JP4230280B2 - 欠陥検査方法及びその検査方法を用いたデバイス製造方法 - Google Patents

欠陥検査方法及びその検査方法を用いたデバイス製造方法 Download PDF

Info

Publication number
JP4230280B2
JP4230280B2 JP2003153902A JP2003153902A JP4230280B2 JP 4230280 B2 JP4230280 B2 JP 4230280B2 JP 2003153902 A JP2003153902 A JP 2003153902A JP 2003153902 A JP2003153902 A JP 2003153902A JP 4230280 B2 JP4230280 B2 JP 4230280B2
Authority
JP
Japan
Prior art keywords
density
image
electron beam
dimensional image
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003153902A
Other languages
English (en)
Other versions
JP2004356471A (ja
Inventor
利文 金馬
護 中筋
徹 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003153902A priority Critical patent/JP4230280B2/ja
Priority to US10/855,808 priority patent/US7248353B2/en
Priority to PCT/JP2004/007351 priority patent/WO2004109793A1/ja
Priority to EP04745387.3A priority patent/EP1630862B1/en
Priority to TW093115249A priority patent/TWI345054B/zh
Publication of JP2004356471A publication Critical patent/JP2004356471A/ja
Priority to US11/806,722 priority patent/US7408643B2/en
Application granted granted Critical
Publication of JP4230280B2 publication Critical patent/JP4230280B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電子線を用いて最小線幅100nm以下のパターンを有する試料の欠陥を検査する方法及びその方法を用いて半導体やLCD等のデバイスを製造するデバイス製造方法に関する。
【0002】
【従来技術】
従来から、複数の電子線すなわちマルチビームを用いて試料を検査する欠陥検査方法が提案されている(例えば下記特許文献1)。更に、長方形ビームを照射し、照射点から発せられた電子線を写像光学系で拡大して検出する方法は公知である(例えば下記特許文献2)。また、欠陥検出方法でパターンマッチングを行って位置ずれ後欠陥を検出する方法も公知である。
【0003】
【特許文献1】
米国特許5,892,224号
【特許文献1】
特開平7-24939号公報
【0004】
【発明が解決しようとする課題】
シングルビームを用いるSEMの場合は、ビームは1本で検出器は1個であるから信号の濃度は試料の情報を100%含んでいるのでパターンマッチングのみ行えば欠陥検出が可能である。しかしながら、マルチビームの場合は、マルチビームの各ビーム間でビーム電流値は何%かはばらつきがあり、更に検出感度も各ビーム間で差があり、信号の濃度は必ずしも試料の情報ばかりではない。また、写像光学系を用いた欠陥検出方法にあっても視野の端と光軸近くとで、同じ試料のパターン部であっても濃度に差が生じ、欠陥検出を行った場合に疑似欠陥が多発する問題があった。
【0005】
本発明は、かかる問題に鑑みて成されたものであって、マルチビームや写像光学系で疑似欠陥が発生しない欠陥検査方法を提供することを目的とする。
本発明の他の目的はそのような欠陥検査方法を用いて半導体デバイスやLCDデバイスを製造する方法を提供することである。
【0006】
【課題を解決するための手段】
本発明は、複数のピクセルを有する試料面に電子線を入射させて試料面の評価を行う方法であって、
(a)電子線を試料に照射し、二次電子或いは反射電子を検出するステップと、
(b)検出した信号を増幅し、A/D変換し、濃度情報を有する2次元画像を作り、予め指定された第1の領域の上記画像をメモリーに入力するステップと、
(c)前記ステップ(b)で入力した領域と同じパターンがあると予測される第2の領域の濃度情報を有する2次元画像を形成して別のメモリーに入力するステップと、
(d)前記ステップ(b)で入手した画像と前記ステップ(c)で入手した画像との間の濃度マッチングを行い、両画像の平均濃度が一致するように一方の画像の濃度を増減するステップと、
(e)平均濃度が一致した画像間でパターンマッチングを行い、更にパターンマッチングを行った画像の差を算出し、差のある場所を欠陥候補とするステップと、
(f)前記第1及び第2の領域と同じパターンがあると予測される第3の領域の2次元像を入手し、かつ前記第3の領域の2次元像と前記第1及び第2のいずれかとの濃度マッチングを行い、前記ステップ(e)で得た欠陥候補と比較し、欠陥候補から欠陥を決めるステップと、
を有することに特徴を有する。
【0007】
前記欠陥検査方法において、前記電子線は、一軸方向へ投影したビーム間隔が等間隔でかつ前記一軸と直角の方向に上記複数のビームを走査するマルチビームであり、前記マルチビームを電気的に走査し、一軸と平行な方向に試料台を連続移動しながら上記2次元画像を形成するようにしてもよく、或いは、前記電子線は、一軸方向に長い長方形の形状を有するビームであり、前記長方形の短辺方向にビームを走査しながら前記長方形の長辺方向に試料台を連続移動させながら照射を行い、試料から発生した二次電子或いは反射電子を写像光学系で像として検出するようにしてもよい。
更に、前記ステップ(d)において、上記濃度マッチングは両方の画像の最低の濃度が一致するようにオフセット値を一致させ、その後最大値の濃度が一致するようにゲインを調整することを特徴とする欠陥検査方法。
本発明は、更に、上記の方法を用いてパターンの欠陥を検査することに特徴を有する。
【0008】
【実施例】
以下図面を参照して本発明の実施例について説明する。
図1において、本発明の欠陥検査方法を実施するマルチビーム形の電子線装置の模式図が全体を1で示されている。電子線装置1は、一次電子光学系(以下単に一次光学系)10と、二次電子光学系(以下単に二次光学系)30と、検出系40とを備えている。
一次光学系10は、ウエハ等の試料に形成された半導体デバイス等を構成するパターンに照射する光学系であり、電子線を放出する電子銃11と、直線状又は二次元的に配列された複数の小孔12aが形成されていて電子銃から放出された電子線を複数の電子ビーム(マルチビーム)に成形するマルチ開口板12と、マルチビームを収束させる電子レンズ13と、NA開口14aを画成するNA開口部材14と、NA開口を通過したマルチビームを縮小する静電レンズ15と、静電偏向器16と、E×B分離器17と、第1の静電対物レンズ18と、偏向器19、20と、第2の静電対物レンズ21とを備え、それらは、図1に示されるように、電子銃11を最上部にして順に、かつ電子銃から放出される電子線の光軸OA1が試料Sの表面に垂直になるように配置されている。マルチ開口板12の複数の小孔12aは、図2に示されるように、一次光学系の光軸OA1を中心とする円内に配置され、Y軸上に投影した場合の隣接する小孔間のY方向の間隔Lyが全て等しくなるように形成されている。したがって、小孔により成形されるマルチビームも光軸OA1を中心とする円内に配置され、ビームの相互間の最小間隔は、二次光学系の分解能以上の距離を保ち、かつそれらのビーム間のY方向の間隔が全て等しくなるように構成されている。
【0009】
二次光学系30は、E×B分離器17の近くで光軸OA1に対して傾斜している光軸OA2に沿って配置された静電拡大レンズ31と、偏向器32とを備えている。試料表面上での各電子ビーム間の最小間隔は、二次光学系における試料表面上での分解能より大きくなっている。
検出系40は、マルチ開口板12の各小孔12aに対応するチャンネルを有するマイクロチャンネルプレート(MCP)41と、各小孔12aに対応するマルチアノード42及び抵抗43と、A/Dコンバータを含む画像形成回路44と、メモリー45とを備えている。マルチアノード42は、図3に示されるように、長方形の構造内に配置された細線のループ形状であって、MCPから放出されたガスが速やかに排気されるようになっている。また、各マルチアノード42の一端部42aはセラミックスの基板42bに固定されかつリード線42cで抵抗43と画像形成回路44に接続されている。上記各構成要素の他の部分は公知の構造、機能のものでよくその詳細な説明は省略する。
【0010】
上記構成の電子線装置1において、単一の電子銃11から放出された電子線はマルチ開口板12を照射し、そのマルチ開口板12の複数(この実施例では5個)の小孔12aを通過して複数(この実施例では5個)の一次電子ビーム(マルチビーム)に成形される。これらの複数の一次電子ビームは、静電レンズ13によって収束され、NA開口部材14のNA開口14aでクロスオーバーを形成する。クロスオーバーした電子ビームは静電レンズ15、第1の静電対物レンズ18及び第2の静電対物レンズ21により縮小され、試料S上に0.05ないし0.1μmの大きさのマルチビームとして照射される。静電偏向器19、20を使用して電子ビームを同時にX方向に走査する。
試料から放出された二次電子或いは反射電子はT2(T1は一次電子ビームの軌道)で示される軌道を通り、E×B分離器17で偏向されて二次光学系に入射し、光軸OA2に沿って進む。この場合、二次電子群はマルチビーム毎に収束され、第2の静電対物レンズ21及び第1の静電対物レンズ18で拡大され、かつ静電レンズ31により各電子ビームの間隔がMCP41の背後に配置されているマルチアノード42の間隔と一致するように拡大率が調整される。更に、一次電子ビームを試料上で走査することと同期して、偏向器32で常にマルチアノードの前面に結像するように補正される。これまでが請求項1におけるステップ(a)に対応する。
【0011】
マルチアノード42で吸収された二次電子(又は反射電子)群は抵抗43で電圧信号に変換され、画像成形回路44で増幅されかつA/D変換されて、例えば図4の左側に示されるような2次元画像が形成され、その2次元画像がメモリー45に入力されそこに記憶される(ステップb)。この2次元画像は第1の領域(例えば視野の左端)で得られた濃度情報を有し、符号51、52、53及び54はそれぞれ濃度が1.0、0.7、0.3、0.1である部分を示す。
次に、前記ステップ(b)で入力した領域と同じパターンがあると予測される第2の領域(例えば光軸近傍)の濃度情報を有する、例えば図4の右側に示される、2次元画像を形成して別のメモリーに入力する(ステップc)。図4において符号61、62、63、64は濃度が1.2、0.9、0.5、0.3である部分を示す。
その後、前記ステップ(b)で入手した画像と前記ステップ(c)で入手した画像とをメモリーから呼び出しそれらの間の濃度マッチング71を行い、両画像の平均濃度が一致するように一方の画像の濃度を増減する(ステップd)。例えば、図4に示されるように、61、62、63、64の濃度はマッチング前は1.2、0.9、0.5、0.3であったものが、それぞれ1.0、0.7、0.3、0.1に変更されパターンマッチング72が可能となる。パターンマッチング72を行った結果、左側の画像は5アドレス分−X方向にシフトしていることが分かる。
更に、平均濃度が一致した画像間でパターンマッチングを行い、更にパターンマッチングを行った画像の差を算出し、差のある場所を欠陥候補とする(ステップe)。パターンマッチング後に全てのアドレスの濃度を比較することによって欠陥f1、f2が検出されるのである。
最後に、前記第1及び第2の領域と同じパターンがあると予測される第3の領域の2次元像を入手し、かつ前記第3の領域の2次元像と前記第1及び第2のいずれかとの濃度マッチングを行い、前記ステップ(e)で得た欠陥候補と比較し、欠陥候補から欠陥を決める(ステップf)。このようにして本発明の欠陥検査方法が行われる。
【0012】
上記の欠陥検査方法において、電子線は、一軸方向へ投影したビーム間隔が等間隔でかつ前記一軸と直角の方向に上記複数のビームを走査するマルチビームであり、前記マルチビームを電気的に走査し、一軸と平行な方向に試料台を連続移動しながら上記2次元画像を形成する。また、前記ステップ(d)において、上記濃度マッチングは両方の画像の最低の濃度が一致するようにオフセット値を一致させ、その後最大値の濃度が一致するようにゲインを調整するようにしてもよい。
【0013】
図5において、本発明の欠陥検査方法を実施するのに使用される写像投影型の他の電子線装置が全体を100で示されている。この電子線装置100は、電子銃から放出された電子線を矩形(例えば長方形)に成形し、その成形された電子線すなわち電子ビームを検査されるべき前記実施例と同様の試料Sに照射して一次電子光学系(以下単位一次光学系)110と、電子ビームの照射により試料から二次電子或いは反射電子を検出器に導入する二次電子光学系(以下単に二次光学系)130と、二次電子を検出する検出系140とを備えている。
一次光学系110は、熱電子放出カソード(LaB6カソード)を有していて電子線を放出する電子銃111と、電子線を収束するレンズ112、113と、電子線を所望の断面形状の電子ビームに成形する成形開口114aを画成する成形開口部材114と、偏向器115,116とを備え、それらは図5に示されるように、試料Sの表面に垂直な方向に対して所定の角度を成す光軸OA1に沿って、電子銃111を最上部にして図示のような順に配置されている。一次光学系は更に、電界と磁界とが直交する場により電子ビームを偏向すると共に試料からの二次電子又は反射電子を分離するためのE×B分離器117と、二つのダブレットタイプの対物レンズ118、119とを備え、これらは試料の表面に垂直な方向に沿って配置されている。
【0014】
二次光学系130は、E×B分離器117で分離された試料Sからの二次電子の光軸OA2に沿って、試料の表面に対して垂直な方向に配置されており、二次電子又は反射電子を拡大するダブレットタイプのレンズ131と、拡大レンズ132、133と、偏向器134、135とを備えている。
検出系140は、MCP(マイクロチャンネルプレート)141と、下面にシンチレータが塗布されていて二次電子を光の像に変換するFOP(ファイバーオプティカル・プレート)142と、光学レンズ143と、TDI検出器144とを備えている。図において、符号145はMCPの前面の電界を一様にするメッシュであり、図6に示されるようになっている。また、符号146、147はそれぞれMCPとFOPとの間の電界を一様にするメッシュである。上記各構成要素以外は公知の構造、機能のものでよくその詳細な説明は省略する。
【0015】
上記構成の電子線装置において、電子銃111から放出された電子線は、レンズ112、113によって収束され、成形開口部材114によって画成される成形開口114aによって断面形状(光軸OA2に直角な断面での)が矩形(本実施形態では長方形であってY軸方向が長軸でX軸方向が短軸の長方形)のビームに成形される。
成形された電子ビームは、偏向器114を通過し、E×B分離器117により試料の表面に垂直な方向に偏向され、対物レンズ118、119により縮小されて試料上に照射される。このとき、長方形の一次電子ビームは偏向器115、116により短軸方向に所定区間走査され、試料Sを支持する試料台(図示せず)は長軸方向に沿って連続的に移動される。このように長方形の一次電子ビームの照射により試料Sから放出された二次電子又は反射電子は、対物レンズ119、118と通った後、二次光学系130のレンズ131、拡大レンズ132,133を通して写像投影され、MCP141に結像され、そこで増幅されてる。MCPで増幅された二次電子又は反射電子の拡大像はFOP142の下面に塗布されたシンチレータで光の像にされ、光学レンズ143によりTDI検出器144に結像され、電気信号に変換される。ここまでが請求項1におけるステップ(a)に対応する。
【0016】
上記のようにして検出した信号は増幅され、A/D変換されて、図示しない回路で増幅されかつA/D変換されて、例えば図4の左側に示されるような2次元画像が形成され、その2次元画像が図示しないメモリーに入力されそこに記憶される(ステップb)。この2次元画像は第1の領域(例えば視野の左端)で得られた濃度情報を有し、符号51、52、53及び54はそれぞれ濃度が1.0、0.7、0.3、0.1である部分を示す。
次に、前記ステップ(b)で入力した領域と同じパターンがあると予測される第2の領域(例えば光軸近傍)の濃度情報を有する、例えば図4の右側に示される、2次元画像を形成して別のメモリーに入力する(ステップc)。図4において符号61、62、63、64は濃度が1.2、0.9、0.5、0.3である部分を示す。
その後、前記ステップ(b)で入手した画像と前記ステップ(c)で入手した画像とをメモリーから呼び出しそれらの間の濃度マッチング71を行い、両画像の平均濃度が一致するように一方の画像の濃度を増減する(ステップd)。例えば、図4に示されるように、61、62、63、64の濃度はマッチング前は1.2、0.9、0.5、0.3であったものが、それぞれ1.0、0.7、0.3、0.1に変更されパターンマッチング72が可能となる。パターンマッチング72を行った結果、左側の画像は5アドレス分−X方向にシフトしていることが分かる。
更に、平均濃度が一致した画像間でパターンマッチングを行い、更にパターンマッチングを行った画像の差を算出し、差のある場所を欠陥候補とする(ステップe)。パターンマッチング後に全てのアドレスの濃度を比較することによって欠陥f1、f2が検出されるのである。
最後に、前記第1及び第2の領域と同じパターンがあると予測される第3の領域の2次元像を入手し、かつ前記第3の領域の2次元像と前記第1及び第2のいずれかとの濃度マッチングを行い、前記ステップ(e)で得た欠陥候補と比較し、欠陥候補から欠陥を決める(ステップf)。
【0017】
この欠陥検査方法において、前記電子線は、一軸方向に長い長方形の形状を有するビームであり、前記長方形の短辺方向にビームを走査しながら前記長方形の長辺方向に試料台を連続移動させながら照射を行い、試料から発生した二次電子或いは反射電子を写像光学系で像として検出する。また、前記ステップ(d)において、上記濃度マッチングは両方の画像の最低の濃度が一致するようにオフセット値を一致させ、その後最大値の濃度が一致するようにゲインを調整するようにしてもよい。
【0018】
次に図7及び図8を参照して本発明による半導体デバイスの製造方法の実施例を説明する。
図7は、本発明による半導体デバイスの製造方法の一実施例を示すフローチャートである。この実施例の製造工程は以下の主工程を含んでいる。
(1)ウエハを製造するウエハ製造工程(又はウエハを準備するウエハ準備工程)
(2)露光に使用するマスクを製造するマスク製造工程(又はマスクを準備するマスク準備工程)
(3)ウエハに必要な加工処理を行うウエハプロセッシング工程
(4)ウエハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程
(5)できたチップを検査するチップ検査工程
なお、上記のそれぞれの主工程は更に幾つかのサブ工程からなっている。
【0019】
これらの主工程中の中で、半導体デバイスの性能に決定的な影響を及ぼすのが(3)のウエハプロセッシング工程である。この工程では、設計された回路パターンをウエハ上に順次積層し、メモリーやMPUとして動作するチップを多数形成する。このウエハプロセッシング工程は以下の各工程を含んでいる。
(A)絶縁層となる誘電体薄膜や配線部、或いは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリング等を用いる)
(B)この薄膜層やウエハ基板を酸化する酸化工程
(C)薄膜層やウエハ基板等を選択的に加工するためにマスク(レチクル)を用いてレジストパターンを形成するリソグラフィー工程
(D)レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
(E)イオン・不純物注入拡散工程
(F)レジスト剥離工程
(G)加工されたウエハを検査する工程
なお、ウエハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。
【0020】
図8は、図7のウエハプロセッシング工程の中核をなすリソグラフィー工程を示すフローチャートである。このリソグラフィー工程は以下の各工程を含む。
(a)前段の工程で回路パターンが形成されたウエハ上にレジストをコートするレジスト塗布工程
(b)レジストを露光する工程
(c)露光されたレジストを現像してレジストのパターンを得る現像工程
(d)現像されたレジストパターンを安定化するためのアニール工程
上記の半導体デバイス製造工程、ウエハプロセッシング工程、リソグラフィー工程については、周知のものでありこれ以上の説明を要しないであろう。
上記(G)の検査工程に本発明に係る欠陥検査方法、欠陥検査装置を用いると、微細なパターンを有する半導体デバイスでも、スループット良く検査できるので、全数検査が可能となり、製品の歩留まりの向上、欠陥製品の出荷防止が可能と成る。
【0021】
【発明の効果】
本発明の方法を用いることによって、マルチビームや写像光学系での欠陥検出が可能となった。
【図面の簡単な説明】
【図1】本発明の欠陥検査方法の一実施例を実施するためのマルチビーム型の電子線装置の模式図である。
【図2】図1の電子線装置のマルチ開口板に画成された小孔の配列例を示す平面図である。
【図3】マルチアノードを模式的に示す図である。
【図4】本発明の欠陥検査方法の説明図である。
【図5】本発明の欠陥検査方法の一実施例を実施するための写像投影型の電子線装置の模式図である。
【図6】電界を一様にするメッシュを示す模式図である。
【図7】半導体デバイス製造工程を示すフローチャートである。
【図8】リソグラフィー工程を示すフローチャートである。
1、100 電子線装置
10、110 一次光学系 30、130 二次光学系
40、140 検出系 45 メモリー
S 試料

Claims (4)

  1. 複数のピクセルを有する試料面に電子線を入射させて試料面の評価を行う方法であって、
    (a)電子線を試料に照射し、二次電子或いは反射電子を検出するステップと、
    (b)検出した信号を増幅し、A/D変換し、濃度情報を有する2次元画像を作り、予め指定された第1の領域の上記画像をメモリーに入力するステップと、
    (c)前記ステップ(b)で入力した領域と同じパターンがあると予測される第2の領域の濃度情報を有する2次元画像を形成して別のメモリーに入力するステップと、
    (d)前記ステップ(b)で入手した画像と前記ステップ(c)で入手した画像との間の濃度マッチングを行い、両画像の平均濃度が一致するように一方の画像の濃度を増減するステップと、
    (e)平均濃度が一致した画像間でパターンマッチングを行い、更にパターンマッチングを行った画像の差を算出し、差のある場所を欠陥候補とするステップと、
    (f)前記第1及び第2の領域と同じパターンがあると予測される第3の領域の2次元像を入手し、かつ前記第3の領域の2次元像と前記第1及び第2のいずれかとの濃度マッチングを行い、前記ステップ(e)で得た欠陥候補と比較し、欠陥候補から欠陥を決めるステップと、
    を有し、
    前記電子線は、一軸方向へ投影したビーム間隔が等間隔でかつ前記一軸と直角の方向に上記複数のビームを走査するマルチビームであり、前記マルチビームを電気的に走査し、一軸と平行な方向に試料台を連続移動しながら上記2次元画像を形成することを特徴とする欠陥検査方法。
  2. 複数のピクセルを有する試料面に電子線を入射させて試料面の評価を行う方法であって、
    (a)電子線を試料に照射し、二次電子或いは反射電子を検出するステップと、
    (b)検出した信号を増幅し、A/D変換し、濃度情報を有する2次元画像を作り、予め指定された第1の領域の上記画像をメモリーに入力するステップと、
    (c)前記ステップ(b)で入力した領域と同じパターンがあると予測される第2の領域の濃度情報を有する2次元画像を形成して別のメモリーに入力するステップと、
    (d)前記ステップ(b)で入手した画像と前記ステップ(c)で入手した画像との間の濃度マッチングを行い、両画像の平均濃度が一致するように一方の画像の濃度を増減するステップと、
    (e)平均濃度が一致した画像間でパターンマッチングを行い、更にパターンマッチングを行った画像の差を算出し、差のある場所を欠陥候補とするステップと、
    (f)前記第1及び第2の領域と同じパターンがあると予測される第3の領域の2次元像を入手し、かつ前記第3の領域の2次元像と前記第1及び第2のいずれかとの濃度マッチングを行い、前記ステップ(e)で得た欠陥候補と比較し、欠陥候補から欠陥を決めるステップと、
    を有し、
    前記電子線は、一軸方向に長い長方形の形状を有するビームであり、前記長方形の短辺方向にビームを走査しながら前記長方形の長辺方向に試料台を連続移動させながら照射を行い、試料から発生した二次電子或いは反射電子を写像光学系で像として検出することを特徴とする欠陥検査方法。
  3. 請求項1または2に記載の欠陥検査方法において、前記ステップ(d)において、上記濃度マッチングは両方の画像の最低の濃度が一致するようにオフセット値を一致させ、その後最大値の濃度が一致するようにゲインを調整することを特徴とする欠陥検査方法。
  4. 請求項1ないしのいずれかに記載の方法を用いてパターンの欠陥を検査することを特徴とするデバイス製造方法。
JP2003153902A 2003-05-30 2003-05-30 欠陥検査方法及びその検査方法を用いたデバイス製造方法 Expired - Lifetime JP4230280B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003153902A JP4230280B2 (ja) 2003-05-30 2003-05-30 欠陥検査方法及びその検査方法を用いたデバイス製造方法
US10/855,808 US7248353B2 (en) 2003-05-30 2004-05-28 Method and apparatus for inspecting samples, and method for manufacturing devices using method and apparatus for inspecting samples
PCT/JP2004/007351 WO2004109793A1 (ja) 2003-05-30 2004-05-28 試料検査装置及び方法並びに該試料検査装置及び方法を用いたデバイス製造方法
EP04745387.3A EP1630862B1 (en) 2003-05-30 2004-05-28 Sample inspection device and method, and device manufacturing method using the sample inspection device and method
TW093115249A TWI345054B (en) 2003-05-30 2004-05-28 Specimen inspection device and method, and method for making a semiconductor device using such specimen inspection device and method
US11/806,722 US7408643B2 (en) 2003-05-30 2007-06-04 Method and apparatus for inspecting samples, and method for manufacturing devices using method and apparatus for inspecting samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153902A JP4230280B2 (ja) 2003-05-30 2003-05-30 欠陥検査方法及びその検査方法を用いたデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2004356471A JP2004356471A (ja) 2004-12-16
JP4230280B2 true JP4230280B2 (ja) 2009-02-25

Family

ID=34048703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153902A Expired - Lifetime JP4230280B2 (ja) 2003-05-30 2003-05-30 欠陥検査方法及びその検査方法を用いたデバイス製造方法

Country Status (1)

Country Link
JP (1) JP4230280B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10366862B2 (en) * 2015-09-21 2019-07-30 KLA-Tencor Corporaton Method and system for noise mitigation in a multi-beam scanning electron microscopy system

Also Published As

Publication number Publication date
JP2004356471A (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4588017B2 (ja) 試料から放出された電子を用いることによって試料を検査するための写像投影型電子ビーム装置
JP4230280B2 (ja) 欠陥検査方法及びその検査方法を用いたデバイス製造方法
JP2006278029A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2002141010A (ja) 電子線装置及びその電子線装置を用いたデバイスの製造方法
JP2002352763A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2006019032A (ja) パターン評価装置、パターン評価方法及び該方法を用いたデバイス製造方法
JP4068003B2 (ja) 電子線装置
JP3723106B2 (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP3907943B2 (ja) 欠陥検査方法及びその方法を用いたデバイス製造方法
JP4053461B2 (ja) パターン評価方法及びデバイス製造方法
JP2004335193A (ja) 電子線を用いた試料評価方法及び電子線装置
JP4235488B2 (ja) 電子線装置、該装置を用いたパターン評価方法及び該装置を用いたデバイス製造方法
JP2003142020A (ja) 電子線装置及びその装置を用いたデバイスの製造方法
JP2005085618A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2006032278A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2002148227A (ja) 表面検査方法及び装置並びにデバイス製造方法
JP2005158642A (ja) パターンを評価する方法及びデバイス製造方法
JP2001133234A (ja) 欠陥検査方法、欠陥検査装置及びそれらを用いた半導体デバイスの製造方法
JP2002139465A (ja) 欠陥検査装置および該欠陥検査装置を用いたデバイス製造方法
JP2003132834A (ja) 電子線装置及びこの装置を用いたデバイス製造方法
JP4012429B2 (ja) 電子線装置及びそれを用いたデバイス製造方法
JP2003132832A (ja) 電子線装置、欠陥検査方法及び該装置及び方法を用いたデバイス製造方法
JP2006278028A (ja) 電子線装置及び該装置を用いたデバイス製造方法
JP2002141009A (ja) 電子線装置及びその電子線装置を用いたデバイスの製造方法
JP2006066181A (ja) 電子線装置及びそれを用いたデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Ref document number: 4230280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term