の半分を前記光軸の移動量と推定するように構成されていてもよい。
また、前記撮像信号補正部は、前記移動量に基づき、光軸位置を補正し、その光軸周りの歪曲を補正するように構成されていてもよい。また、前記撮像信号補正部は、前記移動量に基づき、切り出し領域を変化させるように構成されていてもよい。
上記本発明の回路素子において、前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を含む補正係数を作成する補正係数作成部と、前記補正係数に基づいて、前記撮像領域において生成された撮像信号を補正し補正後撮像信号を作成する撮像信号補正部と、を含み、視差演算部は、前記補正後撮像信号に基づき視差を演算するように構成されていてもよい。
ここで、前記補正係数作成部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その前記算出された変化量の半分を前記光軸の移動量として前記補正係数を作成するように構成されていてもよい。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明によれば、レンズの光軸補正及び歪曲補正を適切に行うことができるため、高精度な距離計測が可能となる。
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付してその重複する説明を省略する。
(実施の形態1)
本発明の実施の形態1に係る撮像装置は、温度センサにより検知された温度に基づき複数のレンズの光軸の間隔の変化量を求め、複数のレンズの光軸原点を変化量の半分だけ移動し、光軸原点周りの歪みをなくすように画像を補正する。これにより、歪みの影響を適切に低減できるため、高精度な視差を検知でき、高精度に距離測定できる。
図1は、本発明の実施の形態1に係る撮像装置の構成を示す断面図である。図1に示すように、撮像装置101は、回路部120と、その回路部120の上方に設けられたレンズモジュール部110とを備えている。
レンズモジュール部110は、円筒状の鏡筒111と、その鏡筒111の開口を覆う上部カバーガラス112と、その上部カバーガラス112の下方であって鏡筒111の内部に設けられたレンズアレイ113とを有している。また、回路部120は、基板121と、その基板121上に設けられたパッケージ122、撮像素子123、パッケージカバーガラス124、半導体回路素子であるシステムLSI(以下、SLSIと記す)125、及びレンズアレイ113近傍の温度を検出する温度センサ126とを有している。
鏡筒111は、上述のとおり円筒状であって、その内壁面は光の乱反射を防止するためにつやが消された黒で着色されており、樹脂を射出成形し形成される。上部カバーガラス112は、円盤状であり、光学ガラス材あるいは透明樹脂などから形成され、鏡筒111の上部の内壁に接着剤などにより固着され、その表面には摩擦などによる損傷を防止する保護膜と、入射光の反射を防止する反射防止膜とが設けられている。
図2は、本発明の実施の形態1に係る撮像装置のレンズアレイの構成を示す平面図である。レンズアレイ113は、略円盤状であり、光学ガラス剤または透明樹脂などから形成され、円形の第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、及び第4のレンズ部113dが2行2列で碁盤目状に配設されている。第1〜第4のレンズ部113a〜113dの配置方向に沿って、図2に示すようにx軸及びy軸を設定する。第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、および第4のレンズ部113dにおいて、被写体側から入射した光は、撮像素子123側へ射出され、撮像素子123上に4つの像が結像される。なお、図2に示すように、第1のレンズ部113aの光軸及び第2のレンズ部113bの光軸は、x軸方向ではDxだけ離れており、y軸方向では一致する。第1のレンズ部113aの光軸及び第3のレンズ部113cの光軸は、x軸方向では一致しており、y軸方向ではDyだけ離れている。第3のレンズ部113cの光軸及び第4のレンズ部113dの光軸は、x軸方向ではDxだけ離れており、y軸方向は一致する。第4のレンズ部113dの光軸及び第1のレンズ部113aの光軸は、x軸方向ではDxだけ離れており、y軸方向ではDyだけ離れている。
基板121は、樹脂基板から構成され、上面に鏡筒111がその底面を接して接着剤などにより固着される。このようにして、レンズモジュール部110と回路部120とが固定され、撮像装置101を構成する。
パッケージ122は、金属端子を有する樹脂からなり、鏡筒111の内側において、基板121の上面にその金属端子部が半田づけ等されて固着される。
撮像素子123は、CCDセンサやCMOSセンサのような固体撮像素子であり、その受光面が第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、および第4のレンズ部113dの光軸と略垂直になるようにして配置される。撮像素子123の各端子は、パッケージ122の内側の底部の金属端子にワイヤーボンディングにより金線127で接続され、基板121を介して、SLSI125と電気的に接続される。撮像素子123の受光面に、第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、および第4のレンズ部113dから射出された光がそれぞれ結像し、その光の情報が撮像素子123の画素を構成するフォトダイオードにより電気の情報へ変換され、その電気の情報がSLSI125に転送される。
図3Aは、本発明の実施の形態1に係る撮像装置の回路部120の構成を示す平面図である。パッケージカバーガラス124は、平板状であり、透明樹脂により形成され、パッケージ122の上面に接着などにより固着される。なお、図3Aにおいては、便宜上、パッケージカバーガラス124を透して見える撮像素子123などは省略している。
SLSI125は、後述の方法で、撮像素子123を駆動し、撮像素子123からの電気情報を入力し、各種演算を行い、上位CPUと通信を行い、外部に画像情報や距離情報などを出力する。なお、SLSI125は、電源(例えば3.3V)とグランド(例えば、0V)に接続される。
図3Bは、本発明の実施の形態1に係る撮像装置の撮像素子の構成を示す平面図である。図3Bに示すように、撮像素子123は、第1の撮像領域123a、第2の撮像領域123b、第3の撮像領域123c、および第4の撮像領域123dで構成されている。これらの第1〜第4の撮像領域123a〜123dは、それぞれの受光面が、第1〜第4のレンズ部113a〜113dの光軸と略垂直になるようにして2行2列で配置される。これらの各撮像領域123a〜123dにて撮像信号が生成される。
図4は、本発明の実施の形態1に係る撮像装置の温度センサの回路図である。図4に示すように、温度センサ126は、第1の固定抵抗126aとサーミスタ126bと第2の固定抵抗126cとが直列に接続されて構成されている。ここで、第1の固定抵抗126aの他端(サーミスタ126bに接続されない端)は電源126d(例えば3.3V)に接続され、第2の固定抵抗126cの他端(サーミスタ126bに接続されない端)はグランド126e(例えば、0V。SLSI125のグランドと同一電位)に接続される。また、第1の固定抵抗126aとサーミスタ126bとの接続点126fがSLSI125に接続されている。
次に、被写体距離と視差との関係を説明する。本発明の実施の形態1に係る撮像装置は、4つのレンズ部(第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、及び第4のレンズ部113d)を有するため、4つのレンズ部がそれぞれ形成する4つの物体像の相対的位置が、被写体距離に応じて変化する。
図5は、本発明の実施の形態1に係る撮像装置において、無限遠にある物体像の位置を説明するための図である。図5においては、簡単のため、レンズアレイ113において、第1のレンズ部113a、および第2のレンズ部113bのみを記す。無限遠の物体10からの光の第1のレンズ部113aへの入射光L1と、第2のレンズ部113bへの入射光L2とは平行である。このため、第1のレンズ部113aと第2のレンズ部113bとの距離と、撮像素子123上の物体像11aと物体像11bとの距離とは等しい。すなわち、視差はない。
図6は、本発明の実施の形態1に係る撮像装置において、有限距離の位置にある物体像の位置を説明するための図である。図6において、簡単のため、レンズアレイ113において、第1のレンズ部113a、および第2のレンズ部113bのみを記す。有限距離の物体12からの光の第1のレンズ部113aへの入射光L1と第2のレンズ部113bへの入射光L2とは平行ではない。従って、第1のレンズ部113aと第2のレンズ部113bとの距離に比べて、撮像素子123上の物体像13aと物体像13bとの距離は長い。すなわち、視差がある。
物体像12までの距離(被写体距離)をL、第1のレンズ部113aと第2のレンズ部113bとの距離をDx、レンズ部113a,113bの焦点距離をfとすると、図6の直角を挟む2辺の長さがL、Dxの直角三角形と、直角を挟む2辺の長さがf、Δの直角三角形とが相似であることより、視差Δは、下記式(7)のように表される。
L = f × Dx / Δ ・・・(7)
その他のレンズ部間についても同様の関係が成立する。このように、被写体距離に応じて4つのレンズ部113a,113b,113c,113dがそれぞれ形成する4つの物体像の相対的位置が変化する。例えば、被写体距離Lが小さくなると、視差Δが大きくなる。
図7は、本発明の実施の形態1に係る撮像装置の構成を示すブロック図である。SLSI125は、システム制御部131と、当該システム制御部131により制御される、撮像素子駆動部132、撮像信号入力部133、入力バッファ134、前処理部135、演算部136、出力バッファ137、入出力部138、及び温度補償部139とを有している。前処理部135は、第1の中間バッファ135a、第2の中間バッファ135b、第3の中間バッファ135c、第4の中間バッファ135d、及び前処理演算部135eを有し、後述するようにして撮像信号を補正する撮像信号補正部として機能する。演算部136は、第1の演算バッファ141a及び第2の演算バッファ141bを具備する演算バッファ141と、視差演算部142と、距離演算部143とを有する。また、出力バッファ137は、第1の出力バッファ137a、および第2の出力バッファ137bを有する。さらに、温度補償部139は、温度センサ信号入力部139a、および温度補償演算部139bを有し、後述するようにして各レンズ部113a〜113dの光軸の移動量を推定する移動量推定部として機能する。また、温度補償部139と前処理部135とは、温度補償/撮像信号補正部を構成している。
システム制御部131は、CPU(中央演算処理装置:Central Processing Unit)及びロジック回路などから構成され、SLSI125の全体を制御する。
撮像素子駆動部132は、ロジック回路などから構成され、撮像素子123を駆動する信号を発生し、この信号に応じた電圧を撮像素子123に印加する。
撮像信号入力部133は、CDS回路(相関二重サンプリング回路:Correlated Double Sampling Circuit)、AGC(自動利得制御器:Automatic Gain Controller)、及びADC(アナログ/デジタル変換器:Analog Digital Converter)が直列に接続されて構成される。撮像素子123からの電気信号が入力された場合、撮像信号入力部133におけるCDS回路により固定ノイズを除去し、AGCによりゲインを調整し、ADCによりアナログ信号からデジタル値に変換し、強度補正を行って、撮像信号I0とする。
図8は、本発明の実施の形態1に係る撮像装置の撮像信号の切り出し位置を説明するための図である。撮像信号入力部133に入力される撮像信号I0(x,y)は、x軸方向にH0画素、y軸方向にV0画素を持っている。この撮像信号I0(x,y)は、I0(0,0)((x,y)=(0,0))、I0(1,0)、I0(2,0)、・・・、I0(H0-1,V0-1)の順に撮像信号入力部133に入力され、順次、入力バッファ134に転送される。また、各座標(x,y)における強度補正係数ks(x,y)を用いて、下記式(8)のように強度補正が行われる。なお、強度補正係数ks(x,y)は、検査工程などにおいて特定チャート(例えば、白色チャート)を撮影し決定され、EEPROMやフラッシュメモリに保存される。
I0(x,y) = ks(x,y) × I0(x,y) …(8)
入力バッファ134は、DRAM(Dynamic Random Access Memory)などにより構成され、撮像信号入力部133から入力された撮像信号I0(x,y)を保存する。
前処理部135は、ロジック回路、DRAMなどから構成される。この前処理部135においては、前処理演算部135eにより入力バッファ134に保存された撮像信号I0から各レンズ部により結像された被写体像に係る画像を切り出し、歪曲補正処理を行い、第1のレンズ部131aに対応する第1の撮像信号I1(x,y)、第2のレンズ部131bに対応する第2の撮像信号I2(x,y)、第3のレンズ部に対応する第3の撮像信号I3(x,y)、および第4のレンズ部に対応する第4の撮像信号I4(x,y)を生成する。これらの撮像信号はそれぞれ第1の中間バッファ135a、第2の中間バッファ135b、第3の中間バッファ135c、および第4の中間バッファ135dに転送され、保存される。そして、下記式(9)のように、座標変換テーブルtx1(x,y)、ty1(x,y)に基づき撮像信号I0(x,y)から第1の撮像信号I1(x,y)が生成される。すなわち、座標(tx1(x,y), ty1(x,y))の撮像信号I0が第1の撮像信号I1(x,y)となる。座標(tx1(x,y), ty1(x,y))は、小数点を持ってもよい。その場合、座標変換テーブルtx1(x,y)の整数部分をtx1i(x,y)とし、小数部分をtx1f(x,y)として、下記式(10)のように4画素を利用し演算する。同様に、下記式(11)のように、座標変換テーブルtx2(x,y)、ty2(x,y)に基づき撮像信号I0(x,y)から第2の撮像信号I2(x,y)が生成され、下記式(12)のように、座標変換テーブルtx3(x,y)、ty3(x,y)に基づき撮像信号I0(x,y)から第3の撮像信号I3(x,y)が生成され、下記式(13)のように、座標変換テーブルtx4(x,y)、ty4(x,y)に基づき撮像信号I0(x,y)から第4の撮像信号I4(x,y)が生成される。なお、座標変換テーブルtx1(x,y)、ty1(x,y)、tx2(x,y)、ty2(x,y)、tx3(x,y)、ty3(x,y)、tx4(x,y)、ty4(x,y)は、後述の温度補償演算部139bにより生成される。
I1(x,y) = I0(tx1(x,y),ty1(x,y)) …(9)
I1(x,y) = [1 - tx1f(x,y)] × [1 - ty1f(x,y)] × I0(tx1i(x,y),ty1i(x,y))
+ tx1f(x,y) × [1 - ty1f(x,y)] ×I0(tx1i(x,y)+1,ty1i(x,y))
+ [1 - tx1f(x,y)] × ty1f(x,y) ×I0(tx1i(x,y),ty1i(x,y)+1)
+ tx1f(x,y) × ty1f(x,y) ×I0(tx1i(x,y)+1,ty1i(x,y)+1) …(10)
I2(x,y) = I0(tx2(x,y),ty2(x,y)) …(11)
I3(x,y) = I0(tx3(x,y),ty3(x,y)) …(12)
I4(x,y) = I0(tx4(x,y),ty4(x,y)) …(13)
歪みがなく、温度によるレンズの膨張がない場合、図8のように、第1の撮像信号I1(x,y)は、原点を(x01,y01)として、x軸方向にH1画素、y軸方向にV1画素だけ撮像信号I0を切り出した領域の画像を示す信号であり、第2の撮像信号I2(x,y)は、原点を(x02,y02)として、x軸方向にH1画素、y軸方向にV1画素だけ撮像信号I0を切り出した領域の画像を示す信号である。また、第3の撮像信号I3(x,y)は、原点を(x03,y03)として、x軸方向にH1画素、y軸方向にV1画素だけ撮像信号I0を切り出した領域の画像を示す信号であり、第4の撮像信号I4(x,y)は、原点を(x04,y04)として、x軸方向にH1画素、y軸方向にV1画素だけ撮像信号I0を切り出した領域の画像を示す信号である。
第1の中間バッファ135aは、DRAMなどから構成され、座標変換テーブルtx1(x,y)、ty1(x,y)を用いた座標変換により歪曲補正処理された第1の撮像信号I1を順次読み込み、H1*V1画素(x軸方向にH1画素、y軸方向にV1画素)のデータを保存する。第2の中間バッファ135bは、DRAMなどから構成され、座標変換テーブルtx2(x,y)、ty2(x,y)を用いた座標変換により歪曲補正処理された第2の撮像信号I2を順次読み込み、H1*V1画素(x軸方向にH1画素、y軸方向にV1画素)のデータを保存する。また、第3の中間バッファ135cは、DRAMなどから構成され、座標変換テーブルtx3(x,y)、ty3(x,y)を用いた座標変換により歪曲補正処理された第3の撮像信号I3を順次読み込み、H1*V1画素(x軸方向にH1画素、y軸方向にV1画素)のデータを保存する。さらに、第4の中間バッファ135dは、DRAMなどから構成され、座標変換テーブルtx4(x,y)、ty4(x,y)を用いた座標変換により歪曲補正処理された第4の撮像信号I4を順次読み込み、H1*V1画素(x軸方向にH1画素、y軸方向にV1画素)のデータを保存する。
演算部136は、SRAM(Static Random Access Memory)から構成された第1の演算バッファ141a及び第2の演算バッファ141bと、ロジック回路やCPUなどから構成された視差演算部142と、ロジック回路やCPUなどから構成された距離演算部143とから構成される。演算部136は、第1の撮像信号I1、第2の撮像信号I2、第3の撮像信号I3、および第4の撮像信号I4をブロック単位で読み込み、これらの撮像信号を第1の演算バッファ141a及び第2の演算バッファ141bに保存する。そして、視差演算部142において第1の演算バッファ141a及び第2の演算バッファ141bのデータなどに基づき視差を演算し、この視差に基づき距離演算部143において距離を演算し、求められた距離データを出力バッファ137に転送する。この動作の詳細は、後述する。
出力バッファ137は、DRAMなどから構成され、演算部136から転送された画像データと距離データとを保存し、入出力部138に順次転送する。
入出力部138は、上位CPU(図示せず)との間で通信を行うとともに、上位CPU、外部メモリ(図示せず)、及び液晶ディスプレイなどの外部表示装置(図示せず)に対して、画像データ及び距離データを出力する。
温度センサ信号入力部139aは、ADC(Analog Digital Converter:アナログ・デジタル変換器)などから構成され、温度センサ126からアナログ電圧信号である温度センサ信号の入力を受ける。そして、温度センサ信号入力部139aは、入力されたアナログ信号をデジタル値に変換し、その値を温度値Thとして温度補償演算部139bに出力する。
温度補償演算部139bは、温度値Thに基づき、前処理部135にて利用される座標変換テーブルtx1(x,y)、ty1(x,y)、tx2(x,y)、ty2(x,y)、tx3(x,y)、ty3(x,y)、tx4(x,y)、ty4(x,y)を生成する。この座標変換テーブルを用いた変換処理により、各レンズ部113a〜113dの光軸の移動量が推定されることになる。以下、この座標変換テーブルの生成の詳細について説明する。
レンズアレイ113の温度が上昇した場合、各レンズ部113a〜113dが膨張するため、図2において矢印で示すように各レンズ部113a〜113dの光軸中心がレンズ外側に移動する。このレンズ膨張に伴う光軸間の間隔の変化は、下記式(14)及び(15)で表される。ここで、dbxは温度上昇に伴うレンズ部の光軸間の間隔のx軸方向の変化量であり、撮像素子123の画素間隔を単位とする。また、dbyは温度上昇に伴うレンズ部の光軸間の間隔のy軸方向の変化量であり、撮像素子123の画素間隔を単位とする。また、Dxは基準温度Th0におけるx軸方向のレンズ部の光軸間の間隔であり、aLはレンズ部113の熱線膨張率であり、aSは撮像素子123の熱線膨張率である。また、Thは前述のようにセンサ温度であり、Th0は基準温度であり、pは撮像素子123の画素間隔であり、Dyは基準温度Th0におけるy軸方向のレンズ部の光軸間の間隔である。
dbx = Dx × (aL - aS) × (Th - Th0) / p …(14)
dby = Dy × (aL - aS) × (Th - Th0) / p …(15)
レンズアレイ113は略円形であるため、温度上昇に伴い各レンズ部は等方的に膨張する。すなわち、図8に示すように、温度上昇に伴うレンズ部の光軸間の間隔の変化の半分(x軸方向にdbx/2、y軸方向にdby/2)だけ移動する。そこで、第1の撮像信号I1(x,y)用の変換テーブルtx1(x,y)及びty1(x,y)を下記式(16)、(17)及び(18)のように生成する。ここで、(x01,y01)は撮像信号I0における歪みがないときの原点座標、(xc1,yc1)は撮像信号I1(x,y)における基準温度Th0での光軸中心座標、(-dbx/2,-dby/2)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(18)における^2は二乗値を示す。また、第2の撮像信号I2(x,y)用の変換テーブルtx2(x,y)及びty2(x,y)を下記式(19)、(20)、及び(21)のように生成する。ここで、(x02,y02)は撮像信号I0における歪みがないときの原点座標、(xc2,yc2)は撮像信号I2(x,y)における基準温度Th0での光軸中心座標、(+dbx/2,-dby/2)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(21)における^2は二乗値を示す。また、第3の撮像信号I3(x,y)用の変換テーブルtx3(x,y)及びty3(x,y)を下記式(22)、(23)、及び(24)のように生成する。ここで、(x03,y03)は撮像信号I0における歪みがないときの原点座標、(xc3,yc3)は撮像信号I3(x,y)における基準温度Th0での光軸中心座標、(-dbx/2,+dby/2)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(24)における^2は二乗値を示す。さらに、第4の撮像信号I4(x,y)用の変換テーブルtx4(x,y)及びty4(x,y)を下記式(25)、(26)、及び(27)のように生成する。ここで、(x04,y04)は撮像信号I0における歪みがないときの原点座標、(xc4,yc4)は撮像信号I4(x,y)における基準温度Th0での光軸中心座標、(+dbx/2,+dby/2)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(27)における^2は二乗値を示す。
tx1(x,y) = x01 + xc1 + [x - xc1 - dbx/2]×(1 + kd2 × r2 + kd4 × r4) …(16)
ty1(x,y) = y01 + yc1 + [y - yc1 - dby/2]×(1 + kd2 × r2 + kd4 × r4) …(17)
r2 = [x - xc1 - dbx/2]^2+ [y - yc1 - dby/2]^2、r4 = r2^2 …(18)
tx2(x,y) = x02 + xc2 + [x - xc2 + dbx/2]×(1 + kd2 × r2 + kd4 × r4) …(19)
ty2(x,y) = y02 + yc2 + [y - yc2 - dby/2]×(1 + kd2 × r2 + kd4 × r4) …(20)
r2 = [x - xc2 + dbx/2]^2+ [y - yc2 - dby/2]^2、r4 = r2^2 …(21)
tx3(x,y) = x03 + xc3 + [x - xc3 - dbx/2]×(1 + kd2 × r2 + kd4 × r4) …(22)
ty3(x,y) = y03 + yc3 + [y - yc3 + dby/2]×(1 + kd2 × r2 + kd4 × r4) …(23)
r2 = [x - xc3 - dbx/2]^2+ [y - yc3 + dby/2]^2、r4 = r2^2 …(24)
tx4(x,y) = x04 + xc4 + [x - xc4 + dbx/2]×(1 + kd2 × r2 + kd4 × r4) …(25)
ty4(x,y) = y04 + yc4 + [y - yc4 + dby/2]×(1 + kd2 × r2 + kd4 × r4) …(26)
r2 = [x - xc4 + dbx/2]^2+ [y - yc4 + dby/2]^2、r4 = r2^2 …(27)
なお、歪みが生じない場合、上記の座標変換テーブルを用いてなされる座標変換は、下記式(28)乃至(31)のように、撮像信号I0(x,y)から画像を切り出し、その後、下記式(32)乃至(35)のように、平行移動を行うことに相当する。
I1(x, y) = I0(x + x01, y + y01) …(28)
I2(x, y) = I0(x + x02, y + y02) …(29)
I3(x, y) = I0(x + x03, y + y03) …(30)
I4(x, y) = I0(x + x04, y + y04) …(31)
I1(x, y) = I1(x-dbx/2, y-dby/2) …(32)
I2(x, y) = I2(x+dbx/2, y-dby/2) …(33)
I3(x, y) = I3(y-dbx/2, x+dby/2) …(34)
I4(x, y) = I4(x+dbx/2, y+dby/2) …(35)
図9Aは、本発明の実施の形態1に係る撮像装置の動作を示すフローチャートである。SLSI125のシステム制御部131により、撮像装置101は、このフローチャートのとおりに動作される。
ステップS1010において、撮像装置101は動作を開始する。例えば、上位CPU(図示せず)が、入出力部136を介し、撮像装置101に動作の開始を命令することにより、撮像装置101は、動作を開始する。次に、ステップS1020を実行する。
ステップS1020において、撮像信号を入力する。システム制御部131の命令により、撮像素子駆動部132が電子シャッターの動作及び撮像信号の転送を行うための信号を随時出力する。その結果、x軸方向にH0画素分、y軸方向にV0画素分の撮像信号I0(x,y)が撮像信号入力部133に入力される。この場合、撮像信号入力部133には、撮像信号I0(x,y)がI0(0,0)((x,y)=(0,0))、I0(1,0)、I0(2,0)、・・・、I0(H0-1,V0-1)の順に入力され、順次、これらの信号が入力バッファ134に転送される。次に、ステップS1030を実行する。
ステップS1030において、温度センサ信号入力部139aは、温度センサ126から温度センサ信号の入力を受け、これをデジタル値に変換して温度値Thとして温度補償演算部139aに出力する。次に、ステップS1040を実行する。
ステップS1040において、温度補償演算部139bは、前述のようにして、温度値Thに基づき、前処理部135で用いられる座標変換テーブルtx1(x,y)、ty1(x,y)、tx2(x,y)、ty2(x,y)、tx3(x,y)、ty3(x,y)、tx4(x,y)、ty4(x,y)を生成する。次に、ステップS1050を実行する。
ステップS1050において、前処理演算部135eは、前述のようにして、入力バッファ134に保存された撮像信号I0から各レンズ部により結像された被写体像に係る画像を切り出し、平行移動処理(温度上昇に伴うレンズ部の光軸間の間隔の変化の半分(x軸方向にdbx/2、y軸方向にdby/2)だけ光軸がレンズアレイ113の外側に平行移動するように座標変換テーブルを補償することにより実現される平行移動処理)と、歪曲補正とを行い、第1のレンズ部113aに対応する第1の撮像信号I1(x,y)、第2のレンズ部113bに対応する第2の撮像信号I2(x,y)、第3のレンズ部113cに対応する第3の撮像信号I3(x,y)、および第4のレンズ部113dに対応する第4の撮像信号I4(x,y)を生成する。これらの撮像信号はそれぞれ第1の中間バッファ135a、第2の中間バッファ135b、第3の中間バッファ135c、および第4の中間バッファ135dに転送され、保存される。
ここで、温度補償により歪曲補正の精度が向上することを説明する。図9Bは、平行移動処理と歪曲補正処理との前後の撮像信号を示す図である。図9Bにおいては、中央部の十字が太く表された格子が描画された平面板である被写体を撮像したときの撮像信号(画像)を示している。簡略化のため、第1の撮像信号の被写体像のみ示し、第2乃至第4の撮像信号の被写体像を省略している。ここで、撮像装置101は、この平面板に正対させ、第1のレンズ部113aの光軸上に中央部の十字の交点が位置するように配置する。図9B(a)は、基準温度における撮像信号を示す図であり、図9B(b)は、平行移動処理と歪曲補正処理とを行わないときの第1の撮像信号を示す図である。図9B(b)に示すように、基準温度のとき、中央に太い十字が位置する。図9B(c)は、平行移動処理を行わず歪曲補正処理を行うときの第1の撮像信号を示す図である。図9B(c)に示すように、歪曲補正により、格子が再現される。図9B(d)は、基準温度よりも温度が高いときにおける撮像信号を示す図であり、図9B(e)は、平行移動処理と歪曲補正処理とを行わないときの第1の撮像信号を示す図である。図9B(e)に示すように、基準温度より温度が高いときには、第1のレンズ部113aの光軸が左上に移動するに伴い被写体像が左上に移動するため、中央よりも左上に太い十字の交点が移動する。図9B(f)は、平行移動処理を行わず歪曲補正処理を行うときの第1の撮像信号を示す図である。図9B(f)に示すように、歪曲補正の光軸中心と歪曲の中心とがずれるため、格子が完全には再現されず、歪みが残る。図9B(g)は、基準温度よりも温度が高いときにおける撮像信号を示す図であり、図9B(h)は、平行移動処理を行い、歪曲補正処理を行わないときの第1の撮像信号を示す図である。図9B(h)に示すように、基準温度より温度が高いのとき、第1のレンズ部113aの光軸が左上に移動するに伴い被写体像が左上に移動するが、平行移動処理により左上への移動が補償され、中央に太い十字の交点が位置する。図9B(i)は、平行移動処理と歪曲補正処理とを行うときの第1の撮像信号を示す図である。図9B(i)に示すように、歪曲補正の光軸中心と歪曲の中心とが一致するため、格子が再現される。このように、温度が高くなると光軸原点が外側に平行移動するように座標変換テーブルを設定し平行移動を行うことにより、歪曲の補正精度を向上し、ひいては、視差演算精度を向上し、測距演算精度を向上する。
次に、温度補償により被写体像が動かないことを説明する。図9Cは、平行移動処理の前後の撮像信号(画像)を示す図である。図9Cにおいて、説明を簡単にするために、各レンズ部(第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、および第4のレンズ部113d)が歪曲を持たず、それゆえ歪曲補正を行わないときの撮像信号を示す。図9Cにおいて、撮像装置101を車両前方に配置し、車両前方の被写体として車線のみが撮像されたときの撮像信号を示している。図9C(a)は、基準温度における撮像信号を示す図であり、図9C(b)は、平行移動処理を行わないときの第1の撮像信号を示す図である。図9C(b)に示すように、基準温度のとき、中央に被写体が位置する。図9C(d)は、基準温度よりも温度が高いときにおける撮像信号を示す図であり、図9C(e)は、平行移動処理を行わないときの第1の撮像信号を示す図である。図9C(e)のように、基準温度より温度が高いときには、第1のレンズ部113aの光軸が左上に移動するに伴い被写体像が左上に移動する。図9C(g)は、基準温度よりも温度が高いときにおける撮像信号を示す図であり、図9C(h)は、平行移動処理を行うときの第1の撮像信号を示す図である。図9C(h)に示すように、基準温度より温度が高いとき、第1のレンズ部113aの光軸が左上に移動するに伴い被写体像が左上に移動するが、平行移動処理により左上への移動が補償され、中央に被写体が位置する。このように、温度が高くなると光軸原点が外側に平行移動するように座標変換テーブルを設定し平行移動を行うことにより、被写体の画像中心の移動を抑制する。次に、ステップS1100を実行する。
ステップS1100において、演算部136が、距離データを生成し、順次、第2の出力バッファ137bに転送する。この動作の詳細は後述する。また、演算部136は、距離データの他に画像データを生成し、順次、第1の出力バッファ137aに転送する。次に、ステップS1910を実行する。
ステップS1910において、外部にデータを出力する。入出力部138は、第1の出力バッファ137a上の画像データ、および第2の出力バッファ137b上の距離データを、上位CPU及び外部表示装置に出力する。次に、ステップS1920を実行する。
ステップS1920において、動作を終了するかどうかを判断する。例えば、システム制御部131は、入出力部136を介し、上位CPUと通信し、動作を終了するかどうかの命令を要求する。そして、上位CPUが終了を命令した場合(S1920でYES)、撮像装置101はステップS1930へ進み、動作を終了する。一方、上位CPUが終了を命令しなかった場合(S1920でNO)、撮像装置101は、動作を継続し、次に、ステップS1020を実行する。すなわち、上位CPUが終了を命令しない限り、ステップS1020、ステップS1030、ステップS1040、ステップS1050、ステップS1100、およびステップS1910のループの実行が継続される。
次に、ステップS1100における動作の詳細を説明する。図10は、本発明の実施の形態1に係る撮像装置の演算部の動作を示すフローチャートである。図10のフローチャートは、ステップS1100の動作の詳細を示す。ステップS1100の演算では、まず、ステップS1210を実行する。
ステップS1210において、演算の動作を開始する。次に、ステップS1220を実行する。
ステップS1220において、第1の撮像信号と第2の撮像信号とを利用した視差演算を実行する。図11は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号とを利用した視差演算の動作を示すフローチャートである。図11のフローチャートは、ステップS1220の動作の詳細を示す。ステップS1220の演算では、まず、ステップS1310を実行する。
ステップS1310において、第1の撮像信号と第2の撮像信号とを利用した視差演算の動作を開始する。次に、ステップS1320を実行する。
ステップS1320において、ブロックインデックスibを0に初期化する。次に、ステップS1330を実行する。
ステップS1330において、ブロックを選択する。図12は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号とを利用した視差演算における第1の撮像信号の分割ブロック及び演算順番を説明するための図であり、図13は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号とを利用した視差演算における第2の撮像信号の分割ブロック及び演算順番を説明するための図である。
図12に示すように、第1の撮像信号I1は、x軸方向にHB画素、y軸方向にVB画素の長方形状のブロックに分割される。各ブロックは、x軸方向にHB画素、y軸方向にVB画素ずれて配置されるため、各ブロックはx軸方向、y軸方向ともに重なる部分はない。その結果、第1の撮像信号I1は、x軸方向にNh個、y軸方向にNv個のブロックを持つことになる。
第2の撮像信号I2は、図13(b)に示すようなx軸方向に(HB+SB)画素、y軸方向にVB画素の長方形状のブロックに分割される。各ブロックは、x軸方向にHB画素、y軸方向にVB画素ずれて配置されるため、x軸方向では隣のブロックと重なるものの、y軸方向では隣のブロックと重ならない。その結果、図13(a)に示すように、第2の撮像信号I2は、x軸方向にNh個、y軸方向にNv個のブロックを持つことになる。なお、図面の右側のブロックにおいてx軸方向に(HB+SB)画素が取れない場合、適宜x軸方向の右端部が削除される。以下では、HB=32、VB=32の場合の例を示す。
図12及び図13において、各ブロックの上段に記述された数字はブロックインデックスibを示す。また、図12及び図13において、各ブロックの下段に記述された座標(ibx、iby)は、各ブロックがx軸方向にibx番目、y軸方向にiby番目のブロックであることを示す。ここで、ibxは0からNh−1まで、ibyは0からVh−1まで存在する。ステップS1330においては、図12及び図13でブロックインデックスibにより示されるブロックB(ib)(座標(ibx、iby)で示されるブロックB(ibx,iby))が選択される。次に、ステップS1340を実行する。
ステップS1340において、撮像信号を転送する。より具体的には、ステップS1330において選択されたブロックB(ibx,iby)に該当する座標の第1の撮像信号I1を式(9)に従い演算し、その結果得られた信号を第1の演算バッファ141aに転送する。第1の演算バッファ141aの座標(x,y)における値をBc1(x,y)とする。ここで、HB=32、VB=32であるため、x=0〜31、y=0〜31である。
また、ステップS1330において選択されたブロックB(ibx,iby)に該当する座標の第2の撮像信号I2を式(11)に従い演算し、その結果得られた信号を第2の演算バッファ141bに転送する。第2の演算バッファ141bの座標(x,y)における値をBc2(x,y)とする。ここで、HB=32、VB=32であるため、x=0〜31+SB、y=0〜31である。
例えば、ib=0のとき、第1の演算バッファ141aには、座標(0,0)と座標(31,31)とで囲まれる1024画素の撮像信号I1が転送され、第2の演算バッファ141bには、図13において右斜上となる斜線が描かれた座標(0,0)と座標(31+SB,31)とで囲まれる(1024+32*SB)画素の撮像信号I2が転送される。
次に、ib=1のとき、第1の演算バッファ141aには、座標(32,0)と座標(63,31)とで囲まれる1024画素の撮像信号I1が転送される。またこの場合、第2の演算バッファ141bには、図13において右斜下となる斜線が描かれた座標(32,0)と座標(63+SB,31)とで囲まれる(1024+32*SB)画素の撮像信号I2が必要となるが、ib=0と重なる部分(座標(32,0)と座標(31+SB,31)とで囲まれる32*SB画素の領域)はすでに第2の演算バッファ141bに転送されているため、新たに座標(32+SB,0)と座標(63+SB,31)とで囲まれる1024画素のみを転送すればよい。なお、適宜、出力用の画像データとして、第1の出力バッファ137aにも転送する。次に、ステップS1350を実行する。
ステップS1350において、視差演算を実行する。まず、視差評価値R(kx)を演算する。ここで、kxは画像をどれだけずらすかを示すずらし量であり、kx=0、1、2、…、SBのように変化させる。図14は、本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第2の撮像信号を利用したときの視差評価値の演算領域を説明するための図である。図14のように、Bc1で示される領域は、第1の演算バッファ141aの領域であり、Bc2で示される領域は、第2の演算バッファ141bにおいて、Bc1で示されるブロックからx軸方向にずらし量kxだけ移動した領域である。そして、ずらし量kx=0からSBについて、下記式(36)に示される絶対値差分総和(SAD:Sum of Absolute Differences)を演算し、視差評価値R(kx)とする。ここで、ΣΣはx軸方向及びy軸方向の総和を示し、x軸方向に0〜HB−1(ここでは31)、y軸方向に0〜VB−1(ここでは31)まで変化させる。
R(kx) = ΣΣ|Bc1(x,y) - Bc2(x+k,y)| …(36)
この視差評価値R(kx)は、第1の演算バッファ141aのデータBc1と、x軸方向にkxだけ離れた領域における第2の演算バッファ141bのデータBc2とがどれだけ相関があるかを示し、値が小さいほど相関が大きい(よく似ている)ことを示す。ここで、第1の演算バッファ141aのデータBc1は、第1の撮像信号I1を転送したものであり、第2の演算バッファ141bのデータBc2は、第2の撮像信号I2を転送したものであるため、視差評価値R(kx)は、第1の撮像信号I1と対応する第2の撮像信号I2とがどれだけ相関があるかを示すことになる。
図15は、本発明の実施の形態1に係る撮像装置の第1の撮像信号及び第2の撮像信号を利用したときの視差演算における視差と視差評価値との関係を説明するための図である。図15のように、視差評価値R(kx)はずらし量kxの値によって変化し、ずらし量kx=Δのとき極小値を持つ。第1の演算バッファ141aのデータBc1は、当該データBc1をx軸方向にΔだけ移動した領域に存在する第2の演算バッファ141bのデータBc2と最も相関がある(最も似ている)ことを示す。したがって、第1の演算バッファ141aのデータBc1と第2の演算バッファ141bのデータBc2とのx軸方向の視差がΔであることが分かる。そして、このときの視差Δを、第1の撮像信号及び第2の撮像信号を利用したときのブロックB(ibx,iby)における視差値Δ12(ibx,iby)として保存する。
次に、第1の撮像信号と第2の撮像信号を利用したときのブロックB(ibx,iby)における視差値Δ12(ibx,iby)の信頼度を演算する。図16は、本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第2の撮像信号とを利用したときの視差演算における視差評価値の信頼度の演算領域を説明するための図である。データBc1は第1の演算バッファ141aの領域内に格納されたデータである。また、データBc2は、データBc1をx軸方向にΔ12(ibx,iby)だけ移動した第2の演算バッファ141bにおけるデータである。そして、下記式(37)のように、それぞれの領域のデータBc1(x,y)、Bc2(x+Δ12(ibx,iby),y)について、正規化相関係数を、第1の撮像信号及び第2の撮像信号を利用したときのブロックB(ibx,iby)における信頼度E12(ibx,iby)とする。ΣΣはx軸方向及びy軸方向の総和を示し、x軸方向に0〜HB−1(ここでは31)、y軸方向に0〜VB−1(ここでは31)まで変化させる。次に、ステップS1360を実行する。
E12(ibx,iby) = ΣΣ(Bc1(x,y)-avg1)(Bc2(x+Δ12(ibx,iby),y)-avg2)
/ ΣΣ(Bc1(x,y)-avg1)(Bc1(x,y)-avg1)
/ ΣΣ(Bc2(x+Δ12(ibx,iby),y)-avg2)(Bc2(x+Δ12(ibx,iby),y)-avg2)
avg1 = ΣΣBc1(x,y)/(HB*VB)
avg2 = ΣΣBc2(x+Δ12(ibx,iby),y)/(HB*VB) …(37)
ステップS1360において、ブロックインデックスibに1を加える。次に、ステップS1370を実行する。
ステップS1370において、第1の撮像信号と第2の撮像信号とを利用した視差演算を終了するかどうかを判断する。ブロックインデックスibがNh*Nv未満のとき(S1370でNO)、次のブロックの視差を演算するために、ステップS1330に戻る。一方、ブロックインデックスibがNh*Nv以上のとき(S1370でYES)、全てのブロックの視差を演算したと判断し、次に、ステップS1380を実行する。
ステップS1380において、第1の撮像信号と第2の撮像信号とを利用した視差演算を終了し、上位ルーチンへ戻る。
このようにして、第1の撮像信号と第2の撮像信号とを利用した視差演算において、ブロックインデックスibで示される32x32画素のブロックB(ibx,iby)について、視差値Δ12(ibx,iby)とその信頼度E12(ibx,iby)とが求められた。ここで、12は第1の撮像信号と第2の撮像信号とを利用していることを示し、(ibx,iby)は図12において各ブロックの下段に示される座標を示す(ibxは0からNh−1まで、ibyはVh−1まで変化する)。次に、図10のステップS1230を実行する。
ステップS1230において、第1の撮像信号と第3の撮像信号とを利用した視差演算を実行する。図17は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第3の撮像信号とを利用した視差演算の動作を示すフローチャートである。図17のフローチャートは、ステップS1230の動作の詳細を示す。ステップS1230の演算では、まず、ステップS1410を実行する。
ステップS1410において、第1の撮像信号と第3の撮像信号とを利用した視差演算の動作を開始する。次に、ステップS1420を実行する。
ステップS1420において、ブロックインデックスibを0に初期化する。次に、ステップS1430を実行する。
ステップS1430において、ブロックを選択する。第1の撮像信号のブロック分割は、ステップS1330と同様であり、説明を省略する。図18は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第3の撮像信号とを利用した視差演算における第3の撮像信号の分割ブロックと演算順番を説明するための図である。第3の撮像信号I3は、x軸方向にHB画素、図18(b)に示すようにy軸方向に(VB+SB)画素の長方形状のブロックに分割される。各ブロックは、x軸方向にHB画素、y軸方向にVB画素ずれて配置されるため、y軸方向では隣のブロックと重なるものの、x軸方向では隣のブロックと重ならない。その結果、図18(a)に示すように、第3の撮像信号I3は、x軸方向にNh個、y軸方向にNv個のブロックを持つことになる。なお、図面の下側のブロックにおいてy軸方向に(VB+SB)画素を取れないブロックは、適宜y軸方向の下端部が削除される。以下では、HB=32、VB=32の場合の例を示す。
図18において、各ブロックの上段に記述された数字はブロックインデックスibを示す。また、図18において、各ブロックの下段に記述された座標(ibx、iby)は、各ブロックがx軸方向にibx番目、y軸方向にiby番目のブロックであることを示す。ここで、ibxは0からNh−1まで、ibyは0からVh−1まで存在する。ステップS1430において、図12及び図18においてブロックインデックスibで示されるブロックB(ib)(座標(ibx、iby)で示されるブロックB(ibx,iby))が選択される。次に、ステップS1440を実行する。
ステップS1440において、撮像信号を転送する。より具体的には、ステップS1430において選択されたブロックB(ibx,iby)に該当する座標の第1の撮像信号I1を式(9)に従い演算し、その結果得られた信号を第1の演算バッファBc1に転送する。第1の演算バッファ141aの座標(x,y)における値をBc1(x,y)とする。ここで、HB=32、VB=32であるため、x=0〜31、y=0〜31である。
また、ステップS1430において選択されたブロックB(ibx,iby)に該当する座標の第3の撮像信号I3を式(12)に従い演算し、その結果得られた第2の演算バッファ141bに転送する。第2の演算バッファ141bの座標(x,y)における値をBc2(x,y)とする。
ここで、HB=32、VB=32であるため、x=0〜31、y=0〜31+SBである。
例えば、ib=0のとき、第1の演算バッファ141aには、座標(0,0)と座標(31,31)とで囲まれる1024画素の撮像信号I1が転送され、第2の演算バッファ141bには、図18において右斜上となる斜線が描かれた座標(0,0)と座標(31,31+SB)とで囲まれる(1024+32*SB)画素の撮像信号I2が転送される。
次に、ib=1のとき、第1の演算バッファ141aには、座標(0,32)と座標(31,63)とで囲まれる1024画素の撮像信号I1が転送される。またこの場合、第2の演算バッファ141bには、図18において右斜下となる斜線が描かれた座標(0,32)と座標(31,63+SB)とで囲まれる(1024+32*SB)画素の撮像信号I2が必要となるが、ib=0と重なる部分(座標(0,32)と座標(31,31+SB)で囲まれる32*SB画素の領域)はすでに第2の演算バッファ141aに転送されているため、新たに座標(0,32+SB)と座標(31,63+SB)とで囲まれる1024画素のみを転送すればよい。次に、ステップS1450を実行する。
ステップS1450において、視差演算を実行する。まず、視差評価値R(ky)を演算する。ここで、kyは画像をどれだけずらすかを示すずらし量であり、ky=0、1、2、…、SBのように変化させる。図19は、本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第3の撮像信号とを利用したときの視差評価値の演算領域を説明するための図である。図19のように、Bc1で示される領域は、第1の演算バッファ141aの領域であり、Bc2で示される領域は、第2の演算バッファ141bにおいて、Bc1で示されるブロックからy軸方向にずらし量kyだけ移動した領域である。そして、ずらし量ky=0からSBについて、下記式(38)に示される絶対値差分総和を演算し、視差評価値R(ky)とする。ここで、ΣΣはx軸方向及びy軸方向の総和を示し、x軸方向に0〜HB−1(ここでは31)、y軸方向に0〜VB−1(ここでは31)まで変化させる。
R(ky) = ΣΣ|Bc1(x,y) -Bc2(x,y+k)| …(38)
この視差評価値R(ky)は、第1の演算バッファ141aのデータBc1と、y軸方向にkyだけ離れた領域における第2の演算バッファ141bのデータBc2とがどれだけ相関があるかを示し、値が小さいほど相関が大きい(よく似ている)ことを示す。ここで、第1の演算バッファ141aのデータBc1は、第1の撮像信号I1を転送したものであり、第2の演算バッファ141bのデータBc2は、第3の撮像信号I3を転送したものであるため、視差評価値R(ky)は、第1の撮像信号I1と対応する第3の撮像信号I3とがどれだけ相関があるかを示すことになる。
図20は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第3の撮像信号とを利用したときの視差演算における視差と視差評価値との関係を説明するための図である。図20のように、視差評価値R(ky)はずらし量kyの値によって変化し、ずらし量ky=Δのとき極小値を持つ。第1の演算バッファ141aのデータBc1のデータは、当該データBc1をy軸方向にΔだけ移動した領域に存在する第2の演算バッファ141bのデータBc2と最も相関がある(最も似ている)ことを示す。したがって、第1の演算バッファ141aのデータBc1と第2の演算バッファ141bのデータBc2とのy軸方向の視差がΔであることが分かる。そして、このときの視差Δを第1の撮像信号及び第3の撮像信号を利用したときのブロックB(ibx,iby)における視差値Δ13(ibx,iby)として保存する。
次に、第1の撮像信号と第3の撮像信号を利用したときのブロックB(ibx,iby)における視差値Δ13(ibx,iby)の信頼度を演算する。図21は、本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第3の撮像信号とを利用したときの視差演算における視差評価値の信頼度の演算領域を説明するための図である。Bc1で示される領域は第1の演算バッファ141aの領域であり、Bc2で示される領域は、第2の演算バッファ141bにおいてy軸方向にΔ13(ibx,iby)だけ移動した領域である。そして、下記式(39)のように、それぞれの領域のデータBc1(x,y)、Bc2(x,y+Δ13(ibx,iby))について、正規化相関係数を第1の撮像信号と第3の撮像信号を利用したときのブロックB(ibx,iby)における信頼度E13(ibx,iby)とする。ΣΣはx軸方向及びy軸方向の総和を示し、x軸方向に0〜HB−1(ここでは31)、y軸方向に0〜VB−1(ここでは31)まで変化させる。次に、ステップS1460を実行する。
E13(ibx,iby) = ΣΣ(Bc1(x,y)-avg1)(Bc2(x,y+Δ13(ibx,iby))-avg2)
/ ΣΣ(Bc1(x,y)-avg1)(Bc1(x,y)-avg1)
/ ΣΣ(Bc2(x,yΔ13(ibx,iby))-avg2)(Bc2(x,y+Δ13(ibx,iby))-avg2)
avg1 = ΣΣBc1(x,y)/(HB*VB)
avg2 = ΣΣBc2(x,y+Δ13(ibx,iby))/(HB*VB) …(39)
ステップS1460において、ブロックインデックスibに1を加える。次に、ステップS1470を実行する。
ステップS1470において、第1の撮像信号と第3の撮像信号とを利用した視差演算を終了するかどうかを判断する。ブロックインデックスibがNh*Nv未満のとき(S1470でNO)、次のブロックの視差を演算するために、ステップS1430に戻る。一方、ブロックインデックスibがNh*Nv以上のとき(S1470でYES)、全てのブロックの視差を演算したと判断し、ステップS1480に進む。
ステップS1480において、第1の撮像信号と第3の撮像信号とを利用した視差演算を終了し、上位ルーチンへ戻る。このようにして、第1の撮像信号と第3の撮像信号とを利用した視差演算において、ブロックインデックスibで示される32x32画素のブロックB(ibx,iby)について、視差量Δ13(ibx,iby)とその信頼度E13(ibx,iby)とが求められた。ここで、13は第1の撮像信号と第3の撮像信号とを利用していることを示し、(ibx,iby)は図12において各ブロックの下段に示される座標を示す(ibxは0からNh−1まで、ibyはVh−1まで変化する)。次に、図10のステップS1240を実行する。
ステップS1240において、第1の撮像信号と第4の撮像信号とを利用した視差演算を実行する。図22は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第4の撮像信号とを利用した視差演算の動作を示すフローチャートである。図22のフローチャートは、ステップS1240の動作の詳細を示す。ステップS1240の演算では、まず、ステップS1510を実行する。
ステップS1510において、第1の撮像信号と第4の撮像信号とを利用した視差演算の動作を開始する。次に、ステップS1520を実行する。
ステップS1520において、ブロックインデックスibを0に初期化する。次に、ステップS1530を実行する。
ステップS1530において、ブロックを選択する。第1の撮像信号のブロック分割は、ステップS1320と同様であり、説明を省略する。図23は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第4の撮像信号とを利用した視差演算における第4の撮像信号の分割ブロックと演算順番を説明するための図である。図23おいて、第4の撮像信号I4は、図23(b)のような(HB+SB)*(VB+SB*Dy/Dx)-SB*SB*Dy/Dx画素のブロックに分割され、x軸方向にHB画素、y軸方向にVB画素ずれて配置され、x軸方向にNh個、y軸方向にNv個のブロックを持つ。また、図23において、図23(b)のようなブロックを取れないブロック(例えば、右上や右下や左下のブロック)は、適宜取れない部分が削除される(例えば、右上のブロックはHB*VBの長方形状のブロックとなる)。なお、実施の形態1では、以下、HB=32、VB=32の例を示す。また、第4の撮像信号I4のブロックの長さがx軸方向とy軸方向とで異なるように設定したが、これは、レンズ間隔がx軸方向とy軸方向とで異なり、視差の発生する大きさの比がDx:Dyとなることを考慮したためである。
図23において、各ブロックの上段に記述された数字はブロックインデックスibを示す。また、図23において、各ブロックの下段に記述された座標(ibx、iby)は、各ブロックがx軸方向にibx番目、y軸方向にiby番目のブロックであることを示す。ここで、ibxは0からNh−1まで、ibyは0からVh−1まで存在する。ステップS1530において、図23でブロックインデックスibで示されるブロックB(ib)(座標(ibx、iby)で示されるブロックB(ibx,iby))が選択される。次に、ステップS1540を実行する。
ステップS1540において、撮像信号を転送する。より具体的には、ステップS1530において選択されたブロックB(ibx,iby)に該当する座標の第1の撮像信号I1を式(9)に従い演算し、その結果得られた信号を第1の演算バッファ141aに転送する。第1の演算バッファ141aの座標(x,y)における値をBc1(x,y)とする。ここで、HB=32、VB=32であるため、x=0〜31、y=0〜31である。
また、ステップS1530において選択されたブロックB(ibx,iby)に該当する座標の第4の撮像信号I4を式(13)に従い演算し、第2の演算バッファ141bに転送する。第2の演算バッファ141bの座標(x,y)における値をBc2(x,y)とする。ここで、HB=32、VB=32であるため、x=0〜31+SB、y=0〜31+SB*Dy/Dxである。
例えば、ib=0のとき、第1の演算バッファ141aには、座標(0,0)と座標(31,31)とで囲まれる1024画素の撮像信号I1が転送され、第2の演算バッファ141bには、図23において右斜下となる斜線が描かれた座標(0,0)と座標(31+SB,31+SB*Dy/Dx)とで囲まれる領域の撮像信号I4が転送される。
また、ib=1のとき、第1の演算バッファ141aには、座標(32,0)と座標(63,31)とで囲まれる1024画素の撮像信号I1が転送される。またこの場合、第2の演算バッファ141bには、図23において右斜下となる斜線が描かれた座標(32,0)と座標(63+SB,31+SB*Dy/Dx)とで囲まれる領域の撮像信号I4が必要となるが、ib=0と重なる部分はすでに第2の演算バッファ141bに転送されているため、重複部分は転送しなくてもよい。次に、ステップS1550を実行する。
ステップS1550において、視差演算を実行する。まず、視差評価値R(kx)を演算する。ここで、kxは画像をどれだけずらすかを示すずらし量であり、kx=0、1、2、・・・、SBのように変化させる。図24は、本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第4の撮像信号とを利用したときの視差評価値の演算領域を説明するための図である。図24のように、Bc1で示される領域は、第1の演算バッファ141aの領域であり、Bc2で示される領域は、第2の演算バッファ141bにおいて、Bc1で示されるブロックからx軸方向にkxだけy軸方向にずらし量kyだけ移動した領域である。そして、ずらし量kx=0からSBについて、下記式(40)に示される絶対値差分総和(SAD。Sum of Absolute Differences)を演算し、視差評価値R(ky)とする。ここで、ΣΣはx軸方向とy軸方向の総和を示し、x軸方向に0〜HB−1(ここでは31)、y軸方向に0〜VB−1(ここでは31)まで変化させる。なお、第1の撮像信号I1を結像するレンズ部113aと第4の撮像信号を結像するレンズ部113dとがx軸方向にDxだけy軸方向にDyだけ離れて配置され、発生する視差のx軸方向に対するy軸方向の比がDy/Dxとなるため、y軸方向のずらし量kyは下記式(41)のように、x軸方向のずらし量にDy/Dxを乗じた値とする。
R(k) = ΣΣ|Bc1(x,y) - Bc2(x+kx,y+ky)| …(40)
ky = kx * Dy / Dx …(41)
この視差評価値R(kx)は、第1の演算バッファ141aのデータBc1と、x軸方向にkxだけy軸方向にkyだけ離れた領域における第2の演算バッファ141bのデータBc2と
がどれだけ相関があるかを示し、値が小さいほど相関が大きい(よく似ている)ことを示す。ここで、第1の演算バッファ141aのデータBc1は、第1の撮像信号I1を転送したものであり、第2の演算バッファ141bのデータBc2は、第4の撮像信号I4を転送したものであるため、視差評価値R(kx)は、第1の撮像信号I1と対応する第4の撮像信号I4とがどれだけ相関があるかを示すことになる。
図25は、本発明の実施の形態1に係る撮像装置の第1の撮像信号と第4の撮像信号とを利用したときの視差演算における視差と視差評価値との関係を説明するための図である。図25のように、視差評価値R(kx)はずらし量kxの値によって変化し、ずらし量kx=Δのとき極小値を持つ。第1の演算バッファ141aのデータBc1は、当該データBc1をx軸方向にΔだけy軸方向にΔ×Dy/Dxだけ移動した領域に存在する第2の演算バッファ141bのデータBc2と最も相関がある(最も似ている)ことを示す。したがって、第1の演算バッファ141aのデータBc1と第2の演算バッファ141bのデータBc2とのx軸方向の視差がΔである(y軸方向の視差がΔ×Dy/Dxである)ことが分かる。そして、このときの視差Δを第1の撮像信号と第4の撮像信号とを利用したときのブロックB(ibx,iby)における視差値Δ14(ibx,iby)として保存する。
次に、第1の撮像信号と第4の撮像信号を利用したときのブロックB(ibx,iby)における視差値Δ14(ibx,iby)の信頼度を演算する。図26は、本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第4の撮像信号とを利用したときの視差演算における視差評価値の信頼度の演算領域を説明するための図である。データBc1は、第1の演算バッファ141aの領域内に格納されたデータである。また、データBc2は、データBc1をx軸方向にΔ14(ibx,iby)だけy軸方向にΔ14(ibx,iby)×Dy/Dxだけ移動した第2の演算バッファ141bにおけるデータである。そして、下記式(42)のように、それぞれの領域のデータBc1(x,y)、Bc2(x+Δ14(ibx,iby),y+Δ14(ibx,iby)×Dy/Dx)について、正規化相関係数を第1の撮像信号と第4の撮像信号とを利用したときのブロックB(ibx,iby)における信頼度E14(ibx,iby)とする。ΣΣはx軸方向とy軸方向の総和を示し、x軸方向に0〜HB−1(ここでは31)、y軸方向に0〜VB−1(ここでは31)まで変化させる。次に、ステップS1560を実行する。
E14(ibx,iby)
= ΣΣ(Bc1(x,y)-avg1)(Bc2(xΔ14(ibx,iby),y+Δ14(ibx,iby)*Dy/Dx)-avg2)
/ ΣΣ(Bc1(x,y)-avg1)(Bc1(x,y)-avg1)
/ ΣΣ(Bc2(x+Δ14(ibx,iby),y+Δ14(ibx,iby)*Dy/Dx)-avg2)
(Bc2(x+Δ14(ibx,iby),y+Δ14(ibx,iby)*Dy/Dx)-avg2)
avg1 = ΣΣBc1(x,y)/(HB*VB)
avg2 = ΣΣBc2(x+Δ14(ibx,iby),y+Δ14(ibx,iby))/(HB*VB) …(42)
ステップS1560において、ブロックインデックスibに1を加える。次に、ステップS1570を実行する。
ステップS1570において、第1の撮像信号と第4の撮像信号とを利用した視差演算を終了するかどうかを判断する。ブロックインデックスibがNh*Nv未満のとき(S1570でNO)、次のブロックの視差を演算するために、ステップS1530に戻る。一方、ブロックインデックスibがNh*Nv以上のとき(S1570でYES)、全てのブロックの視差を演算したと判断し、次に、ステップS1580を実行する。
ステップS1580において、第1の撮像信号と第4の撮像信号とを利用した視差演算を終了し、上位ルーチンへ戻る。
このようにして、第1の撮像信号と第4の撮像信号とを利用した視差演算において、ブロックインデックスibで示される32x32画素のブロックB(ibx,iby)について、視差量Δ14(ibx,iby)とその信頼度E14(ibx,iby)とが求められた。ここで、14は第1の撮像信号と第4の撮像信号とを利用していることを示し、(ibx,iby)は図12において各ブロックの下段に示される座標を示す(ibxは0からNh−1まで、ibyはVh−1まで変化する)。次に、図10のステップS1250を実行する。
ステップS1250において、視差を選択する。それぞれのブロックに対し、信頼度E12(ibx,iby)、E13(ibx,iby)、およびE14(ibx,iby)を比較し、最大の信頼度を与える視差をそのブロックでの視差Δ(ibx,iby)とする。なお、x軸方向の視差に合わせるように、下記式(43)の変換を行う。次に、ステップS1260を実行する。
Δ(ibx,iby) = Δ12(ibx,iby) E12(ibx,iby)が最大のとき
Δ(ibx,iby) = Δ13(ibx,iby)*Dx/Dy E13(ibx,iby)が最大のとき
Δ(ibx,iby) = Δ14(ibx,iby) E14(ibx,iby)が最大のとき …(43)
ステップS1260において、距離演算部143は、距離演算を行い、その結果を、順次、第2の出力バッファ137bに、距離データとして転送する。前述のように式 (7)に基づき距離を演算する。すなわち、視差Δ(ibx,iby)を持つブロックにおける被写体の距離L(ibx,iby)は、下記式(44)のように演算される。なお、fはレンズ部113の焦点距離であり、Dxは各レンズ部113a〜113dのx軸方向の間隔であり、pは撮像素子の素子間隔である。次に、ステップS1270を実行する。
L(ibx,iby) = f ×Dx / p / Δ(ibx,iby) …(44)
ステップS1270において、演算動作を終了し、上位ルーチンへ戻る。次に、ステップS1910を実行する。
本実施の形態の撮像装置が以上のように構成されて動作することにより、以下の効果が奏される。
以上のとおり、実施の形態1の撮像装置は、温度センサ126によりレンズアレイ113の周囲温度を計測し、温度値Thとして入力する。そして、レンズアレイ113が略円形であるために等方的に膨張することを利用し、式(14)及び(15)によって、レンズアレイ113の各レンズ部の光軸の間隔を求め、その間隔の半分だけ光軸が変化するものとして、座標変換テーブルを作成する。このことにより、温度が変化しレンズアレイ113が変形しても、光軸の位置を正しく補償することができるため、温度の影響を低減した視差を得て、この視差に基づき正しい距離計測ができる。また、温度センサ126により検知された温度に基づき複数のレンズ部の間隔の変化量を求め、複数のレンズの光軸原点をその変化量の半分だけ移動させて、光軸原点周りの歪みをなくすように画像を補正することにより、正しく歪みの影響を低減できるため、視差の検知及び距離測定を高精度に行うことができる。
温度によりレンズ部の光軸の位置が変化すると、撮影される画像が移動することになる。例えば、自動車の前方監視に撮像装置を利用する場合、その撮像装置により得られた画像中心を運転者が見た画像の中心に合わせても、温度が変化すると画像中心がずれる。そのため、運転者は違和感を覚える。これに対し、実施の形態1の撮像装置の場合、温度が変化しても、画像中心の変化を抑制することができる。そのため、自動車の前方監視にも適した撮像装置を実現することができる。
なお、光軸中心から離れるほど歪曲が大きくなり、測距精度は一般的に悪くなる。本実施の形態の撮像装置によれば、光軸を上記のように補償することにより、歪曲が大きい領域の利用を避けるという効果も期待できる。
一組のレンズ部に対応した撮像信号において、それぞれのレンズ部の光軸中心を結ぶ直線に平行な形状をなす撮像対象に対しては、それぞれのレンズ部により得られる撮像信号において同一形状となるため、視差を求めることができない。実施の形態1の撮像装置によれば、3つの撮像信号の組(第1の撮像信号I1及び第2の撮像信号I2、第1の撮像信号I1及び第3の撮像信号I3、並びに第1の撮像信号I1及び第4の撮像信号I4)を選択し、それぞれの組に対しそれぞれの視差Δ12(ibx,iby)、Δ13(ibx,iby)、及びΔ14(ibx,iby)を得る。このことにより、1つの組で正しく視差を求められない撮像対象であっても、他の組で正しく視差を求めることができるため、その視差に基づき距離を計測できる。例えば、水平な線状の撮像対象は、水平方向に並べられた組(第1の撮像信号I1及び第2の撮像信号I2)からは距離を計測することができないが、鉛直方向に並べられた組(第1の撮像信号I1及び第3の撮像信号I3、並びに第2の撮像信号I2及び第4の撮像信号I4)、及び斜めに並べられた組(第1の撮像信号I1及び第4の撮像信号I4)を用いることにより、距離を計測することができる。そのため、多様な形状の撮像対象に対応することができる。
また、実施の形態1の撮像装置によれば、複数の前記視差の信頼度(E12(ibx,iby)、E13(ibx,iby)、及びE14(ibx,iby))をそれぞれ演算し、ブロックB(ibx,iby)毎に、視差(Δ12(ibx,iby)、Δ13(ibx,iby)、及びΔ14(ibx,iby))のうち信頼度が最も大きい視差Δ(ibx,iby)を特定し、その視差Δ(ibx,iby)に基づいて距離を演算する。このように、信頼性が高い視差Δ(ibx,iby)に基づき視差演算するため、信頼性が高い距離計測が可能となる。また、全ての組の視差(Δ12(ibx,iby)、Δ13(ibx,iby)、及びΔ14(ibx,iby))において距離演算を行わず、信頼性が高い視差(Δ(ibx,iby))のみの距離演算を行うため、高速な距離計測が可能となる。
なお、実施の形態1に係る撮像装置において、温度センサ126は、基板121上に配設されている。このように、温度センサ126を基板121上に配設する場合、基板121上の配線を用いて温度センサ126と温度センサ信号入力部139aとを接続すればよいため、実装が容易であるという利点がある。しかし、このような構成に限定されるわけではない。温度センサ126は、レンズアレイ113近傍の基板121の温度を検出しているが、その目的は、レンズアレイ113の温度を検出することにある。レンズアレイ113の温度は直接または間接的に検出することができる。レンズアレイ113の温度を間接的に検出するには、レンズアレイ113の温度と相関関係を有する温度あるいは温度以外の物理量を検出すればよい。そして、それらをレンズアレイ113の温度に補正し、あるいはレンズアレイ113の温度との差異を見込むことによって、それらを、直接検出するレンズアレイ113の温度の代わりに用いることができる。本実施の形態では、この観点から、レンズアレイ113近傍の基板121の温度を検出している。従って、これ以外に、例えば、温度センサ126をパッケージ122内部の撮像素子123に並列して配設するようにしてもよい。この場合、撮像素子123の近傍に温度センサ126が配置されるため、温度センサ126の実装時にゴミ等が撮像素子123に付着しないようにする配慮が必要となるものの、レンズアレイ113により近くなることにより、温度検出の精度が増す。その結果、光軸の変化をより正しく補正し、歪曲をより正しく補正することができるので、距離測定精度を向上させることができる。
また、SLSI125の一部が温度センサ126となるような製造プロセスを用いてSLSI125を作成してもよい。この場合、温度センサ126を実装する必要がないため、その分だけ実装コストを低減できる。
また、温度センサ126が、鏡筒111の外壁または内壁に貼設されていてもよい。この場合、温度センサ126の配線に考慮が必要だが、レンズアレイ113に近い鏡筒111に温度センサ126を配置することができるため、温度検出の精度が増す。よって、光軸の変化をより正しく補正し、歪曲をより正しく補正することができ、距離測定精度を向上させることができる。また、鏡筒111の内部に埋設されていてもよい。この場合、温度センサ126の配線及び鏡筒111の製造方法に考慮が必要だが、レンズアレイ113に近い鏡筒111の内部に温度センサ126を配置することができるため、同様にして距離測定精度を向上させることができる。
また、温度センサ126をレンズアレイ113の適宜の位置に配設し、適宜配線により接続してもよい。この場合、温度センサ126の配線に考慮が必要だが、レンズアレイ113に温度センサ126を直接配設するため、さらに温度検出の精度が増し、その結果距離測定精度を向上させることができる。また、レンズ部の内部に埋設されていてもよい。この場合、温度センサ126の配線及びレンズアレイ113の製造方法に考慮が必要だが、レンズアレイ113の内部に温度センサ126を配置するため、さらに温度検出の精度が増し、距離測定精度を向上させることができる。
また、実施の形態1に係る撮像装置において、レンズアレイ113は略円形に成型されているが、これに限定されない。図27は、実施の形態1の変形例に係る撮像装置のレンズアレイの構成を示す平面図である。図27(a)に示すレンズアレイ113Aのように、長方形状に成型されてもよい。さらに、図27(b)に示すレンズアレイ113Bのように、その端面等に平面方向に伸びる突起等が設けられていてもよい。このようにレンズアレイが略円形でない構成においても、レンズ部はほぼ等方に膨張するため、実施の形態1と同様に動作させることにより、実施の形態1の場合と同様の効果を得ることができる。
(実施の形態2)
本発明の実施の形態1に係る撮像装置は、レンズアレイ113が略円形に成型され、各レンズ部(第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、および第4のレンズ部113d)がレンズアレイ113の中心から同一距離に配置されている。そして、温度センサ126によって検知された温度に基づきレンズアレイ113の各レンズ部の光軸の間隔の変化量を求め、各レンズ部の光軸原点を変化量の半分だけ移動し、光軸原点周りの歪みをなくすように画像を補正する。これにより、温度が変化しても正しく歪みの影響を低減できるため、高精度な視差を検知し、それゆえ高精度に距離測定する撮像装置を実現した。また、温度が変化しても、画像中心が変化しない撮像装置を実現した。
これに対し、本発明の実施の形態2に係る撮像装置は、レンズアレイの中心から同一距離に配置されない各レンズ部を備えている。このように、各レンズ部がレンズアレイの中心から同一距離に配置されない場合においても、温度変化に影響されることなく高精度な視差を検知し、それゆえ高精度に距離測定し、かつ、画像中心の変化を抑制することができる。
実施の形態2の撮像装置は、実施の形態1のレンズアレイ113をレンズアレイ213に置換え、さらに、実施の形態1の温度補償部139bを温度補償演算部239bに置き換えたものである。その他の構成は実施の形態1と同様であり、同一の符号を付与し、説明を省略する。
図28は、本発明の実施の形態2に係る撮像装置のレンズアレイの構成を示す平面図である。レンズアレイ213は、略円盤状であり、光学ガラス材や透明樹脂などから形成され、第1のレンズ部213a、第2のレンズ部213b、第3のレンズ部213c、および第4のレンズ部213dが碁盤目状に配置される。第1〜第4のレンズ部213a〜213dの配置方向に沿って、図28に示すようにx軸及びy軸を設定する。第1のレンズ部213a、第2のレンズ部213b、第3のレンズ部213c、および第4のレンズ部213dにおいて、被写体側から入射した光は、撮像素子123側へ射出し、撮像素子123上に4つの像を結像する。なお、図28に示すように、第1のレンズ部213aの光軸と第2のレンズ部213bの光軸とは、水平方向(x軸方向)ではDxだけ離れ、垂直方向(y軸方向)では一致しており、レンズアレイ213の中心213oを通るy軸方向の軸に対して対称な位置に配置される。そして、第1のレンズ部213aの光軸と第2のレンズ部213bの光軸とは、レンズアレイ213の中心213oからy軸方向にDy1だけ離れて配置される。また、第3のレンズ部213cの光軸と第4のレンズ部213dの光軸とは、水平方向(x軸方向)ではDxだけ離れ、垂直方向(y軸方向)では一致しており、レンズアレイの中心213oを通るy軸方向の軸に対して対称な位置に配置される。そして、第3のレンズ部213cの光軸と第4のレンズ部213dの光軸とは、レンズアレイ213の中心213oからy軸方向にDy2だけ離れて配置される。
温度補償演算部139bは、温度値Thに基づき、前処理部135にて利用される座標変換テーブルtx1(x,y)、ty1(x,y)、tx2(x,y)、ty2(x,y)、tx3(x,y)、ty3(x,y)、tx4(x,y)、ty4(x,y)を生成する。レンズアレイ213の温度が上昇した場合、各レンズ部213a〜213dが膨張する。この場合、レンズアレイ213は略円形であるため、図28において矢印で示すように、各レンズ部213a〜213dの光軸中心がレンズアレイ213の中心213oに対してレンズ外側に移動する。この移動量は、レンズアレイ213の中心213oから各レンズ部213a〜213dの光軸までの距離に略比例する。すなわち、温度上昇によるレンズアレイ213の膨張に伴う第1のレンズ部213aのx軸方向の移動量dbx1及びy軸方向の移動量dby1は、撮像素子123の画素間隔を単位として、下記式(45)及び(46)のように表される。ここで、Dx/2は基準温度Th0におけるレンズアレイ213の中心213oを通るx軸方向の軸と第1のレンズ部213aの光軸との距離であり、Dy1は同じくy軸方向の軸と第1のレンズ部213aの光軸との距離である。また、aLはレンズアレイ213の熱線膨張率であり、aSは撮像素子123の熱線膨張率であり、Thは前述のように温度値であり、Th0は基準温度であり、pは撮像素子123の画素間隔である。
また、温度上昇によるレンズアレイ膨張に伴う第2のレンズ部213bのx軸方向の移動量dbx2及びy軸方向の移動量dby2は、撮像素子123の画素間隔を単位として、下記式(47)及び(48)のように表される。ここで、Dx/2は基準温度Th0におけるレンズアレイ213の中心213oを通るx軸方向の軸と第2のレンズ部213bの光軸との距離であり、Dy1は同じくy軸方向の軸と第2のレンズ部213bの光軸との距離である。また、温度上昇によるレンズアレイ膨張に伴う第3のレンズ部213cのx軸方向の移動量dbx3及びy軸方向の移動量dby3は、撮像素子123の画素間隔を単位として、下記式(49)及び(50)のように表される。ここで、Dx/2は基準温度Th0におけるレンズアレイの中心213oを通るx軸方向の軸と第3のレンズ部213cの光軸との距離であり、Dy2は同じくy軸方向の軸と第3のレンズ部213cの光軸との距離である。さらに、温度上昇によるレンズアレイ膨張に伴う第4のレンズ部213dのx軸方向の移動量dbx4及びy軸方向の移動量dby4は、撮像素子123の画素間隔を単位として、下記式(51)及び(52)のように表される。ここで、Dx/2は基準温度Th0におけるレンズアレイの中心213oを通る軸と第4のレンズ部213dの光軸との距離であり、Dy2は同じくy軸方向の軸と第4のレンズ部213dの光軸との距離である。
dbx1 = (Dx/2) × (aL - aS) × (Th - Th0) / p …(45)
dby1 = Dy1 × (aL - aS) × (Th - Th0) / p …(46)
dbx2 = (Dx/2) × (aL - aS) × (Th - Th0) / p …(47)
dby2 = Dy1 × (aL - aS) × (Th - Th0) / p …(48)
dbx3 = (Dx/2) × (aL - aS) × (Th - Th0) / p …(49)
dby3 = Dy2 × (aL - aS) × (Th - Th0) / p …(50)
dbx4 = (Dx/2) × (aL - aS) × (Th - Th0) / p …(51)
dby4 = Dy2 × (aL - aS) × (Th - Th0) / p …(52)
撮像装置は、上述の温度上昇に伴う移動量だけ、各撮像信号を補正する。すなわち、第1の撮像信号I1(x,y)用の変換テーブルtx1(x,y)及びty1(x,y)を下記式(53)、(54)及び(55)のように生成する。ここで、(x01,y01)は撮像信号I0における歪みがないときの原点座標、(xc1,yc1)は撮像信号I1(x,y)における基準温度Th0での光軸中心座標、(-dbx1,-dby1)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(55)における^2は二乗値を示す。また、第2の撮像信号I2(x,y)用の変換テーブルtx2(x,y)及びty2(x,y)を下記式(56)、(57)及び(58)のように生成する。ここで、(x02,y02)は撮像信号I0における歪みがないときの原点座標、(xc2,yc2)は撮像信号I2(x,y)における基準温度Th0での光軸中心座標、(+dbx2,-dby2)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(58)における^2は二乗値を示す。また、第3の撮像信号I3(x,y)用の変換テーブルtx3(x,y)及びty3(x,y)を下記式(59)、(60)及び(61)のように生成する。ここで、(x03,y03)は撮像信号I0における歪みがないときの原点座標、(xc3,yc3)は撮像信号I3(x,y)における基準温度Th0での光軸中心座標、(-dbx3,+dby3)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(61)における^2は二乗値を示す。また、第4の撮像信号I4(x,y)用の変換テーブルtx4(x,y)及びty4(x,y)を下記式(62)、(63)及び(64)のように作成する。ここで、(x04,y04)は撮像信号I0における歪みがないときの原点座標、(xc4,yc4)は撮像信号I4(x,y)における基準温度Th0での光軸中心座標、(+dbx4,+dby4)は温度上昇による光軸中心の移動量、kd2及びkd4は歪曲係数である。なお、式(64)における^2は二乗値を示す。
tx1(x,y) = x01 + xc1 + [x - xc1 - dbx1]×(1 + kd2 × r2 + kd4 × r4) …(53)
ty1(x,y) = y01 + yc1 + [y - yc1 - dby1]×(1 + kd2 × r2 + kd4 × r4) …(54)
r2= [x - xc1 - dbx1]^2 + [y - yc1 - dby1]^2、r4 = r2^2 …(55)
tx2(x,y) = x02 + xc2 + [x - xc2 + dbx2]×(1 + kd2 × r2 + kd4 × r4) …(56)
ty2(x,y) = y02 + yc2 + [y - yc2 - dby2]×(1 + kd2 × r2 + kd4 × r4) …(57)
r2= [x - xc2 + dbx2]^2 + [y - yc2 - dby2]^2、r4 = r2^2 …(58)
tx3(x,y) = x03 + xc3 + [x - xc3 - dbx3]×(1 + kd2 × r2 + kd4 × r4) …(59)
ty3(x,y) = y03 + yc3 + [y - yc3 + dby3]×(1 + kd2 × r2 + kd4 × r4) …(60)
r2= [x - xc3 - dbx3]^2 + [y - yc3 + dby3]^2、r4 = r2^2 …(61)
tx4(x,y) = x04 + xc4 + [x - xc4 + dbx4]×(1 + kd2 × r2 + kd4 × r4) …(62)
ty4(x,y) = y04 + yc4 + [y - yc4 + dby4]×(1 + kd2 × r2 + kd4 × r4) …(63)
r2= [x - xc4 + dbx4]^2 + [y - yc4 + dby4]^2、r4 = r2^2 …(64)
なお、歪みが生じない場合、上記の座標変換テーブルを用いてなされる座標変換は、下記式(65)乃至(68)のように、撮像信号I0(x,y)から画像を切り出し、その後、下記式(69)乃至(72)のように、平行移動することに相当する。
I1(x, y) = I0(x + x01, y + y01) …(65)
I2(x, y) = I0(x + x02, y + y02) …(66)
I3(x, y) = I0(x + x03, y + y03) …(67)
I4(x, y) = I0(x + x04, y + y04) …(68)
I1(x, y) = I1(x-dbx1, y-dby1) …(69)
I2(x, y) = I2(x+dbx2, y-dby2) …(70)
I3(x, y) = I3(y-dbx3, x+dby3) …(71)
I4(x, y) = I4(x+dbx4, y+dby4) …(72)
本実施の形態の撮像装置が以上のように構成されて動作することにより、実施の形態1と同様の効果が奏される。
(実施の形態3)
本発明の実施の形態3に係る撮像装置は、温度毎の係数を持ち、温度センサにより検知された温度に基づき複数のレンズの光軸の間隔の変化量を求め、複数のレンズの光軸原点を変化量の半分だけ移動し、光軸原点周りの歪みをなくすように画像を補正する。これにより、小規模の回路で歪みの影響を適切に低減できるため、高精度な視差を検知でき、低コストで高精度に距離測定できる。
実施の形態3の撮像装置は、実施の形態1の撮像装置101のシステムLSI125をシステムLSI225に変更したものである。その他の構成は、実施の形態1の撮像装置と同様であり、説明を省略する。
SLSI225は、後述の方法で、撮像素子123を駆動し、撮像素子123からの電気情報を入力し、各種演算を行い、上位CPUと通信を行い、外部に画像情報や距離情報などを出力する。なお、SLSI225は、電源(例えば3.3V)とグランド(例えば、0V)に接続される。
次に、光軸中心の温度補償の原理を説明する。図2の矢印のように、温度上昇に伴いレンズアレイ113が膨張し光軸中心がレンズ外側に移動する。レンズアレイが温度上昇に比例し等方的に膨張すると仮定すると、光軸中心の間隔は、下記式(109)、(110)で表される。ここで、dbxは温度上昇に伴う光軸間の間隔のx方向の変化量であり、単位は撮像素子123の受光素子の間隔である。また、dbyは温度上昇に伴う光軸間の間隔のy方向の変化量であり、単位は撮像素子122の受光素子の間隔である。また、Dxは基準温度Th0におけるx方向のレンズ間の光軸の間隔であり、Dyは基準温度Th0におけるy方向のレンズ間の光軸の間隔であり、aLはレンズアレイ113の熱線膨張率であり、aSは撮像素子123の熱線膨張率であり、Tは温度であり、Th0は基準温度であり、pは撮像素子123の受光素子の間隔である。
dbx = Dx * (aL - aS) * (T - Th0) / p ・・・(109)
dby = Dy * (aL - aS) * (T - Th0) / p ・・・(110)
そして、温度上昇に伴い各レンズ部の光軸中心は等方的に膨張するため、図2のように、温度上昇に伴うレンズ間の光軸間の間隔の変化の半分(x方向にp*dbx/2、y方向にp*dby/2)だけ移動する。すなわち、第1のレンズ部113aの光軸中心は、x方向に-p*dbx/2、y方向に-p*dby/2だけ移動する。また、第2のレンズ部113bの光軸中心は、x方向に+p*dbx/2、y方向に-p*dby/2だけ移動する。また、第3のレンズ部113cの光軸中心は、x方向に-p*dbx/2、y方向に+p*dby/2だけ移動する。また、第4のレンズ部113dの光軸中心は、x方向に+p*dbx/2、y方向に+p*dby/2だけ移動する。
したがって、温度Tを検知し、その温度Tからレンズアレイ113の各レンズ間の光軸の間隔の変化dbx,dbyを求め、その変化dbx,dbyの半分だけレンズアレイ113の各レンズの光軸が移動すると推定し補償することにより、温度変化に伴うレンズアレイ113の膨張の影響を低減し、正確な視差を求めることができ、それゆえ、正確な距離を求めることができる。
次に、焦点距離の温度補正を説明する。レンズアレイ113が樹脂から構成されるとき、温度上昇に伴い屈折率が小さくなり、それゆえ、焦点距離が長くなり、撮像素子123に結像される像が大きくなり(倍率が大きくなり)、視差が長くなる。そこで、温度Tを検知し、その温度Tから焦点距離の変化を推定し、推定された焦点距離fを式(7)に代入することにより、温度変化に伴うレンズアレイ113の焦点距離の変化の影響を低減し、正確な視差を求めることができ、それゆえ、正確な距離を求めることができる。なお、式(7)の焦点距離fを一定として、その分だけ像の倍率が変化するものとして撮像信号を補正してもよい。
次に、鏡筒伸びの温度補正を説明する。鏡筒111が樹脂から構成されるとき、温度上昇に伴い鏡筒111が伸び、それゆえ、レンズアレイ113の主点から撮像素子123の受光面までの距離が長くなり、撮像素子123に結像される像が大きくなり(倍率が大きくなり)、視差が大きくなる。そこで、温度Tを検知し、その温度Tから鏡筒111の長さの変化を推定し、倍率の変化を推定し補償することにより、温度変化に伴う鏡筒111の伸びの影響を低減し、正確な視差を求めることができ、それゆえ、正確な距離を求めることができる。
次に、本発明の実施の形態3に係る撮像装置の動作を説明する。図29は、本発明の実施の形態3に係る撮像装置の構成を示すブロック図である。SLSI225は、システム制御部131、撮像素子駆動部132、撮像信号入力部133、温度センサ信号入力部234、入出力部235、係数保存部241、温度補償演算部242、撮像信号補正部243、および距離演算部244を有する。ここで、温度補償演算部242と撮像信号補正部243とは、温度補償/撮像信号補正部を構成している。
システム制御部131は、CPU(中央演算処理装置:Central Processing Unit)、ロジック回路などから構成され、SLSI225の全体を制御する。
図30は、本発明の実施の形態3に係る撮像装置の動作を示すフローチャートである。SLSI225のシステム制御部131により、撮像装置は、このフローチャートのとおりに動作する。なお、図30において、実施の形態1の図9Aのフローチャートと同一又は相当するステップには同一の参照符号を付している。
ステップS1010において、撮像装置101は動作を開始する。例えば、上位CPU(図示せず)が、入出力部235を介し、撮像装置101に動作の開始を命令することにより、撮像装置101は、動作を開始する。次に、ステップS1020を実行する。
ステップS1020において、撮像信号を入力する。撮像素子駆動部132は、ロジック回路などから構成され、システム制御部131の命令により電子シャッターや転送を行うための信号撮像素子123を駆動する信号を発生し、この信号に応じた電圧を撮像素子122に印加する。撮像信号入力部133は、CDS回路(相関二重サンプリング回路:Correlated Double Sampling Circuit)、AGC(自動利得制御器:Automatic Gain Controller)、ADC(アナログ/デジタル変換器:Analog Digital Converter)が直列に接続されて構成され、撮像素子123からの電気信号が入力され、CDS回路により固定ノイズを除去し、AGCによりゲインを調整し、ADCによりアナログ信号からデジタル値に変換し撮像信号I0を出力する。ここで、撮像信号入力部133は、撮像信号I0(x,y)を、x方向にH0画素、y方向にV0画素だけ、I0(0,0)((x,y)=(0,0))、I0(1,0)、I0(2,0)、・・・、I0(H0-1,V0-1)の順に出力する。次に、ステップS1030を実行する。
ステップS1030において、温度センサ信号を入力する。温度センサ信号入力部234は、ADC(Analog Digital Converter:アナログ・デジタル変換器)などから構成され、温度センサ126からアナログ電圧信号である温度センサ信号を入力し、アナログ信号からデジタル値に変換し、温度センサ信号Tsとして出力する。例えば12bitのADCを用いると、温度センサ信号Tsは、0〜4095までの値を取る。以下、温度センサ信号Tsは、12bitのADCを用いて作成されたものとして説明する。次に、ステップS1110を実行する。
ステップS1110において、各種の係数を温度補償する。温度補償演算部242は、温度センサ信号Tsを入力し、係数保存部241に保存されたデータを用いて、歪曲係数kd2,kd4、倍率(rx,ry)、第1のレンズ部113aの光軸中心(xc1,yc1)、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、第4のレンズ部113dの光軸中心(xc4,yc4)、焦点距離f、および各レンズ部のx方向の光軸間距離Dxを出力する。
図31は、本発明の実施の形態3に係る係数保存部を説明するための図である。図31において、簡単のため、第1のレンズ部113aの光軸中心x座標xc1のみが記述されている。図31のように、センサ温度信号Tsが0、256、512、768、1024、・・・、3840、4096のときの光軸中心x座標xc1がそれぞれxc1#0、xc1#256、xc1#512、xc1#768、xc1#1024、・・・、xc1#3040、xc1#4096として係数保存部241に保存されている。そして、温度補償演算部242は、温度センサ値Tsに対応する光軸中心x座標xc1を補間演算して作成する。例えば、温度センサ値Tsが512以上1024未満のとき、温度センサ信号Ts=512、768のときの光軸中心x座標xc1#512、xc1#768を用いて、下記式(111)のように補間演算を行い、xc1を作成する。他の係数も同様に作成する。すなわち、第1のレンズ部113aの光軸中心y座標yc1、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、第4のレンズ部113dの光軸中心(xc4,yc4)、歪曲係数k2,k4、倍率(rx,ry)、焦点距離f、および各レンズ部のx方向の光軸間距離Dxは、それぞれ係数保存部241に各温度での値が保存され、温度センサ信号Tsに関して補間演算を行って作成される。
xc1 = xc1#512 + (Ts-512)/(768-512)*(xc#768-xc1#512) ・・・(111)
なお、係数保存部241に保存される係数は以下のように作成され保存される。各レンズ部の光軸中心は、式(109)、(110)に基づき、下記式(112)、(113)のように、温度上昇に伴う光軸間の間隔のx方向の変化量dbx、y方向の変化量dbyを演算し、その半分(x方向にp*dbx/2、y方向にp*dby/2)だけ光軸中心が移動するとして作成する。ここで、T(Ts)はADCによりデジタル値に変換された温度センサ信号Tsのときの物理的な温度を示す。具体的には、下記式(114)、(115)のように、第1のレンズ部113aの光軸中心(xc1,yc1)は、基準温度Th0における光軸中心(xc10,yc10)からx方向に-dbx/2、y方向に-dby/2だけ移動するように作成する。また、下記式(116)、(117)のように、第2のレンズ部113bの光軸中心(xc2,yc2)は、基準温度Th0における光軸中心(xc20,yc20)からx方向に+dbx/2、y方向に-dby/2だけ移動するように作成する。また、下記式(118)、(119)のように、第3のレンズ部113cの光軸中心(xc3,yc3)は、基準温度Th0における光軸中心(xc30,yc30)からx方向に-dbx/2、y方向に+dby/2だけ移動するように作成する。また、第4のレンズ部113dの光軸中心(xc4,yc4)は、基準温度Th0における光軸中心(xc40,yc40)からx方向に+dbx/2、y方向に+dby/2だけ移動するように作成する。
dbx = Dx * (aL - aS) * (T(Ts) - Th0) / p ・・・(112)
dby = Dy * (aL - aS) * (T(Ts) - Th0) / p ・・・(113)
xc1 = xc10 - dbx/2 ・・・(114)
yc1 = yc10 - dby/2 ・・・(115)
xc2 = xc20 + dbx/2 ・・・(116)
yc2 = yc20 - dby/2 ・・・(117)
xc3 = xc30 - dbx/2 ・・・(118)
yc3 = yc30 + dby/2 ・・・(119)
xc4 = xc40 + dbx/2 ・・・(120)
yc4 = yc40 + dby/2 ・・・(121)
歪曲係数k2,k4は、光学解析や実験などで各温度における値を求め、作成する。
鏡筒の長さlkは下記式(122)のように推定される。ここで、Th0は基準温度であり、lk0は基準温度Th0における鏡筒の長さであり、kkは鏡筒の熱線膨張率、T(Ts)は温度センサ信号Tsが示す温度センサの物理的な温度である。そこで、鏡筒の長さの変化の比率を倍率とする。具体的には、下記式(123)、(124)のように、x方向の倍率rx、y方向の倍率ryとして作成する。
lk = lk0*[1+kk*(T(Ts)-Th0)] ・・・(122)
rx = [1+kk*(T(Ts)-Th0)] ・・・(123)
ry = [1+kk*(T(Ts)-Th0)] ・・・(124)
焦点距離fは、光学解析や実験などで各温度における値を求め、作成する。
x方向の光軸間距離Dxは、x方向の光軸間距離の変化量が式(112)のdbxで示されることより、このdbxを用いて下記式(125)のように作成する。
Dx = Dx0 + dbx * p ・・・(125)
なお、各温度で各種方法で測定された係数を保存してもよい。次に、ステップS1120を実行する。
ステップS1120において、画像を補正し切り出す。撮像信号補正部243は、撮像信号I0、歪曲係数kd2,kd4、倍率(rx,ry)、第1のレンズ部113aの光軸中心(xc1,yc1)、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、および第4のレンズ部113dの光軸中心(xc4,yc4)を入力し、撮像信号I0から各レンズ部により結像された被写体像を撮像した画像を切り出し、歪曲補正などの補正処理を行い、第1のレンズ部113aに対応する第1の撮像信号I1(x,y)、第2のレンズ部113bに対応する第2の撮像信号I2(x,y)、第3のレンズ部113cに対応する第3の撮像信号I3(x,y)、および第4のレンズ部113dに対応する第4の撮像信号I4(x,y)を出力する。
図32は、本発明の実施の形態3に係る撮像装置の撮像信号の切り出し位置を説明するための図である。歪みがなく、温度によるレンズの膨張がない場合、図32のように、第1の撮像信号I1(x,y)は、撮像信号I0を原点(x01,y01)、x方向にH1画素、y方向にV1画素だけ切り出した領域の画像であり、第2の撮像信号I2(x,y)は、撮像信号I0を原点(x02,y02)、x方向にH1画素、y方向にV1画素だけ切り出した領域の画像であり、第3の撮像信号I3(x,y)は、撮像信号I0を原点(x03,y03)、x方向にH1画素、y方向にV1画素だけ切り出した領域の画像であり、第4の撮像信号I4(x,y)は、撮像信号I0を原点(x04,y04)、x方向にH1画素、y方向にV1画素だけ切り出した領域の画像である。実施の形態3の撮像装置は、熱膨張による光軸中心の移動、歪み補正、倍率補正を加味し、以下のような処理を行う。
下記式(126)、(127)、(128)のように、歪曲係数kd2,kd4、倍率(rx,ry)、第1のレンズ部113aの光軸中心(xc1,yc1)を用いて、第1の撮像信号用の参照先座標(tx1,ty1)を演算し、下記式(129)のように、第1の撮像信号用の参照先座標(tx1,ty1)を用いて撮像信号I0から第1の撮像信号I1(x,y)を演算する。なお、第1の撮像信号用の参照先座標(tx1, ty1)は、小数点を持ってもよい。その場合、第1の撮像信号用の参照先座標(tx1,ty1)の整数部分を(tx1i,ty1i)とし、小数部分を(tx1f,ty1f)とし、下記式(130)のように4画素を利用し演算する。ここで、式(126)、(127)、(128)、(129)、(130)において、xに関して0からH1-1まで、yに関して0からV1-1までの演算を行う。同様に、下記式(131)、(132)、(133)のように、歪曲係数kd2,kd4、倍率(rx,ry)、第2のレンズ部113bの光軸中心(xc2,yc2)を用いて、第2の撮像信号用の参照先座標(tx2,ty2)を演算し、下記式(134)のように、第2の撮像信号用の参照先座標(tx2,ty2)を用いて撮像信号I0から第2の撮像信号I2(x,y)を演算する。また、下記式(135)、(136)、(137)のように、歪曲係数kd2,kd4、倍率(rx,ry)、第3のレンズ部113cの光軸中心(xc3,yc3)を用いて、第3の撮像信号用の参照先座標(tx3,ty3)を演算し、下記式(138)のように、第3の撮像信号用の参照先座標(tx3,ty3)を用いて撮像信号I0から第3の撮像信号I3(x,y)を演算する。また、下記式(139)、(140)、(141)のように、歪曲係数kd2,kd4、倍率(rx,ry)、第4のレンズ部113dの光軸中心(xc4,yc4)を用いて、第4の撮像信号用の参照先座標(tx4,ty4)を演算し、下記式(142)のように、第4の撮像信号用の参照先座標(tx4,ty4)を用いて撮像信号I0から第4の撮像信号I4(x,y)を演算する。なお、以下の式において、^2は二乗演算を示し、^4は四乗演算を示す。
tx1 = x01 + xc1 + (x - xc1) * (1 + kd2 * r1^2 + kd4 * r1^4) * rx ・・・(126)
ty1 = y01 + yc1 + (y - yc1] * (1 + kd2 * r1^2 + kd4 * r1^4) * ry ・・・(127)
r1^2 = (x - xc1)^2 + (y - yc1)^2、r1^4 = (r1^2)^2 ・・・(128)
I1(x,y) = I0(tx1,ty1) ・・・(129)
I1(x,y) = (1 ? tx1f) * (1 ? ty1f) * I0(tx1i,ty1i)
+ tx1f * (1 ? ty1f) * I0(tx1i+1,ty1i)
+ (1 ? tx1f) * ty1f * I0(tx1i,ty1i+1)
+ tx1f * ty1f * I0(tx1i+1,ty1i+1) ・・・(130)
tx2 = x02 + xc2 + (x - xc2) * (1 + kd2 * r2^2 + kd4 * r2^4) * rx ・・・(131)
ty2 = y02 + yc2 + (y - yc2) * (1 + kd2 * r2^2 + kd4 * r2^4) * ry ・・・(132)
r2^2 = (x - xc2)^2 + (y - yc2)^2、r2^4 = (r2^2)^2 ・・・(133)
I2(x,y) = I0(tx2,ty2) ・・・(134)
tx3 = x03 + xc3 + (x - xc3) * (1 + kd2 * r3^2 + kd4 * r3^4) * rx ・・・(135)
ty3 = y03 + yc3 + (y - yc3) * (1 + kd2 * r3^2 + kd4 * r3^4) * ry ・・・(136)
r3^2 = (x - xc3)^2 + (y - yc3)^2、r2^4 = (r2^2)^2 ・・・(137)
I3(x,y) = I0(tx3,ty3) ・・・(138)
tx4 = x04 + xc4 + (x - xc4) * (1 + kd2 * r4^2 + kd4 * r4^4) * rx ・・・(139)
ty4 = y04 + yc4 + (y - yc4) * (1 + kd2 * r4^2 + kd4 * r4^4) * ry ・・・(140)
r4^2 = (x - xc4)^2 + (y - yc4)^2、r2^4 = (r2^2)^2 ・・・(141)
I4(x,y) = I0(tx4,ty4) ・・・(142)
なお、上記の変換において、歪みがなく、倍率を補正しないとき、下記式(143)、(144)、(145)、(146)のように、撮像信号I0(x,y)から画像を切り出し、その後、下記式(147)、(148)、(149)、(150)のように、平行移動することに相当する。次に、ステップS1200を実行する。
I1(x, y) = I0(x + x01, y + y01) ・・・(143)
I2(x, y) = I0(x + x02, y + y02) ・・・(144)
I3(x, y) = I0(x + x03, y + y03) ・・・(145)
I4(x, y) = I0(x + x04, y + y04) ・・・(146)
I1(x, y) = I1(x-dbx/2, y-dby/2) ・・・(147)
I2(x, y) = I2(x+dbx/2, y-dby/2) ・・・(148)
I3(x, y) = I3(y-dbx/2, x+dby/2) ・・・(149)
I4(x, y) = I4(x+dbx/2, y+dby/2) ・・・(150)
ステップS1200において、距離を演算する。距離演算部244は、第1の撮像信号I1、第2の撮像信号I2、第3の撮像信号I3、第4の撮像信号I4、焦点距離f、x方向の光軸間距離Dxを入力し、距離を演算し、距離データDISを出力する。
図33は、本発明の実施の形態3に係る撮像装置の距離演算部の動作を示すフローチャートである。図33のフローチャートは、ステップS1200の動作の詳細を示す。ステップS1200の演算では、まず、ステップS1310を実行する。
ステップS1310において、演算の動作を開始する。次に、ステップS1330を実行する。
ステップS1330において、ブロックを分割する。
図34は、本発明の実施の形態3に係る撮像装置において、ブロック分割を説明する図である。図34において、第1の撮像信号I1は、x方向にHB画素、y方向にVB画素を有する長方形状のブロックに分割され、x方向にNh個、y方向にNv個のブロックを持つ。次に、ステップS1340を実行する。
ステップS1340において、ブロックを選択する。ステップS1310(図33)を実行後、初めてこのステップS1340を実行するときは(0,0)で示されるブロックを選択し、以後、ステップS1340が実行されるときは、右側に順にずらしたブロックを選択する。なお、図34において右端のブロック((Nh-1,0)、(Nh-1,1)、・・・で示されるブロック)を選択した次は、1つ下の行の左端のブロック((0,1)、(0,2)、・・・で示されるブロック)を選択する。すなわち、ステップS1310を実行後、初めてこのステップS1340を実行するときを0番目としたとき、i番目において(i%Nh, int(i/Nh))で示されるブロックを選択する。ここで、i%NhはiをNhで除算したときの剰余、int(i/Nh)はiをNhで除算したときの商の整数部である。以後このブロックを選択ブロックB(ih,iv)と呼ぶ。次に、ステップS1350を実行する。
ステップS1350において、視差演算する。まず、第1のレンズ撮像信号I1と第2のレンズ撮像信号I2との視差と視差信頼度とを演算する。最初に、第1のレンズ撮像信号I1と第2のレンズ撮像信号I2との視差評価値R12(kx)を演算する。ここで、kxは画像をどれだけずらすかを示すずらし量であり、kx=0、1、2、・・・、SBのように変化させる。
図35は、本発明の実施の形態3に係る撮像装置において、第1の撮像信号と第2の撮像信号を利用したときの視差演算における視差評価値の演算領域を説明する図である。図35において、I1で示される領域は、第1のレンズ撮像信号I1の選択ブロックB(ih,iv)で選択された領域を示し、I2で示される領域は、選択ブロックの座標からx方向にkxだけずれた領域の第2のレンズ撮像信号I2である。ずらし量kx=0からSBについて、下記式(151)に示される絶対値差分総和(SAD:Sum of Absolute Differences)を演算し、視差評価値R12(kx)とする。すなわち、第1のレンズ撮像信号I1を基準として、視差評価値R12(kx)を演算する。
R12(kx) = ΣΣ|I1(x,y)-I2(x+kx,y)| ・・・ (151)
この視差評価値R12(kx)は、選択ブロックB(ih,iv)の第1のレンズ撮像信号I1と選択ブロックからx方向にkxだけずれた領域における第2のレンズ撮像信号I2とがどれだけ相関があるかを示し、値が小さいほど相関が大きい(よく似ている)ことを示す。
図36は、本発明の実施の形態3に係る撮像装置の第1の撮像信号と第2の撮像信号を利用したときの視差演算におけるずらし量と視差評価値との関係を説明する図である。図36のように、視差評価値R12(kx)はずらし量kxの値によって変化し、ずらし量kx=Δのとき極小値を持つ。そのため、選択ブロックB(ih,iv)の第1のレンズ撮像信号I1と選択ブロックからx方向にΔだけずれた領域における第2のレンズ撮像信号I2とが最も相関が高い、すなわち、最も似ていることを示す。従って、選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第2のレンズ撮像信号I2との視差がΔであることが分かる。そこで、下記式(152)のように、この視差Δを選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第2のレンズ撮像信号I2との視差値Δ12(ih,iv)とし、下記式(153)のように、視差評価値R12(Δ)を選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第2のレンズ撮像信号I2との視差信頼度C12(ih,iv)とする。
Δ12(ih,iv) = Δ ・・・ (152)
C12(ih,iv) = R12(Δ) ・・・ (153)
次に、第1のレンズ撮像信号I1と第3のレンズ撮像信号I3との視差と信頼信頼度も同様に求める。ただし、ずらす方向をy方向に変更し、ずらし量をkyとする。下記式(154)のように、選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第3のレンズ撮像信号I3の視差評価値R13(ky)を求める。すなわち、第1のレンズ撮像信号I1を基準として、視差評価値R13(ky)を演算する。そして、最小値を与えるずらし量、すなわち視差Δを、下記式(155)のように、選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第3のレンズ撮像信号I3との視差値Δ13(ih,iv)とし、下記式(156)のように、視差評価値R13(Δ)を選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第3のレンズ撮像信号I3との信頼度C13(ih,iv)とする。
R13(ky) = ΣΣ|I1(x,y)-I3(x,y+ky)| ・・・ (154)
Δ13(ih,iv) = Δ ・・・ (155)
C13(ih,iv) = R13(Δ) ・・・ (156)
次に、第1のレンズ撮像信号I1と第4のレンズ撮像信号I4との視差と信頼信頼度も同様に求める。ただし、ずらす方向を斜め方向(第1のレンズ部113aの光軸と第4のレンズ部113dの光軸とを結ぶ方向)に変更し、ずらし量はx方向にkx、y方向にkx*Dy/Dxとする。下記式(157)のように、選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第4のレンズ撮像信号I4の視差評価値R14(kx)を求める。すなわち、第1のレンズ撮像信号I1を基準として、視差評価値R14(kx)を演算する。そして、最小値を与えるずらし量、すなわち視差Δを、下記式(158)のように、選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第4のレンズ撮像信号I4との視差値Δ14(ih,iv)とし、下記式(159)のように、視差評価値R14(Δ)を選択ブロックB(ih,iv)における第1のレンズ撮像信号I1と第4のレンズ撮像信号I4との信頼度C14(ih,iv)とする。なお、式(157)において座標(x+kx,y+kx*Dy/Dx)が小数となるとき、レンズ撮像信号I4は周辺画素から線形補間などにより求める。なお、図2のように、Dx、およびDyは、第1のレンズ部113aと第4のレンズ部113dにおけるx方向のレンズ部の間隔、およびy方向のレンズ部の間隔である。
R14(ky) = ΣΣ|I1(x,y)-I4(x+kx,y+kx*Dy/Dx)| ・・・ (157)
Δ14(ih,iv) = Δ ・・・ (158)
C14(ih,iv) = R14(Δ) ・・・ (159)
そして、上記3つの視差信頼度を比較し最も信頼できる視差値をこのブロックにおける視差値とする。すなわち、下記式(60)のように、3つの視差信頼度C12(ih,iv)、C13(ih,iv)、C14(ih,iv)を比較し、C12(ih,iv)が最も小さいときΔ12(ih,iv)をブロックB(ih,iv)における視差値Δ(ih,iv)とし、C13(ih,iv)が最も小さいときΔ13(ih,iv)をブロックB(ih,iv)における視差値Δ(ih,iv)とし、C14(ih,iv)が最も小さいときΔ14(ih,iv)をブロックB(ih,iv)における視差値Δ(ih,iv)とする。なお、信頼度(C12、C13、C14)として絶対値差分総和(式(53)、(56)、(59))を用いたが正規化相関係数を用いてもよい。この場合、最も大きい信頼度を与える視差値を選択する。ここで、視差値をx方向に統一するため、Δ13(ih,iv)を採用するとき、レンズ部の間隔の比であるDx/Dyを乗ずる。次に、ステップS1360を実行する。
Δ(ih,iv) = Δ12(ih,iv) (C12(ih,iv)が最も小さいとき) ・・・ (160)
= Δ13(ih,iv)*Dx/Dy (C13(ih,iv)が最も小さいとき)
= Δ14(ih,iv) (C14(ih,iv)が最も小さいとき)
ステップS1360において、視差から距離を演算する。式(7)を距離Aについて解くと式(8)のように表されるため、ブロックB(ih,iv)に含まれる領域の距離DIS(x,y)は、下記式(161)にように示される。ここで、fは焦点距離、Dxはx方向の光軸間距離、pは撮像素子123の受光素子の間隔である。視差値Δが画素単位であるため、視差値Δにpを乗ずることにより、焦点距離fなどと同一の単位系に変換する。次に、ステップS1370を実行する。
DIS(x,y) = [f*Dx]/[p*Δ(ih,iv)] ((x,y)はB(ih,iv)の範囲) ・・・ (161)
ステップS1370において、距離演算を終了するかどうかを判断する。全てのブロックが選択されたとき(選択ブロックがB(Nh-1,Nv-1)のとき)、距離演算を終了すると判断し、次に、ステップS1380を実行する。一方、全てのブロックが選択されたされていないとき(選択ブロックがB(Nh-1,Nv-1)でないとき)、距離演算を継続すると判断し、次に、ステップS1340を実行する。
ステップS1380において、距離演算を終了し、上位ルーチンへ戻る。このようにして、切出し後の座標(x,y)における距離DIS(x,y)が求められた。次に、ステップS1910(図30)を実行する。
ステップS1910において、入出力部235は、画像データ、距離データ、および温度データを撮像装置101の外部に出力する。画像データとして、撮像信号I0、あるいは第1の撮像信号I1を出力する。距離データとして、距離DISを出力する。温度データとして、温度センサ信号Tsを出力する。次に、ステップS1920を実行する。
ステップS1920において、動作を終了するかどうかを判断する。例えば、システム制御部131は、入出力部235を介し、上位CPU(図示せず)と通信し、動作を終了するかどうかの命令を要求する。そして、上位CPUが終了を命令すれば動作を終了し、次に、ステップS1930を実行する。一方、上位CPUが終了を命令しなければ動作を継続し、次に、ステップS1020を実行する。すなわち、上位CPUが終了を命令しない限り、ステップS1020、ステップS1030、ステップS1110、ステップS1120、ステップS1200、およびステップS1910のループの実行を継続する。
ステップS1930において、撮像装置101の動作を終了する。
本実施の形態の撮像装置が以上のように構成されて動作することにより、以下の効果が奏される。
以上のとおり、実施の形態3の撮像装置は、温度センサ126によりレンズアレイ113の周囲温度を計測し、温度センサ信号Tsとして入力する。そして、レンズアレイ113が略円形であるために等方的に膨張することを利用し、式(112)及び(113)によって、レンズアレイ113の温度上昇に伴う光軸間の間隔のx方向の変化量dbx、y方向の変化量dbyを求め、その間隔の半分だけ光軸が変化するものとして、式(114)から(121)によって、第1のレンズ部113aの光軸中心(xc1,yc1)、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、および第4のレンズ部113dの光軸中心(xc4,yc4)を作成し、これらに基づき座標変換する。このことにより、実施の形態1と同様の効果を奏する。
また、実施の形態3の撮像装置は、例えば、第1のレンズ部113aの光軸中心x座標xc1ならば、温度センサ信号Tsに応じた複数組の補正係数(センサ温度信号Tsが0、256、512、768、1024、・・・、3840、4096のときの値であるxc1#0、xc1#256、xc1#512、xc1#768、xc1#1024、・・・、xc1#3040、xc1#4096)を係数保存部241に保存し、温度センサ信号Tsに関して式(111)のように補間処理を行い、当該温度センサ信号Tsに応じた補正係数を作成する。同様に、第1のレンズ部113aの光軸中心y座標yc1、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、第4のレンズ部113dの光軸中心(xc4,yc4)、歪曲係数k2,k4、倍率(rx,ry)、焦点距離f、および各レンズ部のx方向の光軸間距離Dxは、それぞれ係数保存部241に各温度での値を持ち、温度センサ信号Tsを用いて補間演算を行い、当該温度センサ信号Tsに応じたものが作成される。
このことより、補正式から補正係数を演算すること(例えば、式(112)から(121)のような演算をすること)が不要になるため、その分だけ演算時間や演算回路が不要となり、低コストな撮像装置を実現することができる。また、温度に応じて複雑な非線形な変化をする補正係数について、光学解析や実験で求めた値を保存し用いることにより、補正式で表現される変化と実際の変化との誤差を防止し、正しく歪みの影響を低減できるため、視差の検知及び距離測定を高精度に行うことができる。
また、実施の形態3の撮像装置は、予め各温度センサ信号Tsに応じた補正係数を保存するにあたり、全ての温度センサ信号Ts(0から4095までのデジタル値を取る)に対応した補正係数を保存せずに256おきに間引いた補正係数を保存し、温度に対して補間した補正係数を作成する。例えば、第1のレンズ部113aの光軸中心x座標xc1ならば、温度センサ信号Tsに対し256おきに間引いた補正係数(センサ温度信号Tsが0、256、512、768、1024、・・・、3840、4096のときの値であるxc1#0、xc1#256、xc1#512、xc1#768、xc1#1024、・・・、xc1#3040、xc1#4096)を保存し、温度センサ信号Tsに関して補間して用いる。このことにより、間引いた分だけ記憶領域を1/256倍に省略することができるため、その分だけ回路規模を縮小した低コストな撮像装置を実現することができる。
また、実施の形態3の撮像装置は、撮像信号補正部243において、第1のレンズ部113aの光軸中心(xc1,yc1)、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、第4のレンズ部113dの光軸中心(xc4,yc4)、歪曲係数k2,k4、および倍率(rx,ry)に基づき、式(126)、(127)、(128)を用いて第1の撮像信号用の参照先座標(tx1,ty1)を、式(131)、(132)、(133)を用いて第2の撮像信号用の参照先座標(tx2,ty2)を、式(135)、(136)、(137)を用いて第3の撮像信号用の参照先座標(tx3,ty3)を、式(139)、(140)、(141)を用いて第4の撮像信号用の参照先座標(tx4,ty4)を求める。そして、参照先座標が示す複数の撮像信号を参照して式(129)、(130)、(134)、(138)、(142)のように補間処理を施し、補正後撮像信号である第1の撮像信号I1、第2の撮像信号I2、第3の撮像信号I3、および第4の撮像信号I4を作成する。
予め参照先座標を演算し保持する場合、補正後撮像信号(第1の撮像信号I1、第2の撮像信号I2、第3の撮像信号I3、および第4の撮像信号I4)の全ての画素(全て合わせて画素数が4*H1*V1)に関し参照先座標(第1の撮像信号用の参照先座標(tx1,ty1)、第2の撮像信号用の参照先座標(tx2,ty2)、第3の撮像信号用の参照先座標(tx3,ty3)、および第4の撮像信号用の参照先座標(tx4,ty4))が必要となるため、膨大な記憶容量が必要となり、その分だけ高コストとなる。特に、温度により参照先座標を変化させる必要がある場合、温度毎の参照先座標が必要であり、さらに膨大な記憶容量が必要となる。本実施の形態の構成により、逐次、補正係数(第1のレンズ部113aの光軸中心(xc1,yc1)、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、第4のレンズ部113dの光軸中心(xc4,yc4)、歪曲係数k2,k4、および倍率(rx,ry))から参照先座標(第1の撮像信号用の参照先座標(tx1,ty1)、第2の撮像信号用の参照先座標(tx2,ty2)、第3の撮像信号用の参照先座標(tx3,ty3)、および第4の撮像信号用の参照先座標(tx4,ty4))を求め、補正後撮像信号(第1の撮像信号I1、第2の撮像信号I2、第3の撮像信号I3、および第4の撮像信号I4)を作成する。このことにより、補正係数のみに記憶領域を割り当てればよく、大きな容量の記憶領域は不要であるため、低コストな撮像装置を実現する。特に、温度に基づいて参照先座標を変化させる必要がある場合、その効果は顕著である。
また、実施の形態3の撮像装置は、温度補償演算部242において温度センサ信号Tsに基づき焦点距離fを作成し、距離演算部244の式(161)において距離演算に利用する。温度変化に伴いレンズアレイ113の屈折率変化が変化し、焦点距離fが変化するため、一定の焦点距離fを用いると焦点距離fの温度変化分だけ距離精度が悪化する。本発明の構成により、レンズアレイ113の温度変化に対応した焦点距離fを距離演算に用いることができるため、高精度な距離演算を実現することができる。
また、実施の形態3の撮像装置は、温度補償演算部242において温度センサ信号Tsに基づき倍率(rx,ry)を作成し、撮像信号補正部243において倍率(rx,ry)などに基づき撮像信号I0を補正し、補正後撮像信号(第1の撮像信号I1、第2の撮像信号I2、第3の撮像信号I3、および第4の撮像信号I4)を作成する。温度変化に伴い鏡筒111の長さ(レンズアレイ113の各レンズ部(第1のレンズ部113a、第2のレンズ部113b、第3のレンズ部113c、および第4のレンズ部113d)の主点と撮像素子123の受光面との距離)が変化し、その分だけ倍率が変化するため、倍率変化を考慮しなければ鏡筒の長さが温度変化する分だけ距離精度が悪化する。本実施の形態の構成により、鏡筒111の長さの温度変化に対応した倍率(rx,ry)だけ撮像信号を補正することにより、鏡筒の長さの温度変化の影響を低減することができるため、高精度な視差演算を実現し、それゆえ高精度な距離演算を実現することができる。
なお、実施の形態3の撮像装置において、温度センサ信号Tsに基づき焦点距離fを変化させたが、焦点距離fを一定に保ち、倍率(rx,ry)を変化させてもよい。fの変化に比例して倍率が変化するため、基準温度Th0のときの焦点距離に対する比を焦点距離に関する倍率の変化の比とする。具体的には、fを温度がT(Ts)のときの焦点距離、f0を基準温度Th0のときの焦点距離とし、焦点距離の変化の比(f/f0)を式(123)、(124)の右辺に乗じ、下記式(162)、(163)のように倍率(rx,ry)を演算する。
rx = [1+kk*(T(Ts)-Tk0)]*(f/f0) ・・・(162)
ry = [1+kk*(T(Ts)-Tk0)]*(f/f0) ・・・(163)
また、実施の形態3の撮像装置において、レンズアレイ113は4つのレンズ部を持ったがこれに限定されない。レンズ部の数が異なっていてもよい。
図37は、実施の形態3の変形例に係る撮像装置のレンズアレイの構成を示す平面図である。図37(a)に示すレンズアレイ113Cのように、x方向にDxだけ離れた2つのレンズ部(第1のレンズ部113Ca、および第2のレンズ部113Cb)を持つものでもよい。なお、係数保存部241にぞれぞれのレンズ部の光軸中心を以下のように決定し保存する。式(112)、(113)のように、温度上昇に伴う光軸間の間隔のx方向の変化量dbx、y方向の変化量dbyを演算し、その半分(x方向にp*dbx/2、y方向にp*dby/2)だけ光軸中心が移動するとして作成する。具体的には、下記式(164)、(165)のように、第1のレンズ部113Caの光軸中心(xc1,yc1)は、基準温度Th0における光軸中心(xc10,yc10)からx方向に-dbx/2だけ移動するように作成する。また、下記式(166)、(167)のように、第2のレンズ部113Cbの光軸中心(xc2,yc2)は、基準温度Th0における光軸中心(xc20,yc20)からx方向に+dbx/2だけ移動するように作成する。
xc1 = xc10 - dbx/2 ・・・(164)
yc1 = yc10 ・・・(165)
xc2 = xc20 + dbx/2 ・・・(166)
yc2 = yc20 ・・・(167)
また、図37(b)に示すレンズアレイ113Dのように、最外周部のレンズ部同士がx方向にDxだけ、y方向にDyだけ離れた9つのレンズ部(第1のレンズ部113Da、第2のレンズ部113Db、第3のレンズ部113Dc、第4のレンズ部113Dd、第5のレンズ部113De、第6のレンズ部113Df、第7のレンズ部113Dg、第8のレンズ部113Dh、および第9のレンズ部113Di。x方向、y方向に関してそれぞれ等間隔に配置されたもの)を持つものでもよい。なお、係数保存部241にぞれぞれのレンズ部の光軸中心を以下のように決定し保存する。
式(112)、(113)のように、温度上昇に伴う光軸間の間隔のx方向の変化量dbx、y方向の変化量dbyを演算し、その半分(x方向にp*dbx/2、y方向にp*dby/2)だけ光軸中心が移動するとして作成する。具体的には、下記式(168)、(169)のように、第1のレンズ部113Daの光軸中心(xc1,yc1)は、基準温度Th0における光軸中心(xc10,yc10)からx方向に-dbx/2、y方向に-dby/2だけ移動するように作成する。また、下記式(170)、(171)のように、第2のレンズ部113Dbの光軸中心(xc2,yc2)は、基準温度Th0における光軸中心(xc20,yc20)からy方向に-dby/2だけ移動するように作成する。また、下記式(172)、(173)のように、第3のレンズ部113Dcの光軸中心(xc3,yc3)は、基準温度Th0における光軸中心(xc30,yc30)からx方向に+dbx/2、y方向に-dby/2だけ移動するように作成する。また、下記式(174)、(175)のように、第4のレンズ部113Ddの光軸中心(xc4,yc4)は、基準温度Th0における光軸中心(xc40,yc40)からx方向に-dbx/2だけ移動するように作成する。また、下記式(176)、(177)のように、第5のレンズ部113Deの光軸中心(xc5,yc5)は、基準温度Th0における光軸中心(xc10,yc10)から移動しないように作成する。また、下記式(178)、(179)のように、第6のレンズ部113Dfの光軸中心(xc6,yc6)は、基準温度Th0における光軸中心(xc60,yc60)からx方向に+dbx/2だけ移動するように作成する。また、下記式(180)、(181)のように、第7のレンズ部113Dgの光軸中心(xc7,yc7)は、基準温度Th0における光軸中心(xc70,yc70)からx方向に-dbx/2、y方向に+dby/2だけ移動するように作成する。また、下記式(182)、(183)のように、第8のレンズ部113Dhの光軸中心(xc8,yc8)は、基準温度Th0における光軸中心(xc80,yc80)からy方向に+dby/2だけ移動するように作成する。また、下記式(84)、(85)のように、第9のレンズ部113Diの光軸中心(xc9,yc9)は、基準温度Th0における光軸中心(xc90,yc90)からx方向に+dbx/2、y方向に+dby/2だけ移動するように作成する。
xc1 = xc10 - dbx/2 ・・・(168)
yc1 = yc10 - dby/2 ・・・(169)
xc2 = xc20 ・・・(170)
yc2 = yc20 - dby/2 ・・・(171)
xc3 = xc30 + dbx/2 ・・・(172)
yc3 = yc30 - dby/2 ・・・(173)
xc4 = xc40 - dbx/2 ・・・(174)
yc4 = yc40 ・・・(175)
xc5 = xc50 ・・・(176)
yc5 = yc50 ・・・(177)
xc6 = xc60 + dbx/2 ・・・(178)
yc6 = yc60 ・・・(179)
xc7 = xc70 - dbx/2 ・・・(180)
yc7 = yc70 + dby/2 ・・・(181)
xc8 = xc80 ・・・(182)
yc8 = yc80 + dby/2 ・・・(183)
xc9 = xc90 + dbx/2 ・・・(184)
yc9 = yc90 + dby/2 ・・・(185)
また、実施の形態3の撮像装置は、歪曲係数kd2,kd4、倍率(rx,ry)、第1のレンズ部113aの光軸中心(xc1,yc1)、第2のレンズ部113bの光軸中心(xc2,yc2)、第3のレンズ部113cの光軸中心(xc3,yc3)、第4のレンズ部113dの光軸中心(xc4,yc4)、焦点距離f、および各レンズ部のx方向の光軸間距離Dxを温度補償し、撮像信号を補正したが、これに限定されない。例えば、高次歪曲係数や、各レンズ部ごとの倍率や、各レンズ部ごとの回転補正などをしてもよい。
なお、実施の形態1及び2では、温度センサにより検知された温度に基づいて複数のレンズの光軸の移動量を推定し、その推定した光軸の移動量に基づいて撮像信号を補正した。また、実施の形態3では、温度センサにより検知された温度に基づいて複数のレンズの光軸の移動量を含む補正係数を作成し、その補正係数に基づいて撮像信号を補正した。しかし、本発明における撮像信号の補正はこれらに限定されるものではなく、温度センサにより検知された温度に基づいて、温度変化による複数のレンズの光軸の移動量に応じて撮像信号を補正すればよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明の撮像装置は、距離計測可能な小型の撮像装置であるため、カメラ機能を備えた携帯型電話機、デジタルスチルカメラ、車載用カメラ、監視用カメラ、三次元計測器、および立体画像入力カメラ等に有用である。
図1は本発明の実施の形態1に係る撮像装置の構成を示す断面図である。 図2は本発明の実施の形態1に係る撮像装置のレンズアレイの構成を示す平面図である。 図3Aは本発明の実施の形態1に係る撮像装置の回路部の構成を示す平面図である。 図3Bは本発明の実施の形態1に係る撮像装置の撮像素子の構成を示す平面図である。 図4は本発明の実施の形態1に係る撮像装置の温度センサの回路図である。 図5は本発明の実施の形態1に係る撮像装置において、無限遠にある物体像の位置を説明するための図である。 図6は本発明の実施の形態1に係る撮像装置において、有限距離の位置にある物体像の位置を説明するための図である。 図7は本発明の実施の形態1に係る撮像装置の構成を示すブロック図である。 図8は本発明の実施の形態1に係る撮像装置の撮像信号の切り出し位置を説明するための図である。 図9Aは本発明の実施の形態1に係る撮像装置の動作を示すフローチャートである。 図9Bは平行移動処理と歪曲補正処理との前後の撮像信号を示す図である。 図9Cは並行移動処理の前後の撮像信号を示す図である。 図10は本発明の実施の形態1に係る撮像装置の演算部の動作を示すフローチャートである。 図11は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号とを利用した視差演算の動作を示すフローチャートである。 図12は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号とを利用した視差演算における第1の撮像信号の分割ブロック及び演算順番を説明するための図である。 図13は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号とを利用した視差演算における第2の撮像信号の分割ブロック及び演算順番を説明するための図である。 図14は本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第2の撮像信号を利用したときの視差評価値の演算領域を説明するための図である。 図15は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第2の撮像信号を利用したときの視差演算における視差と視差評価値との関係を説明するための図である。 図16は本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第2の撮像信号を利用したときの視差演算における視差評価値の信頼度の演算領域を説明するための図である。 図17は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第3の撮像信号とを利用した視差演算の動作を示すフローチャートである。 図18は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第3の撮像信号とを利用した視差演算における第3の撮像信号の分割ブロックと演算順番を説明するための図である。 図19は本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第3の撮像信号とを利用したときの視差評価値の演算領域を説明するための図である。 図20は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第3の撮像信号とを利用したときの視差演算における視差と視差評価値との関係を説明するための図である。 図21は本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第3の撮像信号とを利用したときの視差演算における視差評価値の信頼度の演算領域を説明するための図である。 図22は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第4の撮像信号とを利用した視差演算の動作を示すフローチャートである。 図23は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第4の撮像信号とを利用した視差演算における第4の撮像信号の分割ブロックと演算順番を説明するための図である。 図24は本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第4の撮像信号とを利用したときの視差評価値の演算領域を説明するための図である。 図25は本発明の実施の形態1に係る撮像装置の第1の撮像信号と第4の撮像信号とを利用したときの視差演算における視差と視差評価値との関係を説明するための図である。 図26は本発明の実施の形態1に係る撮像装置において、第1の撮像信号と第4の撮像信号とを利用したときの視差演算における視差評価値の信頼度の演算領域を説明するための図である。 図27は実施の形態1の変形例に係る撮像装置のレンズアレイの構成を示す平面図である。 図28は本発明の実施の形態2に係る撮像装置のレンズアレイの構成を示す平面図である。 図29は本発明の実施の形態3に係る撮像装置の構成を示すブロック図である。 図30は本発明の実施の形態3に係る撮像装置の動作を示すフローチャートである。 図31は本発明の実施の形態3に係る係数保存部を説明するための図である。 図32は本発明の実施の形態3に係る撮像装置の撮像信号の切り出し位置を説明するための図である。 図33は本発明の実施の形態3に係る撮像装置の距離演算部の動作を示すフローチャートである。 図34は本発明の実施の形態3に係る撮像装置において、ブロック分割を説明する図である。 図35は本発明の実施の形態3に係る撮像装置において、第1の撮像信号と第2の撮像信号を利用したときの視差演算における視差評価値の演算領域を説明する図である。 図36は本発明の実施の形態3に係る撮像装置の第1の撮像信号と第2の撮像信号を利用したときの視差演算におけるずらし量と視差評価値との関係を説明する図である。 図37は実施の形態3の変形例に係る撮像装置のレンズアレイの構成を示す平面図である。 図38は従来の撮像装置の分解斜視図である。 図39は従来の撮像装置の撮像ブロックを説明するための図である。
符号の説明
101 カメラモジュール
110 レンズモジュール
111 鏡筒
112 上部カバーガラス
113 レンズアレイ
113a 第1のレンズ部
113b 第2のレンズ部
113c 第3のレンズ部
113d 第4のレンズ部
120 回路部
121 基板
122 パッケージ
123 撮像素子
124 パッケージカバーガラス
125 SLSI
126 温度センサ
127 金線
131 システム制御部
132 撮像素子駆動部
133 撮像信号入力部
134 入力バッファ
135 前処理部
135a 第1の中間バッファ
135b 第2の中間バッファ
135c 第3の中間バッファ
135d 第4の中間バッファ
135e 前処理演算部
136 演算部
137 出力バッファ
137a 第1の出力バッファ
137b 第2の出力バッファ
138 入出力部
139 温度補償部
139a 温度センサ信号入力部
139b 温度補償演算部
141 演算バッファ
141 第1の演算バッファ
141 第2の演算バッファ
142 視差演算部
143 距離演算部
225 SLSI
234 温度センサ信号入力部
235 入出力部
241 係数保存部
242 温度補償演算部
243 撮像信号補正部
244 距離演算部

Claims (19)

  1. 複数のレンズを含むレンズアレイと、
    前記複数のレンズと一対一に対応して設けられ、対応する前記レンズの光軸方向に対して略垂直な受光面をそれぞれ有する複数の撮像領域と、
    前記レンズアレイの近傍に配置され温度を検知する温度センサと、
    前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量に応じて前記撮像領域において生成された撮像信号を補正する温度補償/撮像信号補正部と、
    前記温度補償/撮像信号補正部により補正された前記撮像信号に基づき視差を演算する視差演算部と、を備える、撮像装置。
  2. 前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を推定する移動量推定部と、前記移動量推定部により推定された前記光軸の移動量に基づいて、前記撮像領域において生成された撮像信号を補正する撮像信号補正部と、を含み、
    前記視差演算部は、前記撮像信号補正部により補正された前記撮像信号に基づき視差を演算するよう構成されている、請求項1に記載の撮像装置。
  3. 前記移動量推定部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量に基づいて、前記光軸の移動量を推定するように構成されている、請求項2に記載の撮像装置。
  4. 前記移動量推定部は、前記算出された変化量の半分を前記光軸の移動量と推定するように構成されている、請求項3に記載の撮像装置。
  5. 前記撮像信号補正部は、前記移動量に基づき、光軸位置を補正し、その光軸周りの歪曲を補正するように構成されている、請求項2に記載の撮像装置。
  6. 前記撮像信号補正部は、前記移動量に基づき、切り出し領域を変化させるように構成されている、請求項2に記載の撮像装置。
  7. 前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を含む補正係数を作成する補正係数作成部と、前記補正係数に基づいて、前記撮像領域において生成された撮像信号を補正し補正後撮像信号を作成する撮像信号補正部と、を含み、
    視差演算部は、前記補正後撮像信号に基づき視差を演算するように構成されている、請求項1に記載の撮像装置。
  8. 前記補正係数作成部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量の半分を前記光軸の移動量として前記補正係数を作成するように構成されている、請求項7に記載の撮像装置。
  9. 前記温度に応じた複数組の補正係数を複数の補正係数保存値として保存する補正係数保存部を有し、
    前記補正係数作成部は、前記複数組の補正係数保存値から前記温度に応じた補正係数保存値を選択して前記補正係数を作成するように構成されている、 請求項7に記載の撮像装置。
  10. 前記温度センサの信号を入力しデジタル値である温度値を作成する温度センサ信号入力部を有し、
    前記補正係数保存部は、前記温度値よりも分解能が粗い組の前記補正係数保存値を保存するように構成されており、
    前記補正係数作成部は、前記温度値に基づき複数組の前記補正係数保存値を選択し補間処理して、前記補正係数を作成するように構成されている、請求項9に記載の撮像装置。
  11. 前記撮像信号補正部は、前記補正係数に基づき参照先座標を求め、前記参照先座標が示す複数の撮像信号を参照し補間処理を施し補正後撮像信号を作成するように構成されている、請求項7に記載の撮像装置。
  12. 複数のレンズを含むレンズアレイと、前記複数のレンズと一対一に対応して設けられ、対応する前記レンズの光軸方向に対して略垂直な受光面をそれぞれ有する複数の撮像領域とを有する撮像装置に用いられる半導体回路素子であって、
    前記レンズアレイの近傍に配置された温度センサによって検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量に応じて前記撮像領域において生成された撮像信号を補正する温度補償/撮像信号補正部と、
    前記温度補償/撮像信号補正部により補正された前記撮像信号に基づき視差を演算する視差演算部と、を備える、半導体回路素子。
  13. 前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を推定する移動量推定部と、前記移動量推定部により推定された前記光軸の移動量に基づいて、前記撮像領域において生成された撮像信号を補正する撮像信号補正部と、を含み、
    前記視差演算部は、前記撮像信号補正部により補正された前記撮像信号に基づき視差を演算するよう構成されている、請求項12に記載の半導体回路素子。
  14. 前記移動量推定部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その算出された変化量に基づいて、前記光軸の移動量を推定するように構成されている、請求項13に記載の半導体回路素子。
  15. 前記移動量推定部は、前記算出された変化量の半分を前記光軸の移動量と推定するように構成されている、請求項14に記載の半導体回路素子。
  16. 前記撮像信号補正部は、前記移動量に基づき、光軸位置を補正し、その光軸周りの歪曲を補正するように構成されている、請求項13に記載の半導体回路素子。
  17. 前記撮像信号補正部は、前記移動量に基づき、切り出し領域を変化させるように構成されている、請求項13に記載の半導体回路素子。
  18. 前記温度補償/撮像信号補正部は、前記温度センサにより検知された温度に基づいて、前記複数のレンズのすべての光軸の移動量を含む補正係数を作成する補正係数作成部と、前記補正係数に基づいて、前記撮像領域において生成された撮像信号を補正し補正後撮像信号を作成する撮像信号補正部と、を含み、
    視差演算部は、前記補正後撮像信号に基づき視差を演算するように構成されている、請求項12に記載の半導体回路素子。
  19. 前記補正係数作成部は、前記検知された温度に基づき前記複数のレンズの光軸間の間隔の変化量を算出し、その前記算出された変化量の半分を前記光軸の移動量として前記補正係数を作成するように構成されている、請求項18に記載の半導体回路素子。
JP2008550304A 2007-06-28 2008-06-26 撮像装置及び半導体回路素子 Active JP4264464B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007170420 2007-06-28
JP2007170420 2007-06-28
PCT/JP2008/001667 WO2009001563A1 (ja) 2007-06-28 2008-06-26 撮像装置及び半導体回路素子

Publications (2)

Publication Number Publication Date
JP4264464B2 true JP4264464B2 (ja) 2009-05-20
JPWO2009001563A1 JPWO2009001563A1 (ja) 2010-08-26

Family

ID=40185388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008550304A Active JP4264464B2 (ja) 2007-06-28 2008-06-26 撮像装置及び半導体回路素子

Country Status (3)

Country Link
US (1) US8395693B2 (ja)
JP (1) JP4264464B2 (ja)
WO (1) WO2009001563A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010707A1 (ja) * 2008-07-23 2010-01-28 パナソニック株式会社 撮像装置及び半導体回路素子
JP2011044801A (ja) * 2009-08-19 2011-03-03 Toshiba Corp 画像処理装置
US8395693B2 (en) 2007-06-28 2013-03-12 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
JP2014174484A (ja) * 2013-03-12 2014-09-22 Ricoh Co Ltd 撮像システム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171533B (zh) * 2009-03-06 2014-12-03 松下电器产业株式会社 测距装置及其制造方法
JP5493900B2 (ja) * 2010-01-18 2014-05-14 株式会社リコー 撮像装置
JP5387856B2 (ja) * 2010-02-16 2014-01-15 ソニー株式会社 画像処理装置、画像処理方法、画像処理プログラムおよび撮像装置
US9122320B1 (en) * 2010-02-16 2015-09-01 VisionQuest Imaging, Inc. Methods and apparatus for user selectable digital mirror
TWI423143B (zh) * 2010-06-17 2014-01-11 Pixart Imaging Inc 影像感測模組
US8274552B2 (en) * 2010-12-27 2012-09-25 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
US10200671B2 (en) 2010-12-27 2019-02-05 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
JP2013109011A (ja) * 2011-11-17 2013-06-06 Toshiba Corp カメラモジュール
JP2013179564A (ja) * 2012-02-01 2013-09-09 Canon Inc 画像処理方法、画像処理装置および撮像装置
US9177503B2 (en) * 2012-05-31 2015-11-03 Apple Inc. Display having integrated thermal sensors
JPWO2014192642A1 (ja) * 2013-05-28 2017-02-23 コニカミノルタ株式会社 画像処理装置および画像処理方法
KR102316448B1 (ko) 2015-10-15 2021-10-25 삼성전자주식회사 이미지 장치 및 그것의 뎁쓰 계산 방법
US10690495B2 (en) * 2016-03-14 2020-06-23 Canon Kabushiki Kaisha Ranging apparatus and moving object capable of high-accuracy ranging
JP7034158B2 (ja) * 2017-06-15 2022-03-11 日立Astemo株式会社 車両システム
US10342094B1 (en) * 2017-12-19 2019-07-02 Cree, Inc. Lighting device with active thermal management
DE102019210508A1 (de) * 2019-07-16 2021-01-21 Conti Temic Microelectronic Gmbh Optisches Sensormodul und Verfahren
WO2024035565A1 (en) * 2022-08-08 2024-02-15 Vis, Llc Temperature sensing light control

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350613A (ja) 1991-05-28 1992-12-04 Hitachi Ltd 画像認識装置
JPH0787385A (ja) 1993-09-10 1995-03-31 Canon Inc 撮像装置
JPH10281761A (ja) 1997-04-02 1998-10-23 Fuji Electric Co Ltd 測距装置
JP3976887B2 (ja) 1998-04-17 2007-09-19 キヤノン株式会社 カメラ
JP2001099643A (ja) 1999-07-23 2001-04-13 Fuji Electric Co Ltd 測距装置
US6785028B1 (en) * 1999-11-24 2004-08-31 Ricoh Company, Ltd. Optical scanning device having a temperature compensation unit
EP1326063A1 (en) * 2000-09-04 2003-07-09 Noboru Hayakawa Temperature indicator and temperature monitor system
US7262799B2 (en) * 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
JP3703424B2 (ja) * 2000-10-25 2005-10-05 キヤノン株式会社 撮像装置及びその制御方法及び制御プログラム及び記憶媒体
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置
JPWO2004106857A1 (ja) * 2003-05-29 2006-07-20 オリンパス株式会社 ステレオ光学モジュール及びステレオカメラ
WO2004106858A1 (ja) * 2003-05-29 2004-12-09 Olympus Corporation ステレオカメラシステム及びステレオ光学モジュール
JP2007263563A (ja) * 2004-06-03 2007-10-11 Matsushita Electric Ind Co Ltd カメラモジュール
JP2006122338A (ja) * 2004-10-28 2006-05-18 Aruze Corp 遊技機及びプログラム
JP2007033315A (ja) 2005-07-28 2007-02-08 Pentax Corp 3次元物体測量装置および測量写真解析装置
JP2007081806A (ja) 2005-09-14 2007-03-29 Konica Minolta Holdings Inc 撮像システム
WO2007060847A1 (ja) * 2005-11-22 2007-05-31 Matsushita Electric Industrial Co., Ltd. 撮像装置
JP2007271301A (ja) 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 撮像装置
US7675536B2 (en) * 2006-04-19 2010-03-09 Lexmark International, Inc. Architectures for multi-functional image forming devices
JP2007322128A (ja) 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd カメラモジュール
WO2009001563A1 (ja) 2007-06-28 2008-12-31 Panasonic Corporation 撮像装置及び半導体回路素子
US7826736B2 (en) * 2007-07-06 2010-11-02 Flir Systems Ab Camera and method for use with camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395693B2 (en) 2007-06-28 2013-03-12 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
WO2010010707A1 (ja) * 2008-07-23 2010-01-28 パナソニック株式会社 撮像装置及び半導体回路素子
US8390703B2 (en) 2008-07-23 2013-03-05 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
JP2011044801A (ja) * 2009-08-19 2011-03-03 Toshiba Corp 画像処理装置
US8339483B2 (en) 2009-08-19 2012-12-25 Kabushiki Kaisha Toshiba Image processing device, solid-state imaging device, and camera module
JP2014174484A (ja) * 2013-03-12 2014-09-22 Ricoh Co Ltd 撮像システム

Also Published As

Publication number Publication date
US8395693B2 (en) 2013-03-12
WO2009001563A1 (ja) 2008-12-31
US20100182484A1 (en) 2010-07-22
JPWO2009001563A1 (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4264464B2 (ja) 撮像装置及び半導体回路素子
JP4510930B2 (ja) 撮像装置及び半導体回路素子
EP3399355B1 (en) Dual-core focusing image sensor, focusing control method for the same, and electronic device
US8405820B2 (en) Ranging device and ranging module and image-capturing device using the ranging device or the ranging module
JP4322921B2 (ja) カメラモジュールおよびそれを備えた電子機器
JP4441585B1 (ja) 撮像装置及び半導体回路素子
JP4839827B2 (ja) 3次元測定装置
WO2009125577A1 (ja) 撮像装置、撮像システムおよび撮像方法
CN106068643B (zh) 摄像装置
US8314865B2 (en) Lens shading correction
US20120230549A1 (en) Image processing device, image processing method and recording medium
CN102192724B (zh) 距离测量和光度测定装置、以及成像设备
US20140118516A1 (en) Solid state imaging module, solid state imaging device, and information processing device
EP3514758A1 (en) Stereo camera calibration method, disparity calculating device, and stereo camera
JP6780662B2 (ja) 受光装置、制御方法、及び、電子機器
JP2009250785A (ja) 撮像装置
JP5857712B2 (ja) ステレオ画像生成装置、ステレオ画像生成方法及びステレオ画像生成用コンピュータプログラム
CN102202178A (zh) 图像处理方法及图像处理装置
JP5493900B2 (ja) 撮像装置
JP2007271301A (ja) 撮像装置
JP2010002280A (ja) 撮像装置、測距装置及び視差算出方法
US20120228482A1 (en) Systems and methods for sensing light
JP5434816B2 (ja) 測距装置及び撮像装置
JP6060482B2 (ja) 測距装置、測距システム、測距プログラムおよび視差補正方法
CN204836340U (zh) 摄影装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5