JP4236445B2 - 低接触抵抗pem燃料電池 - Google Patents

低接触抵抗pem燃料電池 Download PDF

Info

Publication number
JP4236445B2
JP4236445B2 JP2002312455A JP2002312455A JP4236445B2 JP 4236445 B2 JP4236445 B2 JP 4236445B2 JP 2002312455 A JP2002312455 A JP 2002312455A JP 2002312455 A JP2002312455 A JP 2002312455A JP 4236445 B2 JP4236445 B2 JP 4236445B2
Authority
JP
Japan
Prior art keywords
conductive
composite material
resistant
current collector
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002312455A
Other languages
English (en)
Other versions
JP2003157868A (ja
Inventor
リチャード・エイチ・ブランク
マモウド・エイチ・アビド・エルハミッド
ダニエル・ジョン・リシ
ヨーゼフ・マルコス・ミカイル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of JP2003157868A publication Critical patent/JP2003157868A/ja
Application granted granted Critical
Publication of JP4236445B2 publication Critical patent/JP4236445B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、PEM燃料電池に関し、より詳細には、高分子複合材料から形成され隣接の拡散媒体との接触抵抗が低いPEM燃料電池用集電器(たとえば二極プレート)に関する。
【0002】
【従来の技術】
電気自動車その他の応用分野における電源として、燃料電池が提案されている。燃料電池の1つとして知られているのは、PEM(すなわちプロトン交換膜)型燃料電池である。この燃料電池は、いわゆる「膜−電極−アセンブリ(MEA)」を含んでいる。MEAは、薄い固体高分子膜−電解質を備え、この膜−電解質の一方の面に陽極を有し、膜−電解質の反対側の面に陰極を有する。陽極および陰極は通常、細かく分割された炭素粒子と、非常に細かく分割された触媒粒子(炭素粒子上に担持されている)と、プロトン導電性材料(触媒および炭素粒子と混合されている)とを備えている。このような膜−電極−アセンブリおよび燃料電池の1つは、1993年12月21日に発行され、本発明の譲受人に譲渡されている米国特許第5,272,017号に記載されている。膜−電極−アセンブリは、陽極および陰極用の1対の導電性集電板の間に挟まれている。集電板は通常、燃料電池のガス反応物(すなわちH2およびO2/空気)を個々の陽極および陰極の表面へ供給する複数の経路または溝を画定する多くのランドを含んでいる。
【0003】
マルチ・セルPEM燃料電池は複数のMEAを備えており、これらは電気的に直列に1つにスタックされ、あるMEAが次のMEAとガス透過性の導電性集電板(二極プレートとして知られる)によって隔離されている。このようなマルチ・セル燃料電池は、燃料電池スタックとして知られる。二極プレートは、一方があるセルの陽極に面し、他方がスタック内の次の隣接セルの陰極に面している2つの作用面(working face)を有している。二極プレートによって、隣接するセルの間で電流が流れる。スタックの両端の集電板はエンド・セルと接触するのみであり、エンド・プレートとして知られる。
【0004】
「拡散媒体」として知られる非常に多孔性(すなわち約60%〜80%)な導電性材料(たとえばクロス、スクリーン、ペーパー、発泡体など)が、集電板とMEAとの間に配置され、(1)ガス反応物を、集電板のランド間およびランド下で電極の全面に分配し、(2)溝に面する電極の表面からの電流を集めて、その電流を、隣接するランド(溝を画定する)へ伝えるように働く。このような拡散媒体の1つとして知られているものには、グラファイト・ペーパー(多孔度が約70体積%、未圧縮時の厚みが約0.17mm)が含まれ、東レ社からToray060の名前で市販されている。
【0005】
2−O2/空気PEM燃料電池の環境では、集電板は、F-、SO4 --、SO3 -、HSO4 -、CO3 --、およびHCO3 --などを含む非常に強い酸性溶液(pH3〜5)と常に接触している。また陰極は、非常に酸化性の環境の中で動作しており、圧縮空気にさらされている間に最大で約+1V(標準的な水素電極に対して)の極性を示す。最後に、陽極は常に水素にさらされている。したがって集電板は、燃料電池内の厳しい環境に対して耐性がなければならない。そのため集電板はこれまで、(1)グラファイトのピースから機械加工されているか、(2)高分子マトリックス(熱可塑性または熱硬化性)の全体に、約70体積%〜約90体積%の導電性フィラー(たとえばグラファイト粒子またはフィラメント)が分散された高分子複合材料からモールドされているか、(3)金属に、約30体積%〜約40体積%の導電性粒子を含む高分子複合材料がコーティングされたものから作製されていた。最後のものについては、同時係属中のFronkらの米国特許出願09/456,478号(1999年12月7日に出願)を参照されたい。この特許出願は、(1)本発明の譲受人に譲渡されており、(2)本明細書において参照により取り入れられており、(3)開示されている集電板は、金属シートに耐腐食性の導電性層がコーティングされたものから形成され、導電性層は、耐酸性かつ耐酸化性の水不溶性高分子のマトリックス(粒子を一緒に金属シートの表面に係合する)の全体に分散された複数の耐腐食性(すなわち耐酸化性かつ耐酸性)の導電性フィラー粒子を含むものである。Fronkらのタイプの複合材料コーティングは好ましくは、抵抗率が約50Ωcm以下で、厚みが約5μm〜75μm(コーティングの組成、抵抗率、および完全性に依存する)である。燃料電池スタックを通してのIR降下を小さくするために、コーティングは薄い方が好ましい。
【0006】
また軽金属たとえばアルミニウムおよびその合金も、燃料電池の集電板の製造で用いるために提案されている。残念ながらこのような金属は、PEM燃料電池の厳しい環境中では溶解しやすい。そのため軽金属の集電板に、金属または金属化合物(両方とも導電性で耐腐食性であるためその下の金属を保護する)の層をコーティングすることが提案されている。たとえば2001年7月17日に発行されたLiらのRE37,284Eを参照されたい。この文献は、本発明の譲受人に譲渡されており、軽金属コア、コア上のステンレス鋼不動態化層、およびステンレス鋼層上の窒化チタン(TiN)層を開示している。
【0007】
【特許文献1】
米国特許第5,272,017号
【特許文献2】
米国特許出願第09/456,478号
【特許文献3】
RE37,284E
【特許文献4】
米国特許出願第09/871,189号
【発明が解決しようとする課題】
拡散媒体と複合材料を含む集電板との間の接触抵抗が低減されたPEM燃料電池を提供する。
【0008】
【課題を解決するための手段】
本発明は、前述したような高分子複合材料から全体がまたは少なくとも一部が形成された集電板を用いるPEM燃料電池に関する。高い接触抵抗が、拡散媒体とこのような複合材料から形成される集電板との間に存在する。それは拡散媒体が多孔性であり(約60%〜80%の多孔度)、拡散媒体と係合する複合材料の表面に含まれる導電性フィラーが70体積%未満(典型的には約30体積%〜約40体積%)であるからである(残り部分は非導電性の高分子マトリックス材料である)。したがって拡散媒体と複合材料との間に電流の流れが生じるのは、拡散媒体の導電性ストランドが複合材料の導電性フィラーと接触する場所のみである。以下のような場所では電流は全く流れない。(1)拡散媒体のストランドが複合材料の高分子マトリックス材料と接触しているか、または(2)複合材料の導電性フィラーが拡散媒体のポアと接触している。
【0009】
本発明によって、PEM燃料電池の拡散媒体と複合材料を含む集電板との間の接触抵抗が低減される。より具体的には、本発明は、(1)1対の反対極性の電極であって、それぞれ、燃料電池の反応物にさらされる第1の面と、前記電極間にある膜−電解質と係合する第2の面とを有する電極と、
(2)前記第1の面と係合して、前記第1の面上に前記反応物を分配し、前記第1の面からの電流を通す多孔性な導電性拡散媒体と、(3)前記拡散媒体と係合し、前記媒体からの電流を通す集電板(たとえば二極プレート)とを備える少なくとも1つのセルを有するPEM燃料電池に関する。集電板は、耐酸化性かつ耐酸性材料の水不溶性高分子マトリックス全体に分散された耐腐食性の導電性フィラーを含む第1の導電性の高分子複合材料を備える。高分子マトリックスは、熱可塑性または熱硬化性の何れであっても良く、好ましくは、エポキシ、ポリアミドイミド、ポリエーテルイミド、ポリフェノール、フルロエラストマー、ポリエステル、フェノキシフェノール樹脂、エポキシドフェノール樹脂、アクリル、およびウレタンからなる群から選択される。複合材料中の導電性フィラーは、(1)好ましくは、金、白金、グラファイト、導電性炭素、パラジウム、ロジウム、ルテニウム、および希土類金属からなる群から選択され、(2)多くの物理的形態(たとえば細長いフィラメント、または回転楕円体粒子、フレーク状粒子、微小繊維からなる粒子、またはこのような粒子の集合体)を取ることができる。微小繊維からなる別個の粒子を好ましくは、電流が集電板を通って流れる方向に概略的に配向させる。これはたとえば、同時係属中のBlunkらの米国特許出願第09/871,189号(2001年5月31日に出願)に記載されている。この特許出願は、本発明の譲受人に譲渡されており、また本明細書において参照により取り入れられている。本発明が特に効果的であるのは、集電板が、導電性フィラメント(たとえばグラファイトまたは炭素)を含むフィラーを有する複合材料から形成され、導電性フィラメントが集電板の厚みを通って(すなわち電流が集電板を流れる方向に)延びている場合である。
【0010】
本発明には、集電板の複合材料部材を覆い、拡散媒体と係合する耐酸化性かつ耐酸性の表面層が含まれる。表面層は、その下の高分子複合材料の導電性よりも高い第2の導電性を有する(以後、「高導電性の」と表現する。請求項でもこの語を使用している)。表面層は、複合材料に付着する別個の層であっても良いし、一体化した層であっても良い。一体化した層は、追加の導電性粒子を複合材料の表面に埋めるか、または複合材料からの既存のフィラーを複合材料の外部表面上に塗り付けることによって形成する。高導電性の表面は好ましくは、抵抗率がその下の複合材料よりも少なくとも1桁小さく、最も好ましくはその下の複合材料の少なくとも100分の1である。高導電性の表面は、高分子複合材料と拡散媒体との間の接触抵抗を減らす働きをする。これは媒体を通過する電流を、高分子複合材料内の、表面層と複合材料との界面に存在する導電性粒子へ分流することによってなされる。本発明が最も有益であると考えられるのは、スタック圧縮圧力が低い(すなわち<150psiの)場合であるが、スタック圧縮圧力が高い(すなわち>200psiの)場合においても有効であり、特に高分子複合材料の導電性粒子の配合が約70体積%未満の場合である。
【0011】
本発明の一実施形態によれば、集電板全体を高分子複合材料から作製(たとえばモールド)した後、高導電性表面層をコーティングする。他の実施形態においては、集電板は、高分子複合材料層の下に配置される金属基板(たとえばスタンピングされた金属シート)を備え、高分子複合材料層に本発明の高導電性表面層をコーティングする。さらに他の実施形態においては、金属基板は、酸不溶性かつ酸化可能な第2の金属(たとえばチタンまたはステンレス鋼)の下に配置される酸溶性の第1の金属(たとえばアルミニウム)と、第2の金属上の高分子層と、高分子複合材料コーティング上の本発明の高導電性層とを備える。
【0012】
本発明の好ましい実施形態においては、高導電性表面層は、複合材料の表面に埋められた複数の隣接する別個の耐酸化性かつ耐酸性の導電性粒子(最も好ましくはグラファイト)を含んでいて、表面における導電性粒子の濃度が複合材料の残り部分全体の濃度よりも高くなっている。好適な代替的な粒子には、金、白金、導電性炭素、パラジウム、ロジウム、ルテニウム、および希土類金属が含まれる(すなわち高分子複合材料で用いる粒子と同じである)。他の実施形態においては、高導電性表面層は、前記複合材料の表面上の耐酸化性かつ耐酸性の連続導電性皮膜(たとえば金属、グラファイト・炭素、高導電性高分子複合材料など)を含む。連続皮膜は好ましくは、複合材料上に、蒸着させるか、スプレーするか、または無電解で堆積させる。これは従来の物理蒸着法(PVD)、スプレー、または無電解(別名、自己触媒)堆積技術(当該技術分野において良く知られている)を用いて行なう。
【0013】
また本発明には、PEM燃料電池の集電板を製造するための好ましいプロセスであって、前記集電板を少なくとも部分的に、耐酸化性かつ耐酸性の水不溶性高分子マトリックス全体に分散された複数の第1の導電性粒子を含む高分子複合材料から形成するステップと、十分な量の第2の導電性粒子を複合材料の表面に付着させて、その表面にその下の複合材料の導電性よりも著しく高い(すなわち数桁高い)導電性を与えるステップとを含むプロセスが含まれる。第2の粒子を複合材料へ塗布することを、スプレー、ブラッシング、ふるい分け、流動床浸漬などによって行なっても良い。また第2の粒子を表面へ埋めることを、表面が粘着性状態にあるときに表面へ衝突させるかまたは単純に押し付けることによって行なっても良い。好ましい方法によれば、集電板の製造は、(1)導電性基板(すなわち複合材料または金属)に、耐酸化性かつ耐酸性の水不溶性高分子全体に分散された複数の第1の導電性粒子を含む未硬化または未乾燥の複合材料の粘着性層をコーティングし、(2)複数の第2の導電性粒子を粘着性層の表面上に堆積させて、表面の導電性を、複合材料の残り部分の導電性を超える値に増加させ、(3)未硬化/未乾燥のコーティング材料を硬化/乾燥させることによって行なう。最も好ましくは、第2の粒子を複合材料上に、粒子を未硬化/未乾燥のコーティング材料中に埋めるのに十分な圧力でスプレーする(サンド・ブラスティングにならって)。次にコーティングを硬化/乾燥させて、粒子を所定の場所に固定する。硬化/乾燥の後に、わずかな未付着粒子も表面からブラッシュするかブローする。代替的に高分子複合材料の表面を、スプレーの前に加熱するかまたは溶媒で濡らして、表面を柔らかくすることによって、第2の粒子の埋め込みを受け入れやすくしても良い。さらに他の代替案によれば、乾燥/硬化された高分子複合材料の表面を軽く研磨して(たとえば細かいサンド・ペーパーによって)、導電性フィラー上に形成されている場合があるわずかな高分子外皮も除去し、研磨されたフィラーをその下の表面上に塗り付けることによって、表面の導電性を表面の下の複合材料のバルクの導電性よりも高くする。
【0014】
本発明によって、複合材料を含む集電板と拡散媒体との間の接触抵抗が低減される。その結果、必要なスタック圧縮が低く、小さく、能率的で、熱負荷が小さいPEM燃料電池を製造することができる。圧縮を低くするだけでも、スタックの耐久性が改善され、より薄いサイドおよびエンド・プレートを用いることが可能になり、フロー・フィールドのランドの下のガス流れが改善され、より均一な電流分布が得られる。
【0015】
本発明は、複数の図とともに後に示される、ある特定の実施形態についての以下の詳細な説明を考慮することによって、より良好に理解される。
【0016】
【発明の実施の形態】
図1に2つの電池、二極型PEM燃料電池スタックを示す。これは、1対の膜−電極−アセンブリ(MEA)4および6を有し、これらのアセンブリは、液体冷却された導電性の二極プレート8によって互いに分離されている。MEA4および6ならびに二極プレート8は、ステンレス鋼クランピング・プレート10および12ならびに集電板エンド・プレート14および16の間に、一緒に積み重ねられている。クランピング・プレート10および12によって、圧縮力をスタックに加える。これはボルト(図示せず)(クランピング・プレート10、12の角の開口部13を通過する)を用いて行なわれる。エンド・プレート14および16は、二極プレート8の両側の作用面と同様に、複数の溝または経路18、20、22、および24を備えていて、燃料および酸化剤ガス(すなわちH2およびO2)をMEA4および6に分配するようになっている。非導電性ガスケット26、28、30、および32は、燃料電池スタックの複数の部材間のシールおよび電気絶縁をしている。ガス透過性炭素/グラファイト拡散媒体34、36、38、および40は、MEA4および6の電極面に対して押圧している。エンド・プレート14および16は、炭素/グラファイト拡散媒体34および40を、それぞれ押圧している。一方で二極プレート8は、MEA4の陽極面上の炭素/グラファイト媒体36に対して、またMEA6の陰極面上の炭素/グラファイト媒体38に対して、押圧している。酸素が燃料電池スタックの陰極側に、貯蔵タンク46から適切な供給配管42を介して供給される。一方で水素が、燃料電池の陽極側に、貯蔵タンク48から適切な供給配管44を介して供給される。その代わりに、空気を陰極側に周囲から供給し、また水素を陽極にメタノールまたはガソリンの改質装置から供給するなどしても良い。またMEAのH2側およびO2/空気側の両方に対する排出配管(図示せず)が、設けられている。冷却液を二極プレート8とエンド・プレート14および16とに供給するために、配管50、52、および54がさらに設けられている。また冷却液をプレート8ならびにエンド・プレート14および16から排出するための適切な配管が設けられているが、図示していない。
【0017】
図2は、二極プレート56の分解組立図を示す等角図である。二極プレート56は、第1の外部金属シート58、第2の外部金属シート60、および内部スペーサー金属シート62(第1金属シート58と第2金属シート60との間にある)を備える。外部金属シート58および60はできるだけ薄く作られている(たとえば約0.002から0.02インチ厚み)。これらのシート58および60の作製は、スタンピング、フォトエッチング(すなわちフォトリソグラフィ・マスクを通して)、またはシート状金属を形成する従来の他のどのプロセスによって行なっても良い。外部シート58は、その外側に第1の作用面59を有する。第1の作用面59は、膜−電極−アセンブリ(図示せず)に面しており、複数のランド64(その間に複数の溝66を画定する)を与えるように形成されている。複数の溝66は、「フロー・フィールド」として知られており、これを通って燃料電池の反応ガス(すなわちH2またはO2)が、蛇行性の経路の中を二極プレートの一方の側68から他方の側70へ流れる。燃料電池が完全に組み立てられれば、ランド64は、炭素/グラファイト媒体36または38(図1参照)に対して押圧し、炭素/グラファイト媒体36または38もまた、MEA4および6に対してそれぞれ押圧する。作図を簡単にするために、図2ではランドおよび溝の2つのアレイのみを示している。実際には、ランドおよび溝は、金属シート58および60(炭素/グラファイト拡散媒体36および38と係合する)の外面の全てを覆っている。反応ガスは溝66に、母管またはマニフォールド溝72(燃料電池の一方の側68に沿って配置される)から供給され、溝66を出て、別の母管/マニフォールド溝74(燃料電池の反対側70に隣接して配置される)を通る。図3に最も良く示すように、シート58の下側には、複数の隆起部76が設けられている。複数の隆起部76の間に複数の経路78が画定され、燃料電池の動作中に、冷却液が経路78を通過する。図3に示すように、冷却液経路78が各ランド64の下に配置され、一方で反応ガス溝66が各隆起部76の下に配置される。その代わりに、シート58を平坦にして、フロー・フィールドを別個の材料シート内に形成しても良い。
【0018】
金属シート60はシート58と同様である。シート60の内部面61(すなわち冷却液側)を図2に示す。この点において、複数の隆起部80が示され、複数の隆起部80の間に複数の経路82が画定されている。経路82を通って冷却液が、二極プレートの一方の側69から他方71へ流れる。シート58と同様に、また図3に最も良く示されるように、シート60の外側には作用面63が設けられ、その上に複数のランド84が設けられている。ランド84によって複数の溝86が画定され、溝86を反応ガスが通過する。内部金属スペーサ・シート62が外部シート58と60との間に配置されている。スペーサ・シート62の内部には複数の開口部88が設けられていて、冷却液が、シート60の経路82とシート58の経路78との間を流れるようになっている。その結果、層流境界層を壊して乱流が生じる。乱流によって、外部シート58および60のそれぞれの内部面90および92との熱交換が増す。
【0019】
図4は、図3の一部を拡大した図である。図4には、第1のシート58上の隆起物76、第2のシート60上の隆起物80が示されている。隆起物76、80は、(たとえば蝋付け(brazement)85によって)スペーサ・シート62に接合されている。二極プレートの作用面59および63は、導電性で耐酸化性かつ耐酸性の保護材料を含む複合材料のコーティング94によって覆われている。コーティング94は、抵抗率が50Ωcm未満で、耐酸性で耐酸化性の高分子マトリックス全体に分散された複数の耐酸化性かつ酸不溶性の導電性粒子(すなわち約50μm未満)を含んでいる。導電性フィラー粒子は、金、白金、グラファイト、炭素、パラジウム、ニオブ、ロジウム、ルテニウム、および希土類金属からなる群から選択される。最も好ましくは、粒子は導電性炭素およびグラファイトを、約25重量%の配合で含む。高分子マトリックスには、薄い粘着性フィルムに形成することができて、燃料電池の厳しい酸化性かつ酸性の環境に耐えられるどんな水不溶性高分子も含まれる。したがってこのような高分子として、たとえばエポキシ、ポリアミドイミド、ポリエーテルイミド、ポリフェノール、フルロエラストマー(たとえばポリビニリデンフルオライド)、ポリエステル、フェノキシフェノール樹脂(phenoxy−phenolics)、エポキシドフェノール樹脂(epoxide−phenolics)、アクリル、およびウレタンが特に、複合材料コーティングに対して有用であると考えられる。架橋された高分子が、不透過性コーティングを作製するのには好ましく、ポリアミドイミド熱硬化性高分子が最も好ましい。高分子複合材料層を塗布するために、ポリアミドイミドを次のような溶媒に溶かす。N−メチルピロリドン、プロピレングリコール、およびメチルエーテルアセテートの混合物に、グラファイトおよび炭素・ブラックの粒子の混合物を約21重量%〜約23重量%で添加したものを含む溶媒。グラファイト粒子のサイズは約5μm〜約20μmであり、炭素・ブラック粒子のサイズは約0.5μm〜約1.5μmである。混合物を基板上にスプレーして、乾燥させた(すなわち溶媒を蒸発させた)後、硬化させることで、15〜30μm厚みのコーティング(好ましくは約17μm)が、約38重量%の炭素・グラファイト含有量で得られる。硬化は、低温(すなわち<華氏400度)でゆっくり行なっても良いし、次のような2ステップ・プロセスでより急速に行なっても良い。すなわち最初に溶媒を、10分間、華氏約300度〜350度で加熱して取り除き(すなわち乾燥させる)、次により高い温度(華氏500度〜750度)で、約1/2分〜約15分の種々の時間(使用する温度に依存する)で加熱して、高分子を硬化する。後述するように、本発明の好ましい実施形態の高導電性表面層を、乾燥および硬化の前であって複合材料がまだ粘着性のある間に塗布する。
【0020】
集電板の構造部材を形成する基板金属58、60には、次のような腐食されやすい金属が含まれる。たとえば(1)アルミニウム(電池内で形成される酸によって溶解され得る)、(2)チタンまたはステンレス鋼(表面への酸化物層の形成によって酸化/不動態化される)。導電性高分子コーティングを基板金属へ直接塗布した後、乾燥/硬化させても良いし、導電性高分子複合材料層94を塗布する前に、基板金属(たとえばAl)を、酸化可能な金属(たとえばステンレス鋼)で最初に覆っても良い(前述のLiらを参照)。複合材料層は種々の方法で塗布することができる。たとえばブラッシング、スプレー、スプレッディング、または事前に形成されたフィルムの基板上へのラミネーティングによって行なう。
【0021】
図5に示すように、導電性高分子複合材料コーティング94を、酸化可能/不動態化金属の層96が事前にコーティングされた、酸に溶解可能な基板金属(たとえばAl)58および60に塗布する。この点において、金属のバリア/保護層96(たとえばNi/Crリッチなステンレス鋼)(低抵抗な不動態化酸化物フィルムを形成する)を基板58、60上に最初に堆積し、次にバリア層96を高分子複合材料層94で覆う。
【0022】
本発明によれば、集電板の複合材料部材に、高導電性外部表面層(表面層の下にある複合材料の残りの部分よりも導電性が著しく高い)を設ける。したがって、たとえば図4および6に示すように、二極プレートは金属(たとえばステンレス鋼またはチタン)プレート58および60を備え、各プレートには複合材料94がコーティングされ(前述のFronkらにならって)、複合材料94にも表面層100、102(外部層の下にある複合材料の残りの部分よりも導電性が高い)が設けられている。表面層100、102は拡散媒体と係合しているため、接触抵抗が、導電性が高い表面層がない場合に複合材料層94と拡散媒体との間に存在するであろう抵抗よりも、低くなる。同様に、図5に示すように、腐食されやすい金属板(たとえばアルミニウム)に、最初に耐腐食性の金属層96(たとえばステンレス鋼、チタンなど)をコーティングして、次に複合材料層94をコーティングし、次に本発明の導電性が高い層100、102をコーティングする。
【0023】
図7に本発明の他の実施形態を示す。ここでは集電板の本体全体を複合材料104で作製(たとえばモールド)した後、導電性が高い表面層106を複合材料の外部面(拡散媒体と係合する)上に形成する。
【0024】
図8に本発明の作用を示す。図8では、図4および6に示すような集電板を有するPEM燃料電池のハーフセルを示す。より具体的に言えば、図8は、以下のような集電板を備える本発明によるPEM燃料電池の拡大部分を示す。すなわち集電板は、金属板108、金属板108上の導電性複合材料コーティング110、複合材料コーティング110上の高導電性表面層112(その下の複合材料コーティング110よりも導電性が高い)、高導電性表面層112と係合する導電性多孔性拡散媒体114(たとえばグラファイト・ペーパー)、およびMEA116(拡散媒体114と係合する)を備える。複合材料層110は、複数の導電性粒子(たとえばグラファイトおよび炭素・ブラック)111を含んでおり、導電性粒子111は高分子マトリックス113の全体に拡散されている。複数の導電性ブリッジ115が、複数の粒子111に隣接することによって形成される。ブリッジは、電流の流れを複合材料110を通して伝える働きをする。代替的にブリッジ115は、単一のフィラメント(たとえばグラファイト繊維)を備えることができる。MEA116は、膜−電解質118、および触媒層120(MEA116の表面上の電極を形成する)を備える。動作中は、電子が電極120から拡散媒体114内に移動し、それから高導電性層112へ移動する。電子は、高導電性層112を通って横方向に容易に移動する。この移動は、導電性ブリッジ115(複合材料110を通して電流を流すことができる)と遭遇するまで続く。したがって高導電性層112は本質的に、複合材料110と高導電性層112との界面122の抵抗性の高い領域から、この界面の導電性が高い領域(すなわち導電性粒子111が存在する場所)へ、電流を分流する。
【0025】
本発明による高導電性層の第2の粒子を、複合材料へ多くの方法で塗布しても良い。好ましい方法によれば、複合材料を導電性基板(たとえば金属または全ての高分子複合材料)上に、第1の導電性粒子(たとえばグラファイト)、高分子、および高分子用溶媒の混合物としてスプレーする。スプレーによって、粘着性のある複合材料コーティングが基板上に残る。次に、乾燥した第2の導電性粒子(たとえばグラファイト)を粘着性のある複合材料コーティング上に、スプレーするかそうでなければ塗布して、付着させる。スプレー圧力が低い(すなわち<約10psiの)場合には、第2の導電性粒子は複合材料の表面に単に付着するだけだが、スプレー圧力が高い(すなわち>約40psiの)場合には、第2の粒子は複合材料の表面により深く埋められる。第2の粒子を堆積した後、複合材料を、加熱によって乾燥および/または硬化させる。硬化/乾燥の時間および温度は、高分子マトリックスの組成によって変わる。その代わりに、第2の粒子を複合材料へ塗布することを、ブラッシング、ふるい分け、流動床、または同様の技術によって行なっても良い。金属基板の場合には、複合材料の少なくとも2つの層を、より導電性の高い最上層を塗布する前に堆積させて、金属基板に対する付加的な腐食防止を行なうことが好ましいかも知れない。2つの複合材料層を用いるときには、最初の層を、前述したようにスプレーして乾燥させても良い。この層の硬化は、第2の複合材料層を塗布する前であっても良いし、そうでなくても良い。本発明の高導電性層を第2の複合材料層に、前述と同様の方法で塗布する。集電板全体を複合材料で作製(たとえばモールド)したときには、本発明の高導電性層の第2の導電性粒子を複合材料の表面に直接塗布しても良いし、前述したように複合材料の表面に別個の複合材料層をコーティングしても良い。前者の場合、複合材料の表面を柔らかくすることで、第2の導電性粒子をより受け入れやすく保持しやすくすることが望ましい。柔らかくすることは、表面を好適な溶媒でワイピング/スプレーすることで、または表面を加熱することで行なっても良い。第2の導電性粒子を複合材料の表面へ、表面がまだ柔らかい間に塗布し、次に必要に応じて乾燥または冷却して第2の粒子を所定の位置へ固定する。硬化または乾燥もしくは冷却の後、どれを用いた場合であっても、未付着のゆるい第2の導電性粒子を、表面からブローするかブラッシングする。
【0026】
また乾燥/硬化させた複合材料の表面を少し研磨することでも、複合材料の表面の導電性はその下の複合材料よりも高くなる(すなわち高導電性になる)。したがって本発明による集電板を作製する代替的な技術は、集電板を少なくとも部分的に複合材料から作製した後、細かい研磨材で軽く磨いてわずかな高分子外皮も(表面のフィラーを覆っている場合がある)除去し、研磨された層内のフィラーをその下の表面上に塗り付けることによって、表面の導電性を高めることである。たとえば複合材料がグラファイトと炭素・ブラックの混合物を約30%含む場合、0000グリットのSiCサンド・ペーパーを用いて、表面の色が黒からグレーに変わるまで軽く磨くことは、表面をその下の高分子複合材料と比べて高導電性にするのに非常に有効であることが分かっている。
【0027】
代替的に、本発明の高導電性表面層は、複合材料の表面に堆積された導電性材料の薄い連続皮膜を含んでいても良い。連続が意味する皮膜は、1つのまとまったものとして剥がれることができ、多数の別個の粒子(互いに接触しているが一体にはなっていない)と区別できるものである。皮膜の化学組成は、上で特定した第2の粒子と同じであっても良い。しかし皮膜は、複合材料上に次のような良く知られた方法でメッキする。すなわち電気メッキ、無電解メッキ、PVD(物理蒸着法)、またはスパッタリング技術である。この点において、金、ルテニウム、パラジウム、ロジウム、および白金は、複合材料の表面上に容易に電気メッキできる。また金、パラジウム、および白金は、複合材料の表面上に容易に無電解メッキできる。PVDまたはスパッタリングを用いることで、高導電性表面層を構成するものとして上で特定した全ての導電性材料を堆積することができる。電気メッキ・プロセスにおいては、複合材料を、堆積させる金属の塩を含む電解液を有する電気メッキ槽内の陰極として作製する。電流が電解槽を適切な電位で通過すると、所望する金属が、陰極の複合材料の表面上に堆積する。無電解(すなわち自己触媒)プロセスにおいては、複合材料の表面に触媒をシードした後に、堆積すべき金属のイオンを含む浴槽にさらす。触媒によって金属イオンの元素金属への還元が始まり、金属皮膜が基板表面上に形成される。PVDおよびスパッタリング・プロセスにおいては、メッキすべき材料が、蒸気から基板上に凝縮する。また高導電性の連続皮膜は、高導電性高分子複合材料層(フィラーの配合がその下の複合材料基板よりも高い(たとえば>90%))を含んでいても良い。このような高配合高分子複合材料を基板上に、ロール、ブラッシュ、ドクター・ブレード、またはスプレーしても良い。
【0028】
図9および10は、ステンレス鋼およびチタン基板のそれぞれに対して、本発明によって達成され得る低減された接触抵抗を示すグラフである。チタン試料は研磨パッドで磨いて、表面上のわずかな絶縁性酸化物も取り除いた。ステンレス鋼試料は、陰極として、5〜50mA/cm2で5分から30分間、0.1〜1.0モルの硫酸溶液中で清浄することで、酸化物の厚みを減らした。このように研磨/清浄された試料に、第1の複合材料層をスプレー・コーティングした。第1の複合材料層は、ポリアミドイミド高分子マトリックスの全体に分散された約30体積%のグラファイトおよび炭素・ブラック粒子を含んでいる。コーティングされた試料を、150℃で10分間フラッシュ乾燥させて、溶媒を除去しコーティングを固化させた。試料を硬化させることなく、同じ複合材料の2回目のコーティングを試料に施した後、第2の複合材料コーティング上にグラファイト・フレークの高導電性層をスプレーした。次に試料を、溶媒を150℃で10分間フラッシングさせて乾燥させた後、第1および第2の複合材料コーティングを260℃で15分間、硬化させた。未付着のゆるいグラファイト粒子を、基板からブローした。次に試料を、拡散媒体(東レ社から販売され、TGP−H−1.0Tとして識別される)に接合して、接触抵抗試験を行なった。対照試料を、同じステンレス鋼およびチタン金属から作製して、同じ2つの複合材料層をコーティングした。しかし対照試料には、グラファイト・フレークの高導電性表面層は設けなかった。これらの比較試験の結果を、図9(ステンレス鋼)および図10(チタン)に示す。両方の図が示すところによれば、本発明により調製した(すなわち高導電性層を設けた)5つの試料の接触抵抗は、試料および拡散媒体に印加した圧力の広い範囲に渡って、5つの対称試料の接触抵抗よりも著しく低い。他の試験において高導電性層の安定性が実証されており、本発明によって作製された試料の接触抵抗は、前述したように、燃料電池に類似する環境での腐食試験中に増加しなかった。
【0029】
本発明を特定の実施形態について説明してきたが、本発明をそれらに限定することは意図しておらず、本発明は特許請求の範囲に記載された範囲のみに限定されるべきである。
【図面の簡単な説明】
【図1】液体冷却されたPEM燃料電池スタックの分解組立図を示す概略等角図である(2つのセルのみを示す)。
【図2】図1に示したようなPEM燃料電池スタックに対して有用である二極プレートの分解組立図を示す概略等角図である。
【図3】図2の3−3の方向に見た断面図である。
【図4】図3の二極プレートの拡大部分図である。
【図5】本発明の他の実施形態を示す二極プレートの拡大断面図である。
【図6】図4の拡大部分図である。
【図7】本発明の別の実施形態を示す二極プレートの拡大断面図である。
【図8】本発明の作用を示すPEMのハーフセルの拡大断面図である。
【図9】複合材料がコーティングされたステンレス鋼プレートに対して、本発明の導電性の高い表面層がある場合とない場合との接触抵抗を比較するグラフ図である。
【図10】複合材料がコーティングされたチタンプレートに対して、本発明の導電性の高い表面層がある場合とない場合との接触抵抗を比較するグラフ図である。
【符号の説明】
4、6、116 MEA
8 二極プレート
10 クランピング・プレート
14 エンド・プレート
18、20、78、82 経路
26、28 非導電性ガスケット
34、36,38、40 ガス透過性炭素/グラファイト拡散媒体
42、44 供給配管
46、48 貯蔵タンク
50、52 配管
56 二極プレート
58、60 外部金属シート
59、63 作用面
61、90、92 内部面
62 内部金属スペーサ・シート
64、84 ランド
66、86 溝
72、74 マニフォールド溝
76、80 隆起部
88 開口部
94、110 導電性高分子複合材料層コーティング
96 保護層
100、102、106,112 高導電性表面層
104 複合材料
108 金属板
111 導電性粒子
113 高分子マトリックス
114 導電性多孔性拡散媒体
115 導電性ブリッジ
118 膜−電解質
120 触媒層
122 界面

Claims (8)

  1. 燃料電池用の集電器の製造方法であって、
    導電性基板に、耐酸化性かつ耐酸性の高分子全体に分散された耐腐食性の導電性フィラーを含む未硬化または未乾燥の材料の粘着性層をコーティングするステップと、
    前記コーティングするステップの後で、複数の導電性粒子を前記粘着性層の表面に埋めて、前記表面の導電性を、前記材料の残り部分の導電性を超える値に増加させるステップと、
    前記粘着性層を硬化または乾燥させるステップとを含む方法。
  2. 前記粒子を前記表面上にスプレーすることを含む請求項に記載の方法。
  3. 前記導電性基板を、耐酸化性かつ耐酸性の水不溶性高分子全体に分散された耐腐食性の導電性フィラーを含む複合材料からモールドする請求項に記載の方法。
  4. 前記基板は金属を含む請求項に記載の方法。
  5. 燃料電池用の集電器の製造方法であって、
    前記集電器を、耐酸化性かつ耐酸性の高分子マトリックス全体に分散された耐腐食性の導電性フィラーを含む第1の導電性の複合材料からモールドするステップと、
    十分な量の耐腐食性の導電性粒子を前記複合材料の表面に埋めて、前記表面に前記第1の導電性よりも高い導電性を与え、前記表面を、前記粒子を前記表面に埋める前に柔らかくするステップとを含む方法。
  6. 前記高分子マトリックス材料を加熱して前記表面を柔らかくするステップを含む請求項に記載の方法。
  7. 前記表面を前記高分子マトリックス材料用の溶媒で濡らして前記表面を柔らかくするステップを含む請求項に記載の方法。
  8. 燃料電池用の集電器の製造方法であって、
    (1)前記集電器を少なくとも部分的に、耐酸化性かつ耐酸性の高分子マトリックス全体に分散された耐腐食性の導電性フィラーを含む第1の導電性の複合材料から形成するステップと、
    (2)前記集電器の表面を十分に研磨して、前記マトリックス高分子を前記表面の前記フィラーから除去するとともに前記フィラーを前記表面上に塗り付け、前記表面の導電性を前記第1の導電性よりも高い導電性に増加させるステップとを含む方法。
JP2002312455A 2001-11-20 2002-10-28 低接触抵抗pem燃料電池 Expired - Fee Related JP4236445B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/997,190 US6811918B2 (en) 2001-11-20 2001-11-20 Low contact resistance PEM fuel cell
US09/997190 2001-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008211464A Division JP2008288220A (ja) 2001-11-20 2008-08-20 低接触抵抗pem燃料電池

Publications (2)

Publication Number Publication Date
JP2003157868A JP2003157868A (ja) 2003-05-30
JP4236445B2 true JP4236445B2 (ja) 2009-03-11

Family

ID=25543740

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002312455A Expired - Fee Related JP4236445B2 (ja) 2001-11-20 2002-10-28 低接触抵抗pem燃料電池
JP2008211464A Pending JP2008288220A (ja) 2001-11-20 2008-08-20 低接触抵抗pem燃料電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008211464A Pending JP2008288220A (ja) 2001-11-20 2008-08-20 低接触抵抗pem燃料電池

Country Status (3)

Country Link
US (3) US6811918B2 (ja)
JP (2) JP4236445B2 (ja)
DE (1) DE10253958B8 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230068616A (ko) 2021-11-11 2023-05-18 코오롱인더스트리 주식회사 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202296A1 (en) * 2001-02-15 2005-09-15 Integral Technologies, Inc. Low cost fuel cell bipolar plates manufactured from conductive loaded resin-based materials
US6811918B2 (en) 2001-11-20 2004-11-02 General Motors Corporation Low contact resistance PEM fuel cell
US6878476B2 (en) * 2002-02-28 2005-04-12 Delphi Technologies, Inc. Method and apparatus for alignment of fuel cell components
JPWO2003088395A1 (ja) * 2002-04-17 2005-08-25 松下電器産業株式会社 高分子電解質型燃料電池
US20040001991A1 (en) * 2002-07-01 2004-01-01 Kinkelaar Mark R. Capillarity structures for water and/or fuel management in fuel cells
US20040001993A1 (en) * 2002-06-28 2004-01-01 Kinkelaar Mark R. Gas diffusion layer for fuel cells
US20040062974A1 (en) * 2002-07-09 2004-04-01 Abd Elhamid Mahmoud H. Separator plate for PEM fuel cell
US6838202B2 (en) * 2002-08-19 2005-01-04 General Motors Corporation Fuel cell bipolar plate having a conductive foam as a coolant layer
US7261963B2 (en) * 2002-11-12 2007-08-28 General Motors Corporation Corrosion resistant, electrically and thermally conductive coating for multiple applications
US20050058897A1 (en) * 2002-12-04 2005-03-17 Craig Andrews Reinforced components for electrochemical cells
AU2003297783A1 (en) * 2002-12-27 2004-07-29 Foamex L.P. Gas diffusion layer containing inherently conductive polymer for fuel cells
WO2004102722A2 (en) * 2003-05-09 2004-11-25 Foamex L.P. Gas diffusion layer having carbon particle mixture
US7556660B2 (en) 2003-06-11 2009-07-07 James Kevin Shurtleff Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant
US6942941B2 (en) * 2003-08-06 2005-09-13 General Motors Corporation Adhesive bonds for metalic bipolar plates
US7396559B2 (en) * 2003-08-11 2008-07-08 General Motors Corporation Method of making an electrically conductive element for use in a fuel cell
FR2860104B1 (fr) * 2003-09-19 2006-05-05 Air Liquide Structure de pile a combustible
US20050100774A1 (en) * 2003-11-07 2005-05-12 Abd Elhamid Mahmoud H. Novel electrical contact element for a fuel cell
US7803476B2 (en) * 2003-11-07 2010-09-28 Gm Global Technology Operations, Inc. Electrical contact element for a fuel cell having a conductive monoatomic layer coating
US7344798B2 (en) * 2003-11-07 2008-03-18 General Motors Corporation Low contact resistance bonding method for bipolar plates in a pem fuel cell
WO2005057699A1 (ja) * 2003-12-09 2005-06-23 Nitta Corporation セパレータおよびセパレータの製造方法
JP4781626B2 (ja) * 2003-12-15 2011-09-28 日立マクセルエナジー株式会社 燃料電池
US20060204831A1 (en) * 2004-01-22 2006-09-14 Yan Susan G Control parameters for optimizing MEA performance
WO2005082024A2 (en) * 2004-02-24 2005-09-09 Ini Power Systems, Inc. Fuel cell apparatus and method of fabrication
US20050249998A1 (en) * 2004-05-07 2005-11-10 Constantinos Minas Fuel cell with pre-shaped current collectors
US8101319B2 (en) * 2004-05-20 2012-01-24 GM Global Technology Operations LLC Approach to make a high performance membrane electrode assembly (MEA) for a PEM fuel cell
WO2005117165A1 (en) * 2004-05-29 2005-12-08 Polymer Technologies Inc. Separator plate for fuel cell and production system for products for use in fuel cells
US20060024558A1 (en) * 2004-07-29 2006-02-02 Proton Energy Systems, Inc. Low profile electrochemical cell
KR100612361B1 (ko) * 2004-09-08 2006-08-16 삼성에스디아이 주식회사 연료 전지 시스템 및 스택
US20060088744A1 (en) * 2004-09-15 2006-04-27 Markoski Larry J Electrochemical cells
JP4974495B2 (ja) * 2004-09-21 2012-07-11 勝 堀 燃料電池用セパレータ、燃料電池用電極構造、それらの製造方法、及びこれを備えた固体高分子型燃料電池
CA2583569A1 (en) * 2004-10-12 2006-04-20 Polymer Technologies Inc. Separator plate for fuel cell
US20060088760A1 (en) * 2004-10-26 2006-04-27 Hsai-Yin Lee Metallization of composite plate for fuel cells
US7951510B2 (en) * 2004-11-11 2011-05-31 GM Global Technology Operations LLC Electroconductive polymer coating on electroconductive elements in a fuel cell
US20060134501A1 (en) * 2004-11-25 2006-06-22 Lee Jong-Ki Separator for fuel cell, method for preparing the same, and fuel cell stack comprising the same
US7959987B2 (en) * 2004-12-13 2011-06-14 Applied Materials, Inc. Fuel cell conditioning layer
EP1830902A2 (en) * 2004-12-30 2007-09-12 Cinvention Ag Combination comprising an agent providing a signal, an implant material and a drug
SI1836239T1 (sl) 2005-01-13 2009-04-30 Cinv Ag Kompozitni materiali, ki vsebujejo ogljikove nanodelce
BRPI0606486A2 (pt) * 2005-01-24 2009-06-30 Cinv Ag materiais compósitos contendo metal
EP1845939A1 (en) * 2005-02-03 2007-10-24 Cinvention Ag Drug delivery materials made by sol/gel technology
BRPI0608506A2 (pt) * 2005-03-18 2010-01-05 Cinv Ag processo para preparação de materiais metálicos porosos sinterizados
US7399549B2 (en) * 2005-04-22 2008-07-15 Gm Global Technology Operations, Inc. Altering zeta potential of dispersions for better HCD performance and dispersion stability
US20060240312A1 (en) * 2005-04-25 2006-10-26 Tao Xie Diffusion media, fuel cells, and fuel cell powered systems
US8735016B2 (en) * 2005-05-12 2014-05-27 GM Global Technology Operations LLC Hydrophilic, electrically conductive fluid distribution plate for fuel cell
US20060257711A1 (en) * 2005-05-12 2006-11-16 Elhamid Mahmoud H A Electrically conductive fluid distribution plate for fuel cells
US8623573B2 (en) * 2005-05-12 2014-01-07 GM Global Technology Operations LLC Porous, electrically conductive fluid distribution plate for fuel cells
US7759017B2 (en) 2005-05-18 2010-07-20 Gm Global Technology Operations, Inc. Membrane electrode assembly (MEA) architecture for improved durability for a PEM fuel cell
MX2008000131A (es) * 2005-07-01 2008-04-04 Cinv Ag Dispositivos medicos que comprenden un material compuesto reticulado.
EA200800196A1 (ru) * 2005-07-01 2008-06-30 Синвеншен Аг Способ изготовления пористого композиционного материала
US8017280B2 (en) * 2005-07-13 2011-09-13 GM Global Technology Operations LLC Metal fluid distribution plate with an adhesion promoting layer and polymeric layer
DE112006002090B4 (de) * 2005-08-12 2024-03-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Brennstoffzellenkomponente mit einer Nanopartikel enthaltenden Beschichtung
US7776249B2 (en) * 2005-08-30 2010-08-17 Gm Global Technology Operations, Inc. Method of making bipolar plate
US7883819B2 (en) * 2005-08-30 2011-02-08 Gm Global Technologies Operations, Inc. Hybrid electrically conductive fluid distribution separator plate assembly for fuel cells
US8211592B2 (en) * 2005-09-15 2012-07-03 GM Global Technology Operations LLC Hydrophilic layer on flowfield for water management in PEM fuel cell
US20070059580A1 (en) * 2005-09-15 2007-03-15 Budinski Michael K Design strategies for corrosion mitigation
GB0519807D0 (en) * 2005-09-28 2005-11-09 Welding Inst Fuel cell assembly
US7550222B2 (en) * 2005-10-21 2009-06-23 Gm Global Technology Operations, Inc. Fuel cell component having a durable conductive and hydrophilic coating
US8007943B2 (en) * 2005-11-03 2011-08-30 GM Global Technology Operations LLC Cascaded stack with gas flow recycle in the first stage
TWI264846B (en) * 2005-12-19 2006-10-21 Univ Yuan Ze Composite bipolar plate of a fuel cell
US20070154771A1 (en) * 2006-01-04 2007-07-05 Jang Bor Z Highly conductive composites for fuel cell flow field plates and bipolar plates
US20070178341A1 (en) * 2006-01-27 2007-08-02 Christian Wieser Gas channel coating with water-uptake related volume change for influencing gas velocity
US7901817B2 (en) * 2006-02-14 2011-03-08 Ini Power Systems, Inc. System for flexible in situ control of water in fuel cells
US7955750B2 (en) 2006-02-21 2011-06-07 GM Global Technology Operations LLC Controlled electrode overlap architecture for improved MEA durability
US8343452B2 (en) * 2006-03-20 2013-01-01 GM Global Technology Operations LLC Acrylic fiber bonded carbon fiber paper as gas diffusion media for fuel cell
DE102006015247A1 (de) * 2006-04-01 2007-10-04 Sartorius Ag Brennstoffzelle mit Isolierelement
JP5343307B2 (ja) * 2006-05-16 2013-11-13 日産自動車株式会社 燃料電池スタックおよび燃料電池セパレータ並びにその製造方法
US8133591B2 (en) 2006-06-27 2012-03-13 GM Global Technology Operations LLC Adhesion of polymeric coatings to bipolar plate surfaces using silane coupling agents
US7749632B2 (en) 2006-07-27 2010-07-06 Gm Global Technology Operations, Inc. Flow shifting coolant during freeze start-up to promote stack durability and fast start-up
US7651542B2 (en) 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
US7648786B2 (en) 2006-07-27 2010-01-19 Trulite, Inc System for generating electricity from a chemical hydride
US8158300B2 (en) * 2006-09-19 2012-04-17 Ini Power Systems, Inc. Permselective composite membrane for electrochemical cells
WO2008036347A2 (en) * 2006-09-20 2008-03-27 President And Fellows Of Harvard College Methods and apparatus for stimulating and managing power from microbial fuel cells
US7883810B2 (en) 2006-11-09 2011-02-08 GM Global Technology Operations LLC Slow purge for improved water removal, freeze durability, purge energy efficiency and voltage degradation due to shutdown/startup cycling
US20080113245A1 (en) * 2006-11-09 2008-05-15 Gm Global Technology Operations, Inc. Method of making hydrophilic fuel cell bipolar plates
US8455155B2 (en) * 2006-11-22 2013-06-04 GM Global Technology Operations LLC Inexpensive approach for coating bipolar plates for PEM fuel cells
US8551667B2 (en) * 2007-04-17 2013-10-08 Ini Power Systems, Inc. Hydrogel barrier for fuel cells
US8357214B2 (en) 2007-04-26 2013-01-22 Trulite, Inc. Apparatus, system, and method for generating a gas from solid reactant pouches
US20090017361A1 (en) * 2007-07-13 2009-01-15 Dae Soon Lim Separator for fuel cell and method for fabricating the same
KR20100061453A (ko) 2007-07-25 2010-06-07 트루라이트 인크. 하이브리드 전력의 생성 및 사용을 관리하는 장치, 시스템 및 방법
US20090035644A1 (en) * 2007-07-31 2009-02-05 Markoski Larry J Microfluidic Fuel Cell Electrode System
JP5298491B2 (ja) * 2007-10-02 2013-09-25 コニカミノルタ株式会社 透明導電フィルム
JP4434264B2 (ja) 2007-11-05 2010-03-17 トヨタ自動車株式会社 燃料電池用セル、燃料電池用セルの製造方法及び燃料電池用ガス流路構造体
US8168340B2 (en) 2007-11-07 2012-05-01 GM Global Technology Operations LLC Water removal features for PEMfc stack manifolds
US8409769B2 (en) 2007-12-07 2013-04-02 GM Global Technology Operations LLC Gas diffusion layer for fuel cell
US9614232B2 (en) * 2007-12-28 2017-04-04 Altergy Systems Modular unit fuel cell assembly
KR100839193B1 (ko) * 2008-01-21 2008-06-17 현대하이스코 주식회사 바인더 수지에 카본입자가 분산되어 있는 코팅층을 가지는연료전지용 금속분리판 및 그 제조방법
US9136545B2 (en) 2008-02-27 2015-09-15 GM Global Technology Operations LLC Low cost fuel cell bipolar plate and process of making the same
US7891788B2 (en) 2008-03-03 2011-02-22 Silverbrook Research Pty Ltd Printhead de-priming system with float valve isolation of printhead from ink reservoir
WO2009154683A1 (en) * 2008-05-28 2009-12-23 President And Fellows Of Harvard College Methane-powered microbial fuel cells
DE102008028358A1 (de) * 2008-06-10 2009-12-17 Igs Development Gmbh Separatorplatte und Verfahren zum Herstellen einer Separatorplatte
US8246808B2 (en) * 2008-08-08 2012-08-21 GM Global Technology Operations LLC Selective electrochemical deposition of conductive coatings on fuel cell bipolar plates
US8728684B2 (en) * 2008-09-26 2014-05-20 United Technologies Corporation Reduced axial pressure in fuel cell stacks
US8163429B2 (en) * 2009-02-05 2012-04-24 Ini Power Systems, Inc. High efficiency fuel cell system
US8685593B2 (en) * 2009-09-22 2014-04-01 GM Global Technology Operations LLC Carbon based bipolar plate coatings for effective water management
US9520600B2 (en) * 2009-09-22 2016-12-13 GM Global Technology Operations LLC Conductive and hydrophilic bipolar plate coatings and method of making the same
KR101219394B1 (ko) * 2010-05-11 2013-01-11 한국과학기술원 연료전지용 복합재료 분리판의 제조방법, 및 이에 의해 제조되는 연료전지용 복합재료 분리판
US20120064232A1 (en) * 2010-09-10 2012-03-15 Keisuke Yamazaki Method of treatment for imparting conductivity to surface of separator-use base member of solid polymer type fuel cell
WO2012044316A1 (en) 2010-09-30 2012-04-05 Empire Technology Development Llc Metal air battery including a composition anode
US8783304B2 (en) 2010-12-03 2014-07-22 Ini Power Systems, Inc. Liquid containers and apparatus for use with power producing devices
US9065095B2 (en) 2011-01-05 2015-06-23 Ini Power Systems, Inc. Method and apparatus for enhancing power density of direct liquid fuel cells
US20120202137A1 (en) * 2011-02-04 2012-08-09 GM Global Technology Operations LLC Bipolar plate assembly with adhesive bond layer and method thereof
FR2971628B1 (fr) * 2011-02-14 2013-02-22 Commissariat Energie Atomique Pile a combustible a membrane d'echange de protons presentant des performances accrues
GB2501702B (en) 2012-05-01 2019-11-20 Intelligent Energy Ltd A current collector component for a fuel cell
EP2884570B1 (en) * 2012-07-11 2017-06-14 Toyota Shatai Kabushiki Kaisha Fuel cell separator and method for manufacturing same
US10396366B2 (en) * 2015-09-24 2019-08-27 Nuvera Fuel Cells, LLC Bipolar plate having a polymeric coating
WO2018124354A1 (ko) * 2016-12-30 2018-07-05 서강대학교산학협력단 금속판재스킨으로 덮인 섬유강화플라스틱 복합재료의 제조방법 및 그에 따라 제조된 경량 구조물용 복합재료 부품
DE102018200818A1 (de) * 2018-01-18 2019-07-18 Zae Bayern Bay. Zentrum Für Angewandte Energieforschung E.V. Monopolarplattenbauteil für chemische Reaktoren, insbesondere für Redox-Flow-Batterien, Verfahren zur Herstellung eines Monopolarplattenbauteils und Redox-Flow-Batterie mit einem solchen Monopolarplattenbauteil
DE102018203132A1 (de) * 2018-03-02 2019-09-05 Robert Bosch Gmbh Bipolare Platte für Brennstoffzellenstapel
CN110174704B (zh) * 2019-06-24 2023-06-16 青岛科技大学 一种基于triz理念的海洋电场传感器
CN112531181B (zh) * 2019-09-18 2022-06-03 中国科学院苏州纳米技术与纳米仿生研究所 一种高分子材料基双极板、及包含其的单电池和电堆
CN111082110A (zh) * 2019-12-27 2020-04-28 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种燃料电池膜电极的制作方法及设备
GB2593886A (en) * 2020-04-03 2021-10-13 Versarien Plc High performance composites and coatings
DE102020206774A1 (de) 2020-05-29 2021-12-02 Sgl Carbon Se Bipolarflachelement
CN111697247A (zh) * 2020-06-22 2020-09-22 内蒙古中科四维热管理材料有限公司 复合石墨双极板及制备方法
US20230050274A1 (en) * 2021-08-12 2023-02-16 Robert Bosch Gmbh Water deionization cells with flow channels packed with intercalation material

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272017A (en) 1992-04-03 1993-12-21 General Motors Corporation Membrane-electrode assemblies for electrochemical cells
IT1270878B (it) * 1993-04-30 1997-05-13 Permelec Spa Nora Migliorata cella elettrochimica utilizzante membrane a scambio ionico e piatti bipolari metallici
US5624769A (en) 1995-12-22 1997-04-29 General Motors Corporation Corrosion resistant PEM fuel cell
DE19823880A1 (de) * 1997-06-03 1998-12-10 Motorola Inc Bipolarplatte für Brennstoffzellenanordnung
US6232010B1 (en) * 1999-05-08 2001-05-15 Lynn Tech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
JP4037955B2 (ja) 1998-04-08 2008-01-23 東海カーボン株式会社 固体高分子型燃料電池セパレータ部材の製造方法
JP3437937B2 (ja) 1998-06-25 2003-08-18 日立化成工業株式会社 燃料電池、燃料電池用セパレータ及びその製造方法
US6180275B1 (en) * 1998-11-18 2001-01-30 Energy Partners, L.C. Fuel cell collector plate and method of fabrication
EP1009051A2 (en) * 1998-12-08 2000-06-14 General Motors Corporation Liquid cooled bipolar plate consisting of glued plates for PEM fuel cells
JP2000195526A (ja) 1998-12-25 2000-07-14 Araco Corp 燃料電池用電極
US6379795B1 (en) * 1999-01-19 2002-04-30 E. I. Du Pont De Nemours And Company Injection moldable conductive aromatic thermoplastic liquid crystalline polymeric compositions
JP3692274B2 (ja) 1999-02-09 2005-09-07 日清紡績株式会社 燃料電池用セパレータ及び固体高分子型燃料電池
US20020132152A1 (en) 1999-02-09 2002-09-19 Kazuo Saito Separator for fuel cell and solid polymer type fuel cell using said separator
JP2001052721A (ja) 1999-08-12 2001-02-23 Osaka Gas Co Ltd 燃料電池用セパレータおよびその製造方法
JP3976956B2 (ja) 1999-09-06 2007-09-19 美和ロック株式会社 引戸の開戸補助装置
JP2001143719A (ja) 1999-11-11 2001-05-25 Unitika Ltd 燃料電池用セパレータ及びその製造方法
US20020039675A1 (en) * 1999-11-18 2002-04-04 Braun James C. Compounding and molding process for fuel cell collector plates
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
JP3706784B2 (ja) 2000-01-11 2005-10-19 日本ピラー工業株式会社 燃料電池用セパレータの製造方法
EP1265303B1 (en) 2000-03-07 2009-07-01 Panasonic Corporation Polymer electrolyte fuel cell and method of manufacturing the same
JP3580218B2 (ja) 2000-03-31 2004-10-20 松下電器産業株式会社 高分子電解質型燃料電池用セパレータとこれを用いた高分子電解質型燃料電池
WO2001085849A1 (fr) 2000-05-10 2001-11-15 Nok Corporation Composition a base de resine conductrice
JP2002312455A (ja) 2001-04-13 2002-10-25 Yamatake Building Systems Co Ltd 保全管理業務支援システムおよび保全管理業務支援方法
US6607857B2 (en) * 2001-05-31 2003-08-19 General Motors Corporation Fuel cell separator plate having controlled fiber orientation and method of manufacture
US6811918B2 (en) 2001-11-20 2004-11-02 General Motors Corporation Low contact resistance PEM fuel cell
JP2005040917A (ja) 2003-07-24 2005-02-17 Mitsubishi Electric Corp 放電加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230068616A (ko) 2021-11-11 2023-05-18 코오롱인더스트리 주식회사 고분자 전해질막 및 이를 포함하는 막-전극 어셈블리

Also Published As

Publication number Publication date
DE10253958B8 (de) 2009-04-23
US20030096151A1 (en) 2003-05-22
US20040253505A1 (en) 2004-12-16
JP2003157868A (ja) 2003-05-30
JP2008288220A (ja) 2008-11-27
US6811918B2 (en) 2004-11-02
US20040157108A1 (en) 2004-08-12
DE10253958A1 (de) 2003-06-05
DE10253958B4 (de) 2008-12-11
US7416810B2 (en) 2008-08-26
US7709116B2 (en) 2010-05-04

Similar Documents

Publication Publication Date Title
JP4236445B2 (ja) 低接触抵抗pem燃料電池
USRE42434E1 (en) Corrosion resistant PEM fuel cell
JP4800942B2 (ja) 金属製バイポーラプレート用接着剤結合部
US6793544B2 (en) Corrosion resistant fuel cell terminal plates
US6866958B2 (en) Ultra-low loadings of Au for stainless steel bipolar plates
CN100344011C (zh) 耐蚀质子交换膜燃料电池
CN101213701B (zh) 用于燃料电池的亲水导电流体分配板
US8003279B2 (en) Electrically conductive element treated for use in a fuel cell
JP4073828B2 (ja) 固体高分子形燃料電池及び燃料電池用セパレータ
US20050037935A1 (en) Composition and method for surface treatment of oxidized metal
US7687100B2 (en) Method of dry coating flow field plates for increased durability
JP4977136B2 (ja) 燃料電池用の導電性金属流体分散板

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070320

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees