JP4239302B2 - 画像読み取り装置 - Google Patents

画像読み取り装置 Download PDF

Info

Publication number
JP4239302B2
JP4239302B2 JP17049699A JP17049699A JP4239302B2 JP 4239302 B2 JP4239302 B2 JP 4239302B2 JP 17049699 A JP17049699 A JP 17049699A JP 17049699 A JP17049699 A JP 17049699A JP 4239302 B2 JP4239302 B2 JP 4239302B2
Authority
JP
Japan
Prior art keywords
image
data
reference data
white reference
document
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17049699A
Other languages
English (en)
Other versions
JP2000358159A (ja
Inventor
孝明 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17049699A priority Critical patent/JP4239302B2/ja
Publication of JP2000358159A publication Critical patent/JP2000358159A/ja
Application granted granted Critical
Publication of JP4239302B2 publication Critical patent/JP4239302B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イメージスキャナ装置、ディジタル複写機、ファクシミリ等に用いられる画像読み取り装置に関する。
【0002】
【従来の技術】
近年、イメージスキャナ装置、ディジタル複写機などで原稿の画像データを多階調でディジタル的に読み出し、プリンタやディスプレイ等の出力装置を介して中間調の再現をすることのできる画像読み取り装置が多く利用されるようになってきた。中間調を含む原稿の画像データを多階調で精度よく読み取るためには、照射光学系を工夫してイメージセンサの露光光量を上げ、原稿白部の読み取り出力を増大することで画像データのS/N比を上げること、および光源の照射光量を一定に保持し、原稿白部の信号レベルの変動や、原稿黒部の黒レベルの浮きを抑えることが重要になる。
【0003】
そのため、予め白レベルおよび黒レベルの基準の読み取りを行って、原稿読み取り画像データを基準データを元にシェーディング補正と呼ばれるディジタル演算により正規化し、精度良く階調再現を行うような技術がディジタル技術の進歩につれて主流になりつつある。これら画像読み取りにおける階調再現技術の進歩に伴ない、カラー・白黒の写真や印刷物等の原稿を画像データに変換して簡便に入力することのできるフラットベッドタイプの画像読み取り装置が普及してきている。
【0004】
以下、このような従来の画像読み取り装置について説明する。
【0005】
図19は従来の画像読み取り装置を示す機構系ブロック図である。
【0006】
図19に示す画像読み取り装置において、遮光部材5は、スリットが設けられており、光源2の余分な光束を制限する機能を有する。原稿ガラス6は、ガラス等の光透過材質で形成されており、使用者により読み取り用の原稿1を一枚ずつ載置可能に構成されている。キャリッジ7は、光源2、レンズ3、CCD等のライン型イメージセンサ4、遮光部材5で構成される光学系を保持して、矢印Aで示す副走査方向に移動可能に構成されている。キャリッジ駆動手段8は、駆動プーリ9、従動プーリ10、駆動ワイヤ11、モータ12で構成されており、キャリッジ7を原稿面副走査両方向に移動可能に構成されている。白基準板13は、後で述べるシェーディング処理時の白レベル基準を与える機能を有する。
【0007】
透過光源ユニット14は、複数の光源15および、これら複数の光源15からの照射光を材料内部で拡散反射しつつ透過するようにした光拡散板16からなり、原稿ガラス6で規定される原稿読み取り範囲全体にほぼ均一に複数の光源15からの光束を照射するように構成されている。この透過光源ユニット14は、ポジフィルム等の透過原稿の読み取りに用いるが、写真・印刷物等の反射原稿の読み取りの際に、原稿1を原稿ガラス6上に担持するための原稿蓋としての機能も有する。
【0008】
図20は従来の画像読み取り装置を示す回路系ブロック図である。
【0009】
図20に示す画像読み取り装置において、イメージセンサ駆動回路100は、イメージセンサ4に走査開始信号HSYNCおよび走査クロック信号VCLKを与える。アンプ101は、イメージセンサ4からの画像信号出力を適正なレベルまで増幅する。A/D変換器102は、イメージセンサ4からの画像信号を量子化しディジタル値の画像データへ変換する。インタフェース回路104は、画像データを一定量蓄積し、外部装置(図示せず)の指示に従って同期を取りながら読み取った原稿の画像データを出力する。モータ駆動回路105は、モータ12を任意の速度で回転させる。CPU106は、光源2、複数の光源15、イメージセンサ駆動回路100、シェーディング補正回路103a、インタフェース回路104、モータ駆動回路105を制御する。
【0010】
シェーディング補正回路103aは、光源2の照射光の不均一性およびイメージセンサ4の各画素毎の感度ばらつき等がもたらす、主走査方向の画像信号出力のばらつきを正規化し補正する。シェーディング補正回路103aの内部構成として、白基準メモリ107は、白基準データを保存し、黒基準メモリ108は、黒基準データを保存する。また、第1の減算器109は、白基準データから黒基準データを減算し、第2の減算器110は、画像読み取り時に、画像データから黒基準データを減算する。さらに、乗算器111は、第2の減算器110の出力に、CPU106から与えられた係数k1を掛け合わせる。そして、第1の除算器112は、乗算器111の出力データを第1の減算器109の出力を母数として割り算を実行し、その結果をシェーディング補正出力として与える。
【0011】
以上のように構成された従来の画像読み取り装置について、図21および図22を参照しながら以下にその動作を説明する。
【0012】
ホストコンピュータ等の外部装置(図示せず)からフラットベッド上の印刷物・写真等の反射原稿の画像読み取りが指示されると、CPU106はイニシャル処理を実行する。すなわち、CPU106は、モータ12を駆動しキャリッジ駆動手段8を介してキャリッジ7を原稿副走査方向Aの左側方向へ駆動し、キャリッジ7を待機位置に移動させる原点復帰動作を実行する。
【0013】
原点復帰動作が完了した後、CPU106は、光源2を点灯させると共に、キャリッジ7を待機位置から白基準板13の下方のシェーディングを行う基準位置H1に移動させ、図21の下図に示すように原稿最大白の基準値、つまり白基準値として白基準板13の画像データの読み取りを行う。この際に、シェーディング補正回路103a内の白基準メモリ107を書き込みモードに切り替えて書き込みを行うことで、この画像データを白基準データとして保持する。
【0014】
白基準データの書込みが終了すると、CPU106は、光源2を消灯し暫時待機した後、図21の下図に示す最大黒の基準値、つまり黒基準値として暗時の画像データの読み取りを行う。この際に、シェーディング補正回路103a内の黒基準メモリ108を書き込みモードに切り替えて書き込みを行うことで、暗時の画像データを黒基準データとして保持する。
【0015】
このようにして、イニシャル処理において白基準データおよび黒基準データの書き込みが完了すると、CPU106は、シェーディング補正回路103a内の白基準メモリ107および黒基準メモリ108を読み出しモードにセットし、キャリッジ7を所定の待機位置まで戻してイニシャル処理を完了する。
【0016】
