JP4254350B2 - Transparent barrier film - Google Patents

Transparent barrier film Download PDF

Info

Publication number
JP4254350B2
JP4254350B2 JP2003156816A JP2003156816A JP4254350B2 JP 4254350 B2 JP4254350 B2 JP 4254350B2 JP 2003156816 A JP2003156816 A JP 2003156816A JP 2003156816 A JP2003156816 A JP 2003156816A JP 4254350 B2 JP4254350 B2 JP 4254350B2
Authority
JP
Japan
Prior art keywords
barrier film
transparent barrier
resin composition
organic layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003156816A
Other languages
Japanese (ja)
Other versions
JP2004244606A (en
Inventor
英樹 窪
宏典 丸山
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003156816A priority Critical patent/JP4254350B2/en
Publication of JP2004244606A publication Critical patent/JP2004244606A/en
Application granted granted Critical
Publication of JP4254350B2 publication Critical patent/JP4254350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学部材、エレクトロニクス部材、一般包装部材、薬品包装部材などの幅広い用途に応用が可能な透明でガスバリア性の高いフィルムおよびこれを用いた表示素子に関する。
【0002】
【従来の技術】
プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガスバリア性フィルムは、酸素または水蒸気の遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液晶表示素子、太陽電池、表示素子用基板等で使用されている。
特に液晶表示素子やエレクトロルミネッセンス(EL)表示素子などへの応用が進んでいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重くて割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めている。また、プラスチックフィルムは上記要求に応えるだけでなく、ロールトゥロール方式が可能であることからガラスよりも生産性が良くコストダウンの点でも有利である。
しかしながら、透明プラスチック等のフィルム基材はガラスに対しガスバリア性が劣るという問題がある。ガスバリア性が劣る基材を用いると、酸素または水蒸気が浸透し、例えば液晶セル内の液晶を劣化させ、表示欠陥となって表示品位を劣化させてしまう。この様な問題を解決するためにフィルム基板上に金属酸化物薄膜を形成してガスバリア性フィルム基材とすることが知られている。包装材や液晶表示素子に使用されるガスバリア性フィルムとしてはプラスチックフィルム上に酸化珪素を蒸着したもの(例えば、特許文献1参照。)や酸化アルミニウムを蒸着したもの(例えば、特許文献2参照。)が知られており、いずれも1g/m2/day程度の水蒸気バリア性を有する。また、更に高いガスバリア性能が期待できる手段としてスパッタリング成膜による成膜雰囲気の水分圧を制御する方法(例えば、特許文献3参照。)やCVD法により作製した無機酸化物と無機酸化物と同系列の無機成分を含有する有機無機複合膜の積層体によるバリア層付きフィルム基板が検討されている(例えば、特許文献4参照。)。しかしながら、水蒸気バリア性が0.1g/m2/day程度であり、高品位の表示素子、特に有機エレクトロルミネッセンス表示素子に適用できるバリアレベルではなかった(例えば、非特許文献1参照。)。
【0003】
【特許文献1】
特公昭53-12953号公報
【特許文献2】
特開昭58-217344号公報
【特許文献3】
特開2000-192237号公報
【特許文献4】
特開2000-352709号公報
【非特許文献1】
「OPTRONICS」,No.3,p122-123(2001)記事
【0004】
【発明が解決しようとする課題】
本発明の目的は、従来よりも高いガスバリア性能を持ちかつ曲げてもそのバリア性能が劣化しない透明フィルムおよびこれを用いた表示素子を提供することにある。
【0005】
【課題を解決するための手段】
すなわち本発明は、
(1) 樹脂基材上に有機物層▲1▼、無機物層▲1▼、有機物層▲2▼、無機物層▲2▼がこの順に積層され、かつ有機物層▲2▼と無機物層▲2▼組み合わせが1組以上である透明バリアフィルムであって、有機物層▲2▼の厚みが0.01μm以上かつ6μm以下であり、有機物層▲2▼が、アクリロイル基を有するモノマーを主成分とする樹脂組成物を架橋させて得られ、且つ該樹脂組成物がアクリロイル基の反応率を30%以上として200μm厚に硬化させた時の水蒸気透過度が30g/m2/dayより小さいことを特徴とする透明バリアフィルム。
(2) 前記無機物層▲1▼および/または▲2▼の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴の無いことを特徴とする(1)の透明バリアフィルム。
(3) 前記無機物層▲1▼および/または▲2▼の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、表面の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起が無いことを特徴とする(1)の透明バリアフィルム。
(4) 前記無機物層▲1▼および/または▲2▼の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴の無く、表面の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起も無いことを特徴とする(1)の透明バリアフィルム。
(5) 前記有機物層▲1▼および/または▲2▼の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴の無いことを特徴とする(1)〜(4)の透明バリアフィルム。
(6) 前記有機物層▲1▼および/または▲2▼の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、その表面に最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起が無いことを特徴とする(1)〜(4)の透明バリアフィルム。
(7) 前記有機物層▲1▼および/または▲2▼の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴の無く、その表面に最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起も無いことを特徴とする(1)〜(4)の透明バリアフィルム。
(8) 前記有機物層▲1▼が、アクリロイル基を有するモノマーを主成分とする樹脂組成物を架橋させて得られる(1)〜(7)の透明バリアフィルム。
(9) 前記有機物層▲1▼および/または▲2▼が、2官能以上のアクリロイル基を有する1種類以上のモノマー、または2官能以上のアクリロイル基を有する1種類以上のモノマーと単官能以上のアクリロイル基を有する1種類以上のモノマーとの混合物を主成分とする樹脂組成物を、架橋させて得られる(1)〜(8)の透明バリアフィルム。
(10) 前記有機物層▲1▼に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種がイソシアヌール酸EO変性トリアクリレートである(1)〜(9)の透明バリアフィルム。
(11) 前記有機物層▲2▼に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種がノルボルネン骨格を有する(1)〜(10)の透明バリアフィルム。
(12) 前記有機物層▲2▼に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種がフルオレン骨格を有する(1)〜(10)の透明バリアフィルム。
(13) 前記有機物層▲2▼に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種が臭素化ビスフェノールA型エポキシアクリレートである(1)〜(10)の透明バリアフィルム。
(14) 前記有機物層▲2▼に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種が、イソシアヌール酸EO変性トリアクリレートである(1)〜(13)の透明バリアフィルム。
(15) 前記無機物層がSi、Al、In、Sn、Zn、Ti、Cu、Ce、Mg、La、Cr、Ca、Zr、Taから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物またはハロゲン化物を主成分とする(1)〜(14)の透明バリアフィルム。
(16) 前記樹脂基材のガラス転移温度が160℃以上である(1)〜(15)の透明バリアフィルム。
(17) 前記樹脂基材がポリカーボネート系樹脂、ノルボルネン系樹脂、シクロオレフィン系樹脂、エポキシ系樹脂、アクリル系樹脂またはポリエーテルスルホン樹脂から選ばれる一種類以上の樹脂を主成分とする(1)〜(16)の透明バリアフィルム。
(18) 前記バリアフィルムにおいて樹脂基材上に積層された有機物層と無機物層の剥き出しになる各断端を、200μm厚成形板での水蒸気透過度が10g/m2/dayより小さい樹脂組成物で端面封止したことを特徴とする(1)〜(17)の透明バリアフィルム。
(19) 前記端面封止に用いる樹脂組成物が、蜜ロウ、木ロウ、白ロウ、パラフィンロウ、イボタロウ、カルナバロウ、ハードワックスから選ばれる一種類以上の樹脂を主成分とすることを特徴とする(18)の透明バリアフィルム。
(20) (1)〜(19)の透明バリアフィルムを用いた表示素子。
(21) (1)〜(18)の透明バリアフィルムを用いた表示素子の基板端面を、200μm厚成形板での水蒸気透過度が10g/m2/dayより小さい樹脂組成物で端面封止したことを特徴とする表示素子。
(22) 前記端面封止に用いる樹脂組成物が、蜜ロウ、木ロウ、白ロウ、パラフィンロウ、イボタロウ、カルナバロウ、ハードワックスから選ばれる一種類以上の樹脂を主成分とする樹脂組成物で封止したことを特徴とする(21)の表示素子。
(23) (20)〜(22)の表示素子を用いたエレクトロルミネッセンス表示装置。
(24) 透明バリアフィルムが、光学シート、表示素子用プラスチック基板、アクティブマトリックス表示素子用基板又は有機エレクトロルミネセンス表示素子用基板である(1)〜(19)の透明バリアフィルム。
である。
【0006】
【発明の実施の形態】
本発明は、樹脂基材上に有機物層▲1▼、無機物層▲1▼、有機物層▲2▼、無機物層▲2▼がこの順に積層され、かつ有機物層▲2▼と無機物層▲2▼組み合わせが1組以上である透明バリアフィルムであり、有機物層▲1▼、無機物層▲1▼の積層体だけでは無くしきれない層構造の欠陥部分を有機物層▲2▼、無機物層▲2▼の1組以上の積層体で埋め、ガスバリア性を高めた透明フィルムである。また、無機層に狭持された有機物層▲2▼は、その厚みが0.01μm以上かつ6μm以下の範囲であり、その材質は、アクリロイル基の反応率を30%以上として200μm厚に硬化させた時の水蒸気透過度が30g/m2/dayより小さいアクリロイル基を有するモノマーを主成分とする樹脂組成物を架橋させて得られる。
【0007】
本発明の透明バリアフィルムのバリア層を構成する有機物層および/または無機物層の表面は、表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さ10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴が無い、および/または紫外線硬化性樹脂組成物の表面に最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起が無いことが望ましい。
【0008】
表面粗さ算術平均値(Ra)が10nm以上の場合は、表示素子において表示の不均一性が発生することがある。また、表面粗さ算術平均値(Ra)が10nmよりも小さい場合でも、表面粗さにおける最大高さ(Ry)が0.3μm以上の凸状形状が存在すること、または、穴状欠陥が存在しその穴形状が表面粗さの平均線からの深さが10nm以上で、穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい場合は、表示素子の不均一性を引き起こすことがあり、積層するバリア膜にクラックや穴状欠陥が発生し易くなり、フィルムシート自体のバリア性能を低下させると言った問題が起こることがある。その結果、液晶表示素子では素子内部での気泡発生、エレクトロルミネッセンス素子では表示欠陥の発生及び表示欠陥部分の成長拡大と言った、表示素子自体の信頼性を大きく低下させる問題が発生することがある。
更に、表面粗さ算術平均値(Ra)が10nmよりも小さい場合でも、表面粗さにおける最大高さ(Ry)が0.3μm以上の凸状形状が存在すること、また、その突起の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい場合は、表示素子の不均一性を引き起こすことがあり、積層するバリア膜にクラックや膜厚不均一が発生し易くなりフィルムシート自体のバリア性能を低下させることがある。その結果、液晶表示素子では素子内部での気泡発生や基板間ギャップの不均一による表示不良、エレクトロルミネッセンス素子では非点灯欠陥の発生及び非点灯欠陥部分の成長拡大と言った、表示素子自体の信頼性を大きく低下させる問題が発生することがある。有機物層または無機物層表面の突起形状を表現する、最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)における最大高さとは、樹脂表面粗さの平均線からの突起の最大高さを示す。また、幅の最小値とは、局所的な突起を樹脂表面粗さの平均線で2次元に切り出した場合の突起のすそのに対応する面形状の最小距離を示す。つまり、突起の表面粗さ平均線における面形状が扁平していた場合に、最も急峻なアスペクト比を算出することができる。
【0009】
本発明の有機物層▲1▼は、例えば、エポキシアクリレート、ウレタンアクリレート、イソシアヌール酸EO変性アクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパンアクリレート、エチレングリコールアクリレート、ポリエステルアクリレート、環状エーテル型アクリレート、ノルボルネンアクリレート等のアクリロイル基を有するモノマーを主成分とする樹脂組成物を好適に用いる事ができるが、特に限定はしない。また、2官能以上のアクリロイル基を有するモノマーを主成分とすることが好ましい。これらの2官能以上のアクリロイル基を有するモノマーは2種類以上を混合して用いても、また1官能のアクリレートを混合して用いても良く、1官能のアクリレートを混合する方法は硬化収縮を小さく抑える点でより好ましい。また、特に架橋度が高く、ガラス転移温度が200℃以上である、イソシアヌール酸EO変性トリアクリレートを主成分とすることも好ましい。
また、前記樹脂組成物には、シリコン系、フッ素系のレベリング材、シリコン系、チタネート系、メルカプト系のシランカップリング材等を添加しても良い。
【0010】
本発明の有機物層▲2▼については低透湿性を有することが好ましく、用いる樹脂としては、JIS K 7129のB法による水蒸気透過度測定において、アクリロイル基の反応率を30%以上として200μm厚に硬化させた時の水蒸気透過度が30g/m2/dayより小さいアクリロイル基を有するモノマーを主成分とする樹脂組成物であれば特に制限はないが、臭素化ビスフェノールA型エポキシアクリレート等のエポキシアクリレート、ウレタンアクリレート、イソシアヌール酸EO変性アクリレート、トリメチロールプロパンアクリレート、ポリエステルアクリレート、環状エーテル型アクリレート、ノルボルネンアクリレート、ジシクロペンタジエニルアクリレート等のシクロオレフィン型アクリレート、シクロオレフィン型エポキシアクリレート、フルオレン型アクリレート、フルオレン型エポキシアクリレート等を用いることができる。特にこれらのうち、2官能以上のアクリロイル基を有するモノマーを主成分とすることが好ましく、中でもイソシアヌール酸EO変性アクリレート、ノルボルネンジアクリレート、ジシクロペンタジエニルジアクリレート、臭素化ビスフェノールA型エポキシジアクリレート、フルオレン型ジアクリレート、フルオレン型エポキシジアクリレートの内、一種類以上を主成分とすることが硬化樹脂組成物の水蒸気透過度を低く抑える点でより好ましい。これらの2官能以上のアクリロイル基を有するモノマーは単独で用いても2種類以上を混合して用いても良い。また、それ自体で比較的バリア性のあるPVA系やEVA系、ポリ塩化ビニリデン、もしくはこれらの樹脂の複数を混用することもできる。また、本発明の紫外線硬化性樹脂組成物には、シリコン系、フッ素系のレベリング材、シリコン系、チタネート系、メルカプト系のシランカップリング材等を添加しても良い。
【0011】
本発明に用いる有機物層▲2▼に用いる樹脂組成物のアクリロイル基の反応率については30%以上が樹脂組成物の硬化特性を得るために好ましく、バリアフィルム適用プロセスを考慮すると反応率45%以上が更に好ましい。アクリロイル基の反応率が30%未満の場合にはモノマー樹脂の反応が不十分なため、耐熱性、密着性の低下が生じ無機物膜にクラックを生じさせる場合がある。更には、未反応モノマーが無機物層製膜プロセス等において揮発ガスとなり、無機物層の組成を変化させることによる有機/無機界面の密着性低下やバリア性劣化を生じさせる。
【0012】
本発明の有機物層▲1▼の厚みは特に制限は無いが0.1〜10μmの範囲が好ましく、更には0.3〜6μmがより好ましい。この厚みは用いる樹脂基材の平滑性に依存するが、0.1μm以下の場合は、ベースフィルムの凹凸を平坦化する効果に乏しいために、無機物層のバリア性を発現することが難しい。また、厚みが10μm以上の場合は、厚みの均一性が低下する問題や、樹脂組成物の種類によっては、樹脂基材の柔軟性に追従できず破壊劣化を起こすと言った問題が生じる恐れがある。また、有機物層▲2▼樹脂組成物の厚みは0.01〜6μmが好ましい。厚みが0.01μmより小さい場合は、有機物層▲2▼の成膜方法にも依存するが面内の膜厚が不均一になるため、無機物層と無機物層の欠陥の補修効果が乏しくなりバリア性を向上させることが難しい。また、厚みが6μm以上の場合は、バリア積層体のフレキシブル性が低下したり、無機物層と有機物層▲2▼との線膨張率の差異による影響が顕著になり、信頼性を評価するための温湿度処理において基板の反りやうねり、更にはクラック発生が見られる場合がある。
【0013】
本発明の無機物層は、水蒸気バリア性および/または酸素バリア性を有することが好ましい。その材質については特に制限はしないが、バリア特性に温度湿度依存性が少ない無機物質を主構成とするバリア膜が好ましい。例えばSi、Al、In、Sn、Zn、Ti、Cu、Ce 、Mg、La、Cr、Ca、Zr、Ta等の1種以上を含む酸化物もしくは窒化物もしくは酸化窒化物もしくはハロゲン化合物などを用いることができる。無機物層は厚すぎると曲げ応力によるクラックの恐れがあり、薄すぎると膜が島状に分布するため、いずれも水蒸気バリア性が悪くなる。上記のことより、それぞれの無機物層の厚みは5nm〜500nmの範囲が好ましいが、特に限定はしない。また、それぞれの無機物層は同じ組成でも別の組成でも良く制限はない。水蒸気バリア性と高透明性を両立させるには無機物層として珪素酸化物や珪素酸化窒化物を使うのが好ましい。珪素酸化物はSiOxと表記され、たとえば、無機物層としてSiOxを用いる場合、良好な水蒸気バリア性と高い光線透過率を両立させるためには1.6<x<1.9であることが望ましい。珪素酸化窒化物はSiOxNyと表記されるが、このxとyの比率は密着性向上を重視する場合、酸素リッチの膜とし、1<x<2、0<y<1が好ましく、水蒸気バリア性向上を重視する場合、窒素リッチの膜とし、0<x<0.8、0.8<y<1.3が好ましい。また、無機膜の成膜方法としては抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、プラズマCVD法、スパッタリング法、常圧CVD法等が適用でき、目的の無機酸化物、無機窒化物、無機窒化酸化物、無機ハロゲン化合物が得られる方法であれば制限はない。
【0014】
本発明の樹脂基材は、そのガラス転移温度が160℃以上であることが好ましい。好適な基材の例としては、ポリカーボネート樹脂、ポリノルボルネン樹脂、ポリエーテルイミド樹脂、ポリアリレート樹脂、ポリアクリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリオレフィン樹脂等、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、シンジオタクチックポリスチレン樹脂、シクロポリオレフィン樹脂及びそのコポリマー樹脂、イミド変性ポリメチルメタクリレート等のイミド変性した高分子等の各種樹脂を主成分とする基材があげられる。中でもポリカーボネート系樹脂、ノルボルネン系樹脂、シクロオレフィン系樹脂、エポキシ系樹脂、アクリル系樹脂またはポリエーテルスルホン樹脂から選ばれる一種類以上の樹脂を主成分とすることで、光線透過率が高く、耐熱性も高い樹脂基材を得る事ができる。また、本発明のベースフィルムは有機物層の形成に先立ち、積層する有機物層との密着力を高めるために脱ガス処理、コロナ放電処理、火炎処理、エキシマUV処理、UVオゾン処理等の表面処理が施されていてもよい。上記樹脂基材は、押出成形およびキャスティング等の方法でシート化することができる。
【0015】
本発明の透明バリアフィルムは、樹脂基材上に積層された有機物層と無機物層の剥き出しになる各端面からの透湿を抑制するために、水蒸気透過度が10g/m2/day(200μm厚)より小さい樹脂組成物で端面封止しても良い。端面を水蒸気透過度の低い樹脂で封止することで基材自体のバリア性能が向上するばかりでなく、バリア性の長期信頼性も向上する。端面封止に使用する樹脂組成物は、水蒸気透過度が低くかつ透明バリアフィルムとの密着性が良い樹脂組成物であれば特に限定されないが、水蒸気透過度、密着性、作業性、コストの点から、蜜ロウ、木ロウ、白ロウ、パラフィンロウ、イボタロウ、カルナバロウ、ハードワックスから選ばれる一種類以上の樹脂組成物を主成分とすることが好ましく、更には耐熱性が高いことからパラフィンロウ、イボタロウ、カルナバロウ、ハードワックスがより好ましい。表示素子に用いる透明バリアフィルムの端面封止は、素子を作製する前でも作製後でもかまわない。表示素子が作製されるプロセス温度が端面封止樹脂組成物の耐熱温度より低い場合は、表示素子作製前に封止することが好ましく、表示素子が作製されるプロセス温度が端面封止樹脂組成物の耐熱温度より高い場合は、表示素子作製後に封止することが好ましい。
【0016】
【実施例】
以下本発明の実施例について詳細に説明するが、本発明は、何ら下記実施例に限定されるものではない。
(実施例1)
ポリエーテルサルホンフィルムに紫外線硬化性樹脂組成物(有機物層▲1▼)としてイソシアヌール酸EO変性トリアクリレート(東亞合成製 M−315)40重量部、ビスフェノールA型エポキシアクリレート(昭和高分子社製 VR-77)10重量部、光開始剤(チバガイギー社製 IRG-907)1.5重量部を酢酸イソアミル(沸点=146℃)33重量部、ブチルセロソルブ(沸点=170℃)17重量部にて撹拌溶解してRC=50wt%の均一な溶液をスピンコーターで塗布し、120℃5分加熱乾燥後さらにUV照射で硬化させて5μmの樹脂層を形成した。つぎに、スパッタ装置の真空槽内に前記有機物層を形成したフィルムをセットし10-4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.04Pa導入、反応ガスとして酸素を分圧で0.04Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへのSiOx無機膜の形成を開始した。50nmの膜が堆積したところでシャッターを閉じてSiOx無機物層(無機物層▲1▼)の成膜を終了した。その後、真空槽(1)内に大気を導入しSiOx無機物層の形成されたフィルムを取り出した。さらに、該フィルムのSiOx無機膜堆積面に紫外線硬化性樹脂組成物(有機物層▲2▼)としてイソシアヌール酸EO変性トリアクリレート(東亞合成製 M−315)50重量部、光開始剤(チバガイギー社製 IRG-907)1.5重量部を酢酸イソアミル(沸点=146℃)33重量部、ブチルセロソルブ(沸点=170℃)17重量部にて撹拌溶解してRC=50wt%の均一な溶液をスピンコーターで塗布し、120℃5分加熱乾燥後さらにUV照射で硬化させて1.0μmの樹脂層を形成した。再び該フィルムをスパッタ装置の真空槽内にセットし10-4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.04Pa導入、反応ガスとして酸素を分圧で0.04Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへのSiOx無機膜の形成を開始した。50nmの膜が堆積したところでシャッターを閉じてSiOx無機物層(無機物層▲2▼)の成膜を終了した。その後、真空槽(1)内に大気を導入しSiOx無機物層の形成されたフィルムを取り出した。
【0017】
(実施例2)
実施例1と同様に、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行ったが、無機物層に挟まれた有機物層▲2▼のアクリル樹脂をイソシアヌール酸EO変性トリアクリレートからノルボルネン骨格を有する2官能アクリレート(東亞合成製 TO-2111)とした。その他配合量および有機物層▲2▼の厚みなどは実施例1と同じ。
(実施例3)
実施例1と同様に、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行ったが、無機物層に挟まれた有機物層▲2▼のアクリル樹脂をイソシアヌール酸EO変性トリアクリレートからフルオレン骨格を有する2官能アクリレート(東亞合成製 TO-2065)とし、有機物層▲2▼の厚みを1.8μmとした。その他配合量などは実施例1と同じ。
(実施例4)
実施例1と同様に、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行ったが、無機物層に挟まれた有機物層▲2▼のアクリル樹脂をイソシアヌール酸EO変性トリアクリレートから臭素化ビスフェノールA型エポキシジアクリレート(日本化薬製 R9403)とし、有機物層▲2▼の厚みを1.6μmとした。その他配合量などは実施例1と同じ。
(実施例5)
実施例1と同様に、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行った後に、樹脂基板端部をパラフィンロウで封止した。50μm厚のステンレスメッシュを補強用の中材にして200μm厚に成形したパラフィンロウの水蒸気透過度をJIS K 7129 のB法により測定したところ、水蒸気透過度は0.1g/m2/day未満で装置の測定限界範囲外であり、透湿性が非常に低いものであった。
【0018】
(比較例1)
実施例1と同様に、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行ったが、無機物層に挟まれた有機物層▲2▼のアクリル樹脂をイソシアヌール酸EO変性トリアクリレートからジペンタエリスリトールヘキサアクリレートとし、有機物層▲2▼の厚みを4.0μmとした。その他配合量などは実施例1と同じ。
(比較例2)
実施例1と同様に、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行ったが、無機物層に挟まれた有機物層▲2▼厚みを10.0μmとした。その他配合量などは実施例1同じ。
【0019】
(評価)
各フィルムの水蒸気透過度をJIS K 7129 B法にて測定した。さらに、40℃90%恒温恒湿オーブンで120時間湿熱処理した基板の水蒸気透過度をJIS K 7129 B法にて測定し、更にその基板を目視により外観評価した。有機物層▲2▼に用いた樹脂組成物の硬化物(200μm厚)の水蒸気透過度をJIS K 7129 B法にて測定した。以上の結果を表1に示す。
【0020】
【表1】

Figure 0004254350
【0021】
(実施例6)
実施例1により作製した樹脂基板上に透明導電膜として、パルスDCマグネトロン法により初期真空度3×10−4Paの状態から酸素/アルゴンガス4%の混合ガスを導入して1×10−1Paの条件下においてITOターゲットにてスパッタリングを行いIn/In+Snの原子比が0.98である酸化インジウム錫(ITO)からなる透明導電膜を得た。測定の結果、膜厚は1000Å、比抵抗は4×10-4Ω−cmであった。
得られた透明電極/バリア付樹脂基板を用いて、有機EL素子を作製した。ITO陽極の上に正孔輸送層としてTPDを40nm蒸着し、ついで電子輸送層兼発光層としてAlq3を70nm蒸着後、陰極としてAg/Mg(10:1)の陰極を200nm蒸着し有機EL素子を作製した。陰極側を、紫外線硬化樹脂をシール材とした接着剤を用いてガラス基板で封止した。
作製した有機EL素子を湿熱環境(40℃、90%RH)に5日間保管した素子を評価した結果、発光部分に素子劣化は見られず、初期発光特性同等の良好な素子特性を示した。
【0022】
(実施例7)
実施例1により作製した樹脂基板上に実施例6同様にして有機EL素子を作製した。その後、実施例5で用いたパラフィンロウにより樹脂基板端部を封止した後、陰極側を、紫外線硬化樹脂をシール材とした接着剤を用いてガラス基板で封止した。
作製した有機EL素子を湿熱環境(40℃、90%RH)に5日間保管した素子を評価した結果、発光部分に素子劣化は見られず、初期発光特性同等の良好な素子特性を示し、更に継続して湿熱環境(40℃、90%RH)に9日間保管した素子の発光状態を観察した結果、発光部分に素子劣化は見られず、初期発光特性同等の良好な素子特性を示した。
【0023】
(比較例3)
比較例2により作製した樹脂基板上に実施例6同様にして有機EL素子を作製した。その後、陰極側を、紫外線硬化樹脂をシール材とした接着剤を用いてガラス基板で封止した。
作製した有機EL素子を湿熱環境(40℃、90%RH)に5日間保管した素子を評価した結果、樹脂基板に緩やかなうねりが発生しており、初期発光状態では見られなかった素子発光部分の部分的な未発光部が確認された。
【0024】
(実施例8)
実施例1と同様な作製手順にて、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行った。有機物層▲1▼はイソシアヌール酸EO変性トリアクリレート(東亞合成製 M−315)30重量部、エポキシアクリレート(東亞合成社製 M-211B)7.5重量部、光開始剤(チバガイギー社製 IRG-907)1.1重量部、メチルセロソルブアセテート 10.8重量部、酢酸ブチル 36重量部,ブチルセロソルブ 6.3重量部にて撹拌、溶解してRC=42wt%の均一な溶液としたものをスピンコーターにて塗布し、加熱乾燥機中90℃で2分間続いて120℃で3分間加熱して溶媒を除去した後に、高圧水銀灯にて350mJ/cm2の紫外線を照射させ4μm厚の有機物層とした。有機物層▲1▼の表面平滑性をAFMにて評価した結果、Ra=0.5nm、Ry=0.2μm、深さ10nm以上の穴欠点が無く、20μm×20μm角の領域における局所的な突起形状の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)の最大値は0.15であった。
有機物層▲1▼上に実施例1に準じて成膜したSiOx膜(無機物層▲1▼)の表面平滑性をAFMにて評価した結果、Ra=0.55nm、Ry=0.23μm、深さ10nm以上の穴欠点が無く、20μm×20μm角の領域における局所的な突起形状の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)の最大値は0.12であった。
SiOx膜(無機物層▲1▼)上に形成する有機物層▲2▼はイソシアヌール酸EO変性トリアクリレート(東亞合成製 M−315)40重量部、光開始剤(チバガイギー社製 IRG-907)2.5重量部、メチルセロソルブアセテート(沸点=145℃)8.5重量部、乳酸エチル(沸点=155℃)30重量部,ブチルセロソルブ(沸点=170℃)6.0重量部にて撹拌、溶解してRC=48.8wt%の均一な溶液としたものをスピンコーターにて塗布し、加熱乾燥機中90℃で5分間続いて120℃で2分間加熱して溶媒を除去した後に、高圧水銀灯にて350mJ/cm2の紫外線を照射させ1μm厚の有機物層とした。有機物層▲2▼の表面平滑性をAFMにて評価した結果、Ra=0.3nm、Ry=0.08μm、深さ10nm以上の穴欠点が無く、20μm×20μm角の領域における局所的な突起形状の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)の最大値は0.1であった。
有機物層▲2▼上に実施例1に準じて成膜したSiOx膜(無機物層▲2▼)の表面平滑性をAFMにて評価した結果、Ra=0.3nm、Ry=0.1μm、深さ10nm以上の穴欠点が無く、20μm×20μm角の領域における局所的な突起形状の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)の最大値は0.1であった。作製したバリアフィルムの40℃90%恒温恒湿オーブン120時間湿熱処理前後の水蒸気透過度をJIS K 7129 B法にて測定した結果、湿熱処理の有無に関わらず測定限界値以下の非常に良好なバリア性が得られ、目視でも外観変化は見られなかった。
【0025】
(実施例9)
実施例8で作製した透明バリアフィルム上に実施例6と同様にして有機EL素子を作製した。作製した有機EL素子を湿熱環境(40℃、90%RH)に5日間保管した素子を評価した結果、発光部分に素子劣化は見られず、初期発光特性同等の良好な素子特性を示し、更に継続して湿熱環境(40℃、90%RH)に40日間保管した素子の発光状態を観察した結果、発光部分に素子劣化は見られず、初期発光特性同等の良好な素子特性を示した。
【0026】
<参考例1>
実施例1と同様な作製手順にて、ポリエーテルサルホンフィルム上に有機物層▲1▼/無機物層▲1▼/有機物層▲2▼/無機物層▲2▼の形成を行った。有機物層▲1▼はエポキシアクリレート(昭和高分子社製 VR-60LAV)20重量部、ウレタンアクリレート(大日本インキ社製 ユニディック17-806)14重量部、光開始剤(チバガイギー社製 IRG-907)1.2重量部、メチルセロソルブアセテート(沸点=145℃)15重量部、酢酸ブチル(沸点=126℃)40重量部,ブチルセロソルブ(沸点=170℃)6.0重量部にて撹拌、溶解してRC=26.4wt%の均一な溶液としたものをスピンコーターにて塗布し、加熱乾燥機中90℃で2分間続いて120℃で3分間加熱して溶媒を除去した後、高圧水銀灯にて350mJ/cm2の紫外線を照射させ2.6μm厚の硬化樹脂組成物を作製した。有機物層▲1▼の表面平滑性をAFMにて評価した結果、Ra=0.8nm、Ry=0.5μm、深さ10nm以上の穴欠点が、20μm×20μm角サイズに5視野の平均5点確認された。
有機物層▲1▼上に実施例1に準じて成膜したSiOx膜(無機物層▲1▼)の表面平滑性をAFMにて評価した結果、Ra=1.0nm、Ry=0.52μm、深さ10nm以上の穴欠点が20μm×20μm角サイズに5視野の平均5点確認された。
SiOx膜(無機物層▲1▼)上に形成する有機物層▲2▼は比較例1に準じてジペンタエリスリトールヘキサアクリレートとし、厚みを4.0μmとした。有機物層▲2▼の表面平滑性をAFMにて評価した結果、Ra=1.2nm、Ry=0.12μm、深さ10nm以上の穴欠点が無く、20μm×20μm角の領域における局所的な突起形状の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)の最大値は0.09であった。
有機物層▲2▼上に実施例1に準じて成膜したSiOx膜(無機物層▲2▼)の表面平滑性をAFMにて評価した結果、Ra=1.2nm、Ry=0.13μm、深さ10nm以上の穴欠点が無く、20μm×20μm角の領域における局所的な突起形状の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)の最大値は0.10であった。作製したバリアフィルムの40℃90%恒温恒湿オーブン120時間湿熱処理前後の水蒸気透過度をJIS K 7129 B法にて測定した結果、湿熱処理の有無に関わらず測定限界値以下の非常に良好なバリア性が得られ、目視でも外観変化は見られなかった。
【0027】
<参考例2>
参考例1で作製した透明バリアフィルム上に実施例6と同様にして有機EL素子を作製した。作製した有機EL素子を湿熱環境(40℃、90%RH)に5日間保管した素子を評価した結果、
発光部分に素子劣化は見られず、初期発光特性同等の良好な素子特性を示した。作製した有機EL素子を継続して湿熱環境(40℃、90%RH)に25日間保管した素子の発光状態を観察した結果、発光部分に素子劣化は見られず初期発光特性同等の良好な素子特性を示したが、更に継続して湿熱環境(40℃、90%RH)に40日間保管した発光状態を観察した結果、発光部分に非発光部が一部確認された。実施例8,9のEL素子の場合はバリア層を構成する有機物層および無機物層の表面平滑性が良好なために、構造欠陥の発生を抑制しガスバリア性に寄与する各無機物層が本来のガスバリア機能を発揮したためと考えられる。一方で参考例1,2の有機EL素子の場合は有機物層と無機物層の繰り返し構造とバリア層を構成する有機物層▲2▼と無機物層▲2▼の表面平滑性が良好なことから、実施例7よりも素子の湿熱処理による素子信頼性の向上は見られるが、有機物層▲1▼と無機物層▲1▼の表面平滑性が実施例8,9に比べ穴欠点が確認できることから、無機物層▲1▼の構造欠陥の発生確率が上がり無機物層本来のガスバリア性が僅かに低下したことが考えられる。
【0028】
【発明の効果】
本発明は、高い水蒸気バリアをもつ透明フィルムであり、しかも高温高湿下でも水蒸気バリア性が低下しないという特性を持つものである。本発明のフィルムをたとえば表示用素子として適用すれば、軽くて割れないディスプレイが実現できる。また、薬品などの保存に適用すれば中身が見えて、落としても割れないような保存容器を実現することも可能であり、その工業的価値は極めて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent film having a high gas barrier property that can be applied to a wide range of uses such as an optical member, an electronic member, a general packaging member, and a chemical packaging member, and a display element using the same.
[0002]
[Prior art]
Gas barrier film with a thin film of metal oxide such as aluminum oxide, magnesium oxide, silicon oxide formed on the surface of plastic substrate or film is used for packaging of goods that need to block oxygen or water vapor, food, industrial products, pharmaceuticals, etc. It is widely used in packaging applications to prevent the deterioration. In addition to packaging applications, they are used in liquid crystal display elements, solar cells, display element substrates, and the like.
In particular, transparent substrates that have been applied to liquid crystal display elements, electroluminescence (EL) display elements, etc., in recent years have high long-term reliability and a high degree of freedom in shape, in addition to demands for weight reduction and size increase. With the addition of advanced demands such as the ability to display curved surfaces, film base materials such as transparent plastics have begun to be used in place of glass substrates that are heavy, fragile and difficult to increase in area. In addition, the plastic film not only satisfies the above requirements, but also has a roll-to-roll method, and is therefore more advantageous than glass because of higher productivity and cost reduction.
However, a film substrate such as a transparent plastic has a problem that the gas barrier property is inferior to glass. If a base material with inferior gas barrier properties is used, oxygen or water vapor will permeate, causing deterioration of the liquid crystal in the liquid crystal cell, for example, resulting in display defects and deterioration of display quality. In order to solve such problems, it is known to form a metal oxide thin film on a film substrate to form a gas barrier film substrate. As a gas barrier film used for a packaging material or a liquid crystal display element, a film obtained by vapor-depositing silicon oxide on a plastic film (for example, see Patent Document 1) or a film obtained by vapor-depositing aluminum oxide (for example, see Patent Document 2). Are known, both 1g / m 2 Has a water vapor barrier property of about / day. In addition, as a means for expecting higher gas barrier performance, a method of controlling the moisture pressure in a film formation atmosphere by sputtering film formation (see, for example, Patent Document 3) or the same series of inorganic oxides and inorganic oxides produced by a CVD method. A film substrate with a barrier layer using a laminate of organic-inorganic composite films containing the above inorganic components has been studied (for example, see Patent Document 4). However, the water vapor barrier property is 0.1 g / m 2 The barrier level is not applicable to high-quality display elements, particularly organic electroluminescence display elements (for example, see Non-Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Publication No.53-12953
[Patent Document 2]
JP 58-217344 JP
[Patent Document 3]
JP 2000-192237 A
[Patent Document 4]
JP 2000-352709 A
[Non-Patent Document 1]
"OPTRONICS", No.3, p122-123 (2001) article
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent film having a higher gas barrier performance than that of the prior art and in which the barrier performance does not deteriorate even when bent, and a display element using the same.
[0005]
[Means for Solving the Problems]
That is, the present invention
(1) An organic material layer (1), an inorganic material layer (1), an organic material layer (2), and an inorganic material layer (2) are laminated in this order on the resin substrate, and the organic material layer (2) and the inorganic material layer (2) are combined. Is a transparent barrier film in which the organic layer (2) has a thickness of 0.01 μm or more and 6 μm or less, and the organic layer (2) is a resin composition containing a monomer having an acryloyl group as a main component. The water vapor permeability is 30 g / m when the resin composition is cured to a thickness of 200 μm with a reaction rate of acryloyl groups of 30% or more. 2 Transparent barrier film characterized by being smaller than / day.
(2) The surface roughness arithmetic mean value (Ra) of the inorganic layer (1) and / or (2) is Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and from the average line The transparent barrier film according to (1), wherein the transparent barrier film has a depth of 10 nm or more and no hole having an aspect ratio (hole depth / hole diameter) of hole depth and hole diameter larger than 0.2.
(3) The surface roughness arithmetic mean value (Ra) of the inorganic layer (1) and / or (2) is Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, The transparent barrier film according to (1), wherein there are no local protrusions having an aspect ratio (maximum height / minimum width) of a minimum value of width greater than 0.2.
(4) The surface roughness arithmetic average value (Ra) of the inorganic layer (1) and / or (2) is Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and from the average line The aspect ratio (maximum height / height) of the maximum height and the minimum width of the surface without a hole having a depth of 10 nm or more and a hole depth / hole diameter aspect ratio (hole depth / hole diameter) greater than 0.2. (1) The transparent barrier film according to (1), wherein there are no local protrusions having a width minimum value greater than 0.2.
(5) The surface roughness arithmetic mean value (Ra) of the organic layer (1) and / or (2) is Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and from the average line The transparent barrier film according to any one of (1) to (4), wherein the transparent barrier film has a depth of 10 nm or more and no hole having a hole depth / hole diameter aspect ratio (hole depth / hole diameter) larger than 0.2.
(6) The organic layer (1) and / or (2) has a surface roughness arithmetic average value (Ra) of Ra <10 nm and a maximum height (Ry) of Ry <0.3 μm. The transparent barrier film according to any one of (1) to (4), wherein there is no local protrusion having an aspect ratio (maximum height / minimum width) of a minimum value of width and width of greater than 0.2.
(7) The surface roughness arithmetic average value (Ra) of the organic layer (1) and / or (2) is Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and from the average line No aspect ratio (hole depth / hole diameter) with a depth of 10 nm or more and a hole depth / hole diameter larger than 0.2, and the aspect ratio (maximum height) of the maximum height and minimum width on the surface The transparent barrier film according to any one of (1) to (4), wherein there is no local protrusion having a / minimum width value greater than 0.2.
(8) The transparent barrier film according to (1) to (7), wherein the organic layer (1) is obtained by crosslinking a resin composition containing a monomer having an acryloyl group as a main component.
(9) The organic layer (1) and / or (2) is monofunctional or higher with one or more monomers having a bifunctional or higher acryloyl group, or with one or more monomers having a bifunctional or higher acryloyl group. The transparent barrier film according to (1) to (8), which is obtained by crosslinking a resin composition mainly composed of a mixture of one or more monomers having an acryloyl group.
(10) The transparent barrier film according to (1) to (9), wherein at least one monomer having an acryloyl group in the resin composition used for the organic layer (1) is isocyanuric acid EO-modified triacrylate.
(11) The transparent barrier film according to (1) to (10), wherein at least one monomer having an acryloyl group of the resin composition used in the organic layer (2) has a norbornene skeleton.
(12) The transparent barrier film according to any one of (1) to (10), wherein at least one monomer having an acryloyl group of the resin composition used for the organic layer (2) has a fluorene skeleton.
(13) The transparent barrier film according to (1) to (10), wherein at least one monomer having an acryloyl group in the resin composition used in the organic layer (2) is brominated bisphenol A type epoxy acrylate.
(14) The transparent barrier film according to any one of (1) to (13), wherein at least one monomer having an acryloyl group in the resin composition used for the organic layer (2) is an isocyanuric acid EO-modified triacrylate.
(15) An oxide or nitride or oxynitridation in which the inorganic layer contains one or more selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, Mg, La, Cr, Ca, Zr, and Ta (1) to (14) transparent barrier film comprising a product or a halide as a main component.
(16) The transparent barrier film of (1) to (15), wherein the glass transition temperature of the resin substrate is 160 ° C. or higher.
(17) The resin base material is mainly composed of one or more kinds of resins selected from polycarbonate resins, norbornene resins, cycloolefin resins, epoxy resins, acrylic resins, and polyethersulfone resins. (16) The transparent barrier film.
(18) The water vapor permeability at a 200 μm-thick molded plate is 10 g / m at each edge where the organic layer and inorganic layer laminated on the resin substrate in the barrier film are exposed. 2 The transparent barrier film of (1) to (17), wherein the end face is sealed with a resin composition smaller than / day.
(19) The resin composition used for sealing the end face is mainly composed of one or more kinds of resins selected from beeswax, wood wax, white wax, paraffin wax, ibota wax, carnauba wax, and hard wax. (18) The transparent barrier film.
(20) A display device using the transparent barrier film of (1) to (19).
(21) The substrate end face of the display element using the transparent barrier film of (1) to (18) has a water vapor transmission rate of 10 g / m on a 200 μm thick molded plate. 2 A display element characterized in that an end face is sealed with a resin composition smaller than / day.
(22) The resin composition used for the end face sealing is sealed with a resin composition containing as a main component one or more kinds of resins selected from beeswax, wood wax, white wax, paraffin wax, ibota wax, carnauba wax, and hard wax. (21) The display element characterized by having stopped.
(23) An electroluminescence display device using the display elements of (20) to (22).
(24) The transparent barrier film according to (1) to (19), wherein the transparent barrier film is an optical sheet, a plastic substrate for display elements, a substrate for active matrix display elements, or a substrate for organic electroluminescence display elements.
It is.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an organic layer (1), an inorganic layer (1), an organic layer (2), and an inorganic layer (2) are laminated in this order on a resin substrate, and an organic layer (2) and an inorganic layer (2) are laminated. It is a transparent barrier film with one or more combinations, and the defective part of the layer structure that cannot be completely removed only by the laminate of the organic layer (1) and the inorganic layer (1) is the organic layer (2) and the inorganic layer (2). It is a transparent film that is filled with one or more laminates and has improved gas barrier properties. The organic layer (2) sandwiched between the inorganic layers has a thickness in the range of 0.01 μm or more and 6 μm or less, and the material is cured to a thickness of 200 μm with an acryloyl group reaction rate of 30% or more. Water vapor permeability at 30g / m 2 It is obtained by crosslinking a resin composition containing a monomer having an acryloyl group smaller than / day as a main component.
[0007]
The surface of the organic layer and / or the inorganic layer constituting the barrier layer of the transparent barrier film of the present invention has a surface roughness arithmetic average value (Ra) of Ra <10 nm and a maximum height (Ry) of Ry <0.3 μm. And there is no hole with an aspect ratio (hole depth / hole diameter) of hole depth to hole diameter greater than 0.2 at a depth of 10 nm or more from the average line, and / or the surface of the ultraviolet curable resin composition It is desirable that there are no local protrusions in which the aspect ratio (maximum height / minimum width) between the maximum height and the minimum value is greater than 0.2.
[0008]
When the surface roughness arithmetic average value (Ra) is 10 nm or more, display nonuniformity may occur in the display element. In addition, even when the surface roughness arithmetic average value (Ra) is smaller than 10 nm, a convex shape having a maximum height (Ry) of 0.3 μm or more in the surface roughness exists, or a hole-like defect exists. However, if the hole shape has a depth of 10 nm or more from the average line of surface roughness and the aspect ratio of the hole depth to the hole diameter (hole depth / hole diameter) is larger than 0.2, the display element is There are cases where uniformity is caused, cracks and hole-like defects are likely to occur in the barrier film to be laminated, and there is a problem that the barrier performance of the film sheet itself is lowered. As a result, problems such as generation of bubbles inside the liquid crystal display element and generation of display defects and expansion of the display defect portion in the electroluminescence element may be caused to greatly reduce the reliability of the display element itself. .
Furthermore, even when the surface roughness arithmetic average value (Ra) is smaller than 10 nm, there is a convex shape having a maximum height (Ry) of 0.3 μm or more in the surface roughness, and the maximum height of the protrusions. When the aspect ratio (maximum height / minimum width) of the minimum value of width and width is greater than 0.2, it may cause non-uniformity of the display element, and cracks and non-uniform thickness of the laminated barrier film Tends to occur, and the barrier performance of the film sheet itself may be lowered. As a result, the reliability of the display element itself, such as the generation of bubbles inside the element and non-uniformity of the gap between substrates in a liquid crystal display element, the occurrence of non-lighting defects and the expansion of non-lighting defect parts in electroluminescence elements. There may be a problem of greatly reducing the performance. The maximum height in the aspect ratio (maximum height / minimum width) of the maximum height and the minimum width, which expresses the protrusion shape on the surface of the organic or inorganic layer, is the maximum protrusion from the average line of the resin surface roughness. Indicates the height. Moreover, the minimum value of the width indicates the minimum distance of the surface shape corresponding to the skirt of the protrusion when a local protrusion is cut out two-dimensionally by the average line of the resin surface roughness. That is, when the surface shape on the surface roughness average line of the protrusion is flat, the steep aspect ratio can be calculated.
[0009]
The organic layer (1) of the present invention includes, for example, epoxy acrylate, urethane acrylate, isocyanuric acid EO-modified acrylate, pentaerythritol acrylate, trimethylolpropane acrylate, ethylene glycol acrylate, polyester acrylate, cyclic ether acrylate, norbornene acrylate, and the like. Although the resin composition which has as a main component the monomer which has an acryloyl group can be used suitably, it does not specifically limit. Moreover, it is preferable that the monomer which has bifunctional or more acryloyl group is made into a main component. These monomers having a bifunctional or higher acryloyl group may be used as a mixture of two or more types, or may be used as a mixture of monofunctional acrylates. The method of mixing monofunctional acrylates reduces cure shrinkage. It is more preferable in terms of suppression. In addition, it is also preferable to use isocyanuric acid EO-modified triacrylate having a high degree of crosslinking and a glass transition temperature of 200 ° C. or higher as a main component.
In addition, a silicon-based, fluorine-based leveling material, silicon-based, titanate-based, mercapto-based silane coupling material, or the like may be added to the resin composition.
[0010]
The organic layer (2) of the present invention preferably has low moisture permeability, and the resin used is 200 μm thick with a reaction rate of acryloyl group of 30% or more in the measurement of water vapor permeability by JIS K 7129 method B. Water vapor permeability when cured is 30 g / m 2 There is no particular limitation as long as it is a resin composition mainly composed of a monomer having an acryloyl group smaller than / day, but epoxy acrylate such as brominated bisphenol A type epoxy acrylate, urethane acrylate, isocyanuric acid EO-modified acrylate, trimethylol Cycloolefin type acrylates such as propane acrylate, polyester acrylate, cyclic ether type acrylate, norbornene acrylate, dicyclopentadienyl acrylate, cycloolefin type epoxy acrylate, fluorene type acrylate, fluorene type epoxy acrylate, and the like can be used. In particular, it is preferable to use a monomer having a bifunctional or higher acryloyl group as a main component. Among them, isocyanuric acid EO-modified acrylate, norbornene diacrylate, dicyclopentadienyl diacrylate, brominated bisphenol A type epoxy diester. Of the acrylate, fluorene-type diacrylate, and fluorene-type epoxy diacrylate, it is more preferable that the main component is one or more kinds from the viewpoint of keeping the water vapor permeability of the cured resin composition low. These monomers having a bifunctional or higher functional acryloyl group may be used alone or in admixture of two or more. In addition, PVA-based, EVA-based, polyvinylidene chloride, or a plurality of these resins, which are relatively barrier by themselves, can also be used. In addition, a silicon-based, fluorine-based leveling material, silicon-based, titanate-based, mercapto-based silane coupling material, or the like may be added to the ultraviolet curable resin composition of the present invention.
[0011]
The reaction rate of the acryloyl group of the resin composition used in the organic material layer (2) used in the present invention is preferably 30% or more in order to obtain the curing characteristics of the resin composition, and the reaction rate is 45% or more considering the barrier film application process. Is more preferable. When the reaction rate of the acryloyl group is less than 30%, the reaction of the monomer resin is insufficient, so that the heat resistance and adhesiveness are lowered, and the inorganic film may be cracked. Furthermore, the unreacted monomer becomes a volatile gas in the inorganic layer film forming process or the like, and the organic / inorganic interface adhesion deterioration or barrier property deterioration is caused by changing the composition of the inorganic layer.
[0012]
The thickness of the organic layer (1) of the present invention is not particularly limited, but is preferably in the range of 0.1 to 10 μm, more preferably 0.3 to 6 μm. This thickness depends on the smoothness of the resin substrate used, but in the case of 0.1 μm or less, since the effect of flattening the unevenness of the base film is poor, it is difficult to express the barrier property of the inorganic layer. In addition, when the thickness is 10 μm or more, there is a risk that the uniformity of the thickness is lowered, or depending on the type of the resin composition, there is a problem that the resin base material cannot follow the flexibility of the resin base material and cause deterioration due to destruction. is there. The thickness of the organic layer (2) resin composition is preferably 0.01 to 6 μm. If the thickness is smaller than 0.01 μm, the in-plane film thickness becomes non-uniform although it depends on the film formation method of the organic layer (2), so that the effect of repairing defects in the inorganic layer and the inorganic layer becomes poor, and the barrier It is difficult to improve sex. Further, when the thickness is 6 μm or more, the flexibility of the barrier laminate is deteriorated, or the influence due to the difference in the linear expansion coefficient between the inorganic layer and the organic layer (2) becomes significant, and the reliability is evaluated. In the temperature / humidity treatment, the substrate may be warped or swelled, and cracks may be observed.
[0013]
The inorganic layer of the present invention preferably has a water vapor barrier property and / or an oxygen barrier property. Although the material is not particularly limited, a barrier film mainly composed of an inorganic substance having a low temperature-humidity dependency in the barrier characteristics is preferable. For example, an oxide, nitride, oxynitride, halogen compound, or the like containing one or more of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Mg, La, Cr, Ca, Zr, Ta, or the like is used. be able to. If the inorganic layer is too thick, there is a risk of cracking due to bending stress, and if it is too thin, the film is distributed in an island shape, so that the water vapor barrier property is deteriorated. From the above, the thickness of each inorganic layer is preferably in the range of 5 nm to 500 nm, but is not particularly limited. Each inorganic layer may have the same composition or a different composition, and there is no limitation. In order to achieve both water vapor barrier properties and high transparency, it is preferable to use silicon oxide or silicon oxynitride as the inorganic layer. Silicon oxide is expressed as SiOx. For example, when SiOx is used as the inorganic layer, 1.6% is required to achieve both good water vapor barrier properties and high light transmittance. <x Desirably <1.9. Silicon oxynitride is expressed as SiOxNy, but the ratio of x and y is an oxygen-rich film when importance is placed on improving adhesion, <x <2, 0 <y <1 is preferable, and when importance is placed on improving water vapor barrier properties, a nitrogen-rich film should be used. <x <0.8, 0.8 <y <1.3 is preferred. In addition, as a method for forming an inorganic film, a resistance heating vapor deposition method, an electron beam vapor deposition method, an ion plating method, a plasma CVD method, a sputtering method, an atmospheric pressure CVD method, and the like can be applied. There is no limitation as long as it is a method capable of obtaining an inorganic nitride oxide or an inorganic halogen compound.
[0014]
The resin base material of the present invention preferably has a glass transition temperature of 160 ° C. or higher. Examples of suitable substrates include polycarbonate resin, polynorbornene resin, polyetherimide resin, polyarylate resin, polyacrylate resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, polyolefin resin, etc., polyethersulfone resin, Examples thereof include base materials mainly composed of various resins such as polyether ketone resins, polyphenylene sulfide resins, syndiotactic polystyrene resins, cyclopolyolefin resins and copolymer resins thereof, and imide-modified polymers such as imide-modified polymethyl methacrylate. Above all, the main component is one or more kinds of resins selected from polycarbonate resins, norbornene resins, cycloolefin resins, epoxy resins, acrylic resins or polyethersulfone resins, so that light transmittance is high and heat resistance. A high resin base material can be obtained. In addition, the base film of the present invention is subjected to surface treatment such as degassing treatment, corona discharge treatment, flame treatment, excimer UV treatment, UV ozone treatment in order to increase the adhesion with the organic layer to be laminated prior to the formation of the organic layer. It may be given. The resin substrate can be formed into a sheet by a method such as extrusion molding or casting.
[0015]
The transparent barrier film of the present invention has a water vapor transmission rate of 10 g / m in order to suppress moisture permeation from each end face where the organic layer and the inorganic layer laminated on the resin substrate are exposed. 2 End face sealing may be performed with a resin composition smaller than / day (thickness of 200 μm). Sealing the end face with a resin having a low water vapor transmission rate not only improves the barrier performance of the substrate itself, but also improves the long-term reliability of the barrier property. The resin composition used for end face sealing is not particularly limited as long as it has a low water vapor transmission rate and good adhesion to the transparent barrier film, but it has water vapor transmission rate, adhesion, workability, and cost. Therefore, it is preferable that the main component is one or more kinds of resin compositions selected from beeswax, wood wax, white wax, paraffin wax, ibota wax, carnauba wax, and hard wax, and since it has high heat resistance, paraffin wax, Ibotaro, carnauba wax and hard wax are more preferred. The end face sealing of the transparent barrier film used for the display element may be performed before or after the element is manufactured. When the process temperature at which the display element is manufactured is lower than the heat resistance temperature of the end face sealing resin composition, it is preferable to seal the display element before manufacturing the display element, and the process temperature at which the display element is manufactured is at the end face sealing resin composition. When the temperature is higher than the heat resistant temperature, it is preferable to seal after manufacturing the display element.
[0016]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.
Example 1
Polyether sulfone film with 40 parts by weight of isocyanuric acid EO-modified triacrylate (M-315 manufactured by Toagosei Co., Ltd.) as an ultraviolet curable resin composition (organic layer (1)), bisphenol A type epoxy acrylate (manufactured by Showa Polymer Co., Ltd.) VR-77) 10 parts by weight, photoinitiator (IRA-907 made by Ciba Geigy) 1.5 parts by weight, 33 parts by weight of isoamyl acetate (boiling point = 146 ° C) and 17 parts by weight of butyl cellosolve (boiling point = 170 ° C) After dissolution, a uniform solution of RC = 50 wt% was applied by a spin coater, dried by heating at 120 ° C. for 5 minutes, and further cured by UV irradiation to form a 5 μm resin layer. Next, the film on which the organic layer is formed is set in the vacuum chamber of the sputtering apparatus. -Four Vacuum was drawn up to the Pa level, and 0.04 Pa was introduced as a discharge gas at a partial pressure, and 0.04 Pa was introduced as a reaction gas at a partial pressure. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si target, and the sputtering process was started. When the process was stabilized, the shutter was opened and formation of the SiOx inorganic film on the film was started. When the 50 nm film was deposited, the shutter was closed to complete the formation of the SiOx inorganic layer (inorganic layer (1)). Thereafter, air was introduced into the vacuum chamber (1), and the film on which the SiOx inorganic layer was formed was taken out. Furthermore, 50 parts by weight of isocyanuric acid EO-modified triacrylate (M-315 manufactured by Toagosei Co., Ltd.) as a UV curable resin composition (organic layer (2)) on the SiOx inorganic film deposition surface of the film, photoinitiator (Ciba Geigy) IRG-907) 1.5 parts by weight is stirred and dissolved in 33 parts by weight of isoamyl acetate (boiling point = 146 ° C) and 17 parts by weight of butyl cellosolve (boiling point = 170 ° C) to obtain a uniform solution with RC = 50 wt%. After coating with heating at 120 ° C. for 5 minutes, it was further cured by UV irradiation to form a 1.0 μm resin layer. Set the film again in the vacuum chamber of the sputtering equipment. -Four Vacuum was drawn up to the Pa level, and 0.04 Pa was introduced as a discharge gas at a partial pressure, and 0.04 Pa was introduced as a reaction gas at a partial pressure. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si target, and the sputtering process was started. When the process was stabilized, the shutter was opened and formation of the SiOx inorganic film on the film was started. When the 50 nm film was deposited, the shutter was closed to complete the film formation of the SiOx inorganic layer (inorganic layer (2)). Thereafter, air was introduced into the vacuum chamber (1), and the film on which the SiOx inorganic layer was formed was taken out.
[0017]
(Example 2)
In the same manner as in Example 1, an organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on a polyethersulfone film, but sandwiched between inorganic layers. The acrylic resin of the organic layer (2) was changed from isocyanuric acid EO-modified triacrylate to a bifunctional acrylate having a norbornene skeleton (TO-2111 manufactured by Toagosei Co., Ltd.). Other blending amounts and the thickness of the organic layer (2) are the same as those in Example 1.
(Example 3)
In the same manner as in Example 1, an organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on a polyethersulfone film, but sandwiched between inorganic layers. The acrylic resin of the organic layer (2) was changed from isocyanuric acid EO-modified triacrylate to a bifunctional acrylate having a fluorene skeleton (TO-2065, manufactured by Toagosei Co., Ltd.), and the thickness of the organic layer (2) was 1.8 μm. Other blending amounts are the same as in Example 1.
(Example 4)
In the same manner as in Example 1, an organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on a polyethersulfone film, but sandwiched between inorganic layers. The acrylic resin of the organic layer (2) was changed from isocyanuric acid EO-modified triacrylate to brominated bisphenol A type epoxy diacrylate (R9403 manufactured by Nippon Kayaku), and the thickness of the organic layer (2) was 1.6 μm. Other blending amounts are the same as in Example 1.
(Example 5)
In the same manner as in Example 1, after forming the organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) on the polyethersulfone film, the end of the resin substrate was paraffinized. Sealed with wax. When the water vapor permeability of a paraffin wax molded to a thickness of 200 μm using a 50 μm thick stainless steel mesh as a reinforcing material was measured by the B method of JIS K 7129, the water vapor permeability was 0.1 g / m. 2 It was outside the measurement limit range of the device at less than / day, and the moisture permeability was very low.
[0018]
(Comparative Example 1)
In the same manner as in Example 1, an organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on a polyethersulfone film, but sandwiched between inorganic layers. The acrylic resin of the organic layer (2) was changed from isocyanuric acid EO-modified triacrylate to dipentaerythritol hexaacrylate, and the thickness of the organic layer (2) was set to 4.0 μm. Other blending amounts are the same as in Example 1.
(Comparative Example 2)
In the same manner as in Example 1, an organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on a polyethersulfone film, but sandwiched between inorganic layers. The organic layer (2) had a thickness of 10.0 μm. Other blending amounts are the same as in Example 1.
[0019]
(Evaluation)
The water vapor permeability of each film was measured by JIS K 7129 B method. Furthermore, the water vapor transmission rate of the substrate heat-heated for 120 hours in a 40 ° C. 90% constant temperature and humidity oven was measured by the JIS K 7129 B method, and the appearance of the substrate was visually evaluated. The water vapor permeability of the cured product (thickness: 200 μm) of the resin composition used for the organic layer (2) was measured by the JIS K 7129 B method. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0004254350
[0021]
(Example 6)
As a transparent conductive film on the resin substrate produced in Example 1, an initial vacuum degree of 3 × 10 was obtained by a pulsed DC magnetron method. -4 Introducing a mixed gas of oxygen / argon gas 4% from the state of Pa to 1 × 10 -1 Sputtering was performed with an ITO target under the conditions of Pa to obtain a transparent conductive film made of indium tin oxide (ITO) having an In / In + Sn atomic ratio of 0.98. As a result of the measurement, the film thickness was 1000 mm and the specific resistance was 4 × 10. -Four It was Ω-cm.
An organic EL element was produced using the obtained transparent electrode / resin-coated resin substrate. On the ITO anode, 40 nm of TPD was deposited as a hole transport layer, and then 70 nm of Alq3 was deposited as an electron transport layer and a light-emitting layer, and then a cathode of Ag / Mg (10: 1) was deposited at 200 nm as a cathode. Produced. The cathode side was sealed with a glass substrate using an adhesive having an ultraviolet curable resin as a sealing material.
As a result of evaluating a device in which the produced organic EL device was stored in a humid heat environment (40 ° C., 90% RH) for 5 days, no device deterioration was observed in the light emitting portion, and good device characteristics equivalent to the initial light emitting properties were shown.
[0022]
(Example 7)
An organic EL device was produced in the same manner as in Example 6 on the resin substrate produced in Example 1. Thereafter, the end portion of the resin substrate was sealed with paraffin wax used in Example 5, and then the cathode side was sealed with a glass substrate using an adhesive having an ultraviolet curable resin as a sealing material.
As a result of evaluating an element in which the produced organic EL element was stored in a moist heat environment (40 ° C., 90% RH) for 5 days, no element deterioration was observed in the light emitting portion, and excellent element characteristics equivalent to the initial emission characteristics were exhibited. As a result of continuously observing the light emitting state of the device stored for 9 days in a humid heat environment (40 ° C., 90% RH), no device deterioration was observed in the light emitting portion, and the device showed good device characteristics equivalent to the initial light emitting properties.
[0023]
(Comparative Example 3)
An organic EL device was produced in the same manner as in Example 6 on the resin substrate produced in Comparative Example 2. Thereafter, the cathode side was sealed with a glass substrate using an adhesive having an ultraviolet curable resin as a sealing material.
As a result of evaluating a device in which the produced organic EL device was stored in a humid heat environment (40 ° C., 90% RH) for 5 days, a gentle swell was generated in the resin substrate, and the device light emitting portion that was not seen in the initial light emitting state As shown in FIG.
[0024]
(Example 8)
An organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on the polyethersulfone film by the same production procedure as in Example 1. The organic layer (1) is 30 parts by weight of isocyanuric acid EO-modified triacrylate (M-315 manufactured by Toagosei Co., Ltd.), 7.5 parts by weight of epoxy acrylate (M-211B manufactured by Toagosei Co., Ltd.), photoinitiator (IRG manufactured by Ciba Geigy Co., Ltd.) -907) 1.1 parts by weight, 10.8 parts by weight of methyl cellosolve acetate, 36 parts by weight of butyl acetate and 6.3 parts by weight of butyl cellosolve were stirred and dissolved to obtain a uniform solution of RC = 42 wt%. After coating with a coater and heating in a heat dryer at 90 ° C for 2 minutes, followed by heating at 120 ° C for 3 minutes to remove the solvent, 350 mJ / cm with a high pressure mercury lamp. 2 Was irradiated with UV light to form an organic substance layer having a thickness of 4 μm. The surface smoothness of the organic layer (1) was evaluated by AFM. As a result, there was no hole defect of Ra = 0.5 nm, Ry = 0.2 μm, depth of 10 nm or more, and local protrusions in a 20 μm × 20 μm square region. The maximum aspect ratio (maximum height / width minimum value) of the maximum height and the minimum width of the shape was 0.15.
The surface smoothness of the SiOx film (inorganic layer (1)) formed on the organic layer (1) according to Example 1 was evaluated by AFM. As a result, Ra = 0.55 nm, Ry = 0.23 μm, depth There is no hole defect of 10 nm or more, and the maximum aspect ratio (maximum height / minimum width) of the maximum height and the minimum width of the local protrusion shape in an area of 20 μm × 20 μm square is 0.12. It was.
The organic layer (2) formed on the SiOx film (inorganic layer (1)) is 40 parts by weight of isocyanuric acid EO-modified triacrylate (M-315, manufactured by Toagosei Co., Ltd.), photoinitiator (IRG-907, manufactured by Ciba Geigy) 2 0.5 parts by weight, 8.5 parts by weight of methyl cellosolve acetate (boiling point = 145 ° C), 30 parts by weight of ethyl lactate (boiling point = 155 ° C), 6.0 parts by weight of butyl cellosolve (boiling point = 170 ° C) After applying a uniform solution of RC = 48.8 wt% with a spin coater, removing the solvent by heating at 90 ° C. for 5 minutes and then at 120 ° C. for 2 minutes in a heat dryer, 350mJ / cm 2 The organic layer was 1 μm thick. The surface smoothness of the organic layer (2) was evaluated by AFM. As a result, Ra = 0.3 nm, Ry = 0.08 μm, depth of 10 nm or more had no hole defects, and local protrusions in a 20 μm × 20 μm square region The maximum value of the aspect ratio (maximum height / minimum width value) between the maximum shape height and the minimum width value was 0.1.
The surface smoothness of the SiOx film (inorganic layer (2)) formed on the organic layer (2) according to Example 1 was evaluated by AFM. As a result, Ra = 0.3 nm, Ry = 0.1 μm, depth There is no hole defect of 10 nm or more, and the maximum aspect ratio (maximum height / minimum width) of the maximum height and the minimum width of the local protrusion shape in a 20 μm × 20 μm square region is 0.1. It was. As a result of measuring the water vapor permeability of the produced barrier film before and after wet heat treatment at 40 ° C 90% constant temperature and humidity oven 120 hours by JIS K 7129 B method, it is very good below the measurement limit value regardless of the presence or absence of wet heat treatment. Barrier properties were obtained, and no change in appearance was observed visually.
[0025]
Example 9
An organic EL device was produced in the same manner as in Example 6 on the transparent barrier film produced in Example 8. As a result of evaluating an element in which the produced organic EL element was stored in a moist heat environment (40 ° C., 90% RH) for 5 days, no element deterioration was observed in the light emitting portion, and excellent element characteristics equivalent to the initial emission characteristics were exhibited. As a result of continuously observing the light emitting state of the device stored for 40 days in a moist heat environment (40 ° C., 90% RH), no device deterioration was observed in the light emitting portion, and good device characteristics equivalent to the initial light emitting properties were shown.
[0026]
<Reference Example 1>
An organic layer (1) / inorganic layer (1) / organic layer (2) / inorganic layer (2) was formed on the polyethersulfone film by the same production procedure as in Example 1. The organic material layer (1) is 20 parts by weight of epoxy acrylate (VR-60LAV, manufactured by Showa Polymer Co., Ltd.), 14 parts by weight of urethane acrylate (Unidic 17-806, manufactured by Dainippon Ink Co., Ltd.), photoinitiator (IRG-907, manufactured by Ciba Geigy) ) 1.2 parts by weight, methyl cellosolve acetate (boiling point = 145 ° C) 15 parts by weight, butyl acetate (boiling point = 126 ° C) 40 parts by weight, butyl cellosolve (boiling point = 170 ° C) 6.0 parts by weight After applying a uniform solution of RC = 26.4 wt% with a spin coater, removing the solvent by heating at 90 ° C. for 2 minutes and then at 120 ° C. for 3 minutes in a heat dryer, 350mJ / cm 2 The cured resin composition having a thickness of 2.6 μm was produced. The surface smoothness of the organic layer (1) was evaluated by AFM. As a result, hole defects of Ra = 0.8 nm, Ry = 0.5 μm, depth of 10 nm or more were averaged over 5 fields in a 20 μm × 20 μm square size. confirmed.
The surface smoothness of the SiOx film (inorganic layer (1)) formed on the organic layer (1) according to Example 1 was evaluated by AFM. As a result, Ra = 1.0 nm, Ry = 0.52 μm, depth Hole defects with a thickness of 10 nm or more were confirmed in an average of 5 points in 5 fields in a 20 μm × 20 μm square size.
The organic layer (2) formed on the SiOx film (inorganic layer (1)) was dipentaerythritol hexaacrylate according to Comparative Example 1, and the thickness was 4.0 μm. The surface smoothness of the organic layer (2) was evaluated by AFM. As a result, Ra = 1.2 nm, Ry = 0.12 μm, depth of 10 nm or more was not found, and local protrusions in a 20 μm × 20 μm square region The maximum aspect ratio (maximum height / width minimum value) of the maximum shape height and the minimum width value was 0.09.
The surface smoothness of the SiOx film (inorganic layer (2)) formed on the organic layer (2) according to Example 1 was evaluated by AFM. As a result, Ra = 1.2 nm, Ry = 0.13 μm, depth There is no hole defect of 10 nm or more, and the maximum aspect ratio (maximum height / minimum width) of the maximum height and width of the local protrusion shape in a 20 μm × 20 μm square region is 0.10. It was. As a result of measuring the water vapor permeability of the produced barrier film before and after wet heat treatment at 40 ° C 90% constant temperature and humidity oven 120 hours by JIS K 7129 B method, it is very good below the measurement limit value regardless of the presence or absence of wet heat treatment. Barrier properties were obtained, and no change in appearance was observed visually.
[0027]
<Reference example 2>
An organic EL device was produced on the transparent barrier film produced in Reference Example 1 in the same manner as in Example 6. As a result of evaluating an element in which the produced organic EL element was stored for 5 days in a humid heat environment (40 ° C., 90% RH)
No element deterioration was observed in the light emitting portion, and good element characteristics equivalent to the initial light emission characteristics were exhibited. As a result of observing the light emitting state of the element which was continuously stored in a humid heat environment (40 ° C., 90% RH) for 25 days, the element was not deteriorated in the light emitting portion, and a good element having the same initial light emitting characteristics was observed. Although the characteristics were shown, the light emission state was further observed for 40 days in a moist heat environment (40 ° C., 90% RH), and as a result, a part of the non-light emitting part was confirmed in the light emitting part. In the case of the EL elements of Examples 8 and 9, since the surface smoothness of the organic material layer and the inorganic material layer constituting the barrier layer is good, each inorganic material layer that suppresses the generation of structural defects and contributes to the gas barrier property is the original gas barrier. This is thought to be due to its function. On the other hand, in the case of the organic EL elements of Reference Examples 1 and 2, the repetitive structure of the organic layer and the inorganic layer and the surface smoothness of the organic layer (2) and the inorganic layer (2) constituting the barrier layer were implemented. Although the device reliability is improved by wet heat treatment of the device as compared with Example 7, since the surface smoothness of the organic layer (1) and the inorganic layer (1) can be confirmed to be a hole defect compared to Examples 8 and 9, the inorganic material It is conceivable that the probability of occurrence of structural defects in the layer (1) is increased and the gas barrier property inherent in the inorganic layer is slightly lowered.
[0028]
【The invention's effect】
The present invention is a transparent film having a high water vapor barrier, and has a characteristic that the water vapor barrier property does not deteriorate even under high temperature and high humidity. If the film of the present invention is applied as a display element, for example, a light and unbreakable display can be realized. Moreover, if it is applied to the storage of chemicals, it is possible to realize a storage container whose contents can be seen and will not break even if dropped, and its industrial value is extremely high.

Claims (15)

樹脂基材上に有機物層1、無機物層1、有機物層2、無機物層2がこの順に積層され、かつ有機物層2と無機物層2組み合わせが1組以上である透明バリアフィルムであって、有機物層2の厚みが0.01μm以上かつ6μm以下であり、有機物層2が、アクリロイル基を有するモノマーを主成分とする樹脂組成物を架橋させて得られ、且つ該樹脂組成物がアクリロイル基の反応率を30%以上として200μm厚に硬化させた時の水蒸気透過度が30g/m/dayより小さいことを特徴とする透明バリアフィルムであり、前記有機物層2に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種がノルボルネン骨格を有するモノマー、フルオレン骨格を有するモノマー、臭素化ビスフェノールA型エポキシアクリレート、又はイソシアヌール酸EO変性トリアクリレートである透明バリアフィルムA transparent barrier film in which an organic material layer 1, an inorganic material layer 1, an organic material layer 2, and an inorganic material layer 2 are laminated in this order on a resin base material, and the organic material layer 2 and the inorganic material layer 2 are combined in one or more pairs. 2 is 0.01 μm or more and 6 μm or less, and the organic layer 2 is obtained by crosslinking a resin composition containing a monomer having an acryloyl group as a main component, and the reaction rate of the resin composition is an acryloyl group. Is a transparent barrier film characterized by having a water vapor permeability smaller than 30 g / m 2 / day when cured to a thickness of 200 μm at 30% or more, and has an acryloyl group of the resin composition used for the organic layer 2 Monomer having at least one monomer having norbornene skeleton, monomer having fluorene skeleton, brominated bisphenol A type epoxy acrylate Or transparent barrier film is isocyanuric acid EO-modified triacrylate. 前記無機物層1、無機物層2、有機物層1、および有機物層2の表面粗さ算術平均値(Ra)がRa<10nm、最大高さ(Ry)がRy<0.3μmであり、且つ平均線からの深さが10nm以上で穴深さと穴直径のアスペクト比(穴深さ/穴直径)が0.2よりも大きい穴の無く、表面の最大高さと幅の最小値のアスペクト比(最大高さ/幅最小値)が0.2よりも大きい局所的な突起も無いことを特徴とする請求項1記載の透明バリアフィルム。The surface roughness arithmetic average value (Ra) of the inorganic layer 1, the inorganic layer 2, the organic layer 1, and the organic layer 2 is Ra <10 nm, the maximum height (Ry) is Ry <0.3 μm, and the average line No aspect ratio between hole depth and hole diameter (hole depth / hole diameter) greater than 0.2 with a depth of 10 nm or more, and the aspect ratio of the maximum surface height and minimum width (maximum height) 2. The transparent barrier film according to claim 1, wherein there is no local protrusion having a thickness / width minimum value larger than 0.2. 前記有機物層1が、アクリロイル基を有するモノマーを主成分とする樹脂組成物を架橋させて得られる請求項1又は2記載の透明バリアフィルム。The transparent barrier film according to claim 1 or 2, wherein the organic layer 1 is obtained by crosslinking a resin composition containing a monomer having an acryloyl group as a main component. 前記有機物層1が、2官能以上のアクリロイル基を有する1種類以上のモノマー、または2官能以上のアクリロイル基を有する1種類以上のモノマーと単官能以上のアクリロイル基を有する1種類以上のモノマーとの混合物を主成分とする樹脂組成物を、架橋させて得られる請求項1又は2記載の透明バリアフィルム。The organic layer 1 is composed of one or more monomers having a bifunctional or higher acryloyl group, or one or more monomers having a bifunctional or higher acryloyl group and one or more monomers having a monofunctional or higher acryloyl group. The transparent barrier film according to claim 1, which is obtained by crosslinking a resin composition containing a mixture as a main component. 前記有機物層1に用いる樹脂組成物のアクリロイル基を有するモノマーの少なくとも1種がイソシアヌール酸EO変性トリアクリレートである請求項3記載の透明バリアフィルム。The transparent barrier film according to claim 3, wherein at least one monomer having an acryloyl group of the resin composition used for the organic layer 1 is isocyanuric acid EO-modified triacrylate. 前記無機物層がSi、Al、In、Sn、Zn、Ti、Cu、Ce、Mg、La、Cr、Ca、Zr、Taから選ばれる1種以上を含む酸化物または窒化物または酸化窒化物またはハロゲン化物を主成分とする請求項1〜5いずれか記載の透明バリアフィルム。An oxide, nitride, oxynitride, or halogen in which the inorganic layer contains one or more selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, Mg, La, Cr, Ca, Zr, Ta The transparent barrier film according to any one of claims 1 to 5, comprising a chemical compound as a main component. 前記樹脂基材のガラス転移温度が160℃以上である請求項1〜6いずれか記載の透明バリアフィルム。The glass transition temperature of the said resin base material is 160 degreeC or more, The transparent barrier film in any one of Claims 1-6. 前記樹脂基材がポリカーボネート系樹脂、ノルボルネン系樹脂、シクロオレフィン系樹脂、エポキシ系樹脂、アクリル系樹脂またはポリエーテルスルホン樹脂から選ばれる一種類以上の樹脂を主成分とする請求項1〜7いずれか記載の透明バリアフィルム。The resin base material according to any one of claims 1 to 7, wherein the resin base material is mainly composed of one or more kinds of resins selected from polycarbonate resins, norbornene resins, cycloolefin resins, epoxy resins, acrylic resins, and polyethersulfone resins. The transparent barrier film as described. 前記バリアフィルムにおいて樹脂基材上に積層された有機物層と無機物層の剥き出しになる各断端を、200μm厚成形板での水蒸気透過度が10g/m/dayより小さい樹脂組成物で端面封止したことを特徴とする請求項1〜8いずれか記載の透明バリアフィルム。In each of the barrier films, each edge where the organic layer and the inorganic layer laminated on the resin substrate are exposed is sealed with a resin composition having a water vapor permeability of less than 10 g / m 2 / day on a 200 μm thick molded plate. The transparent barrier film according to claim 1, which is stopped. 前記端面封止に用いる樹脂組成物が、蜜ロウ、木ロウ、白ロウ、パラフィンロウ、イボタロウ、カルナバロウ、ハードワックスから選ばれる一種類以上の樹脂を主成分とすることを特徴とする請求項9記載の透明バリアフィルム。10. The resin composition used for the end face sealing is mainly composed of one or more kinds of resins selected from beeswax, wood wax, white wax, paraffin wax, ibota wax, carnauba wax, and hard wax. The transparent barrier film as described. 請求項1〜10いずれか記載の透明バリアフィルムを用いた表示素子。The display element using the transparent barrier film in any one of Claims 1-10. 請求項1〜10いずれか記載の透明バリアフィルムを用いた表示素子の基板端面を、200μm厚成形板での水蒸気透過度が10g/m2/dayより小さい樹脂組成物で端面封止したことを特徴とする表示素子。That the substrate end face of the display element using a transparent barrier film according to any one of claims 1-10, the water vapor transmission rate of at 200μm thick molded plate was sealed end faces sealed with 10g / m 2 / day less than the resin composition A characteristic display element. 前記端面封止に用いる樹脂組成物が、蜜ロウ、木ロウ、白ロウ、パラフィンロウ、イボタロウ、カルナバロウ、ハードワックスから選ばれる一種類以上の樹脂を主成分とする樹脂組成物で封止したことを特徴とする請求項12記載の表示素子。The resin composition used for the end face sealing is sealed with a resin composition mainly composed of one or more kinds of resins selected from beeswax, wood wax, white wax, paraffin wax, ibota wax, carnauba wax, and hard wax. The display element according to claim 12. 請求項11〜13いずれか記載の表示素子を用いたエレクトロルミネッセンス表示装置。The electroluminescent display apparatus using the display element in any one of Claims 11-13. 透明バリアフィルムが、光学シート、表示素子用プラスチック基板、アクティブマトリックス表示素子用基板又は有機エレクトロルミネセンス表示素子用基板である請求項1〜10いずれか記載の透明バリアフィルム。The transparent barrier film according to any one of claims 1 to 10, wherein the transparent barrier film is an optical sheet, a plastic substrate for display elements, a substrate for active matrix display elements, or a substrate for organic electroluminescence display elements.
JP2003156816A 2002-12-16 2003-06-02 Transparent barrier film Expired - Fee Related JP4254350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156816A JP4254350B2 (en) 2002-12-16 2003-06-02 Transparent barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002364100 2002-12-16
JP2003156816A JP4254350B2 (en) 2002-12-16 2003-06-02 Transparent barrier film

Publications (2)

Publication Number Publication Date
JP2004244606A JP2004244606A (en) 2004-09-02
JP4254350B2 true JP4254350B2 (en) 2009-04-15

Family

ID=33031671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156816A Expired - Fee Related JP4254350B2 (en) 2002-12-16 2003-06-02 Transparent barrier film

Country Status (1)

Country Link
JP (1) JP4254350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730654B1 (en) * 2009-08-26 2017-04-26 후지필름 가부시키가이샤 Laminate film and composite film

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229703B2 (en) * 2003-03-31 2007-06-12 Dai Nippon Printing Co. Ltd. Gas barrier substrate
JP2006084517A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Image display apparatus
KR100544824B1 (en) 2005-01-27 2006-01-24 주식회사 코오롱 A composition for making of prism layer and prism film made by using the same
JP2006216344A (en) * 2005-02-03 2006-08-17 Dainippon Printing Co Ltd Flexible clear electrode substrate and organic electroluminescent display device
JP2006269338A (en) * 2005-03-25 2006-10-05 Dainippon Printing Co Ltd Flexible transparent electrode substrate and organic el display device
JP2006310070A (en) * 2005-04-28 2006-11-09 Dainippon Printing Co Ltd Flexible and transparent electrode substrate and organic el display device
JP5090197B2 (en) * 2007-02-20 2012-12-05 富士フイルム株式会社 LAMINATE MANUFACTURING METHOD, BARRIER FILM SUBSTRATE, DEVICE, AND OPTICAL MEMBER
JP5239230B2 (en) * 2007-07-05 2013-07-17 凸版印刷株式会社 Gas barrier film
JP5140376B2 (en) * 2007-10-16 2013-02-06 富士フイルム株式会社 Gas barrier film and environmentally sensitive device
JP2009172992A (en) * 2007-12-27 2009-08-06 Fujifilm Corp Barrier laminate, gas barrier film, device, and optical member
JP5148341B2 (en) * 2008-03-31 2013-02-20 大日本印刷株式会社 Plastic substrate for display element and display device
JP2010234791A (en) * 2008-04-14 2010-10-21 Fujifilm Corp Barrier laminate, barrier film substrate, and device
JP5320167B2 (en) * 2008-05-30 2013-10-23 富士フイルム株式会社 Barrier laminate, gas barrier film, device and laminate production method
JP5432602B2 (en) * 2008-06-25 2014-03-05 富士フイルム株式会社 Barrier laminate, gas barrier film, device
JP5281964B2 (en) * 2008-06-26 2013-09-04 富士フイルム株式会社 Barrier laminate, gas barrier film, device and laminate production method
JP5270469B2 (en) * 2008-06-30 2013-08-21 富士フイルム株式会社 Barrier laminate, gas barrier film, device using the same, and method for producing barrier laminate
KR20170044215A (en) 2008-12-22 2017-04-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Microstructured optical films comprising polymerizable ultraviolet absorber
JP5498202B2 (en) * 2009-03-03 2014-05-21 富士フイルム株式会社 Barrier laminate, gas barrier film and device using the same
JP5580561B2 (en) * 2009-09-01 2014-08-27 富士フイルム株式会社 Barrier laminate, gas barrier film, and method for producing barrier laminate
JP5290268B2 (en) * 2009-12-31 2013-09-18 三星ディスプレイ株式會社 Barrier / film composite, display device including the same, method for manufacturing barrier / film composite, and method for manufacturing display device including the same
US8563113B2 (en) * 2010-04-20 2013-10-22 Corning Incorporated Multi-laminate hermetic barriers and related structures and methods of hermetic sealing
JP5673936B2 (en) * 2011-01-06 2015-02-18 大日本印刷株式会社 Front sheet for solar cell module, solar cell module using the same, and method for producing front sheet for solar cell module
JP5982904B2 (en) * 2011-09-02 2016-08-31 凸版印刷株式会社 Gas barrier laminate film and method for producing gas barrier laminate film
KR102064143B1 (en) * 2011-11-04 2020-01-08 린텍 가부시키가이샤 Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
JP2014095730A (en) * 2012-10-12 2014-05-22 Fujifilm Corp Optical film and method for producing the same, polarizing plate and liquid crystal display device
JP2014170130A (en) * 2013-03-04 2014-09-18 Fujifilm Corp Optical film and production method of the same, polarizing plate and liquid crystal display device
JP6608447B2 (en) * 2015-07-10 2019-11-20 富士フイルム株式会社 LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP2020121425A (en) * 2019-01-29 2020-08-13 倉敷紡績株式会社 Barrier film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730654B1 (en) * 2009-08-26 2017-04-26 후지필름 가부시키가이샤 Laminate film and composite film

Also Published As

Publication number Publication date
JP2004244606A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4254350B2 (en) Transparent barrier film
JP4383077B2 (en) Gas barrier substrate
JP4295588B2 (en) Anti-reflective gas barrier substrate
JP4083564B2 (en) Organic layer forming method and gas barrier plastic film
JP2003053881A (en) Plastic film having water vapor barrier properties
JP2005111702A (en) Gas barrier base material, display substrate and organic el display
JP2008087163A (en) Gas barrier laminated film and image display element using it
WO2014123043A1 (en) Transparent stacked film, transparent conductive film, and gas barrier stacked film
JP2006123307A (en) Gas barrier laminate
US20090098400A1 (en) Barrier laminate, barrier film substrate, device, and method for producing barrier laminate
JP4104383B2 (en) Transparent water vapor barrier film and method for producing the same
JP4536417B2 (en) Gas barrier film
JP4148794B2 (en) Deposition film resin and gas barrier plastic film using the same
JP2003191370A (en) Water vapor barrier plastic film and display substrate for electroluminescence using the same
JP4211295B2 (en) Optical film sheet with barrier film and display element using the same
JP2004001442A (en) Gas / water vapor barrier film
JP2005246716A (en) Gas barrier laminated film and image display element using it
JP2010234791A (en) Barrier laminate, barrier film substrate, and device
JP2013067109A (en) Gas barrier film, gas barrier layer, apparatus, and method for manufacturing gas barrier film
JP4145636B2 (en) Optical film sheet and display element using the same
JP2007269957A (en) Gas-barrier film, method for producing the same, and image display element using the same
JP2003048271A (en) Transparent water vapor barrier film
JP5543818B2 (en) Gas barrier film, gas barrier layer, apparatus, and method for producing gas barrier film
JP5104711B2 (en) Gas barrier substrate for display element and display device
WO2013168647A1 (en) Method for producing gas barrier film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees