JP4239737B2 - 液圧制御装置および車両用制動制御装置 - Google Patents

液圧制御装置および車両用制動制御装置 Download PDF

Info

Publication number
JP4239737B2
JP4239737B2 JP2003276531A JP2003276531A JP4239737B2 JP 4239737 B2 JP4239737 B2 JP 4239737B2 JP 2003276531 A JP2003276531 A JP 2003276531A JP 2003276531 A JP2003276531 A JP 2003276531A JP 4239737 B2 JP4239737 B2 JP 4239737B2
Authority
JP
Japan
Prior art keywords
control
hydraulic pressure
pressure
command current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003276531A
Other languages
English (en)
Other versions
JP2005038314A (ja
Inventor
義人 田中
宏司 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003276531A priority Critical patent/JP4239737B2/ja
Publication of JP2005038314A publication Critical patent/JP2005038314A/ja
Application granted granted Critical
Publication of JP4239737B2 publication Critical patent/JP4239737B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Fluid Pressure (AREA)

Description

本発明は、液圧制御装置及び車両用制動制御装置に関し、特に電磁制御弁に供給すべき電流を制御する技術に関する。
自動車等の車両用の制動装置として、油圧導管の途中にモータ駆動されるオイルポンプを設け、そのオイルポンプの吐出側の作動液をアキュムレータに蓄積してアキュムレータ圧を高圧に保つものが知られている。この高圧の作動液は、運転者のブレーキペダル操作に応じ、各輪に設けられた制御弁のうち増圧弁を介してホイールシリンダに導入され、所望の制動力が発揮される。この場合、ブレーキペダル操作に応じて、まず所望の制動力に対応した目標油圧が決定され、これらの制御弁の開閉により、実際の油圧が目標油圧に近づくよう制御される(例えば特許文献1、2参照)。
特開平10−278764号公報 特開平10−258719号公報
電子制御ブレーキシステムなどの車両用制動制御装置においては、現実のホイールシリンダ圧である制御油圧が目標油圧の変化に対する応答性に加えて、追従性を有するよう制御されなければならない。すなわち、制御油圧は目標油圧の変化に即座に反応し、かつ、目標油圧から乖離しないように制御されることが望ましい。
しかし、従来の制御方法であるPID制御(比例性:Proportional、積分性:Integral、微分性:Differential)や、フィードフォワード制御だけでは、この2つの目的を同時に満足することは非常に困難である。
上記課題を解決するために、本発明の液圧制御装置は、目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する装置であって、前記指令電流の電流値を決定する指令電流決定手段を有し、前記指令電流決定手段は、前記目標液圧と前記制御液圧との偏差の減少度が所定値以上である場合には、前記制御弁に供給される前記指令電流の増加方向と減少方向での電流−流量のヒステリシス特性により定まるヒステリシス補正値分を前記指令電流から減じる。
上記課題を解決するために、本発明の液圧制御装置は、目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する装置であって、前記制御弁に供給される前記指令電流の増加方向と減少方向での電流−流量のヒステリシス特性により定まるヒステリシス補正値に基づき、前記指令電流の電流値を決定する指令電流決定手段を有する。
本発明のある態様において、前記指令電流決定手段は、前記目標液圧と前記制御液圧との偏差が所定値以下となった場合に、前記ヒステリシス補正値分を加減算することにより前記指令電流の電流値を決定する。液圧制御装置が指令電流を増加方向から減少方向に反転させる場合には、ヒステリシス値分の電流値を減算して指令電流値を決定してもよい。また、液圧制御装置が指令電流を減少方向から増加方向に反転させる場合には、ヒステリシス値分の電流値を加算して指令電流値に決定してもよい。
本発明の別の態様は、目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する液圧制御装置であって、目標液圧と制御液圧との偏差を検出する手段と、前記検出した偏差に基づく帰還補正値を計算する手段と、前記計算した帰還補正値の減少度を計算する手段と、前記計算した減少度が所定値以上である場合には、所定の電流値を減じて前記指令電流の電流値を決定する指令電流決定手段を備える。前記指令電流決定手段は、前記制御弁に供給される前記指令電流の増加方向と減少方向での電流−流量のヒステリシス特性から定まるヒステリシス補正値に基づいて、前記所定の電流値を定めてもよい。
本発明の別の態様は、目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する液圧制御装置であって、目標液圧と制御液圧との偏差を検出する手段と、前記検出した偏差に基づく帰還補正値を計算する手段と、前記計算した帰還補正値の減少度を計算する手段と、前記計算した減少度が所定値以上である場合には、所定の電流値を減じて前記指令電流の電流値を決定する指令電流決定手段を備える。
本発明の別の態様は、目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する液圧制御装置であって、目標液圧と制御液圧との偏差を検出する手段と、前記検出した偏差に基づく帰還補正値を計算する手段と、前記計算した帰還補正値の減少度を計算する手段と、前記計算した減少度が所定値以上である場合には、前記制御弁に供給される前記指令電流の増加方向と減少方向での電流−流量のヒステリシス特性により定まるヒステリシス補正値分を前記指令電流から減じる指令電流決定手段を備える。前記指令電流決定手段は、前記計算した減少度が大きいほど、前記ヒステリシス補正値が更に大きくなるように調整してもよい。前記帰還補正値の減少度が大きい場合には、制御液圧が目標液圧に対して急接近していると考えられることから、液圧制御装置は指令電流を特に抑制する必要がある。したがって、前記帰還補正値が所定期間において大きく減少している場合には、液圧制御装置は指令電流を特に大きく減じてやれば、オーバーシュートの回避に効果的である。
本発明のある態様において、前記指令電流決定手段は、前記計算した減少度に基づいて、前記所定の電流値を定める。前記帰還補正値の減少度が大きい場合には、制御液圧が目標液圧に対して急接近していると考えられることから、液圧制御装置は指令電流を特に抑制する必要がある。したがって、前記帰還補正値が所定期間において大きく減少している場合には、液圧制御装置は指令電流を特に大きく減じてやれば、オーバーシュートの回避に効果的である。
以上の構成の液圧制御装置によれば、制御液圧の目標液圧の変化に対する高応答性を確保しつつも、オーバーシュートを回避できる。更に、その結果として、制御液圧の目標液圧に対する追従性が高まる。
本発明の更に別の態様は、上述の態様における液圧制御装置を有し、当該液圧制御装置によって制動制御用の作動液の液圧を制御するよう構成したことを特徴とする車両用制動制御装置である。これらの液圧制御装置により、車両の制動制御を行えば、以上の効果を車両にて享受することができる。
本発明の液圧制御装置および車両用制動制御装置によれば、目標液圧の変化に対し、制御液圧が高い応答性と追従性を有するよう制御できる。
まず、実施の形態に係る油圧システム100と電子制御ユニット200の全体構成を説明する。なお、以下の説明において、電子制御ユニット200単独で制動制御装置と捉えてもよいし、油圧システム100またはその一部と電子制御ユニット200の組合せを制動制御装置と捉えてもよい。
図1は油圧システム100の構成を示す。油圧システム100は主にアクチュエータ80とアクチュエータ80以外のマスタシリンダ14などを備える。
ブレーキペダル12にはその踏み込みストロークを検出するストロークセンサ46が設けられている。マスタシリンダ14は、運転者によるブレーキペダル12の踏み込み操作に応じ、作動液であるブレーキオイルを圧送する。ブレーキペダル12とマスタシリンダ14との間にはドライストロークシミュレータ13が設けられている。
マスタシリンダ14には右前輪用のブレーキ油圧制御導管16及び左前輪用のブレーキ油圧制御導管18の一端が接続され、これらのブレーキ油圧制御導管はそれぞれ、右前輪及び左前輪の制動力を発揮する右前輪用及び左前輪用のホイールシリンダ20FR、20FLに接続されている。右前輪用及び左前輪用のブレーキ油圧制御導管16、18の途中にはそれぞれ通常は開状態(以下これを「常開型」という)の右電磁開閉弁22FR及び左電磁開閉弁22FLが間挿され、また、それぞれ右前輪側及び左前輪側のマスタシリンダ圧を計測する右マスタおよび左マスタ圧力センサ48FR、48FLが設けられている。
マスタシリンダ14にはリザーバタンク26が接続され、また、開閉弁23を介してウェットストロークシミュレータ24が接続され、リザーバタンク26には油圧給排導管28の一端が接続される。油圧給排導管28にはモータ32により駆動されるオイルポンプ34が設けられている。オイルポンプ34の吐出側は高圧導管30になっており、アキュムレータ50とリリーフバルブ53が設けられている。アキュムレータ50はオイルポンプ34によって例えば16〜21.5MPaという範囲(以下「制御範囲」という)の高圧にされたブレーキオイルを蓄積する。リリーフバルブ53は、アキュムレータ圧が異常に高く、例えば30MPaといった高圧になったとき開き、油圧給排導管28へ高圧のブレーキオイルを逃がす。
高圧導管30にはアキュムレータ圧を計測するアキュムレータ圧センサ51が設けられる。後述の電子制御ユニット200はアキュムレータ圧センサ51の出力であるアキュムレータ圧を入力し、このアキュムレータ圧が制御範囲に収まるよう増圧、減圧等の制御をする。
高圧導管30は、それぞれ通常は閉じた状態(これを「常閉型」という)にあり、必要なときに増圧用に利用される電磁流量制御弁、すなわち増圧弁40FR、40FL、40RR、40RLを介し、右前輪のホイールシリンダ20FR、左前輪のホイールシリンダ20FL、右後輪用のホイールシリンダ20RR、左後輪用のホイールシリンダ20RLに接続されている。
右前輪のホイールシリンダ20FRと左前輪のホイールシリンダ20FLは、それぞれ常閉型で、必要なときに減圧用に利用される電磁流量制御弁、すなわち減圧弁42FR、42FLを介して油圧給排導管28へ接続されている。また、右後輪用のホイールシリンダ20RR、左後輪用のホイールシリンダ20RLは、それぞれ常開型の減圧弁42RR、42RLを介して油圧給排導管28へ接続されている。
右前輪、左前輪、右後輪、左後輪のホイールシリンダ20FR、20FL、20RR、20RL付近には、それぞれシリンダ内の油圧を計測する右前輪用、左前輪用、右後輪用、左後輪用の圧力センサ44FR、44FL、44RR、44RLが設けられている。
電子制御ユニット200は、電磁開閉弁22FR、22FL、モータ32、4個の増圧弁40FR、40FL、40RR、40RL、および4個の減圧弁42FR、42FL、42RR、42RLを制御する。電子制御ユニット200はマイクロコンピュータによる演算ユニット202、各種制御プログラムを格納するROM204、およびデータ格納やプログラム実行のためのワークエリアとして利用されるRAM206を備える。
詳細は図示しないが、演算ユニット202には、右前輪用、左前輪用、右後輪用、左後輪用の圧力センサ44FR、44FL、44RR、44RLより、それぞれ、右前輪のホイールシリンダ20FR内の圧力信号、左前輪のホイールシリンダ20FL内の圧力信号、右後輪用のホイールシリンダ20RR内の圧力信号、左後輪用のホイールシリンダ20RL内の圧力信号(以下、総括的にホイールシリンダ圧信号という)が入力され、ストロークセンサ46よりブレーキペダル12の踏み込みストロークを示す信号(以下ストローク信号という)が入力され、右マスタおよび左マスタ圧力センサ48FR、48FLよりマスタシリンダ圧を示す信号(以下マスタシリンダ圧信号という)、アキュムレータ圧センサ51よりアキュムレータ圧を示す信号(以下アキュムレータ圧信号という)が入力される。
電子制御ユニット200のROM204は所定の制動制御フローを記憶している。演算ユニット202はストローク信号とマスタシリンダ圧信号に基づき車輌の目標減速度を演算し、演算された目標減速度に基づき各輪の目標ホイールシリンダ圧を演算し、各輪のホイールシリンダ圧が目標ホイールシリンダ圧になるよう制御する。
ROM204はさらに、所定のアキュムレータ圧制御フローを記憶している。演算ユニット202はアキュムレータ圧が制御範囲の下限値未満であるときにはオイルポンプ34を駆動してアキュムレータ圧を昇圧し、アキュムレータ圧が制御範囲の上限値よりも高いときにはオイルポンプ34を停止させる。
以上の構成における制動制御の概要を説明する。まず、運転者がイグニションスイッチをオンにする前、すなわち各電磁弁に対する通電前においては、各電磁弁は内蔵しているバネの付勢力により、図1の状態にある。このとき、マスタシリンダ14から大気圧のブレーキオイルが右および左電磁開閉弁22FR、22FLを介して、それぞれ右前輪と左前輪のホイールシリンダ20FR、20FLに達している。一方、右後輪と左後輪のホイールシリンダ20RR、20RLにも、油圧給排導管28と常開型の減圧弁42RR、42RLを介して、リザーバタンク26内の油圧と同じ大気圧のブレーキオイルが到達している。この時点では、4つすべてのホイールシリンダ圧が大気圧であり、制動力は発生しない。ただし、通電前であっても、運転者がブレーキペダル12を踏めば、その踏込力に応じた制動力が右前輪と左前輪のホイールシリンダ20FR、20FLに直接作用し、これら右前輪と左前輪には制動力が生じる。
運転者がイグニションスイッチをオンすると、必要に応じてモータ32が作動し、アキュムレータ圧が制御範囲に入る。この後、通常走行に入ったときも各電磁弁は図1の状態にある。つづいて、運転者がブレーキペダル12を踏むと、まずマスタシリンダ14が押し込まれ、マスタシリンダ14とリザーバタンク26の連通が遮断される。また、右および左電磁開閉弁22FR、22FLが閉じられ、開閉弁23が開かれ、マスタシリンダ14から右前輪および左前輪のホイールシリンダ20FR、20FLへの大気圧のブレーキオイルの連通が遮断される。また、右後輪用、左後輪用の減圧弁42RR、42RLが閉じられ、4個の増圧弁40FR、40FL、40RR、40RLが開けられる。各電磁弁の開度は、後述する各種演算を経て算出された各輪の目標ホイールシリンダ圧をもとに制御される。
図2は制動制御の際に演算する目標液圧Prefと制御の結果出力される制御液圧Pwcの様子を示す。同図の制御は一般的なものであり、同図に本実施の形態に特徴的な処理は明示的には現れないが、後述のごとく、本実施の形態の制御は増圧モード、減圧モード、保持モードに関連するため、まず制動制御の概要を述べる。なお、同図は見やすさのために制御液圧Pwcの振る舞いを比較的緩やかに描いている。一般には、制御液圧Pwcの曲線は同図のものよりも小刻みに変動する。
図2において、横軸は時間、縦軸は液圧である。目標油圧Prefは後述のごとく制動要求から各種演算を経て各輪の目標ホイールシリンダ圧Prefとして定まる。一方、制御油圧Pwcは現実のホイールシリンダ圧Pwcである。この制御には、目標油圧Prefを中心に含み、下限圧Plと上限圧Puで定まる幅を不感帯として設ける。制御油圧Pwcが不感帯に入っているときは増圧も減圧もせず、保持モードとして各制御弁を閉じておく。制御油圧Pwcが不感帯の下限圧Plを下回れば増圧弁を開け、制御油圧Pwcを高める。これが増圧モードである。逆に、制御油圧Pwcが不感帯の上限圧Puを上回れば減圧弁を開け、制御油圧Pwcを下げる。これが減圧モードである。
図3は、図2の制動制御を実施するプログラムの処理の流れを示す。この制動制御フローは所定の時間間隔で継続的に実行される。制動制御に先立ち、運転者がブレーキペダル12を踏んだとき、まず右および左電磁開閉弁22FR、22FLが閉じられ、開閉弁23が開かれ、マスタシリンダ14から右前輪および左前輪のホイールシリンダ20FR、20FLへの大気圧のブレーキオイルの連通、およびマスタシリンダ14とリザーバタンク26の連通が遮断される。この状態を初期状態として、まずストローク信号が読み込まれ(S30)、マスタシリンダ圧信号が読み込まれ(S32)、これらの信号から演算ユニット202によって既知の手法で目標減速度が演算される(S34)。
つづいて演算ユニット202は、目標減速度に対する各輪の目標液圧Pref、すなわち目標ホイールシリンダ圧Prefを既知の手法で演算し(S36)、各輪のホイールシリンダ20FR、20FL、20RR、20RL内の液圧Pwcを圧力センサ44FR、44FL、44RR、44RLから読み込み(S38)、目標ホイールシリンダ圧Prefと現実のホイールシリンダ圧Pwcの差から制動制御のモードを決定する(S40)。つぎに、決定された制動制御のモードに従ってリニア弁の制御がなされる(S42)。なお、S36で目標ホイールシリンダ圧Prefが求まれば、既知の手法でフィードフォワード制御が可能になるが、本実施の形態では主にフィードバック制御が関係するため、以下、制動制御としてフィードバック制御を考える。
本発明の対象は、増圧弁40FR、40FL、40RR、40RLおよび、減圧弁42FR、42FL、42RR、42RLの8つのリニア弁であり、以下、これらをまとめて制御弁とよぶ。
図4は、制御弁のうち、常閉型のリニア弁である増圧弁40FR、40FL、40RL、40RRと、常閉型の減圧弁42FR、42FLにおける指令電流と制御弁が出力する油量である出力油量の関係を示す図である。図5は、制御弁のうち、常開型のリニア弁である減圧弁42RLおよび42RRにつき、同様の関係について示す図である。各制御弁の出力油量に基づいて、各ホイールシリンダの制御油圧が定まる。なお、図4、図5および後に掲げる図9においては、指令電流と出力油量の関係を直線的に示すが、これらは、発明の本質を説明するために理想化したものであることは、当業者には理解されるところである。
まず、図4に示すように、常閉型の制御弁に指令電流Ioが供給されると、制御弁は開弁をはじめる(以下、常閉型の制御弁が開弁を開始するときの指令電流値を「開弁電流値」とよぶ)。以降、指令電流の増加に伴って、制御弁の開度が大きくなり、出力油量も増加する。制御弁に供給される指令電流が増加から減少に転じても即座に制御弁の開度が減少し始めるのではない。通常、制御弁には弁の摺動摩擦や、電磁開閉弁としての磁気ヒステリシスに起因するヒステリシス特性が存在する。したがって、ヒステリシス値分、指令電流が低下するまでは制御弁の出力油量は固定されたままとなる。
図5は常開型の制御弁の指令電流−出力油量の特性を示す図であり、常開型のため指令電流が供給されていない状態でも出力油量が存在する。この制御弁に指令電流Icが供給されると、制御弁の開度は減少しはじめる。以降、指令電流の増加に伴って、制御弁の開度は減少し、出力油量も減少する。電子制御ユニット200が指令電流を増加方向から減少方向に変化させても、即座に制御弁の開度は増加しない。これも常閉型の制御弁と同じく、制御弁のヒステリシス特性によるものである。
いずれの場合においても、同一の出力油量に対し、指令電流の増加時と減少時においては、指令電流の電流値が異なる。すなわち、電子制御ユニット200が指令電流の増減方向を反転させても、制御弁の開度は即応的に制御されるものではない。本発明の液圧制御装置は、このヒステリシス特性を考慮して制御弁を制御するものであるが、その説明に先立ち、まず、従来の制御方法における問題点について確認する。
ある目標値に対して制御対象を追従させるための一般的なフィードバック制御においては、制御装置は制御対象の出力をもとに入力の調整を行う。すなわち、制御系は、
1.制御装置が制御対象の実際の出力値と目標値との偏差を検出
2.制御装置は検出した偏差を解消すべく、その偏差に基づく調整量を入力値に付加
3.新たな入力値に基づいて制御対象が出力
というプロセスを繰り返す。このとき、制御装置は、偏差検出と調整量の付加のサイクルと制御対象が実際に反応するまでの時間差を考慮して、検出した偏差に対して、何らかの係数を乗じたものを調整量とするのが一般的である。
以下、常閉型の増圧弁を例として説明する。なお、図6から図8においては、電流の制御を理想化しており、たとえば実際には制御電流の立ち上がりは垂直ではないが、これらは、発明の本質を説明するために理想化したものであることは、当業者には理解されるところである。
図6は、従来のPID制御による液圧制御装置においてフィードバックゲインを小さく設定した場合の、目標油圧に対する制御油圧および指令電流の関係を示した図である。電子制御ユニット200は、目標油圧の上昇にともない、図4に示した開弁電流値Ioの指令電流の供給を指示し、制御弁は開弁しはじめる。制御弁の開弁にともなって出力油量が増大し、制御油圧が上昇している。目標油圧と制御油圧の偏差が時間と共に拡大しているため、電子制御ユニット200は更に指令電流を増加させる。しかし、フィードバックゲインが小さいために、目標油圧の増加に比べて制御油圧の増加は緩やかであり、時間の経過と共に目標油圧と制御油圧との偏差が増大している。すなわち、目標油圧に対する制御油圧の応答遅れが生じている。
一方、図7は、従来のPID制御よる液圧制御装置においてフィードバックゲインを大きく設定した場合の、目標油圧に対する制御油圧および指令電流の関係を示した図である。電子制御ユニット200は、目標油圧の上昇にともない、図4に示した開弁電流値Ioの指令電流の供給を指示し、制御弁は開弁しはじめる。フィードバックゲインを大きく設定しているため、図6の場合と比べて制御油圧の増加は急峻であり、目標油圧の増加に対する制御油圧の応答性は改善されている。
制動初期においては、このフィードバックゲインの大きさゆえに制御油圧は高い応答性を示す。しかし、そのトレードオフとして、制御油圧が目標油圧に対してオーバーシュートを起こしやすいという問題がある。制御油圧が目標油圧の不感帯を突き抜けてオーバーシュートすれば、液圧制御装置はすぐに減圧モードに入らざるをえず、結果として、各制御弁は頻繁に開閉を繰り返す。車両用制動制御装置の場合には、制御弁の頻繁な開閉は振動や騒音の原因となり、また制御弁の耐用性の面でも望ましくない。
図8は、実施の形態における液圧制御装置の目標油圧に対する制御油圧および指令電流の関係を示した図である。更に具体的な制御方法については後に詳述するものとし、まず制御の概要を説明する。同図に示すように、制動初期においては、フィードバックゲインを大きく設定しているため、制御油圧は目標油圧の変化に対して高い応答性を示す。また、制御油圧が目標油圧に近づいた段階で、電子制御ユニット200は指令電流をステップ状に減少させ、オーバーシュートを回避させている。
図9は、常閉型の増圧弁における指令電流と出力油量の関係を再掲した図である。同図を用いて、図8の制御を説明する。図9では、電子制御ユニット200は指令電流をIaまで増加させた後に(A点)、Ibにまで減少させている(B点)。このA点からB点に至るに際し、出力油量はQaからQbに減少する。A点からB点までにはIa−Ixに相当するヒステリシス値が存在する。したがって、出力油量をQaからQbに減少させるためには、電子制御ユニット200は、そのヒステリシス値分を考慮してIa−Ibに相当する電流を減少させる必要がある。
図6および図7に示した、従来のPID制御は、目標油圧と制御油圧との偏差に基づく一般的なフィードバック制御であって、制御弁に特有のヒステリシス特性を考慮した制御ではない。電子制御ユニット200が指令電流の増減方向を反転させても、このヒステリシス値の存在がバッファ領域となり、指令電流値の増減反転がそのまま制御弁の開度、ひいては制御油圧の変化に直結しない。すなわち、ヒステリシス値は、目標油圧に対する制御油圧の応答遅れの一因となるものである。したがって、電子制御ユニット200がこれを考慮して指令電流を制御することにより、制御油圧を制御する上での応答性を高めることができる。特に、制御油圧が目標油圧に急接近してオーバーシュートを起こす可能性が高い場合、すなわち、制御油圧の増加を急いで抑制しなければならない場合に有効である。これは電子制御ユニット200が、指令電流を増加方向から減少方向に転じさせる場合だけでなく、減少方向から増加方向に転させる場合であっても、このヒステリシス値を考慮した制御を行うことには、同様に有効である。
図10は、液圧制御装置の機能ブロック図である。ここに示すほとんどの機能は、図1の電子制御ユニット200が実現するものである。演算ユニット202は目標油圧Prefを所定の時間間隔でサンプリングする。同図でNはサンプリング時刻を示すものであり、Pref(N)とは、あるサンプリング時刻Nにおいてサンプリングされた目標油圧Prefを示す。フィードフォワード制御部302は、サンプリング時刻Nにおけるアキュムレータ圧Pacc(N)から目標油圧Pref(N)を減算した結果を入力値として、既知の方法により、学習によって前もって計算された定数を用いてフィードフォワード電流値li(N)を出力する。
一方、目標油圧Pref(N)からサンプリング時刻Nにおいてサンプリングされた制御油圧である制御油圧Pwc(N)を減じた値は誤差油圧e(N)として、PID制御部300への入力値となる。PID制御部300はこの誤差油圧e(N)の値をもとに、既知の方法により、比例、積分、微分の各演算を既定のゲイン定数を用いて、フィードバック電流fi(N)の値を計算する。保持部304は、計算されたフィードバック電流fi(N)を一時的に記憶する。ヒステリシス演算部306は、PID制御部300から出力されたフィードバック電流fi(N)と、保持部304が記憶するサンプリング時刻N−1におけるフィードバック電流fi(N−1)を入力値として後述するヒステリシス演算を行い、ヒステリシス補正電流値hys_i(N)を計算して出力する。
こうして得られた、フィードフォワード電流値li(N)とフィードバック電流値fi(N)を加えたものから、ヒステリシス補正電流値hys_i(N)を減じて指令電流値u(N)が電子制御ユニット200により決定される。制御弁308は、この指令電流値u(N)に基づいて開度を調整する。サンプリング時刻N+1において、制御油圧検出部310は制御油圧Pwc(N+1)を検出し、以降、同様の処理を繰り返す。PID制御部300とフィードフォワード制御部302がそれぞれおこなうPID制御とフィードフォワード制御は既知の方法である。本発明においては更に、ヒステリシス演算部306がヒステリシス演算にもとづいて出力するヒステリシス補正電流値hys_i(N)が、指令電流の要素となっている。
図11は、ヒステリシス演算部306のヒステリシス演算の過程を示すフローチャートである。ここでいうヒステリシス演算とは、ヒステリシス演算部306がヒステリシス補正電流値hys_i(N)を算出するための演算をいう。ヒステリシス演算部306はまずPID制御部300よりサンプリング時刻Nのフィードバック電流値fi(N)を取得する(S10)。また、ヒステリシス演算部306は保持部304からサンプリング時刻N−1におけるフィードバック電流値fi(N−1)を読み出す(S12)。
ヒステリシス演算部306は、fi(N−1)−fi(N)を計算して、その計算結果が閾値kより大きいか否かを判断する(S14)。以下、fi(N−1)−fi(N)のことをフィードバック電流変化速度とよぶ。ここでフィードバック電流変化速度が大きいとは、誤差油圧e(N)に基づくフィードバック電流値fi(N)が急速に小さくなっていることを意味するため、目標油圧に対して制御油圧が急速に近づいている状況にあると考えられる。閾値kは、液圧制御装置の設計者が制御弁の特性に基づいて指定した数値である。
フィードバック電流変化速度が閾値kを超える場合には(S14のY)、ヒステリシス演算部306はヒステリシス補正電流値hys_i(N)としてゼロでない所定値を設定する(S16)。この所定値は、ヒステリシス値そのものであってもよいが、液圧制御装置の設計者がヒステリシス値に基づいて指定した値であってもよい。フィードバック電流変化速度がとくに大きい場合には、オーバーシュートを起こす可能性が高いため、ヒステリシス演算部306は、フィードバック電流変化速度の大きさに応じて、ヒステリシス補正電流値hys_i(N)が大きくなるように設定してもよい。フィードバック電流変化速度が閾値k以下である場合には(S14のN)、ヒステリシス演算部306は、ヒステリシス補正電流値hys_i(N)をゼロに設定する(S18)。フィードバック電流変化速度が小さいときは、オーバーシュートの可能性は低いので、電子制御ユニット200は、制御弁のヒステリシス特性に基づく指令電流制御を行う必要性がないと考えられるからである。
ヒステリシス演算部306は、こうして決定したヒステリシス補正電流値hys_i(N)を出力し(S20)、li(N)+fi(N)−hys_i(N)が指令電流値として定まる。
以上述べたように、実施の形態における液圧制御装置は、制御弁における指令電流と出力油量のヒステリシス特性に基づいた制御を行うので、目標油圧の変化に対して制御油圧を高応答に制御しつつも、制御油圧のオーバーシュートを回避させることができる。その結果として、制御油圧の目標油圧に対する追従性も高まる。実施の形態においては、ヒステリシス補正電流値hys_i(N)が、指令電流の抑制要素となる場合を説明したが、本発明はこれに限られるものではない。たとえば、図5に示した常開型の減圧弁において、電子制御ユニット200が指令電流を減少から増加に転じる必要がある場合には、指令電流に対して、たとえばヒステリシス値に相当するヒステリシス補正電流値hys_i(N)を加算要素とすることにより、同様に応答性と追従性の向上を実現できる。
以下、本実施の形態の液圧制御装置および車両用制動制御装置と特許請求の範囲の部材との対応関係を例示する。図1の電子制御ユニット200が、請求項1から3の「指令電流決定手段」に対応する。また、同じく図1の電子制御ユニット200が、請求項4の「誤差液圧を検出する手段」、「指令電流決定手段」等に対応し、特に、図10のPID制御部300が「帰還補正値を計算する手段」に、ヒステリシス演算部306が、同項の「減少度を計算する手段」に対応する。
以上、実施の形態をもとに本発明を説明した。なお本発明はこの実施の形態に限定されることなく、そのさまざまな変形例もまた、本発明の態様として有効である。
実施の形態に係る車両用制動制御装置の全体構成図である。 実施の形態において、現実のホイールシリンダ圧を目標ホイールシリンダ圧に合わせるための制動制御を示す図である。 図2の制動制御の処理を示すフローチャートである。 常閉型の制御弁における指令電流−出力油量特性を示す図である。 常開型の減圧弁における指令電流−出力油量特性を示す図である。 従来のPID制御(フィードバックゲイン小)における、目標油圧、制御油圧および指令電流の関係を示す図である。 従来のPID制御(フィードバックゲイン大)における、目標油圧、制御油圧および指令電流の関係を示す図である。 実施の形態に係る目標油圧、制御油圧および指令電流の関係を示す図である。 図8を説明するための、常閉型の制御弁における指令電流−出力油量特性を示す図である。 液圧制御装置の機能ブロック図である。 ヒステリシス補正電流値の演算処理を示すフローチャートである。
符号の説明
20FR ホイールシリンダ、20FL ホイールシリンダ、20RR ホイールシリンダ、20RL ホイールシリンダ、40FR 増圧弁、40FL 増圧弁、40RL 増圧弁、40RR 増圧弁、42FR 減圧弁、42FL 減圧弁、42RL 減圧弁、42RR 減圧弁、80 アクチュエータ、100 油圧システム、200 電子制御ユニット、202 演算ユニット、300 PID制御部、302 フィードフォワード制御部、304 保持部、306 ヒステリシス演算部、310 制御油圧検出部。

Claims (4)

  1. 目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する液圧制御装置において、
    前記指令電流の電流値を決定する指令電流決定手段を有し、
    前記指令電流決定手段は、前記目標液圧と前記制御液圧との偏差の減少度が所定値以上である場合には、前記制御弁に供給される前記指令電流の増加方向と減少方向での電流−流量のヒステリシス特性により定まるヒステリシス補正値分を前記指令電流から減じることを特徴とする液圧制御装置。
  2. 前記指令電流決定手段は、前記目標液圧と前記制御液圧との偏差が所定値以下となった場合に、前記ヒステリシス補正値分を加減算することにより前記指令電流の電流値を決定することを特徴とする請求項1に記載の液圧制御装置。
  3. 目標液圧と制御液圧との偏差に基づく指令電流に応じて開度が調整され、液圧を増加あるいは減少のいずれか一方に制御する制御弁に前記指令電流を供給する液圧制御装置において、
    前記偏差を検出する手段と、
    前記検出した偏差に基づく帰還補正値を計算する手段と、
    前記計算した帰還補正値の減少度を計算する手段と、
    前記計算した減少度が所定値以上である場合には、前記制御弁に供給される前記指令電流の増加方向と減少方向での電流−流量のヒステリシス特性により定まるヒステリシス補正値分を前記指令電流から減じる指令電流決定手段と、を備え、
    前記指令電流決定手段は、前記計算した減少度が大きいほど、前記ヒステリシス補正値が更に大きくなるように調整することを特徴とする液圧制御装置。
  4. 請求項1から3のいずれかに記載の液圧制御装置を有し、当該液圧制御装置によって制動制御用の作動液の液圧を制御するよう構成したことを特徴とする車両用制動制御装置。
JP2003276531A 2003-07-18 2003-07-18 液圧制御装置および車両用制動制御装置 Expired - Lifetime JP4239737B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276531A JP4239737B2 (ja) 2003-07-18 2003-07-18 液圧制御装置および車両用制動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276531A JP4239737B2 (ja) 2003-07-18 2003-07-18 液圧制御装置および車両用制動制御装置

Publications (2)

Publication Number Publication Date
JP2005038314A JP2005038314A (ja) 2005-02-10
JP4239737B2 true JP4239737B2 (ja) 2009-03-18

Family

ID=34212827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276531A Expired - Lifetime JP4239737B2 (ja) 2003-07-18 2003-07-18 液圧制御装置および車両用制動制御装置

Country Status (1)

Country Link
JP (1) JP4239737B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795909A (zh) * 2007-07-20 2010-08-04 丰田自动车株式会社 制动设备、制动控制设备和制动控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105152B1 (ko) * 2006-04-24 2012-01-17 주식회사 만도 전자식 유압 브레이크 장치의 밸브 제어장치
JP5326716B2 (ja) * 2009-03-24 2013-10-30 トヨタ自動車株式会社 ブレーキ制御装置
JP5705166B2 (ja) 2012-05-31 2015-04-22 株式会社アドヴィックス 車両の制動装置
JP6250892B2 (ja) 2015-01-30 2017-12-20 株式会社アドヴィックス 車両用制動装置
JP6487313B2 (ja) 2015-11-27 2019-03-20 株式会社アドヴィックス 弁制御装置、液圧制御装置及び弁制御方法
JP6487831B2 (ja) * 2015-11-27 2019-03-20 株式会社アドヴィックス 液圧制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795909A (zh) * 2007-07-20 2010-08-04 丰田自动车株式会社 制动设备、制动控制设备和制动控制方法
CN101795909B (zh) * 2007-07-20 2013-11-13 丰田自动车株式会社 制动设备、制动控制设备和制动控制方法

Also Published As

Publication number Publication date
JP2005038314A (ja) 2005-02-10

Similar Documents

Publication Publication Date Title
US8788172B2 (en) Method and device for controlling an electrohydraulic braking system for motor vehicles
JP5081938B2 (ja) 液圧制御装置
US5575542A (en) Vehicle braking force controller
KR20130109100A (ko) 자동차용 제동 시스템을 제어하는 방법 및 제어 회로
US5855420A (en) Electronically controlled brake booster and method of operation thereof
KR102379930B1 (ko) 전자식으로 슬립을 제어할 수 있는 차량 브레이크 시스템 내의 제동력을 증강하기 위한 방법 및 전자식으로 슬립을 제어할 수 있는 차량 브레이크 시스템
JP4239737B2 (ja) 液圧制御装置および車両用制動制御装置
JP4207699B2 (ja) 液圧制御装置および液圧制御方法
JP4500743B2 (ja) 車両の制動制御装置
JP4779742B2 (ja) ブレーキ制御装置
JP6426579B2 (ja) 車両用制動装置
JP4396170B2 (ja) 液圧制御装置および液圧制御方法
JP4273861B2 (ja) 液圧制御装置および液圧制御方法
JP4400128B2 (ja) 車両用制動制御装置
JP4600070B2 (ja) ブレーキ制御装置およびブレーキ制御方法
EP1147961A1 (en) Method of controlling vehicle hydraulic brake system
JP4483383B2 (ja) 車両用制動制御装置
JP2005038305A (ja) 液圧制御装置および液圧制御方法
JP2007137188A (ja) ブレーキ制御装置
JP2007237978A (ja) ブレーキ制御装置
US10538228B2 (en) Brake control device
JP5018312B2 (ja) ブレーキ制御装置
WO2020004673A1 (ja) 車両制御装置
JP3735884B2 (ja) ブレーキ制御装置
KR101002974B1 (ko) 전자 제어 유압 브레이크 및 그 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4239737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

EXPY Cancellation because of completion of term