イニシャル処理が完了すると、CPU106は、フラットベッド上に手動で原稿1がセットされたものと判断して、光源2を再び点灯した後、モータ駆動回路105を介してキャリッジ7を右側の原稿先端へ移動させ、原稿ガラス6上にセットされた原稿1の画像データの読み出し動作に入る。
【0017】
キャリッジ7が原稿先端部に到達すると、原稿ガラス6を通して光源2からの光束が照射され、この光束に対応する原稿からの反射光はレンズ3により集光され、イメージセンサ4の受光部上に結像する。このとき遮光部材5は、原稿1の読み取り部分付近以外の光源2からの光束を制限し、光源フレアの発生を抑制する。
【0018】
イメージセンサ4の受光部には、原稿の主走査方向に1ラインまたは複数ライン分に渡り、受光素子が配列されている。各々の受光素子は、対応する原稿位置の原稿反射光の大小に比例した電荷が、イメージセンサ駆動回路100より与えられるHSYNC信号の周期の間蓄積され、電気信号としての画像信号に変換される。この画像信号は、イメージセンサ駆動回路100から与えられるビデオクロック信号VCLKに同期して順次出力される。
【0019】
イメージセンサ4から出力された1ライン分の画像信号は、十分なレベルまでアンプ101で増幅された後、A/D変換器102により量子化されたディジタル値の画像データに変換される。この画像データは、照射光の不均一性およびイメージセンサ4の各画素毎の感度ばらつき等がもたらす、主走査方向の画像信号出力ばらつき、つまりシェーディング歪みを含んでいる。
【0020】
この画像データは、シェーディング補正回路103aへ入力される。前に説明したように、シェーディング補正回路103aの内部の白基準メモリ107および黒基準メモリ108には、イニシャル処理により予め基準データが書込まれており、原稿1の画像読み取り動作中においては、VCLK信号に同期して出力される画像データの画素位置に従って対応する基準データの読み出しが行われる。
【0021】
まず、第1の減算器109により読み出される画像データの画素位置に対応する白基準データから黒基準データが差し引かれる。このデータは、シェーディング歪みを正規化して補正するために参照するデータとなる。同様に、原稿1から読み出される画像データは、第2の減算器110に入力されて画像データに含まれる黒基準データ成分が差し引かれる。さらに、このデータは、乗算器111により、CPU106から与えられた補正係数k1が掛け合わされる。補正係数k1は、原稿1の下地を読み取らないように原稿1の反射率と白基準板13の反射率の違いを補正する係数が選ばれ、両者に違いがなければk1=1となる。
【0022】
ここで乗算器111および第1の減算器109から出力される2つのデータは、第1の除算器112で割り算されてシェーディング補正データとなる。すなわち、
シェーディング補正データ =
k1×(画像データ−黒基準データ)/(白基準データ−黒基準データ)・・・(1)
という演算が実行され、シェーディング歪みの補正が行われる。
【0023】
ここで、図22の下図に示すシェーディング係数は、1/(白基準データ−黒基準データ)であり、第1の減算器109によって画像データから黒基準データを差し引いたデータを参照し、シェーディング係数を掛け合わせてシェーディング補正により補正された画像データを得るステップを簡単に説明している。
【0024】
こうして、原稿1の画像データは、白基準データを原稿の最大反射率として正規化し、シェーディング歪みが補正されて出力される。補正後の画像データは、順次インタフェース回路104を介して外部装置(図示せず)の指示に従って出力される。こうして、原稿の1ライン分の読み取り画像データの読み取りが完了すると、CPU106は、キャリッジ7を次の読み取りラインへ移動し、次ラインの画像データを注目ラインとして順次読み出しを継続する。
【0025】
このようにして、1ライン分の画像データを得る度に、モータ駆動回路105により駆動手段8を介してキャリッジ7を1ライン分に相当する移動距離づつ移動させていくことにより、原稿1が持つ2次元の画像データを平面的に順次読み取っていくことができるよう構成されている。
【0026】
次に、透過原稿読み取りユニットを用いてポジフィルム等の透過原稿読み取りを行う場合の動作について説明する。
【0027】
ホストコンピュータ等の外部装置(図示せず)から今度はフラットベッド上のポジフィルム等の透過原稿の画像読み取りが指示されると、CPU106は、モータ12を駆動しキャリッジ駆動手段8を介してキャリッジ7を原稿副走査方向Aの左側方向へ駆動し、原稿1の読み出し開始位置(ホーム位置)に移動させる原点復帰動作を実行する。
【0028】
原点復帰動作が完了した後、CPU106は、キャリッジ7上の光源2は消灯したまま、原稿ガラス6の先端部へキャリッジ7を移動させ、今度は透過光源ユニット14の複数の光源15を点灯する。原稿1が透過原稿の場合は、原稿ガラス4の先頭位置を避けてセットされるので、この位置の画像データが透過原稿の場合の白基準データとなる。CPU106は、この際の出力データをシェーディング補正回路103a内の白基準メモリ107に白基準データとして保持する。次に、CPU106は、透過光源ユニットの複数の光源15を消灯させ、この際にイメージセンサ4により検出される出力を黒基準データとして、シェーディング補正回路103a内の黒基準メモリ108に黒基準データとして続けて保持する。
【0029】
白基準データおよび黒基準データの取り込みによりイニシャル動作が終了すると、CPU106は、フラットベッド上に原稿1がセットされたものと判断して、複数の光源15を再び点灯させた後、モータ駆動回路105を介してキャリッジ7を矢印Aの右側に示す原稿先端位置へと移動させ、原稿ガラス6上に先端部を避けてセットされた原稿1の画像データの読み出し動作に入る。
【0030】
キャリッジ7が原稿先端部に到達すると、原稿1へは複数の光源15からの光束が光拡散板16を介して均一に照射され、この光束に対応する原稿1からの透過光は原稿ガラス4を通った後、レンズ3により集光され、イメージセンサ4の受光部上に結像する。このとき遮光部材5は、複数の光源15からの余分な光束を制限し光源フレアの発生を抑制する。
【0031】
以降の画像読み取り動作については、前に説明した印刷物・写真等の反射物原稿の読み取りと全く同じであり、説明は省略する。
【0032】
【発明が解決しようとする課題】
しかしながら、上記のような構成による画像読み取り装置においては、図23に示すように白基準板13に汚れ、きずが少しでも発生すると、対応する画素の白基準読み取り出力が実際より低くなる。このため、シェーディング補正後の画像データとしては、図24に示すようにシェーディング補正回路103aの動作により低い部分が高く補正されるので、実際の画像データより高く出力されてしまう。この誤補正は、パターン的な固定ノイズ成分として副走査方向全幅に渡って発生するので、読み取り画像に視認される白筋となって現れ、画像品質を著しく劣化させる。
【0033】
このため、従来の白基準板13については、製造時にごみ、汚れ等について特別に留意しなければならず、画像読み取り装置の生産において障害となっている。また、透過原稿読み取りの際に問題となる原稿ガラス6表面に付着した汚れや、経時的に発生する原稿ガラス6内部へのゴミ付着等の汚れについては、従来では対処のしようがなかった。
【0034】
近年ではイメージセンサ製造技術の進歩に伴い読み取り解像度が高解像度化してきているため、より細かなゴミ、汚れに対しても読み取り画像に大きな影響を受けるようになり益々大きな問題となってきている。
【0035】
そこで、本発明は、白基準板に付着する多少のゴミ・汚れの有無に関わらず精度良く原稿の画像データ読み取りができる画像読み取り装置を提供することを目的とする。
【0036】
【課題を解決するための手段】
この課題を解決するために、本発明の画像読み取り装置は、シェーディング補正に用いる白基準を読み取るイメージセンサと、前記イメージセンサを駆動するイメージセンサ駆動回路と、前記イメージセンサで読み取った前記白基準を基準データとして記憶する基準メモリと、前記イメージセンサの欠陥画素位置を記憶する記憶部と、前記基準メモリに記憶された前記基準データと前記記憶部に記憶された前記欠陥画素位置を読み取りラインごとに比較し、前記基準データにおいて所定の閾値を超える隣接画素値との変化量を示すすべての画素位置が前記欠陥画素位置である場合にその読み取りラインの基準データを出力してシェーディング補正を行い、所定の閾値を超える隣接画素値との変化量を示す画素位置に前記欠陥画素位置でないものを含む場合に前記イメージセンサ駆動回路に他の読み取りラインの基準データの読み取りを指示するCPUとを含む構成としたものである。
【0037】
これにより、反射原稿か透過原稿かに関わらず、読み取り画像品位が高品位で、外部からのゴミの進入等による経時的な変化にも影響が少なく、かつイニシャル処理時間を短縮でき、信頼性の高い画像読み取り装置が得られる。
【0046】
【発明の実施の形態】
以下、本発明の実施の形態について、図1から図18を用いて説明する。なお、これらの図面において同一の部材および従来技術と同一の部材には同一の符号を付しており、また、重複した説明は省略されている。
【0047】
(実施の形態1)
図1は本発明の実施の形態1における画像読み取り装置を示す機構系ブロック図、図2は本発明の実施の形態1における画像読み取り装置を示す回路系ブロック図、図3は本発明の実施の形態1における画像読み取り装置の白基準値取り込み動作を示すフローチャート、図4は本発明の実施の形態1における画像読み取り装置の白基準および黒基準データ取得動作の一例を示す説明図、図5は本発明の実施の形態1における画像読み取り装置の白基準および黒基準データ取得動作の他の一例を示す説明図、図6は本発明の実施の形態1における画像読み取り装置の反射原稿読み取り時のシェーディング補正動作の一例を示す説明図、図7は本発明の実施の形態1における画像読み取り装置の反射原稿読み取り時のシェーディング補正動作の他の一例を示す説明図、図8は本発明の実施の形態1における画像読み取り装置の透過原稿読み取り時のシェーディング補正動作の一例を示す説明図、図9は本発明の実施の形態1における画像読み取り装置の透過原稿読み取り時のシェーディング補正動作の他の一例を示す説明図である。なお、図1は図19の従来の技術の画像読み取り装置の構成と全く同一であるので、ここでの説明は省略する。
【0048】
図2に示す画像読み取り装置において、イメージセンサ駆動回路100は、イメージセンサ4に走査開始信号HSYNCおよび走査クロック信号VCLKを与える。アンプ101は、イメージセンサ4からの画像信号出力を適正なレベルまで増幅する。A/D変換器102は、イメージセンサ4からの画像信号を量子化しディジタル値の画像データへ変換する。インタフェース回路104は、画像データを一定量蓄積し、外部装置(図示せず)の指示に従って同期を取りながら読み取った原稿の画像データを出力する。モータ駆動回路105は、モータ12を任意の速度で回転させる。CPU106は、光源2、複数の光源15、イメージセンサ駆動回路100、シェーディング補正回路103b、インタフェース回路104、モータ駆動回路105を制御する。
【0049】
シェーディング補正回路103bは、光源2の照射光が有する不均一性およびイメージセンサ4の各画素毎の感度ばらつき等がもたらす、主走査方向の画像信号出力のばらつきを正規化し補正する。シェーディング補正回路103bの内部構成として、白基準メモリ107は、白基準データを保存し、黒基準メモリ108は、黒基準データを保存する。また、第1の減算器109は、白基準データから黒基準データを減算し、第2の減算器110は、画像読み取り時に、画像データから黒基準データを減算する。さらに、乗算器111は、第2の減算器110の出力に、CPU106から与えられた係数k1を掛け合わせる。そして、第1の除算器112は、乗算器111の出力データを第1の減算器109の出力を母数として割り算を実行し、その結果をシェーディング補正出力として与える。
【0050】
ここまでは従来の技術の画像読み取り装置の構成と同一であるが、シェーディング補正回路103bは、以下の点で従来の技術でのシェーディング補正回路103aから改良された構成となっている。すなわち、白基準メモリ107および黒基準メモリ108は、CPU106から調停回路(図示せず)により独立にデータの読み出しおよび書き込みを行うことができるように構成されている。さらに、CPU106により書き込み・読み出しが可能な不揮発性のEE−ROM(記憶手段)113と、複数ライン分の画像メモリを退避することのできるバッファメモリ(保持手段)114が新しく追加されている。
【0051】
以上のように構成された本発明の実施の形態1における画像読み取り装置について、以下にその動作を図3、図4および図5を参照しながら説明する。
【0052】
ホストコンピュータ等の外部装置(図示せず)からフラットベッド上の印刷物・写真等の反射原稿の画像読み取りが指示されると、CPU106はイニシャル処理を開始する。すなわち、CPU106は、モータ12を駆動しキャリッジ駆動手段8を介してキャリッジ7を原稿副走査方向Aの左側方向へ駆動し、キャリッジ7を待機位置に移動させる原点復帰動作を実行する。
【0053】
原点復帰動作が完了した後、CPU106は、基準データ取得手段として機能する。すなわち、CPU106は、光源2を点灯させると共に、キャリッジ7を待機位置から白基準板13の下方のシェーディングを行う基準位置H1に移動させ、白基準板13の画像データを読み取らせる(ステップS1)。この際に、シェーディング補正回路103b内の白基準メモリ107を書き込みモードに切り替え書き込みを行うことで、この画像データを白基準データとして保持する(ステップS2)。
【0054】
次に、CPU106は、レベル変化量検出手段として機能する。すなわち、CPU106は、白基準メモリ107の読み出しを行い、内容を保持手段であるバッファメモリ114に退避する。さらに、白基準メモリ107の内容はさらに隣接する画素間出力値の差の絶対値がレベル変化量として計算され、同じアドレスに書き換えられる(ステップS3)。
【0055】
1ライン分に渡ってこの演算が終了すると、CPU106は、閾値検出手段として機能する。すなわち、CPU106は、設定された閾値TH1を超えるデータがないことを確認する(ステップS4)。図4の下図では閾値TH1として、画像データ最大値255に対して約10%の値25が設定されている。ここで、白基準板13を読み取った白基準データのレベル変化量は、図4に示すようにランプ2の周辺光量低下やレンズのコサイン4乗則等の影響により周辺部で大きな値を示すが、基準位置H2での基準データ読み取りの例に示すように通常は閾値TH1を越えることはない。1ライン分全ての画素についてこの検証が終了し、白基準データ中に閾値TH1を越えるレベル変化量を持つ画素が見つからなかった場合は、白基準データが正常であると判断し、白基準データの取り込みを完了する(ステップS12)。
【0056】
しかし、図4で基準位置H1の例に示すように、白基準板13の基準位置上にゴミ・汚れが現れた場合、図4中図に示す白基準データの変化は急峻になり、図4の下図に示すように基準位置H1に対応するレベル変化量は閾値TH1を越えてしまう。ここで、CPU106は、基準データ再取得手段として機能する。すなわち、CPU106は、このように閾値TH1を越えるレベル変化量を持った画素が、白基準データ中に一つ以上存在した場合は、その画素位置を閾値オーバー画素位置として記憶手段であるEE−ROM113に読み取った基準位置H1とともに記録し、リトライ処理に移行する(ステップS6)。リトライ処理を行う前にCPU106は、イメージセンサ4の製造上の理由で発生する特定の画素の感度落ちにより欠陥画素としてEE−ROM113に予め記録された位置でないか確認する(ステップS5)。
【0057】
閾値オーバー位置が欠陥画素として登録された位置と一致した場合は、現在の白基準メモリ107に書き込まれた値を採用し、白基準データの取り込みを完了する(ステップS12)。急峻なレベル変化であってもイメージセンサ4の特定画素の感度落ちについては、シェーディング歪みとして、シェーディング補正で正規化補正できる範囲であれば問題とならないためである。
【0058】
閾値オーバーの画素が、登録された欠陥画素以外に発生していた場合は、リトライ処理へ移行する。白基準のリトライ処理としてキャリッジ7を設定した距離d1分移動して次の基準位置H2へ移動させる(ステップS7)。このとき、リトライ回数が最大回数N1に達したかどうかを判断する(ステップS8)。また、白基準の有効範囲から外れていないかを判断し(ステップS9)、外れた場合は初期の基準位置H1より再度リトライ処理を行う。その際、閾値TH1にオフセットを加えレベルを変更しても良く、初期位置H1を変更しても良い(ステップS13)。
【0059】
こうして基準位置が再設定された後、光源2を点灯し再び白基準データの取り込みを行うとともに(ステップS2)、今回取り込まれた新しい白基準データに対して、隣接画素間のデータ変化量が設定した閾値を越えていないか白基準データの隣接画素間のレベル変化量を再度確認する(ステップS3)。
【0060】
図4に示すように、新規の基準位置H2でのリトライ処理で取り込まれた白基準データのレベル変化量が、今度は閾値TH1未満に収まった場合、CPU106は、白基準板13上のゴミ・汚れを回避したと判断して、今回白基準メモリ107に取り込まれた白基準データを採用し、今回の基準位置H2をEE−ROM113に記憶した後、黒基準データ取得へと処理を移行する(ステップS12)。しかし、ここで再度欠陥画素が発見されると、閾値TH1を越えた画素位置とその際の基準位置を再び記録し、繰り返し回数N1に達するまでリトライ処理を実行する(ステップS8)。
【0061】
リトライ回数が、N1に達しても常に閾値オーバーの画素が現れた場合は、エラー処理に移行する前に閾値オーバーの検出位置が同一画素位置でないか確認する。同一画素位置の場合は、イメージセンサ4に新たに発生した感度落ちによる欠陥画素と判定して、EE−ROM113に欠陥画素として画素位置を登録し、白基準データの書き込みを完了する(ステップS11)。図5には、イメージセンサ4の欠陥画素による感度落ちによる欠陥画素が発生した例を、図4の欠陥画素が存在しない場合と対比して示している。同一画素位置でなかった場合は、白基準異常としてエラー処理を実行する(ステップS14)。
【0062】
このようにして、イニシャル処理において白基準データの取り込みが完了すると、CPU106は、次に光源2を消灯し暫時待機した後、暗時の画像データとして読み取りを行い、シェーディング補正回路103b内の黒基準メモリ108を書き込みモードに切り替え書き込みを行うことで、暗時の画像データを黒基準データとして保持する。この黒基準データの取り込み動作の説明については従来の技術と同様である。
【0063】
次に、CPU106は、シェーディング補正回路103b内の白基準メモリ107および黒基準メモリ108を読み出しモードにセットし、キャリッジ7を所定の待機位置まで戻してイニシャル処理を完了する。
【0064】
イニシャル処理が完了すると、CPU106は、フラットベッド上に手動で原稿1がセットされたものと判断して、モータ駆動回路105を介してキャリッジ7を右側の原稿先端へ移動させ、原稿ガラス6上にセットされた原稿1の画像データの読み出し動作に入る。
【0065】
キャリッジ7が原稿先端部に到達すると、原稿ガラス6を通して光源2からの光束が照射され、この光束に対応する原稿からの反射光はレンズ3により集光され、イメージセンサ4の受光部上に結像する。このとき遮光部材5は、原稿1の読み取り部分付近以外の光源2よりの光束を制限し光源フレアの発生を抑制する。
【0066】
イメージセンサ4の受光部には、原稿1の主走査方向に1ラインまたは複数ライン分に渡り、受光素子が配列されている。各々の受光素子は、対応する原稿位置の原稿反射光の大小に比例した電荷が、イメージセンサ駆動回路100から与えられるHSYNC信号の周期の間蓄積され、電気信号としての画像信号に変換される。この画像信号は、イメージセンサ駆動回路100から与えられるビデオクロック信号VCLKに同期して順次出力される。
【0067】
イメージセンサ4から出力された1ライン分の画像信号は、十分なレベルまでアンプ101で増幅された後、つぎのA/D変換器102により量子化されたディジタル値の画像データに変換される。従来の技術と同様に画像データは、光源2の周辺光量低下等による光学系の不均一性、およびイメージセンサ4の欠陥画素を含む各画素毎の感度ばらつき等がもたらす、主走査方向の画像信号出力ばらつき、つまりシェーディング歪みを含んでいる。
【0068】
この画像データはシェーディング補正回路103bへ入力される。
【0069】
これから先のシェーディング補正動作を図6および図7を参照して説明する。
【0070】
このシェーディング補正回路103bは、演算手段として機能する。すなわち、シェーディング補正回路103bの内部の白基準メモリ107および黒基準メモリ108には、先ほど説明したイニシャル処理により予め基準データが書込まれており、原稿1の画像読み取り動作中においては、VCLK信号に同期して出力される画像データの画素位置に従って対応する基準データの読み出しが行われる。
【0071】
まず、第1の減算器109により読み出される画像データの画素位置に対応する白基準データから黒基準データが差し引かれる。同様に、原稿1から読み出される画像データは、第2の減算器110に入力されて画像データに含まれる黒基準データ成分が差し引かれる。さらに、このデータは、乗算器111により、CPU106から与えられた補正係数k1が掛け合わされる。補正係数k1は、原稿1の下地を読み取らないように原稿1の反射率と白基準板13の反射率の違いを補正する係数が選ばれ、両者に違いがなければk1=1となる。
【0072】
ここで、乗算器111および第1の減算器109から出力される2つのデータは、第1の除算器112で割り算されてシェーディング補正データとなる。すなわち、
シェーディング補正データ =
k1×(画像データ−黒基準データ)/(白基準データ−黒基準データ)・・・(2)
という演算が実行され、画像データに含まれるシェーディング歪みの補正が行われる。
【0073】
ここで、図6の下図に示すシェーディング係数は、1/(白基準データ−黒基準データ)であり、画像データより黒基準データを差し引いたデータに対し、シェーディング係数を掛け合わせてシェーディング補正により補正された原稿の画像データを得るステップを簡単に説明している。
【0074】
従来の技術では図23および図24にて説明したように、白基準板13にシェーディング歪み以外にゴミ・汚れ等の影響が現れた場合、実際より低く基準データを取り込んでしまい、結果として過多な補正が行われていたが、本実施の形態では図6にて示すようにゴミ・汚れの位置を避け、正確にシェーディング歪みのみの補正を行うことができていることがわかる。また、イメージセンサ4の特定画素の感度落ちによる欠陥画素による出力低下に関しては、図7にて示すようにシェーディング歪みの一部としてシェーディング係数でレベルが持ち上げられ、正常な出力レベルに補正される。
【0075】
このようにして、原稿1の画像データは、原稿1の画像データに含まれるシェーディング歪みのみが補正されて出力される。補正後の画像データは、順次インタフェース回路104を介して外部装置(図示せず)の指示に従って出力される。こうして原稿の1ライン分の読み取り画像データの読み取りが完了すると、CPU106は、キャリッジ7を次の読み取りラインへ移動し、次ラインの画像データを注目ラインとして順次読み出しを継続する。
【0076】
このようにして、1ライン分の画像データを得る度に、モータ駆動回路105により駆動手段8を介してキャリッジ7を1ライン分に相当する移動距離づつ移動させていくことにより、原稿1が持つ2次元の画像データを平面的に順次読み取っていくことができるよう構成されている。
【0077】
次に、透過原稿読み取りユニット14を用いてポジフィルム等の透過原稿読み取りを行う場合の動作について図8および図9を参照しながら説明する。
【0078】
ホストコンピュータ等の外部装置(図示せず)から今度はフラットベッド上のポジフィルム等の透過原稿の画像読み取りが指示されると、CPU106は、イニシャル処理を実行する。すなわち、CPU106は、モータ12を駆動しキャリッジ駆動手段8を介してキャリッジ7を原稿副走査方向Aの左側方向へ駆動し、原稿1の読み出し開始位置(ホーム位置)に移動させる原点復帰動作を実行する。
【0079】
原点復帰動作が完了した後、CPU106は、キャリッジ7上の光源2を消灯したまま原稿ガラス6の先端部の基準位置T1へ移動させ、今度は透過光源ユニット14上の複数の光源15を点灯させる。このとき、白基準メモリ107を書き込みモードに切り替え、原稿ガラス6を通した透過光を、透過原稿での白基準データとして白基準メモリ107へ書き込みを行う。
【0080】
次に、CPU106は、白基準メモリ107の読み出しを行い、内容をバッファメモリ114に退避する。さらに、白基準メモリ107の内容はさらに隣接する画素間の出力値の差の絶対値が計算され、同じアドレスに書き換えられる。1ライン分に渡ってこの演算が終了した後、CPU106は、設定された閾値を超えるデータがないことを確認する。反射原稿の際と同様に各画素毎に順次確認を行う。全ての画素についてこの検証が終了し、白シェーディングデータ中に閾値を越える画素が見つからなかった場合は、その白シェーディングデータを白基準メモリ107に保持して白基準データ取り込み処理を終了する。しかし、閾値を越える画素が白シェーディングデータ中に一つ以上存在した場合は、その画素位置を欠陥画素位置としてEE−ROM113に発生した透過原稿での基準位置T1とともに記録し、リトライ処理に移行する。リトライ処理については、反射原稿での基準位置がH1、H2、H3であったのに対してT1、T2、T3となる以外は同様の動作であるため説明は省略する。
【0081】
こうして白基準データの書き込みが完了すると、CPU106は、複数の光源15を消灯し暫時待機した後、暗時の画像データとして読み取りを行い、シェーディング補正回路103b内の黒基準メモリ108を書き込みモードに切り替え書き込みを行うことで、暗時の画像データを黒基準データとして保持する。
【0082】
こうして取り込まれた白基準データおよび黒基準データを用いて、原稿1のシェーディング歪みを補正して画像データの読み出しを行う。白基準データおよび黒基準データの取り込みによりイニシャル動作が終了すると、CPU106は、フラットベッド上に原稿1がセットされたものと判断して、モータ駆動回路105を介してキャリッジ7を矢印Aの右側の原稿先端位置へと移動させ、原稿ガラス6上に先端部を避けてセットされた原稿1の画像データの読み出し動作に入る。
【0083】
キャリッジ7が原稿先端部に到達すると、原稿1へは複数の光源15からの光束が光拡散板16を介して均一に照射され、この光束に対応する原稿1からの透過光は原稿ガラス4を通った後レンズ3により集光され、イメージセンサ4の受光部上に結像する。このとき遮光部材5は、複数の光源15からの余分な光束を制限し光源フレアの発生を抑制する。
【0084】
これより先の、画像読み取り動作については、光源2から複数の光源15に変わり、白基準データおよび黒基準データを取り込む基準位置が変わったのみで、他の動作は印刷物・写真等の反射物原稿の読み取りと全く同一であるので、説明は省略する。
【0085】
(実施の形態2)
図10は本発明の実施の形態2における画像読み取り装置を示す機構系ブロック図、図11は本発明の実施の形態2における画像読み取り装置を示す回路系ブロック図、図12は本発明の実施の形態2における画像読み取り装置のライン間演算回路を示すブロック図、図13は本発明の実施の形態2における画像読み取り装置の平均値回路を示すブロック図、図14は本発明の実施の形態2における画像読み取り装置の最大値回路を示すブロック図、図15は本発明の実施の形態2における画像読み取り装置の中心値回路を示すブロック図、図16は本発明の実施の形態2における画像読み取り装置の白・黒基準値取り込み動作を示すフローチャート、図17は本発明の実施の形態2における画像読み取り装置の白基準値取り込み動作の一例を示す説明図、図18は本発明の実施の形態2における画像読み取り装置の黒基準値取り込み動作の一例を示す説明図である。なお、図10は従来の技術の画像読み取り装置の構成と全く同一であるので、ここでの説明は省略する。
【0086】
図11に示す画像読み取り装置において、イメージセンサ駆動回路100は、イメージセンサ4に走査開始信号HSYNCおよび走査クロック信号VCLKを与える。アンプ101は、イメージセンサ4からの画像信号出力を適正なレベルまで増幅する。A/D変換器102は、イメージセンサ4からの画像信号を量子化しディジタル値の画像データへ変換する。インタフェース回路104は、画像データを一定量蓄積し、外部装置(図示せず)の指示に従って同期を取りながら読み取った原稿の画像データを出力する。モータ駆動回路105は、モータ12を任意の速度で回転させる。CPU106は、光源2、複数の光源15、イメージセンサ駆動回路100、シェーディング補正回路103b、インタフェース回路104、モータ駆動回路105を制御する。
【0087】
シェーディング補正回路103bは、光源2からの照射光の不均一性およびイメージセンサ4の各画素毎の感度ばらつき等がもたらす、主走査方向の画像信号出力のばらつきを正規化し補正する。シェーディング補正回路103bの内部構成として、白基準メモリ107は、白基準データを保存し、黒基準メモリ108は、黒基準データを保存する。また、第1の減算器109は、白基準データから黒基準データを減算し、第2の減算器110は、画像読み取り時に、画像データから黒基準データを減算する。さらに、乗算器111は、第2の減算器110の出力に、CPU106から与えられた係数を掛け合わせる。そして、第1の除算器112は、乗算器111の出力データを第1の減算器109の出力で割り算を実行し、シェーディング補正出力として出力データを与える。白基準メモリ107および黒基準メモリ108は、CPU106から調停回路(図示せず)により独立にデータの読み出しおよび書き込みを行うことができるように構成されている。さらに、CPU106により書き込み・読み出しが可能な不揮発性のEE−ROM113と複数ライン分の画像メモリを退避することのできるバッファメモリ114が追加されている。
【0088】
ここまでは図2の実施の形態1の画像読み取り装置の構成と同一であるが、異なる構成としては、ライン間演算回路115を設けて、バッファメモリ114に蓄積された複数ライン分の白基準データおよび黒基準データを、各ライン間の同一画素位置データ間で所定の演算処理を行い、処理結果を白基準メモリ107および黒基準メモリ108に書き込めるようにした点である。
【0089】
図12はライン間演算回路115の内部ブロック図である。
【0090】
図12に示すライン間演算回路115は、4つの入力d1、d2、d3、d4の平均化演算を行う平均値回路116、最大値の演算を行う最大値回路117、中心値の演算を行う中心値回路118、CPU106からの選択信号SELにより、平均値回路116、最大値回路117、中心値回路118のうち一つの出力を選択して出力するデータセレクタ119で構成されている。
【0091】
図13は平均値回路116の内部構成を示している。
【0092】
図13に示す平均値回路116において、第1の加算器120は入力d1、d2に接続され、第2の加算器121は入力d3、d4に接続されている。第1の加算器120と第2の加算器121の出力は、さらに第3の加算器122に接続され、入力d1、d2、d3、d4が加算された出力を得ている。この加算出力は第2の除算器123に入力され、1/4の出力が第2の除算器123の出力に現れる。こうして、4つの入力d1、d2、d3、d4の平均値を得るように構成されている。
【0093】
図14は最大値回路117の内部構成を示している。
【0094】
図14に示す最大値回路117において、第1のMAX比較器124には入力d1、d2が接続され、第2のMAX比較器125には入力d3、d4が接続され、より大きいほうの入力d1、d2とd3、d4がそれぞれ出力される。さらに、第1のMAX比較器124の出力と第2のMAX比較器125の出力が第3のMAX比較器126に入力され、4つの入力d1、d2、d3、d4のうち一番大きい値、つまり最大値が第3のMAX比較器126から出力される。
【0095】
図15は中心値回路118の内部構成を示している。
【0096】
図15に示す中心値回路118において、第4のMAX比較器127、第5のMAX比較器128、第6のMAX比較器129は、図12の最大値回路117と同じように接続され、4つの入力d1、d2、d3、d4のうち最大値を出力するよう構成されている。また、第1のMIN比較器130には入力d1、d2が接続され、第2のMIN比較器131には入力d3、d4が接続され、それぞれ小さいほうの入力d1、d2とd3、d4が出力される。さらに、第1のMIN比較器130と第2のMIN比較器131の出力が第3のMIN比較器132に入力され、4つの入力d1、d2、d3、d4のうち一番小さい値、つまり最小値が第3のMIN比較器132から出力される。
【0097】
また、第4の加算器133は入力d1、d2が接続され、第5の加算器134には入力d3、d4が接続されている。第4の加算器133と第5の加算器134の出力は第6の加算器135に接続され、4つの入力d1、d2、d3、d4の合計された出力を得る。さらに、この出力は、第3の減算器136にて最小値が差し引かれ、第4の減算器137にて最大値が差し引かれ、第4の減算器137の出力は、際引かれた最大値と最小値を除く残り2つの入力の合計となる。この出力は、第3の除算器138に入力され、1/2された平均値が中心値として出力されるよう構成されている。
【0098】
以上のように構成された本発明の実施の形態2における画像読み取り装置について、以下にその動作を図16、図17および図18を参照しながら説明する。
【0099】
ホストコンピュータ等の外部装置(図示せず)からフラットベッド上の印刷物・写真等の反射原稿の画像読み取りが指示されると、CPU106はイニシャル処理を実行する。すなわち、CPU106は、モータ12を駆動しキャリッジ駆動手段8を介してキャリッジ7を原稿副走査方向Aの左側方向へ駆動し、キャリッジ7を待機位置に移動させる原点復帰動作を実行する。
【0100】
原点復帰動作が完了した後、CPU106は、光源2を点灯させると共に、キャリッジ7を待機位置から白基準板13の下方の基準位置H1に移動させ、白基準板13の画像データを読み取らせる(ステップS21)。この際に、シェーディング補正回路103b内の白基準メモリ107を書き込みモードに切り替え書き込みを行うことで、この画像データを白基準データとして保持する(ステップS22)。
【0101】
次に、CPU106は、白基準メモリ107の読み出しを行い、1ライン分の内容をバッファメモリ114に退避する(ステップS23)。CPU106は、キャリッジ7を設定した距離d2分移動して次の基準位置H2へ移動させ(ステップS24)、光源2を点灯し再び白基準データの取り込みを行うとともに(ステップS22)、今回白基準メモリ107に取り込まれた新しい白基準データの読み出しを行い、1ライン分の内容をバッファメモリ114の別の領域へ退避する(ステップS23)。
【0102】
指定されたライン数分(例では4ライン分H1からH4まで)の白基準データのバッファメモリ114への取り込みが完了すると(ステップS25)、CPU106は、バッファメモリ114から複数ライン分の同一位置の画素の画像データ読み出しを開始する。図17中図に示すように読み出された4ライン分の白基準データは、白基準の位置により白ムラ、ゴミ・汚れ等の影響でばらついた値を持っている。この読み出された画像データは、ライン間演算回路115により、バッファメモリ114の同一位置の複数の画素間での所定の演算処理が行われ、新しい白基準データを得る(ステップS26)。ここで、図14に示す最大値検出回路117が選択され、図17の下図に示すようにH1からH4ラインまでの4画素のデータうち最大値が出力DOに現れる。CPU106は、この出力値を新しい白基準値として白基準メモリ107に順次1ライン分書き込みを行っていく。
【0103】
このようにして、バッファメモリ114に蓄積された複数ライン分の基準データ全画素について処理を行い、1ライン分全て新しい白基準データが生成され、白基準メモリ107への書き込みが完了する。図17の下図に示すように白基準への演算処理として最大値を取ることで、白基準に現れるムラ、ゴミ・汚れ等による基準データのバラツキ、低下による影響を抑止することが可能になる。
【0104】
CPU106は、光源2を消灯し暫時待機した後、暗時の画像データとして読み取りを行い、シェーディング補正回路103b内の黒基準メモリ108を書き込みモードに切り替え書き込みを行うことで、今度は暗時の画像データを黒基準データとして保持する(ステップS27)。次に、CPU106は、黒基準メモリ108の読み出しを行い、取り込まれた黒基準データをバッファメモリ114へ退避する(ステップS28)。1ライン分の黒基準データの退避が終了すると、CPU106は、再度黒基準メモリ108を書き込みモードに切り替え、次の黒基準データの取り込みを行うとともに(ステップS27)、今回黒基準メモリ108に取り込まれた新しい黒基準データの読み取りを行い、内容をバッファメモリ114の別の領域に退避する(ステップS28)。
【0105】
指定されたライン数分の黒基準データのバッファメモリ114への取り込みが完了すると(ステップS29)、CPU106は、バッファメモリ114から順次同一位置の複数画素の読み出しを開始する。図18中図に示すように読み出された複数ライン分の黒基準データは、イメージセンサ4および回路によりランダムノイズや突発性のポップノイズが重畳し、ばらついた値となる。白基準データの処理と同様に読み出された複数ライン分の黒基準データは、ライン間演算回路116によりバッファメモリ114の同一位置の複数の画素間で演算処理が施され、新規の黒基準データを得る(ステップS30)。図13に示す平均値回路116が選択され、設定値を4回としているので、1回目の1ラインから4回目の第4ラインまでの同一位置の4画素の平均値が出力DOに現れる。図18の下図に示すように平均値を取ることでランダムノイズ成分が抑制される。CPU106は、この出力値を新規の黒基準データとして黒基準メモリ108に順次1ライン分書き込みを行う(ステップS30)。
【0106】
ノイズ成分として、突発的なポップノイズが目立つ場合は、所定の演算として中心値回路118を選択する。中心値回路118は、複数の値から、最大値および最小値を除いた残りを平均化することにより、突発的なノイズで現れるバラツキを除去する効果がある。ここでは示していないが、一般的な中央値を用いる演算を行っても同様の効果がある。
【0107】
このようにして、イニシャル処理においていずれかの演算回路により新しく算出され生成された白基準データおよび黒基準データの書き込みが完了すると、CPU106は、シェーディング補正回路103b内の白基準メモリ107および黒基準メモリ108を読み出しモードにセットし(ステップS31)、キャリッジ7を所定の待機位置まで戻してイニシャル処理を完了する。
【0108】
イニシャル処理が完了すると、CPU106は、フラットベッド上に手動で原稿1がセットされたものと判断して、モータ駆動回路105を介してキャリッジ7を右側の原稿先端へ移動させ、原稿ガラス6上にセットされた原稿1の画像データの読み出し動作に入る。
【0109】
これ以降の動作については、実施の形態1での動作の説明と同様であるので説明は省略する。透過原稿ユニット106を適用したポジフィルム等透過原稿の読み取りについても実施の形態1と同じであるので説明は省略する。
【0110】
いずれの処理が選ばれた場合も、図17に示すように白基準にゴミ・汚れ等が発生した場合に、複数の基準データのうち最大値あるいは平均値を採用することで、白基準データに発生する誤差を最小に抑制することが可能になる。さらに、図18に示すように、黒基準データにも複数の基準データの平均値あるいは中心値処理を採用することにより、プリンタで出力するために濃度変換した際の高濃度部の主走査方向のS/Nを向上させる効果がある。
【0111】
特に、所定の演算処理として中心値回路118を採用した場合には、イメージセンサ4の蓄積時間を短くして高速に原稿1の画像データの読み取りを行うような際にも、基準データ取り込みの際に発生する突発的なポップノイズにより、固定ノイズとして基準データに取り込まれ、画像の副走査方向に縦筋として現われようなシェーディング補正での副作用を抑制する効果がある。
【0112】
上述した各実施の形態では、キャリッジ7をシェーディング基準位置に動かして白基準板13を読み取り、白基準データを取得する際に、イメージセンサ4の各画素出力について隣接画素間の出力値の変化量を検出する手段を設け、この変化量が予め設定された閾値を越えた場合、その特定画素の位置に対応する白基準上にゴミ・汚れがあると判断し、基準位置を一定の距離分移動したのちに再び白基準データの取得を行うようにしている。その際も、同様にゴミ・汚れが検出された場合は、さらに複数回一定の距離分移動してリトライ処理するようにしている。また、定められた上限回数のリトライを実施しても、同じ位置にゴミ・汚れが検出された場合には、イメージセンサの特定画素の感度落ちによる欠陥と判断し、そのままシェーディング補正を行う機能、また前回シェーディングを行った位置と、欠陥画素位置を記憶する手段を設けたことにより、次回のイニシャル処理時には、欠陥画素とゴミ・汚れ等を避けてシェーディング補正を行うことができるようしている。このため、反射原稿か透過原稿かに関わらず、白基準板の汚れ・ゴミや、イメージセンサの特定画素の欠陥であっても、読み取り画像品位が高品位で、外部からのゴミの進入等による経時的な変化にも影響が少なく、かつイニシャル処理時間を短縮でき、信頼性の高い画像読み取り装置を得ることが可能になる。
【0113】
また、イニシャル処理時には、白基準の副走査方向に毎回一定の距離分移動しながら複数ライン分の白基準データおよび黒基準データを取り込み、複数の白基準データおよび黒基準データについて同一位置の画素間で平均処理あるいは最大値処理、中心値処理を加えて新しい白基準データおよび黒基準データを生成するようにしている。これらの処理により、シェーディング補正時に画像データを正規化する基準となる白基準データおよび黒基準データの精度を上げることが可能になる。したがって、イニシャル時の白基準に対する読み取り白レベル変動やイメージセンサ4の特定画素に発生する感度落ち等の欠陥画素の影響を抑制することができるようになり、白基準板13を含め白基準の経時的なゴミ・汚れや、イメージセンサ4の感度落ち欠陥画素の発生による読み取り画像への固定ノイズによる白筋発生の画質劣化やS/N低下を抑制し信頼性の高い画像読み取り装置が得られる。
【0114】
なお、ここでは白黒原稿の画像読み取り装置として説明したが、カラー原稿の画像読み取り装置としても全く問題なく適用できる。その際透過原稿の白基準としては、原稿1の一部、例えばベースフィルムの部分としても良い。さらに、フラットベッド型のみでなく、原稿移動型の画像読み取り装置にも同様に適用できる。また、基準値を記憶するためのバッファメモリ114の代わりに、白基準メモリ107および黒基準メモリ108の容量を拡張したラインメモリ構成とし、ライン間演算回路115を直接白基準メモリ107および黒基準メモリ108に接続する構成でも同様の効果が得られる。さらに、ライン間演算処理はライン間演算回路115により行うように説明したが、CPU106による演算処理で代替しても同様に実現できることはいうまでもない。
【0115】
【発明の効果】
以上のように、本発明によれば、イニシャル処理としてシェーディング補正を行うための基準を読み取った基準データに対し、隣接画素出力間の差の絶対値を計算することで基準データの変化量を検出し、変化量が設定された閾値を越えた場合は、基準位置を移動させ、再度基準データの読み取りを行わせることが可能になるという有効な効果が得られる。
【0116】
また、本発明によれば、閾値を超えた画素の位置を記憶し、複数の基準位置のうち前回使用した基準位置を記憶し、さらに全ての基準位置で同一画素が閾値を越えた場合、その画素を欠陥画素として記憶するので、毎回ゴミ・汚れのない基準位置で、イメージセンサ上の画素の経時的な感度落ちによる欠陥の影響を受けることなく、短いイニシャル処理時間でシェーディング補正のための基準データを取り込むことが可能になるという有効な効果が得られる。
【0117】
さらに、本発明によれば、基準位置を移動して得た複数回の白基準データおよび黒基準データに対して、複数回の基準データ間に所定の演算処理を施すことにより、基準のゴミ・汚れ等の影響を抑制するとともに、白基準および黒基準の取り込みデータのバラツキを抑制し、副走査方向に現れる固定ノイズを抑制することで、読み取り画像の画質およびS/Nの向上を図ることが可能になるという有効な効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における画像読み取り装置を示す機構系ブロック図
【図2】本発明の実施の形態1における画像読み取り装置を示す回路系ブロック図
【図3】本発明の実施の形態1における画像読み取り装置の白基準値取り込み動作を示すフローチャート
【図4】本発明の実施の形態1における画像読み取り装置の白基準および黒基準データ取得動作の一例を示す説明図
【図5】本発明の実施の形態1における画像読み取り装置の白基準および黒基準データ取得動作の他の一例を示す説明図
【図6】本発明の実施の形態1における画像読み取り装置の反射原稿読み取り時のシェーディング補正動作の一例を示す説明図
【図7】本発明の実施の形態1における画像読み取り装置の反射原稿読み取り時のシェーディング補正動作の他の一例を示す説明図
【図8】本発明の実施の形態1における画像読み取り装置の透過原稿読み取り時のシェーディング補正動作の一例を示す説明図
【図9】本発明の実施の形態1における画像読み取り装置の透過原稿読み取り時のシェーディング補正動作の他の一例を示す説明図
【図10】本発明の実施の形態2における画像読み取り装置を示す機構系ブロック図
【図11】本発明の実施の形態2における画像読み取り装置を示す回路系ブロック図
【図12】本発明の実施の形態2における画像読み取り装置のライン間演算回路を示すブロック図
【図13】本発明の実施の形態2における画像読み取り装置の平均値回路を示すブロック図
【図14】本発明の実施の形態2における画像読み取り装置の最大値回路を示すブロック図
【図15】本発明の実施の形態2における画像読み取り装置の中心値回路を示すブロック図
【図16】本発明の実施の形態2における画像読み取り装置の白・黒基準値取り込み動作を示すフローチャート
【図17】本発明の実施の形態2における画像読み取り装置の白基準値取り込み動作の一例を示す説明図
【図18】本発明の実施の形態2における画像読み取り装置の黒基準値取り込み動作の一例を示す説明図
【図19】従来の画像読み取り装置を示す機構系ブロック図
【図20】従来の画像読み取り装置を示す回路系ブロック図
【図21】従来の画像読み取り装置での白基準、黒基準値取り込み動作の一例を示す説明図
【図22】従来の画像読み取り装置でのシェーディング補正動作の一例を示す説明図
【図23】従来の画像読み取り装置での白基準、黒基準値取り込み動作で白基準にゴミ・汚れが現れた際の動作の一例を示す説明図
【図24】従来の画像読み取り装置でのシェーディング補正で白基準にゴミ・汚れが現れた際の動作の一例を示す説明図
【符号の説明】
1 原稿
2 光源
3 レンズ
4 イメージセンサ
5 遮光部材
6 原稿ガラス
7 キャリッジ
8 キャリッジ駆動手段
9 駆動プーリ
10 従動プーリ
11 駆動ワイヤ
12 モータ
13 白基準板
14 透過光源ユニット
15 複数の光源
16 光拡散板
100 イメージセンサ駆動回路
101 アンプ
102 A/D変換器
103a シェーディング補正回路
103b シェーディング補正回路
104 インターフェース回路
105 モータ駆動回路
106 CPU
107 白基準メモリ
108 黒基準メモリ
109 第1の減算器
110 第2の減算器
111 乗算器
112 第1の除算器
113 EE−ROM
114 バッファメモリ
115 ライン間演算回路
116 平均値回路
117 最大値回路
118 中心値回路
119 データセレクタ
120 第1の加算器
121 第2の加算器
122 第3の加算器
123 第2の除算器
124 第1のMAX比較器
125 第2のMAX比較器
126 第3のMAX比較器
127 第4のMAX比較器
128 第5のMAX比較器
129 第6のMAX比較器
130 第1のMIN比較器
131 第2のMIN比較器
132 第3のMIN比較器
133 第4の加算器
134 第5の加算器
135 第6の加算器
136 第3の減算器
137 第4の減算器
138 第3の除算器

Claims (1)

  1. シェーディング補正に用いる白基準を読み取るイメージセンサと、
    前記イメージセンサを駆動するイメージセンサ駆動回路と、
    前記イメージセンサで読み取った前記白基準を基準データとして記憶する基準メモリと、
    前記イメージセンサの欠陥画素位置を記憶する記憶部と、
    前記基準メモリに記憶された前記基準データと前記記憶部に記憶された前記欠陥画素位置を読み取りラインごとに比較し、前記基準データにおいて所定の閾値を超える隣接画素値との変化量を示すすべての画素位置が前記欠陥画素位置である場合にその読み取りラインの基準データを出力してシェーディング補正を行い、所定の閾値を超える隣接画素値との変化量を示す画素位置に前記欠陥画素位置でないものを含む場合に前記イメージセンサ駆動回路に他の読み取りラインの基準データの読み取りを指示するCPUとを含む画像読み取り装置。
JP17049699A 1999-06-17 1999-06-17 画像読み取り装置 Expired - Fee Related JP4239302B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17049699A JP4239302B2 (ja) 1999-06-17 1999-06-17 画像読み取り装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17049699A JP4239302B2 (ja) 1999-06-17 1999-06-17 画像読み取り装置

Publications (2)

Publication Number Publication Date
JP2000358159A JP2000358159A (ja) 2000-12-26
JP4239302B2 true JP4239302B2 (ja) 2009-03-18

Family

ID=15906051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17049699A Expired - Fee Related JP4239302B2 (ja) 1999-06-17 1999-06-17 画像読み取り装置

Country Status (1)

Country Link
JP (1) JP4239302B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211054A (ja) * 2005-01-25 2006-08-10 Ricoh Co Ltd 画像処理装置
JP2006270334A (ja) * 2005-03-23 2006-10-05 Olympus Corp シェーディング補正方法および画像検査装置
JP2007049673A (ja) * 2005-07-13 2007-02-22 Ricoh Co Ltd 画像読み取り装置、画像形成装置、画像検査装置及び画像形成システム
JP2008236631A (ja) * 2007-03-23 2008-10-02 Seiko Epson Corp 画像読取装置及び欠陥素子判定方法
JP5262700B2 (ja) * 2008-03-24 2013-08-14 セイコーエプソン株式会社 画像読取装置の制御回路、画像読取装置、画像読取装置の制御方法、および、画像読取装置の制御回路として機能させるためのプログラム

Also Published As

Publication number Publication date
JP2000358159A (ja) 2000-12-26

Similar Documents

Publication Publication Date Title
US20180213124A1 (en) Photoelectric conversion device, defective pixel determining method, image forming apparatus, and recording medium
JP3754870B2 (ja) 画像読取装置、シェーディング補正方法、及び記憶媒体
US6979834B2 (en) Image reading device, method and program using infrared light detection to correct for defective pixels
JP2002199174A (ja) 動的にスキャナを較正する方法及びシステム
JP2008098921A (ja) 画像読取装置、mtf補正方法、及びプログラム
JP2005065276A (ja) 環境光に起因する照明ノイズを自動的に補正するシステムおよび方法
US7148998B2 (en) System and method for automatic descreening of digital images
JP2002077584A (ja) 画像処理システム、方法および記憶媒体
JP4239302B2 (ja) 画像読み取り装置
JPH0799850B2 (ja) 画像記録装置用画像読み取り装置
JP4150316B2 (ja) 画像読取り装置および同装置のシェーディング補正方法
JP3985985B2 (ja) 画像読取装置及び該画像読取装置を備えた画像処理装置
JP2005006249A (ja) 画像読み取り装置
JP2002262083A (ja) 画像処理装置
JP2004222180A (ja) 画像処理装置
JP3684038B2 (ja) 画像処理装置
JP4678806B2 (ja) 画像読み取り装置及び画像形成装置
JP4107635B2 (ja) 画像読取装置
JPH11122490A (ja) 画像読取装置
JP6992521B2 (ja) 光電変換装置、欠陥画素の判定方法及び画像形成装置
JP2002247352A (ja) 画像処理装置
JP2010035136A (ja) 画像読取装置、画像形成装置及び画像読取方法
JP4546359B2 (ja) 画像読取装置
JP3638708B2 (ja) 画像再生装置
JP2005094482A (ja) デジタル画像読取装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees