JP4262963B2 - Comb culture method - Google Patents

Comb culture method Download PDF

Info

Publication number
JP4262963B2
JP4262963B2 JP2002302531A JP2002302531A JP4262963B2 JP 4262963 B2 JP4262963 B2 JP 4262963B2 JP 2002302531 A JP2002302531 A JP 2002302531A JP 2002302531 A JP2002302531 A JP 2002302531A JP 4262963 B2 JP4262963 B2 JP 4262963B2
Authority
JP
Japan
Prior art keywords
kombu
culture
abalone
leaf
culture tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302531A
Other languages
Japanese (ja)
Other versions
JP2004135562A (en
Inventor
航 松村
大介 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2002302531A priority Critical patent/JP4262963B2/en
Publication of JP2004135562A publication Critical patent/JP2004135562A/en
Application granted granted Critical
Publication of JP4262963B2 publication Critical patent/JP4262963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Feed For Specific Animals (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Fodder In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンブの培養方法に関する。
【0002】
【従来の技術】
アワビは最も高価な水産物の一つで、市場価格においてもキロ当たり数千〜一万円で取引される。国内のアワビ漁獲量は低迷しており、資源の回復を目指した漁場造成や種苗放流が各地で盛んに行われてきたが、密漁、害敵生物による捕食生息環境(藻場)の減少・悪化などの問題があり、期待した効果は得られていない。食材としてのアワビを確保する手段としては、北日本を中心に行われているような海中養殖または陸上養殖への期待が大きい。しかし、富山県の場合、沿岸が急深地形となっているため,海中養殖の適地は限られ、夏の高水温がしばしば問題となる。また、陸上養殖を行うにしても、清浄かつ適水温の海水や大量の餌の確保が必要である。
アワビの養殖では餌の確保が重要な課題の一つで、何らかの形で自給を考えない限り、配合飼料、天然飼料ともに、大量に購入し、低温で保管しなければならず、経費が嵩むだけでなく、保存期間が長くなると変性の問題も生じる。これまでの方法で、アワビ成貝の主食である大型褐藻類のコンブ培養を行うには、大型の水槽からはみ出して空中に露出した部分が枯死しやすいことが指摘されていた。
一方、昨今、富山県では、表層海水と比べて水温が低く、清浄性に優れ、栄養塩が豊富に含まれる海洋深層水が取水されており,これを利用した水温の調節、あるいはコンブや付着珪藻などの冷水性餌料藻類の培養が進められている。
前記海洋深層水は、海洋表層水に比べて低水温で温度が安定しており、コンブの生長に適した栄養塩を多く含んでいることから、冷水性のコンブの再生長を促進する。また、深層水で餌料藻類を育てながらアワビを飼育した報告は国内でもいくつかあるが、その多くは放流用稚貝(殻長40mm以下)の育成で、食用サイズまでの養殖を目指した事例としては、付着珪藻を餌料として一口アワビ(殻長60mm)まで育てた例があるにすぎない。
【0003】
【発明が解決しようとする課題】
本発明は前記事情に基づいてなされたものであり、アワビ、ウニ又はサザエが主食とするコンブを年間を通して無駄なく且つ効率的に餌料として供給可能なコンブの培養方法及び良質なアワビ、ウニ又はサザエの収穫を安定して行うことが可能なアワビ、ウニ又はサザエの養殖方法を提供することを目的とする。
【0005】
【課題を解決する手段】
上記課題を解決するために成された本発明のうち請求項1記載の発明は、コンブの幼体が植え付けられている糸を巻き付けた基盤を、海洋深層水が流通する培養槽内に沈め、前記基板上でコンブを生長させ且つ再生長可能な範囲内で切断し、コンブの介在生長を利用して前記切断を反復して行うことによって、切断コンブを培養し、前記糸に植え付けられている幼体は、切断した葉状部片を前記培養槽の水面下に吊るし、成熟を誘発させ、前記葉状部片から放出したコンブの胞子を前記糸に付着させることによって当該糸上に発芽させたコンブの幼体であることを特徴とするコンブの培養方法である。
【0006】
ここで、糸はコンブの胞子が付着し、幼体が定着するものであれば材質を特に限定しないが、例えば、綿糸などがあげられる。また、海洋深層水の水温はコンブの生育が可能な範囲内であれば特に限定はしないが、例えば5℃〜10℃の水温が望ましい範囲として挙げられる。
【0008】
そして、請求項1記載の方法を実施するための培養装置は、海洋深層水を取り入れる流入管と、海洋深層水を流出する流出管とを備えている培養槽内を、海洋深層水が流通するようになっており、前記培養槽内には、基盤上で生育すると共に再生長可能な範囲内で切断し且つ生長したコンブを反復して切断可能であるコンブを備えていることとすることができる。
【0009】
また、コンブの培養方法として、前記培養槽を複数段又は/及び複数列としても良い。ここで、複数段とは、例えば、上段、中段、下段というように階段状の段差を設け、各段にそれぞれ培養槽を配置している状態をいい、これによって、海洋深層水が高い段に置いた培養槽から低い段の培養槽へ自動的に流れるようになっている。また、複数列とは、前記同じ高さの各段に複数個の培養槽をそれぞれ備えている状態をいう。
【0010】
更に、コンブの培養装置としては、前記培養槽の中のいずれかに、成熟誘導用の葉状部片を吊り下げても良い。
【0013】
【発明の実施の形態】
以下、本発明による海洋深層水を使用したコンブの培養方法とその培養装置、並びに、コンブを主食とするアワビの養殖方法とその養殖装置の実施の形態を図面に基づき説明する。
【0014】
実験材料のコンブはマコンブで、富山県水産試験場で培養したものである。種糸はプラスチック製の正方形基盤(40cm×40cm)数基に5〜6本ずつ縛って加温深層水(サクラマス熱交換用:約17℃〜18℃の地下水と熱交換による加温、約11℃)が流通する屋外1t培養槽に沈め、一部は、深層水原水(11℃)が流通する屋内1t培養槽に垂下し、低光量(約6μEm-2s-1)で保存培養した。
【0015】
成熟誘導は、図2に示すように、生長試験時に切断して得た葉状部片7(長さ15cm〜30cm)を、加温深層水が流通する培養槽4の水面付近(水面下10cm〜20cm)に糸12で吊るし、定期的に子嚢斑が形成されているかどうかを確認した。なお、成熟誘導の試験は隔月に実施した。
【0016】
切り取った葉片の成熟誘導は、時期(季節)を問わず、深層水を流通させた培養槽4で容易に行うことができた。葉状部片7は、加温深層水では各月とも2週間の培養で子嚢斑を形成し始めた。子嚢斑は葉状部片の中帯部(中央の厚みのある部位)だけに形成され、別に行った藻体部位別の試験では、藻体の上部から得た葉片ほど早く子嚢斑を形成する傾向が認められた。また、加温深層水と原水では、加温深層水で培養した方が原水の場合に比べて子嚢斑が形成されるまでの期間が1〜2週間程度短かった。
【0017】
又、9月に成熟誘導によって得た遊走子を用い、実際にコンブの種糸作りを行ってみたところ、培養4週間後の子嚢斑を形成した葉片から多数の遊走子が放出された。また、これを海水ごとクレモナ糸に適量散布して付着させ、インキュベーター(10℃)で培養した結果、約1ヶ月後には糸上に約1mmの正常なコンブの幼体(11)を認めることができた。
【0018】
切断したコンブの生長試験は、上記環境により2001年3月に葉長50cm〜60cm、葉幅5cmに達した屋外培養藻体を用い、毎月一回、葉状部の基部から15cmの位置で切断して先端部を除き、加温深層水が流通する培養槽4(0.5t〜1t)で培養を続けることによって行った。正方形基盤1基あたりの生育本数は100〜150個体であった。生長量は、基盤上のコンブのうち標識をつけた30個体について、コンブ類の生長測定でよく用いられる穿孔法(Yokohama et al。1987)により調べた。本研究では、葉状部の基部から一定部位(10cm)に孔14を設け、切断3週間後に次の孔14までの距離Aを測った(図1参照)。また、切断時に穴を空けた部位の葉幅も毎月測定した。
【0019】
その結果、コンブの再生長は2001年3月〜2002年1月までの毎月、全ての藻体で認められた(図3参照、図4参照)。各月の切断後3週間に再生長して伸びた部分の長さを測定し、実験を行ったが、実験を開始した3月には平均23.5cm伸び、最大葉長65cmに達した藻体も認められた。介在生長による藻体の伸びは冬(天然の衰退期)に向かって徐々に減少する傾向が見られ、9月には平均8.8cm、10〜12月には平均4.1cm〜6.0cmの伸びに留まったが、葉幅(図4参照)は毎月の切断にもかかわらず9月まで増加傾向を示し、9月には平均11.2cmとなった。10月から1月にかけて葉幅の増加は停滞したが、12月には葉状部にいわゆる「突き出し」(多年生のコンブが越年後に伸長生長を開始し、根元側の幅の広い新葉部が細い旧葉部を押し上げる現象)が認められ、日照時間が長くなるとともに、1月には若干ではあるが生長量の増加が認められた。
【0020】
なお、8月と1月に切断したコンブが1ヶ月間に伸長した部分の湿重量について、1藻体当たりの生長量は8月に平均約21g、1月に約15gであり、150個体を付着させた1基盤上で得られる葉片の概算重量はそれぞれ約3kg、2kgと計算された。
このほか、一部の藻体の切断を7月に止めて培養し続けたところ、5ヶ月後(12月)、最も伸長したもので全長230cm、葉幅17.2cmにまで生長した。
【0021】
併せて、前記成長試験によって得られたマコンブの給餌によるエゾアワビの飼育試験を行った。当該試験に用いたアワビは殻長41mmのエゾアワビNordotis discus hannai(山形県栽培振興協会産)で、2001年2月に2基の屋内養殖槽(0.5t)に20個体ずつ収容し、チタンヒーター等の加温装置で15℃と18℃に設定した深層水止水で飼育を行った。アワビには再生長実験で得たコンブ葉片を与え、最初の1ヶ月間に摂餌量(日量)を調べ、その後は残餌が出ない程度に週2回給餌した。
【0022】
アワビ20個体が一日に食べるコンブ葉片の量を調べた結果、水温15℃では約5g、18℃では約15gであった(図7参照)。これに基づき、1個体当たりの日間摂餌量を計算したところ、それぞれ0.25g、0.75gとなった。この量を目安にしてコンブを与え、3ヶ月間飼育したアワビの殻長(5月)は、15℃では平均45.4mm、最大51mm、18℃では平均46.5mm、最大52mmとなり、いずれも3ヶ月間に最大で約11mm伸びた。これ以降、気温の上昇で水温が設定値を超えたり曝気に支障が生じた場合に、一部のアワビが死亡したが、飼育8ヶ月後(10月)には殻長63mm、1年後(2月)には67mmに達した。
【0023】
今回は、以上の研究結果に基づき、コンブを安定供給しながらアワビを陸上養殖するために、コンブを主食とするアワビの養殖装置の一例として、図6に示すような、海洋深層水と切断コンブの介在生長を活用したアワビ養殖装置を案出した。
この実施形態例として示すアワビ、ウニ又はアワビの培養装置は、図2に示す様な葉状部片7を吊るしてある成熟誘導用の培養槽4を2基1列2段と、コンブの培養槽4を8基4列2段と、各培養槽4内には約150個体のコンブを付着させた正方形基盤(40cm×40cm)を10個沈め、前記各培養槽4には水温5℃〜10℃に加温した海洋深層水1を流通させるための流入管2と、流出管3と、が具備されている。尚、5列2段になっている相互の培養槽4は連結管15によって連結されており、海洋深層水1が流入し、排出するようになっている。
【0024】
また、海洋深層水1を各培養槽4及び各養殖槽8に、自動的に、スムーズに流れ込む様にするために、前記各培養槽4及び各養殖槽8を設置する高さには、列ごとに階段状の段差が設けてある。この段差によって、上段から流し込まれた海洋深層水1が下位の各培養槽4と各養殖槽8に自動的に流入し、流出される様になっている。例えば、本実施形態例においては、3段から成る段差が設けられており、図6の右側に示されている成熟誘導用の培養槽4を1基含めた培養槽5基を上段とし、上段の図示左側にある成熟誘導用の培養槽4を1基含めた培養槽5基を中段とし、更に養殖槽2基を下段とすると、上段から中段、中段から下段へと、海洋深層水1が自動的に流通するようになっている(図6参照)。ここで、本実施形態例では、養殖槽8を下段としているが、養殖槽8を上段に配置し、各培養槽4を養殖槽8の下位の段に配置しても良い。
【0025】
また、前記培養装置に併設して、アワビの幼体13と、前記培養槽4からの海洋深層水1を取り入れるための導入管9と、前記海洋深層水を排出するための排出管10と、を具備した養殖槽8を2基2列1段に配列してある。各培養槽4と各養殖槽8との間では、前記培養槽4の流出管3と前記養殖槽8の導入管9は連結し、水温を15℃〜20℃に加温した海洋深層水のコンブ培養排水を活用すると共に、各養殖槽8内には別の配管16により新たな海洋深層水が流入し、アワビ等の養殖を行っている。加温は、主に、ボイラーによる方が効率的である。
【0026】
このアワビ養殖装置の例では、海洋深層水のコンブ培養排水を、水温を15℃〜20℃に加温してアワビを養殖するもので、陸上にて養殖槽内に深層水を流通させることによって全てを賄うことができる。切断コンブは、毎月の切断後も葉が生長をし、これを「床屋」のように定期的に収穫することにより、アワビの餌料としてほぼ周年利用できる。
【0027】
まず、水温を5℃〜10℃に調節したコンブ培養槽8基を4列2段に配列し、1培養槽に約150個体のコンブを付着させた正方形基盤(40cm×40cm)を10個入れる。1ヶ月間の培養で切断コンブが再生長した葉状部片を毎週2基分の培養槽分採取し、アワビに与える。8基の4列2段の培養槽を用い、採取する培養槽を毎週ずらしていけば、4週間(約1ヶ月)周期で切断コンブを利用できる。毎月得られるコンブ葉片は1藻体につき平均15g〜21g、1基盤上から2kg〜3kg、2基分の培養槽で約40kg〜60kg となり、これを毎週アワビに給餌することになる。一方、殻長約40mmのアワビ1個体あたりの月間マコンブ摂餌量(水温15℃と18℃の平均)は約15gであるので、1基盤上のコンブ葉片を与えることにより約150個体〜200個体のアワビが飼育可能である。
【0028】
この多段式培養システムが機能すれば、12000本(=150本/基盤×10基盤/培養槽×8培養槽)のコンブ切断により、計算上12,000個体〜16,000個体のアワビ(殻長40mm)を育てることができ、常にコンブの種苗を確保しておくことも可能となる。実際には、アワビの成長に伴う摂餌量の増大、コンブ再生長の停滞期を考慮して収容数を調整する必要がある。また、コンブ種苗については、成熟誘導のための予備培養槽やコンブ種糸を保存するための低温培養槽を用意しておくことが望ましい。なお、1年間培養した切断コンブは、平均海水温の高い海域でも、海水温の低い時期に海中培養を行えば、2年目コンブとして養殖できる可能性もある。
【0029】
【発明の効果】
本発明によれば、海洋深層水が流通する培養槽内で、コンブの介在生長力を利用することによって、コンブの葉状部片を反復して切断可能であるので、アワビ、ウニ又はサザエの主食となる前記葉状部片を年間を通じて無駄なく且つ効率的に餌料として供給できる。
また本発明によれば、培養槽内で一定の長さに達したコンブの上部が順次に切断されて行くので、培養槽内のコンブは無用に長く伸びて光りを遮り他のコンブの生長に支障をきたすことがないことは勿論、空気中に露出して枯死することもない。
【0030】
更に本発明によれば、底の浅い培養槽であっても葉状部片の切断の反復によって高密度にコンブの培養ができ、特に培養槽を複数段又は/及び複数列に配置すれば、より一層アワビ、ウニ又はサザエの餌料としての切断葉状部片を過不足なく且つ継続的に供給できるので、多量のアワビ、ウニ又はサザエの養殖が可能となって、アワビ、ウニ又はサザエを安定且つ確実に収穫できるものである。
【図面の簡単な説明】
【図1】 本発明によるコンブの模式図である。
【図2】 本発明によるコンブの培養装置の一例を示す模式図である。
【図3】 本発明による切断したコンブの葉状部の再生長の長さを月ごとに表した棒グラフ図である。
【図4】 本発明による切断したコンブの葉状部の再生長の葉幅を月ごとに表した棒グラフ図である。
【図5】 本発明によるアワビ20個体当たりが1日に摂餌するコンブ葉片の摂餌量を2日間おきに表した折れ線グラフ図である。
【図6】 本発明によるアワビ養殖装置の一例を表した模式図である。
【符号の説明】
1 海洋深層水
2 流入管
3 流出管
4 培養槽
5 基板
6 コンブ
7 葉状部片
8 養殖槽
9 導入管
10 排水管
11 コンブの幼体
12 糸
13 アワビの幼体
14 孔
15 連結管
16 配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for culturing kombu.
[0002]
[Prior art]
Abalone is one of the most expensive seafood and is traded at thousands to 10,000 yen per kilogram at market prices. Abalone catch in Japan is stagnant, and fishing ground creation and seedling release aiming at resource recovery have been actively carried out in various places, but poaching, predation habitat environment (algae ground) by harmful organisms is decreasing or worsening The expected effect is not obtained. As a means of securing abalone as a foodstuff, there is a great expectation for underwater or on-shore aquaculture, which is performed mainly in northern Japan. However, in Toyama Prefecture, the coast is steep and deep, so the suitable areas for underwater aquaculture are limited, and high summer temperatures are often a problem. In addition, even when cultivating land, it is necessary to secure clean and appropriate seawater and a large amount of food.
In abalone farming, securing food is one of the important issues. Unless you consider self-sufficiency in some way, both mixed and natural feeds must be purchased in large quantities and stored at low temperatures, which increases costs. In addition, the problem of denaturation also arises when the storage period is long. It has been pointed out that in order to cultivate large brown algae, which is a staple food for adult abalone shellfish, by conventional methods, the portion that protrudes from the large aquarium and is exposed to the air tends to die.
On the other hand, recently, in Toyama Prefecture, deep sea water with low water temperature, superior cleanliness, and rich in nutrient salts has been taken compared to surface seawater. Cultivation of cold-water feed algae such as diatoms is underway.
The deep ocean water has a low temperature and stable temperature compared to the ocean surface water, and contains a lot of nutrient salts suitable for the growth of the kombu, thus promoting the regeneration length of the cold water kombu. In addition, there are several reports in Japan that have raised abalone while raising feed algae in deep water, but most of them have been raised as larval shellfish (shell length of 40 mm or less) and are aimed at farming to the edible size. There are only examples of growing up to bite abalone (shell length 60 mm) using adhering diatoms as feed.
[0003]
[Problems to be solved by the invention]
The present invention has been made on the basis of the above circumstances, and a method for cultivating a kombu that is a staple food of abalone, sea urchin or sazae, and can efficiently supply it as a feed throughout the year, and a high quality abalone, sea urchin or sazae. It is an object of the present invention to provide an abalone, sea urchin or turban shell cultivation method capable of stably harvesting rice.
[0005]
[Means for solving the problems]
Of the present invention made to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a base around which a thread of a kombu seedling is wound is submerged in a culture tank in which deep ocean water circulates, A juvenile that is grown on a substrate by growing the comb on the substrate and cutting it within a reproducible range, cultivating the cut comb by repeatedly performing the cutting using the intergrowth growth of the comb . Is a juvenile kombu germinated on the thread by suspending the cut leaf-like piece under the water surface of the culture tank, inducing maturation, and attaching the spores of the comb released from the leaf-like piece to the yarn A method for cultivating a kombu characterized by
[0006]
Here, the material of the yarn is not particularly limited as long as the spore of the kombu adheres and the juvenile is fixed, and examples thereof include cotton yarn. Further, the water temperature of the deep sea water is not particularly limited as long as it is within a range in which the kombu can be grown, but for example, a water temperature of 5 ° C to 10 ° C is preferable.
[0008]
And the culture apparatus for implementing the method of Claim 1 distribute | circulates a deep sea water in the culture tank provided with the inflow pipe which takes in deep sea water, and the outflow pipe which flows out deep sea water. In the culture tank, there is provided a comb that grows on the base and that can be cut within a reproducible range and that can be cut repeatedly by repeating the grown comb. it can.
[0009]
Further, as kelp culture methods, it may be the culture vessel as a plurality of stages and / or multiple columns. Here, the term “multiple stages” refers to a state in which stepped steps such as an upper stage, a middle stage, and a lower stage are provided, and a culture tank is arranged in each stage, whereby the deep ocean water is in a higher stage. It automatically flows from the placed culture tank to the lower culture tank. Moreover, a plurality of rows refers to a state in which a plurality of culture tanks are provided in each step of the same height.
[0010]
Furthermore, as a culture device for the kombu, a leaf-like piece for inducing maturation may be suspended in any one of the culture tanks.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method and apparatus for culturing a kombu using deep sea water according to the present invention, and an abalone culture method using the kombu as a staple food and an apparatus for culturing the same will be described below with reference to the drawings.
[0014]
The kombu of the experimental material is macomb, which was cultured at the Toyama Prefectural Fisheries Experiment Station. Seed yarns are tied to several plastic square bases (40cm x 40cm) 5-6 pieces each, and heated deep layer water (for cherry trout heat exchange: about 17 ° C to 18 ° C groundwater heated by heat exchange, about 11 C.) was submerged in an outdoor 1t culture tank in which a deep water source (11 ° C.) was distributed, and a part was suspended and cultured in a low light amount (about 6 μEm −2 s −1 ).
[0015]
As shown in FIG. 2, maturation induction is performed in the vicinity of the surface of the culture tank 4 through which warming deep water flows (from 10 cm below the surface) to the leaf-like piece 7 (15 cm to 30 cm in length) obtained by cutting during the growth test. 20 cm) was hung with a thread 12 and it was confirmed whether or not ascolic spots were regularly formed. The maturation test was conducted every other month.
[0016]
Maturation induction of the cut leaf pieces could be easily performed in the culture tank 4 in which deep water was circulated regardless of the season (season). The leaf-like piece 7 began to form ascopasma in the warmed deep water after 2 weeks of culture each month. Ascomb spots are formed only in the middle part of the leaf-shaped piece (the thick part in the center), and in a separate test for each algal body part, the ascending spot forms earlier as the leaf piece obtained from the top of the alga body The tendency to do was recognized. Moreover, in warming deep layer water and raw | natural water, the period until the ascocyst spot was formed was shorter about 1-2 weeks compared with the case of raw | natural water culture | cultivation by the warming deep layer water.
[0017]
Moreover, using the zoospore obtained by maturation induction in September and actually making seeds of the kombu, a large number of zoospores were released from the leaf pieces that formed ascocysts after 4 weeks of culture. Moreover, as a result of spraying an appropriate amount of this together with seawater on Cremona yarn and attaching it, and incubating it in an incubator (10 ° C.), after about one month, a normal kombu juvenile (11) of about 1 mm can be observed on the yarn. It was.
[0018]
In the growth test of the cut kombu, an outdoor cultured alga body that reached a leaf length of 50 cm to 60 cm and a leaf width of 5 cm in March 2001 according to the above environment was cut once a month at a position 15 cm from the base of the leaf. The culture was continued in the culture tank 4 (0.5 t to 1 t) through which the heated deep water circulated except for the tip. The number of growing plants per square base was 100 to 150 individuals. The amount of growth was examined by using a perforation method (Yokohama et al., 1987) often used for measuring the growth of kombu on the 30 kombu on the base. In this study, a hole 14 was provided from the base of the leaf-like part to a certain part (10 cm), and the distance A to the next hole 14 was measured 3 weeks after cutting (see FIG. 1). In addition, the leaf width of the part where the hole was made at the time of cutting was also measured monthly.
[0019]
As a result, the regeneration length of the kombu was recognized in all algal bodies every month from March 2001 to January 2002 (see FIG. 3 and FIG. 4). Experiments were carried out by measuring the length of the part that was regenerated and extended 3 weeks after cutting each month, but in March when the experiment was started, the algae reached an average of 23.5 cm and reached a maximum leaf length of 65 cm. The body was also recognized. The growth of algal bodies due to interstitial growth tends to gradually decrease toward winter (natural decline), with an average of 8.8 cm in September and an average of 4.1 cm to 6.0 cm in October to December. However, the leaf width (see Fig. 4) showed an increasing trend until September, and reached an average of 11.2cm in September. The increase in leaf width stagnated from October to January, but in December the so-called “protrusion” in the foliate (perennial kombu began to grow after year-round, and the wide-leafed leaf on the root side A phenomenon of pushing up the thin old leaf part) was observed, and the sunshine duration became longer and a slight increase in growth amount was recognized in January.
[0020]
In addition, about the wet weight of the portion where the kombu cut in August and January extended for one month, the average growth amount per algae is about 21 g in August, about 15 g in January, 150 individuals The approximate weight of the leaf pieces obtained on one attached base was calculated to be about 3 kg and 2 kg, respectively.
In addition, when some of the algal bodies were cut in July and continued to be cultured, after 5 months (December), they grew to the maximum length of 230 cm and the leaf width of 17.2 cm.
[0021]
At the same time, a breeding test of Ezo abalone was conducted by feeding Macombu obtained by the growth test. The abalone used in the test was Nordotis discus hannai (produced by Yamagata Prefectural Cultivation Association) with a shell length of 41 mm. Twenty individuals were housed in two indoor aquaculture tanks (0.5 t) in February 2001 with titanium heaters. Breeding was performed with deep water stop set at 15 ° C. and 18 ° C. with a heating device such as the above. Abalone was fed with kombu leaf pieces obtained in the regeneration length experiment, and the amount of food consumed (daily amount) was examined during the first month, and then fed twice a week so that no residual food was produced.
[0022]
As a result of examining the amount of kombu leaf pieces that 20 abalone individuals eat per day, it was about 5 g at a water temperature of 15 ° C. and about 15 g at 18 ° C. (see FIG. 7). Based on this, the daily food intake per individual was calculated to be 0.25 g and 0.75 g, respectively. The abalone shell length (May) fed with the kombu using this amount as a guide and bred for 3 months averaged 45.4 mm at 15 ° C, maximum 51 mm, averaged 46.5 mm at 18 ° C, and maximum 52 mm. It grew about 11 mm at the maximum in 3 months. Since then, some abalone died when the water temperature exceeded the set value due to a rise in temperature or aeration occurred, but after 8 months (October), the shell length was 63 mm, 1 year later ( In February), it reached 67 mm.
[0023]
This time, based on the above research results, as an example of an abalone farming device that uses a combination of staples as a staple food for abalone culturing while supplying a stable supply of combs, as shown in Fig. 6 Devised an abalone aquaculture device utilizing intergrowth growth
The abalone, sea urchin or abalone culturing apparatus shown as an example of this embodiment includes a culture tank 4 for inducing maturation in which two leaf-like pieces 7 are suspended as shown in FIG. 10 square bases (40 cm × 40 cm) having about 150 individuals attached to each culture tank 4 are submerged in each culture tank 4, and each culture tank 4 has a water temperature of 5 ° C. to 10 ° C. An inflow pipe 2 and an outflow pipe 3 for circulating the deep sea water 1 heated to ° C. are provided. Note that the mutual culture tanks 4 arranged in five rows and two stages are connected by a connecting pipe 15 so that the deep ocean water 1 flows in and is discharged.
[0024]
Further, in order to automatically and smoothly flow the deep sea water 1 into each culture tank 4 and each culture tank 8, the height at which each culture tank 4 and each culture tank 8 is installed is in a row. A stepped step is provided for each. By this step, the deep sea water 1 poured from the upper stage automatically flows into and out of the lower culture tanks 4 and the culture tanks 8. For example, in the present embodiment example, there are three steps, and the upper stage includes five culture tanks including one culture tank 4 for maturation induction shown on the right side of FIG. If five culture tanks including one maturation-inducing culture tank 4 on the left side of the figure are in the middle and further two aquaculture tanks are in the lower, the deep ocean water 1 is moved from the upper to the middle and from the middle to the lower. It is automatically distributed (see FIG. 6). Here, in the present embodiment, the culture tank 8 is in the lower stage, but the culture tank 8 may be arranged in the upper stage, and each culture tank 4 may be arranged in the lower stage of the culture tank 8.
[0025]
In addition to the culture apparatus, an abalone juvenile 13, an introduction pipe 9 for taking in the deep sea water 1 from the culture tank 4, and a discharge pipe 10 for discharging the deep sea water are provided. The provided aquaculture tanks 8 are arranged in two rows and two rows and one stage. Between each culture tank 4 and each culture tank 8, the outflow pipe 3 of the culture tank 4 and the introduction pipe 9 of the culture tank 8 are connected, and the deep sea water is heated to 15 ° C. to 20 ° C. In addition to utilizing the kombu culture drainage, new deep sea water flows into each culture tank 8 through another pipe 16 to culture abalone and the like. Heating is mainly more efficient with a boiler.
[0026]
In the example of this abalone culture device, the deep sea water comb culture drainage is used to cultivate abalone by heating the water temperature to 15 ° C to 20 ° C. By circulating the deep water in the culture tank on land I can cover everything. Cutting combs can be used almost a year as abalone feed by growing the leaves after cutting every month and harvesting them regularly like “barber”.
[0027]
First, 8 comb culture tanks with water temperature adjusted to 5 ° C. to 10 ° C. are arranged in 4 rows and 2 rows, and 10 square bases (40 cm × 40 cm) with about 150 kombu attached are placed in one culture tank. . Two pieces of leaf-like pieces that have been regenerated and lengthened by cutting combs in one month of culture are collected every week for two culture tanks and fed to abalone. By using eight 4-row, 2-stage culture tanks and shifting the culture tanks to be collected every week, cutting combs can be used at a cycle of 4 weeks (about 1 month). Each month, the kombu leaf pieces obtained average 15 g to 21 g per algal body, 2 kg to 3 kg from the base, and about 40 kg to 60 kg in two culture tanks, and this is fed to abalone every week. On the other hand, the monthly macombu consumption per abalone with a shell length of about 40 mm (average of water temperature 15 ° C. and 18 ° C.) is about 15 g. Abalone can be reared.
[0028]
If this multi-stage culture system works, 12,000 (= 150 pieces / base × 10 bases / culture tanks × 8 culture tanks) will be cut, and 12,000 to 16,000 individual abalone (shell length) will be calculated. 40mm) can be grown, and it is possible to always keep the seedlings of the kombu. Actually, it is necessary to adjust the number of accommodations in consideration of the increase in food intake accompanying the growth of abalone and the stagnation period of the comb regeneration length. As for the kombu seedlings, it is desirable to prepare a pre-culture tank for inducing maturation and a low-temperature culture tank for storing the kombu seed yarn. Note that cut combs cultured for one year may be cultivated as second-year combs even in sea areas where the average seawater temperature is high, if they are cultured underwater at times when the seawater temperature is low.
[0029]
【The invention's effect】
According to the present invention, the leaf-like pieces of the kombu can be cut repeatedly by using the intergrowth vigor in the culture tank in which the deep sea water circulates. The leaf-like piece that becomes can be efficiently and efficiently supplied as feed throughout the year.
In addition, according to the present invention, the upper part of the comb that reaches a certain length in the culture tank is sequentially cut, so that the comb in the culture tank extends unnecessarily long and blocks the light to grow other combs. Of course, it will not cause any trouble, and it will not be exposed to air and die.
[0030]
Furthermore, according to the present invention, even in a culture tank having a shallow bottom, it is possible to culture the kombu with high density by repeated cutting of the leaf-like pieces, and more particularly if the culture tanks are arranged in a plurality of stages and / or a plurality of rows. Since it is possible to continuously supply abalone, sea urchin, or turban shell as abalone, sea urchin, or turban shell feed, it is possible to cultivate a large amount of abalone, sea urchin, or turban shell. Can be harvested.
[Brief description of the drawings]
FIG. 1 is a schematic view of a comb according to the present invention.
FIG. 2 is a schematic view showing an example of a culture apparatus for a kombu according to the present invention.
FIG. 3 is a bar graph showing the length of the regenerated length of the cut-off leaf-shaped portion of the kombu according to the present invention for each month.
FIG. 4 is a bar graph showing the leaf width of the regenerated length of the cut-off leaf-shaped part according to the present invention for each month.
FIG. 5 is a line graph showing the amount of feeding of kombu leaf pieces fed per day by 20 abalone individuals according to the present invention every two days.
FIG. 6 is a schematic diagram showing an example of an abalone farming apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deep sea water 2 Inflow pipe 3 Outflow pipe 4 Culture tank 5 Substrate 6 Comb 7 Leaf-shaped piece 8 Culture tank 9 Introducing pipe 10 Drain pipe 11 Comb juvenile 12 Yarn 13 Abalone juvenile 14 Hole 15 Connecting pipe 16 Piping

Claims (1)

コンブの幼体が植え付けられている糸を巻き付けた基盤を、海洋深層水が流通する培養槽内に沈め、前記基板上でコンブを生長させ且つ再生長可能な範囲内で切断し、コンブの介在生長を利用して前記切断を反復して行うことによって、切断コンブを培養し、前記糸に植え付けられている幼体は、切断した葉状部片を前記培養槽の水面下に吊るし、成熟を誘発させ、前記葉状部片から放出したコンブの胞子を前記糸に付着させることによって当該糸上に発芽させたコンブの幼体であることを特徴とするコンブの培養方法。 Sink the base around which the kombu juvenile is planted into a culture tank in which deep ocean water circulates, grow the kombu on the substrate and cut it within a reproducible range, By cultivating the cut comb by repeatedly performing the cutting using the above, the juvenile planted in the thread hangs the cut leaf-like piece under the water surface of the culture tank to induce maturation, A method for cultivating a kombu, characterized by being a juvenile of a kombu germinated on the yarn by attaching the spores of the kombu released from the leaf-like piece to the yarn.
JP2002302531A 2002-10-17 2002-10-17 Comb culture method Expired - Fee Related JP4262963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302531A JP4262963B2 (en) 2002-10-17 2002-10-17 Comb culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302531A JP4262963B2 (en) 2002-10-17 2002-10-17 Comb culture method

Publications (2)

Publication Number Publication Date
JP2004135562A JP2004135562A (en) 2004-05-13
JP4262963B2 true JP4262963B2 (en) 2009-05-13

Family

ID=32450572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302531A Expired - Fee Related JP4262963B2 (en) 2002-10-17 2002-10-17 Comb culture method

Country Status (1)

Country Link
JP (1) JP4262963B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179640C (en) * 2002-11-01 2004-12-15 中国科学院海洋研究所 Method for cultivating novel species of Huliotis discus hannai Ino with tangerine color shell
JP5176124B2 (en) * 2005-03-03 2013-04-03 独立行政法人産業技術総合研究所 Processed water for reducing concentration of nutrients in salt water and method for producing the same
JP2007037481A (en) * 2005-08-04 2007-02-15 Shizuoka Prefecture Method for rearing, culturing or cultivating crustacean and crustacean reared, cultured or cultivated by the same method
KR100789389B1 (en) * 2006-12-21 2007-12-28 주식회사 씨에버 Method of Producing Shellfish Using Concentrated Mineral-form Water in the Deep Sea
KR100869033B1 (en) * 2007-07-04 2008-11-18 서희동 A cultured method of the fish which used deep and surface seawater
JP5569874B2 (en) * 2009-03-31 2014-08-13 静岡県 Microalgae culture method
JP2012023971A (en) * 2010-07-20 2012-02-09 Kochi Univ Method for identifying abalone
JP6240037B2 (en) * 2014-07-10 2017-11-29 株式会社ゼネラル・オイスター Oyster farming method
CN111657194A (en) * 2020-04-28 2020-09-15 长沙青龙农业开发有限责任公司 Ecological breeding method for high-yield and high-quality river snails
CN113508767B (en) * 2021-04-29 2023-03-17 上海海洋大学 Method for repairing seaweed field by culturing shellfish-algae complex
CN114631503A (en) * 2022-02-25 2022-06-17 海南金雨海洋产业发展有限公司 Artificial seedling culture method for Babylonia
CN117546803B (en) * 2023-12-26 2024-05-14 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 Indoor culture system and method for limnoperna lacustris

Also Published As

Publication number Publication date
JP2004135562A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
CN104969886B (en) A kind of fish and vegetable symbiotic breeding method
CN104430079B (en) Vegetable, Oryza sativa L., flower planting support, with net cage set, the apparatus and method combined
JP4262963B2 (en) Comb culture method
CN102301969A (en) Method for cultivating hybridized and backcrossed marine product fries
CN101317552A (en) Industrial cultivation method for one-year double-cropping sepiella maindroni
CN102106326B (en) Method for three-dimensional and artificial seedlings cultivation of perinereis aibuhitensis
CN109247275A (en) A kind of method for pearl culture
CN111387110A (en) Alternate culture method for crayfishes and freshwater shrimps according to seasonal annual cycle
CN104026070B (en) A kind of Trionyx sinensis (Wiegmann) environmentally-friendly pond culture method
CN113647349A (en) Rice and shrimp comprehensive planting and breeding method based on non-furrow rice field transformation
CN112136733A (en) Industrialized three-dimensional ecological breeding method for stichopus japonicus and urechis unicinctus
CN111011274B (en) Industrial breeding method of urechis unicinctus
JP2006320292A (en) Method for culturing laver
CN104521654B (en) A kind of method that pond eutrophication is administered by rice cultivation
CN104542398A (en) Spring and autumn two-season propagation method for loaches
CN102948382A (en) Method for controlling saprolegniasis of odontobutis obscura germ cells in incubation period
CN106719185A (en) A kind of method that rock oyster ecological breeding is carried out using the megathermal period
CN102106285A (en) Kishinouyea pond three-harvest raising technology
CN101933482A (en) Method for north-south hybridization and reproduction regulation breeding of Lateolabrax
CN206565104U (en) A kind of Pelteobagrus fulvidraco is cultivated with biological floating bed
CN108323462A (en) A kind of breeding method of resistance to less salt chief blood clam seed
CN103688882A (en) High-density crab cultivating method
CN104145868B (en) A kind of method improving pond loach fry survival rate
CN109984067A (en) Cray winter, method was supported in outdoor grain bin
CN105010193B (en) One kind hybridizes Fugu seed pond breeding method then

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees