JP4223724B2 - 真空断熱パネル及びこれを用いた冷蔵庫 - Google Patents

真空断熱パネル及びこれを用いた冷蔵庫 Download PDF

Info

Publication number
JP4223724B2
JP4223724B2 JP2002028521A JP2002028521A JP4223724B2 JP 4223724 B2 JP4223724 B2 JP 4223724B2 JP 2002028521 A JP2002028521 A JP 2002028521A JP 2002028521 A JP2002028521 A JP 2002028521A JP 4223724 B2 JP4223724 B2 JP 4223724B2
Authority
JP
Japan
Prior art keywords
core material
urethane
insulation panel
waste
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028521A
Other languages
English (en)
Other versions
JP2003227594A (ja
Inventor
邦成 荒木
崇 井関
裕行 小林
憲治 寺井
久男 横倉
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2002028521A priority Critical patent/JP4223724B2/ja
Publication of JP2003227594A publication Critical patent/JP2003227594A/ja
Application granted granted Critical
Publication of JP4223724B2 publication Critical patent/JP4223724B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、真空断熱パネル及びこれを用いた冷蔵庫に係り、特に廃ウレタンを微粉砕して芯材に用いる真空断熱パネル及びこれを用いた冷蔵庫に好適なものである。
【0002】
【従来の技術】
近年、地球環境保護の観点から、冷蔵庫の消費電力量削減及びリサイクル率の向上の必要性が高まっている。
【0003】
冷蔵庫の消費電力は、庫内を冷却する冷凍サイクルの効率と共に、庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まる。そこで、冷蔵庫においては、消費電力量削減のために、断熱材の性能向上を図る努力がなされつつある。
【0004】
また、冷蔵庫の断熱材としては、一般に、リサイクルが難しいとされる熱硬化性樹脂の発泡ポリウレタンが用いられており、冷蔵庫が使用済みになった後に回収される廃ウレタンの多くは埋立て処分されている。一般的な冷蔵庫では、発泡ポリウレタンが冷蔵庫重量に占める割合は約9%にもなっている。そこで、冷蔵庫においては、リサイクル率を向上するために、廃ウレタンのマテリアルリサイクルに関する要素技術を構築し、現在埋立て処分されている廃ウレタンのリサイクルを図る努力がなされつつある。
【0005】
これらに関連する従来の真空断熱パネル及びこれを用いた冷蔵庫としては、特開平10−300331号公報に示されているように、優れた断熱性能を確保し、取扱性及び強度的にも優れた真空断熱パネル及びこれを用いた冷蔵庫を得るために、アルミニュームをラミネートしたガスバリア性フィルムによって内部を真空に保持されると共に芯材によって形状を保持されてなる真空断熱パネル及びこれを用いた冷蔵庫において、廃ウレタンの粉砕品と、熱反射率に優れる板状充填材と、これらを接着するバインダー剤と、を含む混合物から成る多孔体でコア材を構成し、このコア材を前述した芯材として用いるようにしたものがある。
【0006】
【発明が解決しようとする課題】
しかし、係る従来技術では、熱反射率に優れる板状充填材を用いて輻射による伝熱量を抑制することが示されているが、板状充填材であるために板状充填材間の接触が面接触になって板状充填材を介しての伝熱量が大きくなり、熱伝導率が大きくなってしまうおそれがあるという課題があった。
【0007】
そこで、この板状充填材の接触を少なくするようにバインダー剤を多量に用いたコア材とすることが考えられるが、その場合には、ウレタン粉砕品の連通化が阻害されて十分な真空度が得られなくなると共に、バインダー剤を介しての伝熱量が大きくなり、これらによって熱伝導率が大きくなってしまうおそれがあり、更にはバインダー剤から徐々に放出されるガスにより熱伝導率が経時劣化するおそれがあるという課題が生ずる。
【0008】
また、板状充填材を用いることなく少量のバインダー剤を用いたコア材とすることが考えられるが、その場合には、コア材は脆くて強度が弱くなるため、このコア材をガスバリア性フィルム中に収納して真空封止した真空断熱パネルは表面に凹凸状の窪みが発生して外観品質が劣り、また、冷蔵庫箱体中にこの真空断熱パネルを挿入して発泡ポリウレタンを充填した場合にも冷蔵庫箱体の外観ひずみ等が生じ易いという課題が生ずる。
【0009】
本発明の目的は、使用済の発泡ポリウレタンのリサイクル率向上を図りつつ熱伝導率の向上及び熱伝導率の経時劣化防止が図れると共に外観品質が優れ、しかもコア材の角部によるガスバリア性フィルムの損傷を防止できる真空断熱パネル及びこれを用いた冷蔵庫を提供することにある。
【0010】
なお、前記以外の目的と有利点は以下の記述から明らかにされる。
【0011】
【課題を解決するための手段】
前記目的を達成するために、本発明の真空断熱パネルは、ガスバリア性フィルム中に芯材を収納して真空封止した真空断熱パネルにおいて、前記芯材は、廃ウレタン微粉砕物少量のバインダー剤とが混合され圧縮形成されて角部を有するコア材と、超極細のガラス短繊維材を層状に形成し且つ前記コア材の両側に前記角部と同じ位置に端面を有して積層したガラス繊維層と、ゲッタ剤とを備えた構成としたものである。
【0012】
前記目的を達成するために、本発明の冷蔵庫は、外箱と内箱との間に真空断熱パネルを配置し、前記真空断熱パネルが前記外箱に接触するように前記外箱と前記内箱との間にウレタンを発泡して充填した冷蔵庫において、前記真空断熱パネルは、ガスバリア性フィルム中に芯材を収納し、内部を真空封止して形成し、前記芯材は、廃ウレタン微粉砕物少量のバインダー剤とが混合され圧縮形成されて角部を有するコア材と、前記ガスバリア性フィルムの前記外箱に接触する面の内側に接触し且つ前記コア材の両側に前記角部と同じ位置に端面を有して積層したガラス繊維層と、ゲッタ剤とを備えた構成としたものである。
【0013】
なお、本発明のその他の手段は以下の記述から明らかにされる。
【0014】
【発明の実施の形態】
以下、本発明の真空断熱パネル及びこれを用いた冷蔵庫の実施形態を図を用いて説明する。
【0015】
まず、本発明の一実施形態の真空断熱パネル及び冷蔵庫の構成及び製造方法を図1から図4を参照しながら説明する。
【0016】
使用済みの廃冷蔵庫は、マテリアルリサイクルするために、リサイクルプラントなどに搬入され(ステップ20)、必要な部品などが取外されて分解される(ステップ21)。
【0017】
分解された冷蔵庫は、破砕分別システムに投入され(ステップ22)、破砕されると共に(ステップ23)、断熱材中のフロンなどが回収され(ステップ24)、且つ金属・プラスチックなどが種類別に回収される(ステップ25)。
【0018】
また、この分別で回収された廃ウレタンは圧縮されて円板状の廃ウレタン圧縮材として形成され、リサイクルプラントから排出される(ステップ26)。この廃ウレタン圧縮材は、具体的には、数mm〜10mm角で一片の重量が重いプラスチック粉や細かく砕かれた微量の金属異物が混ざったものを圧縮して固めたもので脆く崩れやすい状態である。この廃ウレタン圧縮材には、廃発泡ウレタンの破砕物以外に、廃発泡ウレタンと比重が近くて風力選別で除去されなかったポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル・ブタジェン・スチレン共重合物(ABS)や金属等の異物が含まれている。
【0019】
このような異物が含まれている廃ウレタン圧縮材を真空断熱パネル11のコア材に用いると、異物がコア材の連通化を阻害して熱伝導率の低減化に支障をきたすばかりでなく、経時的なガス放出源となる。そこで、本実施形態では、真空断熱パネル11のコア材15における熱伝導率の低減及び熱伝導率の経時劣化を改良するために、後述するように廃ウレタン圧縮材から廃ウレタン以外の不純物を高精度に分別除去し、芯材15に用いるようにしている。
【0020】
また、廃ウレタン圧縮材は、独立気泡中にフロンもしくはシクロペンタンの揮発性ガスを含む廃ウレタンを破砕・粗粉砕されて形成されるが、粒径が約0.6〜1.3mmと大きく、独立気泡が全て破砕されている状態ではない。このような独立気泡が含まれている廃ウレタン圧縮材を真空断熱パネル11のコア材15に用いると、独立気泡がコア材15の連通化を阻害して熱伝導率の低減化に支障をきたすばかりでなく、経時的なガス放出源となる。そこで、本実施形態では、真空断熱パネル11のコア材15における熱伝導率の低減及び熱伝導率の経時劣化を改良するために、後述するように廃ウレタン圧縮材を微粉砕して廃ウレタン微粉砕物とし、芯材15に用いるようにしている。
【0021】
廃ウレタン圧縮材の微粉砕化と異物選別の高純度化処理を説明する。
【0022】
破砕分別システムから排出された廃ウレタン圧縮材は、真空断熱パネル製造プラントに搬送され、微粉砕・異物選別システムに投入される(ステップ30)。微粉砕・異物選別処理システムでは、廃ウレタン圧縮材はまず粗粉砕され(ステップ31)、その廃ウレタン粗粉砕物からプラスチック粉や鉄系粉末などの金属異物が選別されて取り除かれる(ステップ32)。
【0023】
係る廃ウレタン圧縮材の粗粉砕及び異物選別において、廃ウレタン圧縮材はロータリ型の特殊カッタによる一軸せん断式で5mm程度のチップに破砕され、その粗粉砕物は選別コンベアで高速搬送されて風力差で重量の重いプラスチック粉が選別され、取り除かれる。残った粗粉砕物からスパイラルマグネットを用いて鉄系粉末の金属異物が選別されて取り除かれる。
【0024】
そして、金属異物が取り除かれた廃ウレタン粗粉砕物は、さらに細かく微粉砕されると共に(ステップ33)、廃ウレタン微粉砕物14として微粉砕・選別システムから排出される(ステップ35)。これによって、600μm以上の粒径比率のものが50%を超えバラツキも大きかった微粉砕処理前の廃ウレタン圧縮材は、微粉砕処理後に平均粒径が100μm以下となり、異物選別処理前に69〜85%であったウレタン純度の廃ウレタン圧縮材は、異物選別処理後にウレタン純度が95%以上を有するバラツキの少ない安定した廃ウレタン微粉砕物14となることが判明した。なお、廃ウレタン微粉砕物14の粒子径は、レーザー回折・散乱法によるマイクロトラック粒度分析計を用いて測定した。
【0025】
排出された廃ウレタン微粉砕物14は少量のバインダー剤と混練されてコア材15が形成される(ステップ40)。少量のバインダー剤を用いることによって、廃ウレタン微粉砕物14の連通化の阻害及びバインダー剤からのガス放出を抑制することが可能となり、熱伝導率の向上及び熱伝導率の経時劣化防止を図ることができる。特に、5〜20重量%のバインダー剤を混練することにより、熱伝導率の向上及び熱伝導率の経時劣化防止が図れることが後述する実施例1〜5で明らかになった。なお、バインダー剤としては、フェノール樹脂、ウレタン樹脂、セルロース樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂等が使用できる。
【0026】
また、別途、超極細のガラス短繊維材を層状にしたガラス繊維層6が形成される(ステップ41)。ガラス繊維層6は、具体的には、平均径3μm以下で且つ平均長さ10mm以下のガラス短繊維材が用いられ、ウール状、フェルト状またはシート状に形成される。ガラス短繊維材の平均長さは5〜10mm程が特に好ましい。
【0027】
更には、別途、ゲッタ剤4が形成される(ステップ42)。このゲッタ剤4としては、モレキュラーシーブス、シリカゲル、酸化カルシウム、ゼオライト、活性炭等、炭酸ガスを吸着除去するアルカリ金属としては水酸化カリウム、水酸化ナトリウム、水酸化リチウム等が用いられる。そして、ゲッタ剤は通常平均20〜300μm程度の粒径を有し、通気性を有するポリエチレン製、ポリプロレン製、ポリエチレンテレフタレート製等の不織布に充填されている。
【0028】
そして、コア材15とガラス繊維層6とが積層され、ガスバリア性フィルム2中にゲッタ剤4と共に収納されて芯材13が形成される。この芯材13が収納された状態でガスバリア性フィルム2が真空封止される(ステップ43)。このガスバリア性フィルム2としては、例えば片面にポリエチレンテレフタレートの表面保護層、中間層がアルミ箔で熱シール層が高密度ポリエチレンからなるラミネートフィルム、もう一方の面には、表面保護層がポリエチレンテレフタレート、中間層がエチレンービニルアルコール共重合樹脂の内層側にアルミ蒸着を施したフィルム層、熱シール層が高密度ポリエチレンからなるラミネートフィルムが用いられる。
【0029】
コア材15はガラス繊維層6に積層されてガスバリア性フィルム2に収納されるため、コア材15の角部などでガスバリア性フィルム2を損傷してしまうことを防止でき、確実な真空封止を行なうことができる。また、真空封止される際に、コア材15がガラス繊維層6で保護され、真空断熱パネル11の表面に外観ひずみが発生することを防止できる。
【0030】
このようにして図2に示す真空断熱パネル11が作製される。この真空断熱パネル11は薄形直方体に形成され、図示例では寸法400mm×450mm×15mmである。真空断熱パネル11の厚さ方向が伝熱方向として用いられ、この伝熱方向に交叉する両面の内側に接触するようにガラス繊維層6が配置されている。換言すれば、このガラス繊維層6の間にコア材15が配置され、これらはサンドイッチ状態に形成されている。なお、2層以上の積層構造とは、コア材15と異なるガラス繊維層6がサンドイッチされている構成を言う。
【0031】
上述のようにして作製された真空断熱パネル11は、冷蔵庫製造プラントに搬入され(ステップ50)、冷蔵庫を構成する鉄板製外箱7の平坦面内側に貼り付けられる(ステップ51)。次いで、冷蔵庫を構成するプラスチック製内箱8が外箱7に組み合わされて冷蔵庫箱体10が形成され、外箱7と内箱8との間に発泡ポリウレタン9が充填され(ステップ51)、図3及び図4に示す冷蔵庫が完成される。
【0032】
この発泡ポリウレタン9は、ポリオールを基本原料としてシクロペンタンと水、整泡剤、反応触媒の存在下でイソシアネートを反応させて得られるものである。係る発泡ポリウレタンを更に具体的に説明する。
【0033】
ポリオールとしては、m−トリレンジアミン(2,4−トリレンジアミン、2,6−トリレンジアミン)及びo−トリレンジアミン(2,3−トリレンジアミン、3,4−トリレンジアミン)から成る開始剤をプロピレンオキサイドの付加物を主に用いている。他の開始剤は、2価アルコールのプロピレングリコール,ジプロピレングリコール、3価アルコールのグリセリン,トリメチロールプロパン、多価アルコールのジグリセリン,メチルグルコシド,ソルビトール,シュークローズ,アルキレンポリアミンのエチレンジアミン,ジエチレントリアミン、アルカノールアミンのモノエタノールアミン,ジエタノールアミン,イソプロパノールアミン、その他のジアミノジフェニルメタン,ビスフェノールA,ポリメチレンポリフェニルポリアミンを種々のアルキレンオキサイドで付加物としたポリオールを用いている。
【0034】
また、イソシアネートとしては、ジフェニルメタンイソシアネート多核体を主に使用している。ジフェニルメタンジイソシアネート多核体を用いたイソシアネートは、ポリエーテルポリオール溶液と粘度差が小さいので、ポリエーテルポリオールとの相溶性が向上する。ジフェニルメタンジイソシアネート多核体を用いることによって、初期反応は比較的速くなりゲル化や硬化が遅くなるので、脱形時のフォーム膨れ量を小さくする。少量であればトリレンジイソシアネート異性体混合物、2,4−体100部、2,4−体/2,6−体=80/20,65/35(重量比)はもちろん、商品名三井コスモネートTRC,武田薬品のタケネート4040プレポリマーのウレタン変性トリレンジイソシアネート,アロファネート変性トリレンジイソシアネート,ビウレット性トリレンジイソシアネート,イソシアヌレート変性トリレンジイソシアネート等も使用できる。4,4′−ジフェニルメタンジイソシアネートとしては、主成分とする純品の他3核体以上の多核体を含有する商品名三井コスモネートM−200,武田薬品製のミリオネートMRのジフェニルメタンイソシアネート多核体を使用できる。
【0035】
また、発泡剤としては、炭化水素系発泡剤のシクロペンタン及び水を用いる。ポリオール混合物100重量部に対し、12〜18重量部のシクロペンタン及び1.0〜1.8重量部の水を組み合わせる。一般にシクロペンタンと水を多く用いれば容易に低密度化できるが、水が多いと気泡セル内の炭酸ガスの分圧が増加して膨れ量が大きくなり、シクロペンタンが多いと圧縮強度や寸法安定性が劣ってくる。
【0036】
また、反応触媒としては、テトラメチルヘキサメチレンジアミン,ペンタメチルジエチレントリアミン、3量化触媒を併用して高速反応化とキュアー性を高められる。反応触媒の配合量は、ポリオール成分100重量部に対し、2〜5重量部が好ましい。それ以外に、第3級アミンのトリメチルアミノエチルピペラジン,トリエチレンジアミン,テトラメチルエチレンジアミン、3量化触媒のトリス(3−ジメチルアミノプロピル)ヘキサヒドローS−トリアジン、遅効性触媒のジプロピレングリコール,酢酸カリジエチレングリコール等、反応性が合致すれば使用することができる。
【0037】
また、整泡剤としては、低表面張力の方が気泡セルの大きさがそろうので、フォームは一様に膨れ、一様な強度を有する。整泡剤の配合量は、ポリオール成分が100重量部あたり1.5〜4重量部である。製泡剤としては、例えばゴールドシュミット製のB−8461,B−8462,信越化学製のX−20−1614,X−20−1634,日本ユニカ製のSZ−1127,SZ−1671を用いる。
【0038】
上記材料を用いて、硬質ポリウレタンフォーム9を発泡する。発泡機は、例えばプロマート社製PU−30型発泡機が用いられる。発泡条件は、発泡機の種類によって多少異なるが通常は液温18〜30℃、吐出圧力80〜150kg/cm2、吐出量15〜30kg/min、型箱の温度は35〜45℃が好ましい条件である。
【0039】
このようにして作製された冷蔵庫は冷蔵庫製造プラントから搬送され(ステップ53)、一般家庭などで使用される。
【0040】
本実施形態では、廃ウレタン微粉砕物14に少量のバインダー剤を混練して形成したコア材15と、超極細のガラス短繊維材を層状に形成したガラス繊維層6とを積層してゲッタ剤4と共にガスバリア性フィルム2中に収納して芯材としたことにより、発泡ポリウレタンのリサイクル率の向上を図りつつ熱伝導率の向上及び熱伝導率の経時劣化防止が図れると共に外観品質が優れたものとすることができる。
【0041】
ガラス繊維層6についてさらに詳細に説明する。通常の平均繊維径が大きいグラスウール等を芯材に用いた場合には、熱伝導率が高くなるとともに熱伝導率の経時劣化が大きくなってしまう。平均繊維径が3μm以上になると、繊維が同一方向に配列し易く、繊維の接触が線接触に近くなって接触熱抵抗が小さくなるため、接触した繊維を通しての伝熱量が大きくなって断熱性能が低下してしまう。また、繊維どうしがサイジング材やバインダー剤で2重に接着されることになるが、平均繊維径が大きいほどこれらを介する面積が大きくなって接触熱抵抗が小さくなくなるため、サイジング材やバインダー剤を通しての伝熱量が大きくなって断熱性能が低下してしまう。更には、平均繊維径が大きくなるほどサイジング材とバインダー剤の有機成分よりガスの放出量が多くなって熱伝導率の経時劣化が大きくなってしまう。
【0042】
これに対し、本実施形態のように、平均径3μm以下で且つ平均長さ10mm以下のガラス短繊維材を用いたガラス繊維層6とすることにより、伝熱方向に不連続で素材間の接触熱抵抗を有効に活用することができ、しかも、接触熱抵抗の他に熱流路がジグザグとなり、それによって熱抵抗が増大して熱伝導率が低くできると共に、サイジング材やバインダー材の接触面積が減少して熱伝導率が低くでき、ガス放出量が低減して熱伝導率の経時劣化を防止することができる。
【0043】
本発明の実施例1〜5及び比較例1〜3を表1を参照しながら詳細に説明する。各実施例及び各比較例の真空断熱パネル及び冷蔵庫の作製内容は、以下に述べる各実施例及び各比較例の説明と表1に示す内容の差異とを除いて、基本的には上述した実施形態と同一である。
【0044】
【表1】
Figure 0004223724
表1には、真空断熱パネル11のコア材15の混合比率、廃ウレタン微粉砕物14の粒径(ウレタン粉粒径)、廃ウレタン微粉砕物14の純度(ウレタン粉純度)、ガラス短繊維材の繊維径、コア材15の層数、コア材15の成形温度、真空断熱パネル11の熱伝導率、冷蔵庫の熱漏洩量低減率、真空断熱パネル11及び冷蔵庫の外観品質を示す。
(実施例1)
この実施例1の硬質ポリウレタンフォーム9は、ポリオールとして、平均水酸基価が450のm−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを40重量部、平均水酸基価が470のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、平均水酸基価が380のo−トリレンジアミンにプロピレンオキサイドを付加したポリエーテルポリオールを30重量部の混合ポリオール成分100重量部に、シクロペンタン15重量部に水1.5部及び反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、イソシアネート成分としてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて発泡充填されたものである。
【0045】
また、この実施例1では、真空断熱パネル11へ廃ウレタンをマテリアルリサイクルすることを実現するため、粗粉砕・異物選別・微粉砕を行い、廃ウレタン微粉砕物14の作製処理を行ったものである。その処理工程及び測定評価は、以下の内容で行った。
【0046】
廃ウレタン圧縮材には粉体、スポンジ状発泡体、プラスチック破砕物が含まれており、まず廃ウレタン圧縮材中の任意の3ヶ所から10gを採取して総重量測定を行った後、プラスチック破砕物の選別を行なった。このプラスチック破砕物から外観色目が異なる3点(白色片/灰色片/半透明片)をFT−IR分析した結果、廃発泡ウレタン以外のABS樹脂とPP樹脂が含まれていることが判明した。プラスチック破砕物の重量を測定し、総重量とプラスチック破砕物重量との差を発泡ポリウレタンの重量とした。
【0047】
廃ウレタン圧縮材全体に対する樹脂部分の重量比は、強熱残分測定における減量分を樹脂部分とした。強熱残分測定は、試料を凍結粉末粉砕法で微粉砕し真空乾燥(70℃/3時間)を行い、四分法を用いてサンプル1gを採取し均一試料とした。電気炉中で強熱(800℃/3時間)し残分の重量を測定した。また、蛍光X線分析を用いて強熱残分をポリエステルフィルムで保持して測定した。強熱残分の重量と金属組成比から、試料全体に対する各金属成分の重量比を計算した。上記方法で異物選別処理前の廃ウレタン圧縮材には、12〜26%のウレタン以外の樹脂と3〜5%の金属異物が含まれ、異物選別処理後の廃ウレタン微粉砕物14には、約1.5%のウレタン以外の樹脂と約2%の金属異物が含まれていることが判った。これより異物選別は、プラスチック粉選別回収率が約92%、金属異物選別回収率が約51%であった。また、廃ウレタン純度は、異物選別処理前が69〜85%から異物選別処理後が96%になることを確認した。
【0048】
更に、廃ウレタン微粉砕物14の粒子径は、レーザー回折・散乱法によるマイクロトラック粒度分析計を用いて測定した。微粉砕処理前の廃ウレタン圧縮材は、0.6mm以上の粒径比率が50%を超えバラツキも大きいものであった。しかし、微粉砕後の廃ウレタン微粉砕物14は、平均粒径が60μmであり、100μm以下の粒径比率も95%以上でバラツキも少なく安定した粒径のものであった。
【0049】
また、真空断熱パネル11のコア材15は、微粉砕化した廃ウレタン微粉砕物14にフェノール樹脂粉末のバインダー剤を5重量部配合して、V字型混合機を用いて混合したものである。芯材13の熱伝導率を低減するには、粒径が小さく純度が高い方が好ましいため、微粉砕化した廃ウレタン微粉砕物14は平均粒径が60μm、純度96%の廃物を使用した。係る混合物を金型内に必要量を投入し、180℃の温度で20分間、49kPaの圧縮力で成形しコア材15を作製した。コア材15に含まれる脱ガス及び水が熱伝導率に影響するため、110℃で1時間のエージング処理を行った。
【0050】
その後、コア材15を1.0μm径のガラス短繊維層6でサンドイッチし、その層数を3層として芯材13とし、この芯材13をガスバリア性フィルム2に収納し、更にガスを吸着するゲッタ剤4(モレキュラーシーブス13X/活性炭)をガスバリア性フィルム2に収納する。この状態で、真空包装機のロータリーポンプで10分、拡散ポンプで10分、ガスバリア性フィルム2の内部圧力が1.3Paになるまで排気した後、ガスバリア性フィルム2の端部をヒートシールで封止して真空断熱パネル11を作製した。
【0051】
このようにして得られた真空断熱パネル11の熱伝導率を、英弘精機(株)製のAUTO−Λにて測定した。その結果を表1に示す。熱伝導率は、初期で5.5mW/m・K、1ヶ月後には6.2mW/m・Kとなった。また、作製した真空断熱パネル11の3枚を冷蔵庫箱体10中に挿入した冷蔵庫は、後述する比較例1に対して熱漏洩量の低減率が3.5%であり、外観ひずみも発生せず良好であった。
(実施例2)
この実施例2は、実施例1と比較して、以下の点が相違する。廃ウレタン微粉砕物14には平均粒径が70μm、純度99%のものを用いた。また、ガラス短繊維材6には1.5μm径のものを用いた。
【0052】
この実施例2の真空断熱パネル11の熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期で5.8mW/m・K、1ヶ月後には6.5mW/m・Kとなった。また、作製した真空断熱パネル11の3枚を冷蔵庫箱体10中に挿入した冷蔵庫は、比較例1に対して熱漏洩量の低減率が3.2%であり、外観ひずみも発生せず良好であった。
(実施例3)
この実施例3は、実施例1と比較して、以下の点が相違する。廃ウレタン微粉砕物14には平均粒径が80μm、純度95%のものを用いた。そして、真空断熱パネル11のコア材15として、廃ウレタン微粉砕物14の90重量部にフェノール樹脂粉末のバインダー剤を10重量部配合し、V字型混合機を用いて混合し、この混合物を金型内に必要量を投入し、170℃の温度で20分間、49kPaの圧縮力で成形した。さらには、ガラス短繊維材6には2.0μm径のものを用い、芯材13の層数は5層としたものである。
【0053】
この実施例3の真空断熱パネル11の熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期で6.0mW/m・K、1ヶ月後には6.8mW/m・Kとなった。また、作製した真空断熱パネル11の3枚を冷蔵庫箱体10中に挿入した冷蔵庫は、比較例1に対して熱漏洩量の低減率が3.0%であり、外観ひずみも発生せず良好であった。
(実施例4)
この実施例4は、実施例1と比較して、以下の点が相違する。廃ウレタン微粉砕物14には平均粒径が90μm、純度97%のものを用いた。そして、真空断熱パネル用11のコア材15として、廃ウレタン微粉砕物14の85重量部にフェノール樹脂粉末のバインダー剤を15重量部配合して、V字型混合機を用いて混合し、その混合物を金型内に必要量を投入し、160℃の温度で20分間、49kPaの圧縮力で成形した。ガラス短繊維材6には2.5μm径のものを用いた。
【0054】
この実施例4の真空断熱パネル11の熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期で6.3mW/m・K、1ヶ月後には7.0mW/m・Kとなった。また、作製した真空断熱パネル11の3枚を冷蔵庫箱体10中に挿入した冷蔵庫は、比較例1に対して熱漏洩量の低減率が2.8%であり、外観ひずみも発生せず良好であった。
(実施例5)
この実施例5は、実施例1と比較して、以下の点が相違する。廃ウレタン微粉砕物14には平均粒径が100μm、純度97%のものを使用した。そして、真空断熱パネル11のコア材15として、廃ウレタン微粉砕物14の80重量部にフェノール樹脂粉末のバインダー剤を20重量部配合して、V字型混合機を用いて混合し、その混合物を金型内に必要量を投入し、170℃の温度で20分間、49kPaの圧縮力で成形した。また、ガスバリア性フィルム2にコア材15を3.0μm径のガラス短繊維材6でサンドイッチし、芯材13の層数を2層とし、更にガスを吸着するゲッタ剤4(モレキュラーシーブス13X/活性炭)を詰めたものである。
【0055】
この実施例5の真空断熱パネル11の熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期で6.5mW/m・K、1ヶ月後には7.3mW/m・Kとなった。また、作製した真空断熱パネル11の3枚を冷蔵庫箱体10中に挿入した冷蔵庫は、比較例1に対して熱漏洩量の低減率が2.5%であり、外観ひずみも発生せず良好であった。
(比較例1)
比較例1の真空断熱パネルのコア材には、微粉砕化及び異物選別を遂行していない廃ウレタン粉砕物(平均粒径150μm、純度80%の廃物)を用いた。廃ウレタン粉砕物にフェノール樹脂粉末のバインダー剤を5重量部配合して、V字型混合機を用いて混合した。その後、混合物を金型内に必要量を投入し、160℃の温度で20分間、49kPaの圧縮力で成形しコア材15を作製した。更にガスを吸着するゲッタ剤4(モレキュラーシーブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱パネルの内部圧力が1.3Paになるまで排気した後、端部をヒートシールで封止して真空断熱パネルを作製した。ガラス短繊維材は使用せず芯材は1層とした。
【0056】
このようにして得られた比較例1の真空断熱パネルの熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期が20.5mW/m・Kと高く、1ヶ月後には32.5mW/m・Kと更に高くなった。また、この真空断熱パネルを3枚冷蔵庫箱体10中に挿入した冷蔵庫は、熱漏洩量の低減の基準としており、外観ひずみが発生した。
(比較例2)
比較例2の真空断熱パネルのコア材には、微粉砕化及び異物選別を遂行していない廃ウレタン粉砕物(平均粒径500μm、純度85%の廃物)を用いた。廃ウレタン粉砕物にフェノール樹脂粉末のバインダー剤を50重量部配合して、V字型混合機を用いて混合した。その後、混合物を金型内に必要量を投入し、180℃の温度で20分間、49kPaの圧縮力で成形しコア材を作製した。更に、ガスバリア性フィルムにコア材を平均繊維径が4.0μmのガラス短繊維材6でサンドイッチし、芯材の層数を3層とし、更にガスを吸着するゲッタ剤4(モレキュラーシーブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱パネルの内部圧力が1.3Paになるまで排気した後、端部をヒートシールで封止して真空断熱パネルを作製した。
【0057】
このようにして得られた比較例2の真空断熱パネルの熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期が16.5mW/m・Kと高く、1ヶ月後には28.5mW/m・Kと更に高くなった。また、この真空断熱パネルを3枚冷蔵庫箱体10中に挿入した冷蔵庫は、比較例1に対して熱漏洩量の低減が見られなかった。
(比較例3)
比較例3の真空断熱パネルのコア材には、微粉砕化及び異物選別を遂行していない廃ウレタン粉砕物5(平均粒径300μm、純度88%の廃物)を用いた。廃ウレタン粉砕物5にフェノール樹脂粉末のバインダー剤を30重量部に配合して、V字型混合機を用いて混合した。その後、混合物を金型内に必要量を投入し、170℃の温度で20分間、49kPaの圧縮力で成形しコア材を作製した。更に、ガスバリア性フィルムにコア材を平均繊維径が6.0μmのガラス短繊維層でサンドイッチし、芯材の層数を5層とし、更にガスを吸着するゲッタ剤4(モレキュラーシーブス13X/活性炭)を詰め、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空断熱パネルの内部圧力が1.3Paになるまで排気した後、端部をヒートシールで封止して真空断熱パネルを作製した。
【0058】
このようにして得られた比較例3の真空断熱パネルの熱伝導率を英弘精機(株)製のAUTO−Λにて測定した結果を表1に示す。熱伝導率は、初期が11.2mW/m・Kと高く、1ヶ月後には16.5mW/m・Kと更に高くなった。また、この真空断熱パネルを3枚冷蔵庫箱体10中に挿入した冷蔵庫では、比較例1に対して熱漏洩量の低減はほとんど見られなかった。
【0059】
【発明の効果】
本発明によれば、使用済の発泡ポリウレタンのリサイクル率向上を図りつつ熱伝導率の向上及び熱伝導率の経時劣化防止が図れると共に外観品質が優れ、しかもコア材の角部によるガスバリア性フィルムの損傷を防止できる真空断熱パネル及びこれを用いた冷蔵庫を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の真空断熱パネル及びこれを用いた冷蔵庫の製造工程を示すフローチャート図である。
【図2】図1で製造された真空断熱パネルの断面模式図である。
【図3】図2の真空断熱パネルを挿入した冷蔵庫断熱箱体の斜視模式図である。
【図4】図3の真空断熱パネル挿入部の断面拡大模式図である。
【符号の説明】
2…ガスバリア性フィルム、4…ゲッタ剤、6…ガラス繊維層、7…外箱、8…内箱、9…発泡ポリウレタン、10…冷蔵庫箱体、11…真空断熱パネル、13…芯材、14…廃ウレタン微粉砕物、15…コア材。

Claims (5)

  1. ガスバリア性フィルム中に芯材を収納して真空封止した真空断熱パネルにおいて、
    前記芯材は、廃ウレタン微粉砕物少量のバインダー剤とが混合され圧縮形成されて角部を有するコア材と、超極細のガラス短繊維材を層状に形成し且つ前記コア材の両側に前記角部と同じ位置に端面を有して積層したガラス繊維層と、ゲッタ剤とを備えた
    ことを特徴とする真空断熱パネル。
  2. 請求項1において、
    前記バインダー剤はコア材混合比率で5〜20重量%の範囲内とし
    前記ガラス繊維層は平均径が3μm以下で且つ平均長が10mm以下の前記ガラス短繊維材を用いてウール状、フェルト状またはシート状に形成し、
    前記廃ウレタン微粉砕物は平均粒径が100μm以下で95%以上のウレタン純度を有する廃ウレタンを用いた
    ことを特徴とする真空断熱パネル。
  3. 廃冷蔵庫などから回収された廃ウレタンを微粉砕し、
    この微粉砕された廃ウレタン微粉砕物少量のバインダー剤混合して圧縮成形して角部を有するコア材を形成し、
    超極細のガラス短繊維材を層状にしたガラス繊維層を形成し、
    前記コア材の両側に前記角部と同じ位置に端面を有して前記ガラス繊維層を積層して当該コア材及び当該ガラス繊維層をゲッタ剤と共にガスバリア性フィルム中に芯材として収納し、
    前記ガスバリア性フィルムを真空封止する
    ことを特徴とする真空断熱パネルの製造方法。
  4. 外箱と内箱との間に真空断熱パネルを配置し、前記真空断熱パネルが前記外箱に接触するように前記外箱と前記内箱との間にウレタンを発泡して充填した冷蔵庫において、
    前記真空断熱パネルは、ガスバリア性フィルム中に芯材を収納し、内部を真空封止して形成し、
    前記芯材は、廃ウレタン微粉砕物少量のバインダー剤とが混合され圧縮形成されて角部を有するコア材と、前記ガスバリア性フィルムの前記外箱に接触する面の内側に接触し且つ前記コア材の両側に前記角部と同じ位置に端面を有して積層したガラス繊維層と、ゲッタ剤とを備えた
    ことを特徴とする冷蔵庫。
  5. 請求項において、
    前記ガラス短繊維層は平均径が3μm以下から成る超極細のガラス短繊維材を層状に形成し、
    前記バインダー剤は5〜20重量%のコア材混合比率とし、
    前記廃ウレタン微粉砕物は平均粒径が100μm以下で95%以上のウレタン純度を有する廃発泡ウレタンを用いた
    ことを特徴とする冷蔵庫。
JP2002028521A 2002-02-05 2002-02-05 真空断熱パネル及びこれを用いた冷蔵庫 Expired - Fee Related JP4223724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028521A JP4223724B2 (ja) 2002-02-05 2002-02-05 真空断熱パネル及びこれを用いた冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028521A JP4223724B2 (ja) 2002-02-05 2002-02-05 真空断熱パネル及びこれを用いた冷蔵庫

Publications (2)

Publication Number Publication Date
JP2003227594A JP2003227594A (ja) 2003-08-15
JP4223724B2 true JP4223724B2 (ja) 2009-02-12

Family

ID=27749702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028521A Expired - Fee Related JP4223724B2 (ja) 2002-02-05 2002-02-05 真空断熱パネル及びこれを用いた冷蔵庫

Country Status (1)

Country Link
JP (1) JP4223724B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084077A (ja) * 2004-09-15 2006-03-30 Hitachi Home & Life Solutions Inc 真空断熱材、及び真空断熱材を用いた冷蔵庫
EP1916465B1 (en) 2006-10-26 2013-10-23 Vestel Beyaz Esya Sanayi Ve Ticaret A.S. Vacuumed heat barrier
KR101205812B1 (ko) 2011-07-26 2012-11-28 한국신발피혁연구소 샌드위치 패널 및 그 제조방법
CN105216401A (zh) * 2015-09-22 2016-01-06 苏州维艾普新材料股份有限公司 一种可弯折异型真空绝热板的制备方法
CN107639920A (zh) * 2017-09-20 2018-01-30 宣汉正原微玻纤有限公司 一种低导热系数复合干法热压真空绝热板芯材及其制备方法
CN115231896B (zh) * 2022-07-13 2023-05-12 泰山玻璃纤维有限公司 一种真空绝热板生产方法

Also Published As

Publication number Publication date
JP2003227594A (ja) 2003-08-15

Similar Documents

Publication Publication Date Title
KR100548660B1 (ko) 연속 기포 경질 폴리우레탄 발포체 및 이의 제조방법
US10456962B2 (en) Heat-insulating wall, and heat-insulating housing and method for producing the same
US5575871A (en) Heat insulating material and method for producing same
JPH10509922A (ja) 断熱体
AU2006245777B2 (en) Method for the production of vacuum insulation panels
EP2930413A1 (en) Heat-insulating material and manufacturing process therefor, and insulation method
JP4580844B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
JP4223724B2 (ja) 真空断熱パネル及びこれを用いた冷蔵庫
KR100623101B1 (ko) 냉장고 및 진공 단열 패널 및 그 제조 방법
JP2007056973A (ja) 真空断熱パネル及びそれを用いた冷蔵庫
JP4223725B2 (ja) 真空断熱パネル及びこれを用いた冷蔵庫
CA2294854A1 (en) Combined polystyrene and polyurethane vacuum insulating panel and the use thereof for producing insulating elements
JPH06213561A (ja) 断熱材及びそれを用いた冷蔵庫
JP2001349492A (ja) 廃棄物等を利用した積層断熱材およびその製造方法
JP2004162914A (ja) 真空断熱材及びその製造方法
JPH07110097A (ja) 断熱材
PL181643B1 (en) Thermally insulating element
JPS6321475A (ja) 断熱体
JP2001349664A (ja) 廃棄物等を利用した真空断熱に用いる真空断熱材およびそれに用いるコア材の製造方法
JP2004084847A (ja) 真空断熱パネル及びそれを用いた冷蔵庫
JPS62147275A (ja) 断熱体の製造方法
JPS63189772A (ja) 断熱体
JPS6259373A (ja) 断熱体
Vos et al. Polyurethane foam based vacuum panel technology
JP2006090497A (ja) 真空断熱材、冷蔵庫または自動販売機、真空断熱材複合パネル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees