JP4211151B2 - ディーゼルエンジンの燃料噴射制御装置 - Google Patents

ディーゼルエンジンの燃料噴射制御装置 Download PDF

Info

Publication number
JP4211151B2
JP4211151B2 JP23135199A JP23135199A JP4211151B2 JP 4211151 B2 JP4211151 B2 JP 4211151B2 JP 23135199 A JP23135199 A JP 23135199A JP 23135199 A JP23135199 A JP 23135199A JP 4211151 B2 JP4211151 B2 JP 4211151B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection
fuel
nox
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23135199A
Other languages
English (en)
Other versions
JP2001055950A (ja
Inventor
智明 齊藤
友巳 渡辺
光徳 近藤
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP23135199A priority Critical patent/JP4211151B2/ja
Publication of JP2001055950A publication Critical patent/JP2001055950A/ja
Application granted granted Critical
Publication of JP4211151B2 publication Critical patent/JP4211151B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンの排気通路に酸素過剰雰囲気の排気中のNOxを吸収するNOx吸収材を配設するとともに、このNOx吸収材からNOxを放出させるときには、排気中の酸素濃度が低下するように燃料噴射量等を制御するようにした燃料噴射制御装置に関する。
【0002】
【従来の技術】
従来より、この種のディーゼルエンジンの燃料噴射制御装置として、例えば特開平6−212961号公報に開示されるように、気筒の圧縮上死点近傍で通常の燃料噴射を行う他に、所定の運転状態では膨張行程中期から排気行程にかけて少量の燃料(軽油)を追加供給して、排気中の還元剤成分の濃度を高めることにより、排気通路に設けたNOx吸収材の機能を回復(リフレッシュ)させるようにしたものが知られている。
【0003】
すなわち、ディーゼルエンジンは通常、空燃比がかなりリーンな状態(例えばA/F≧18くらいで、排気中の酸素濃度が4%以上)で運転されるが、そのリーンな状態の排気中でNOxを還元浄化することは極めて難しいので、排気中の酸素濃度が高いときにNOxを吸収する一方、酸素濃度が減少すればNOxを放出するいわゆるNOx吸収材を用いる技術がある。
【0004】
そして、前記NOx吸収材はNOxの吸収量が増えるに連れて吸収性能が低下する性質を有するので、前記従来の燃料噴射装置では、NOx吸収材の吸収性能が大きく低下する前に、気筒の膨張行程で追加の燃料を噴射し、この燃料の燃焼(後燃え)により排気中の酸素を消費させて酸素濃度を例えば0.5%以下に低下させるとともに、排気中のCOやHC等の還元剤成分の濃度を高めて、その還元剤成分によりNOx吸収材からのNOxの放出を促し、かつそのNOxを十分に還元浄化して、NOx吸収材の吸収性能を回復させるようにしている。
【0005】
【発明が解決しようとする課題】
ところで、一般に、前記のようなNOx吸収材は、NOxを吸収したり放出したりする作用が温度状態に依存することが知られており、一例を挙げれば、NOx吸収材による排気中のNOx浄化率は、例えば図3(a)に示すように所定の温度範囲では十分に高いものの、温度状態が低い触媒の未暖機時には急速に低下するという特性を有する。このようなNOx吸収材の特性に対し、熱効率に優れるディーゼルエンジンではガソリンエンジンに比べて排気温度が低くなりやすいので、エンジンの運転状態によってはNOx吸収材の温度状態が前記所定の温度範囲よりも低くなってしまい、NOxの吸収及び放出作用を十分に発揮させることができないという問題がある。
【0006】
また、前記従来例のように、NOx吸収材をリフレッシュするときに、気筒の膨張行程で追加の燃料を噴射するようにすると、この燃料の燃焼状態が著しく悪くなってスモーク排出量が急増する虞れがあり、また、エンジン出力に寄与しない余分な燃料が噴射されることにもなるので、燃費悪化が著しいという不具合がある。
【0007】
本発明は斯かる諸点に鑑みてなされたものであり、その目的とするところは、ディーゼルエンジンの排気通路にNOx吸収材を配置して、酸素過剰雰囲気の排気中のNOxを浄化するようにしたものにおいて、特に前記NOx吸収材のリフレッシュのときの燃料噴射制御の手順に工夫を凝らして、燃費の悪化やスモークの急増を招くことなく、NOx吸収材の温度状態を高めて、NOxの放出等を促進することにある。
【0008】
【課題を解決するための手段】
前記の目的を達成すべく、本発明の解決手段では、排気通路にNOx吸収材が配設されたディーゼルエンジンにおいて、このNOx吸収材からNOxを放出させるときには、遅くとも燃料噴射量を増量補正するのと同時に、燃料噴射弁による気筒の圧縮上死点近傍での燃料噴射(以下、主噴射ともいう)を複数回に分割して、その噴射回数が増大するようにした。
【0009】
具体的に、請求項1の発明では、図1に示すように、エンジン1の気筒2内燃焼室4に燃料を直接、噴射供給する燃料噴射弁5と、エンジン1の排気通路20に配設され、酸素濃度の高い酸素過剰雰囲気の排気中のNOxを吸収する一方、酸素濃度の低下に伴い前記吸収したNOxを放出するNOx吸収材22と、前記燃料噴射弁5による燃料の噴射状態を少なくともエンジン1の運転状態に応じて制御する基本燃料噴射制御手段35aと、前記NOx吸収材22からNOxを放出させるとき、排気中の酸素濃度が低下するように前記燃料噴射弁5による燃料噴射量を増量補正する噴射量補正手段35bとを備えたディーゼルエンジンの燃料噴射制御装置Aを前提とする。そして、前記NOx吸収材22からNOxを放出させるとき、遅くとも前記噴射量補正手段35bによる燃料噴射量の増量補正と同時に、燃料噴射弁5によ気筒2の圧縮上死点近傍での燃料噴射回数を増大させる噴射形態補正手段35cを設ける構成とする。
【0010】
前記の構成により、エンジン1の運転中にNOx吸収材22からNOxを放出させるときには、遅くとも噴射量補正手段35bにより燃料噴射量が増量補正される時点で、噴射形態補正手段35cによる噴射形態の補正制御が行われ、燃料噴射弁5により主噴射が複数回に分割して行われて、その噴射回数が増大するこの噴射回数の増大により、気筒2の圧縮上死点近傍で噴射された燃料の空気との混合状態が大幅に改善され、燃焼による熱発生率が増大するとともに、燃焼の終了が遅角側にずれて、排気温度が高まることで、NOx吸収材22の温度状態が速やかに高められる。
【0011】
また、前記噴射量補正手段35bにより燃料噴射量が増量補正されることで、排気中の酸素濃度が低下しかつCOやHC等の還元剤成分の濃度が高まるので、前記のように温度状態の高いNOx吸収材22からNOxの放出を促しかつ十分に還元浄化すること(即ちNOx吸収材のリフレッシュ)ができる。また、前記のように主噴射の分割回数が増大することによってもCO,HC等の濃度が高まる傾向があり、このこともNOx吸収材のリフレッシュに有利になる。しかも、前記の主噴射の分割によって燃焼状態が大幅に改善されているので、燃料噴射量を増量してもスモークの急増を招くことはない。
【0012】
請求項2の発明では、噴射形態補正手段を、噴射量補正手段による燃料噴射量の増量補正が行われる前に、燃料噴射弁による気筒の圧縮上死点近傍での燃料噴射回数を増大させるものとする。
【0013】
こうすることで、NOx吸収材のリフレッシュのために燃料噴射量を増量する前に、予めそのNOx吸収材の温度状態を高めることができるので、極めて効率良くNOx吸収材をリフレッシュすることができる。また、前記したように、燃料噴射回数が増大すると、排気中のHC,CO濃度が高まる傾向があるので、その後の燃料噴射量の増量に伴い、エンジンの燃焼室の空燃比が一時的にNOx生成の盛んな状態になっても、大気中へのNOx排出量が急増することを抑制できる。
【0014】
請求項3の発明では、噴射形態補正手段を、気筒の圧縮上死点近傍における燃料噴射の回数を2回ないし7回のいずれか1つに設定するとともに、燃料噴射弁を、一度閉じてから次に開くまでの噴射休止間隔が500マイクロ秒ないし1ミリ秒の範囲内になるように開閉作動させるものとする。こうすれば、請求項1又は2の発明による作用効果を十分に得ることができる。
【0015】
請求項4の発明では、基本燃料噴射制御手段を、燃料噴射弁により気筒の圧縮上死点近傍において燃料を一括して噴射させるものとする。こうすることで、燃料噴射弁の開閉作動回数を相対的に少なくすることができ、該燃料噴射弁の信頼性の向上が図られる。
【0016】
請求項5の発明では、基本燃料噴射制御手段を、燃料噴射弁により気筒の圧縮上死点近傍において燃料を2回以上に分割して噴射させるとともに、該燃料噴射弁を、一度閉じてから次に開くまでの噴射休止間隔が100マイクロ秒ないし1ミリ秒の範囲内になるように開閉作動させるものとする。また、噴射形態補正手段を、前記燃料噴射弁による燃料噴射の噴射休止間隔を増大させるものとする。
【0017】
この構成では、車両の通常の走行状態でも基本燃料噴射制御手段により主噴射の分割制御が行われ、全体として燃焼改善が図られる。また、そうして分割して行う燃料噴射の回を増大させるだけでなく、噴射休止間隔を増大させることによっても排気中のCO,HC等の濃度が高まる傾向があり、そのこと利用してNOx吸収材のリフレッシュを促進できる。
【0018】
請求項6の発明では、請求項2の発明における噴射形態補正手段は、気筒の圧縮上死点近傍における燃料噴射の回数を、燃料噴射量の増量補正前の方が該増量補正の開始後よりも多くなるように補正するものとする。このことで、燃料噴射の回数を増やすと、排気温度が高くなる傾向があるので、燃料噴射量の増量補正前にNOx吸収材の温度状態を速やかに高めることができる。
【0019】
請求項7の発明では、噴射形態補正手段を、噴射量補正手段により燃料噴射量が増量補正されるとき、気筒の圧縮上死点近傍での燃料噴射に加えて、燃料噴射弁により少なくとも1回の追加の燃料噴射を行わせるものとする。こうすることで、エンジンの1回の燃焼サイクルにおける燃料噴射総量が多くなっても、圧縮上死点近傍での燃料噴射量が過度に多くなることがないので、エンジンの燃焼状態の悪化やトルク変動を抑制することができる。
【0020】
請求項8の発明では、請求項7の発明における噴射形態補正手段を、追加の燃料噴射として気筒の吸気行程ないし圧縮行程、又は膨張行程前半のいずれか一方での副噴射を行わせるとともに、気筒の圧縮上死点近傍における燃料噴射の回数及び噴射休止間隔の少なくとも一方を、エンジンの出力トルクが減少するように補正するものとする。このことで、燃料噴射量の増量補正に伴うエンジン出力の増大を緩和して、NOx吸収材をリフレッシュするときにトルクショックが発生することを防止できる。
【0021】
請求項9の発明では、請求項8の発明における噴射形態補正手段を、気筒の圧縮上死点近傍において燃料噴射弁によりエンジンの要求出力に対応する分量の燃料を噴射させるとともに、噴射量補正手段による増量補正分の燃料を副噴射させるものとする。こうすることで、気筒の圧縮上死点近傍では燃料噴射弁によりエンジンの要求出力に対応する基本的な燃料噴射量の噴射を行い、一方、増量補正分の燃料は副噴射により噴射させればよいので、制御手順の簡略化が図られる。
【0022】
【発明の実施の形態】
(全体構成)
図2は本発明の実施形態に係るディーゼルエンジンの燃料噴射制御装置Aの全体構成を示し、1は車両に搭載された多気筒ディーゼルエンジンである。このエンジン1は複数の気筒2,2,…(1つのみ図示する)を有し、その各気筒2内に往復動可能にピストン3が嵌挿されていて、このピストン3によって各気筒2内に燃焼室4が区画されている。また、燃焼室4の上面の略中央部には、インジェクタ(燃料噴射弁)5が先端部の噴孔を燃焼室4に臨ませて配設され、各気筒毎の所定の噴射タイミングで開閉作動されて、燃焼室4に燃料を直接、噴射供給するようになっている。
【0023】
前記各インジェクタ5は燃料を高圧状態で蓄えるためのコモンレール6に接続されている。このコモンレール6には、内部の燃圧(コモンレール圧)を検出する圧力センサ6aが配設されているとともに、クランク軸7により駆動される高圧供給ポンプ8が接続されていて、この高圧供給ポンプ8の作動によりコモンレール6内の燃圧を所定値以上に保持するようになっている。また、クランク軸7の回転角度を検出する電磁ピックアップからなるクランク角センサ9が設けられている。このクランク角センサ9は、クランク軸7端に配設された被検出用プレート(図示せず)の外周に相対向するように配置され、該被検出用プレートの外周部に形成された突起部の通過に対応して、パルス信号を出力する。
【0024】
エンジン1の一側(図の左側)には、各気筒2の燃焼室4に対し図外のエアクリーナで濾過した吸気(空気)を供給する吸気通路10が接続されており、この吸気通路10の下流端部は、図示しないサージタンクを介して気筒毎に分岐し、それぞれ吸気ポートにより各気筒2の燃焼室4に連通されている。また、サージタンク内で各気筒2に供給される過給圧力を検出する吸気圧センサ10aが設けられている。前記吸気通路10には上流側から下流側に向かって順に、エンジン1に吸入される吸気流量を検出するホットフィルム式エアフローセンサ11と、後述のタービン21により駆動されて吸気を圧縮するブロワ12と、このブロワ12により圧縮した吸気を冷却するインタークーラ13と、吸気通路10の断面積を絞る吸気絞り弁14とがそれぞれ設けられている。この吸気絞り弁14は、全閉状態でも吸気が流通可能なように切り欠きが設けられたバタフライバルブからなり、後述のEGR弁24と同様、ダイヤフラム15に作用する負圧の大きさが負圧制御用の電磁弁16により調節されることで、弁の開度が制御されるようになっている。
【0025】
一方、エンジン1の他側(図の右側)には、各気筒2の燃焼室4から排気を排出する排気通路20が接続され、この排気通路20の上流端部は分岐して、それぞれ図示しない排気ポートにより各気筒2の燃焼室4に連通されており、その排気通路の20の集合部に排気中の酸素濃度を検出するためのO2センサ17が配設されている。また、エンジン1のウォータジャケットに臨んで冷却水温度(エンジン水温)を検出する水温センサ18が配設されている。さらに、前記排気通路20には上流側から下流側に向かって順に、排気流により回転されるタービン21と、排気中の有害成分を浄化する排気浄化用触媒22とが配設されている。前記タービン21及びブロワ12からなるターボ過給機25は、詳しくは図示しないが、タービン21の全周を囲むように配設された複数のフラップを有し、その各フラップの回動によりノズル断面積を変化させて、タービン21への排気流速を調整するようにしたVGT(バリアブルジオメトリーターボ)である。
【0026】
また、前記触媒22は、軸方向(排気の流れ方向)に沿って互いに平行に延びる多数の貫通孔を有するハニカム構造のコージェライト製担体(担体部材)を有し、その各貫通孔壁面に触媒層を2層に形成したものである。具体的には、内側触媒層には白金Pt等の貴金属とNOx吸収材であるバリウムBaとが、多孔質材料であるアルミナやセリアをサポート材として担持されており、一方、外側触媒層には白金Pt及びロジウムRhとBaとが多孔質材料であるゼオライトをサポート材として担持されている。
【0027】
この触媒22は、排気中の酸素濃度が高いとき、即ち燃焼室4の空燃比がリーンな状態のときにNOxを吸収する一方、燃焼室4の空燃比が略理論空燃比付近か又はそれよりもリッチな状態になって排気中の酸素濃度が低下すると、吸収したNOxを放出して還元浄化する吸収還元タイプのものである。ここで、バリウムBaによるNOxの吸収及び放出作用は温度状態に依存し、例えば図3(a)に示すように、排気中のNOxを吸収することによる触媒22の浄化率は約250°C〜約400°Cの温度範囲で極めて高くなるものの、それよりも温度状態の低い未暖機状態では、温度の低下とともに急速に低下してしまう。また、温度状態が400°C以上になると、NOx浄化率は温度上昇とともに低下する。さらに、白金Pt等の貴金属の触媒活性も温度状態が低いときには低下するので、同図(b)に示すように、バリウムBaから放出されたNOxを還元浄化するときの浄化率も250°C未満では急速に低下している。
【0028】
尚、前記触媒22において、バリウムBaに代えてそれ以外のアルカリ土類金属やナトリウムNa等のアルカリ金属、又は希土類金属のうちの少なくとも一種を用いるようにしてもよい。また、前記内側触媒層のサポート材としてゼオライトを用いてもよく、その場合には前記外側触媒層のサポート材として、アルミナ又はセリアを用いてもよい。さらに、前記触媒22としては、担体の壁表面にアルミナやセリアがサポート材として担持された触媒層を形成し、このサポート材に、白金Pt、ロジウムRh、パラジウムPd等の貴金属と、カリウムK等のアルカリ金属やバリウムBa等のアルカリ土類金属とを担持した1層コートタイプのものを用いてもよい。
【0029】
前記排気通路20は、タービン21よりも上流側の部位で、排気の一部を吸気側に還流させる排気還流通路23(以下、EGR通路という)の上流端に分岐接続されている。このEGR通路23の下流端は吸気絞り弁14よりも下流側の吸気通路10に接続されており、そのEGR通路23の途中の下流端寄りには負圧作動式の排気還流量調節弁24(以下、EGR弁という)が配設されていて、排気通路20の排気の一部をEGR弁24により流量調節しながら吸気通路10に還流させる排気還流手段を構成している。すなわち、前記EGR弁24はその開度をリニアに調節可能なものであり、弁体を作動させるダイヤフラム26が負圧通路27によりバキュームポンプ(負圧源)29に接続されていて、その負圧通路27に介設された電磁弁28の作動によりEGR弁駆動負圧が調節されることによって、開閉作動される。
【0030】
尚、前記ターボ過給機25のフラップにもEGR弁24と同様にダイヤフラム30が取り付けられていて、負圧制御用の電磁弁31によりダイヤフラム30に作用する負圧が調節されることで、フラップの作動量が調節されるようになっている。
【0031】
前記各インジェクタ5、高圧供給ポンプ8、吸気絞り弁14、EGR弁24、ターボ過給機25のフラップ等はコントロールユニット(Engine Contorol Unit:以下ECUという)35からの制御信号によって作動するように構成されている。一方、このECU35には、前記圧力センサ6aからの出力信号と、クランク角センサ9からの出力信号(クランク角信号)と、エアフローセンサ11からの出力信号と、O2センサ17からの出力信号と、水温センサ18からの出力信号と、車両の運転者による図示しないアクセルペダルの操作量(アクセル開度)を検出するアクセル開度センサ32からの出力信号とが少なくとも入力されている。
【0032】
そして、インジェクタ5の作動による燃料噴射制御が行われて、燃料噴射量及び燃料噴射時期がエンジン1の運転状態に応じて制御されるとともに、高圧供給ポンプ8の作動によるコモンレール圧力、即ち燃量噴射圧の制御が行われる。また、EGR弁24の作動により排気の還流量が調節されて、各気筒内燃焼室4の空燃比がエンジン1の運転状態に応じて制御されるようになっており、これに加えて、吸気絞り弁14の作動による吸入空気量の制御とターボ過給機25のフラップの作動制御とが行われる。
【0033】
(燃料噴射制御)
具体的に、前記ECU35のメモリには、エンジン1の目標トルク及び回転数の変化に応じて実験的に決定した基本的な燃料噴射量Qのマップが電子的に格納されており、アクセル開度センサ32からの出力信号に基づいて求めた目標トルクとクランク角センサ9からの出力信号に基づいて求めたエンジン回転数とに基づいて、エンジン1の要求出力に対応する基本燃料噴射量Qbaseが前記燃料噴射量マップから読み込まれる。そして、その要求出力に対応する分量の燃料が基本的には各気筒2の圧縮上死点(TDC)近傍で噴射され(以下、主噴射という)、エンジン1は燃焼室4の空燃比がかなりリーンな状態で運転される。
【0034】
また、前記ECU35のメモリには、前記燃料噴射量マップと同様に目標トルクとエンジン回転数とに応じて、気筒2の圧縮上死点近傍における燃料の噴射形態を設定した噴射形態マップが電子的に格納されており、エンジン1の目標トルクとエンジン回転数とに基づいて、前記噴射形態マップから最適な噴射形態が選択される。すなわち、図4(a)に示すように燃料を圧縮上死点近傍で一括して噴射するか(以下、一括噴射という)、或いは、同図(b)に示すように2回に分割して噴射するか(2分割噴射という)、同図(c)に示すように3回に分割して噴射するか(3分割噴射という)のいずれかが選択されるとともに、そのように2回又は3回に分割して噴射させる場合には、その間の噴射休止間隔Δtを変更して、エンジン1の燃費性能や排気特性等が最適なものになるよう、燃焼状態を変化させるようにしている。
【0035】
一方、排気通路20の触媒22におけるNOx吸収量が所定以上に大きくなってNOx吸収性能の低下が予想されるときには(吸収過剰状態)、詳しくは後述するが、主に燃料噴射量の増量により一時的に燃焼室4の空燃比を略理論空燃比付近か或いはそれよりもリッチな状態に制御するとともに、図4(d)に示すように、主噴射に加えて燃料の一部を吸気行程初期から圧縮行程中盤までの間でのプレ噴射(副噴射)によって噴射させることにより、排気中の酸素濃度を低下させかつ還元剤成分濃度を高めて、触媒22から吸収したNOxを放出させて十分に還元浄化させるようにしている(以下、NOx放出制御という)。
【0036】
尚、前記図4の(a)〜(d)にそれぞれ示す燃料噴射形態において、インジェクタ5の実際の励磁時間(開弁時間)は、燃料噴射量だけではなく、圧力センサ6aにより検出されたコモンレール圧を加味して決定される。また、主噴射を分割すると、3番目の噴射の終了時期が気筒2の圧縮上死点後35°CA(ATDC35°CA)よりも遅くなることがあるが、この場合には、そのように遅く噴射された燃料の燃焼状態が悪化することを回避するために、同図(e)に示すように、燃料の一部を気筒2の圧縮行程中盤以降でプレ噴射するようにしている。
【0037】
ここで、前記のように気筒2の圧縮上死点近傍での主噴射を分割して行ったときの燃焼状態について説明すると、気筒2の圧縮上死点近傍でインジェクタ5により燃料を噴射する場合、該インジェクタ5の噴孔から噴射された燃料は、全体として円錐形状の噴霧を形成しながら燃焼室4に広がるとともに、空気との摩擦により分裂して微小な油滴になり(燃料の微粒化)、それらの油滴の表面から燃料が蒸発して燃料蒸気が生成される(燃料の気化霧化)。このとき、燃焼室4内の空気は極めて高圧で粘性の高い状態になっているので、前記図4(a)に示すように、燃料を一括して噴射する場合にその噴射量が多いと、そのうちの先に噴出した燃料油滴に後続の燃料油滴が追いついて再結合してしまい、燃料の微粒化ひいては気化霧化が阻害されることがある。
【0038】
これに対し、前記図4(b),(c)に示すように燃料を複数回に分割して噴射するようにすれば、先のインジェクタ5の開弁により噴出した燃料油滴に、次の開弁により噴出した燃料油滴が追いつくことが少なくなり、油滴同士の再結合に起因して燃料の微粒化が阻害されることを概ね回避できる。また、燃料の噴射圧力をさらに高めて、燃料の微粒化をより一層、促進することも可能になり、こうすれば、燃焼室における燃料噴霧の分布の均一化や空気利用率の向上度合いをさらに高めることができる。そして、このような分割噴射による燃料噴霧と空気との混合状態の変化は、燃料噴射量、噴射時期、噴射率、燃料圧力、分割噴射回数、噴射休止間隔等の種々のパラメータ及びそれら相互の関係によっても変化し、これに伴い燃焼状態が変化することで、エンジン1の燃費性能や排気温度、或いは排気中のCO,HC,NOx等のガス成分の濃度が変化すると考えられている。
【0039】
より具体的に、この実施形態のものと同様の4気筒ディーゼルエンジン(排気量は約2000cc)を比較的低負荷かつ低回転状態で運転し、一括噴射、2分割噴射及び3分割噴射のそれぞれについて、インジェクタ5の噴射休止間隔Δtを350〜900マイクロ秒(μsec)の範囲で適宜変更しながら、これに伴い変化する噴射終了時のクランク角度と、燃費率やCO濃度との関係を計測した実験結果の一例を、図5〜図8に示す。
【0040】
まず、図5にCO濃度について示すように、2分割噴射では、Δt=350,400,550,700,900μsecのときの値をそれぞれプロットし、また、3分割噴射では、Δt=400,550,700,900μsecのときの値をそれぞれプロットした。同図によれば、排気中のCO濃度は、前記2分割及び3分割噴射のいずれの場合も、インジェクタ5の噴射休止間隔Δtが短いときに低減する一方、噴射休止間隔Δtが長くなるに連れて増大する傾向がある。また、図6に示すように、排気中のNOx濃度はCO濃度とは反対に噴射休止間隔Δtが長いほど低減できることが分かる。尚、図示しないが、排気中のHC濃度については前記CO濃度と同様の傾向がある。
【0041】
一方、このときのエンジンの燃費率の変化は図7に示すようになり、一括噴射よりも2分割噴射の方が燃費率が改善される反面、3分割噴射では、噴射休止間隔Δtが短いときには燃費率がやや改善されるが、噴射休止間隔Δtが長くなるに連れて燃費率が悪化する傾向がある。言い換えると、燃料噴射総量を変えずに噴射回数及び噴射休止間隔Δtを増やせば、エンジンの出力トルクは低下することになる。そして、このときの排気温度の変化は図8に示すようになり、一括噴射よりも2分割噴射の方が排気温度が高く、その2分割噴射よりも3分割噴射の方がさらに排気温度が高くなることが分かる。このことから、例えばNOx放出制御を行うに先立って主噴射の分割制御を行うことにより、触媒22の温度状態を高めてそのリフレッシュを促進することができると考えられる。
【0042】
そこで、この実施形態の燃料噴射制御では、エンジン1の運転中に触媒22がNOx吸収過剰状態になってリフレッシュする必要があるときに、該触媒22が未暖機状態になっていれば、まず、主噴射の分割制御を行って触媒22の温度状態を速やかに高め、かつ排気中のCO,HC濃度を徐々に増大させる。続いて、燃料噴射量を増量補正等することで、排気中の酸素濃度を低下させるとともに、CO,HCの濃度を十分に増大させて、触媒22のリフレッシュを最大限に促進するようにしている。
【0043】
以下に、具体的な燃料噴射制御の処理手順について図9〜図11に示すフローチャート図に沿って説明する。尚、この制御は各気筒毎にクランク角信号に同期して実行される。
【0044】
まず、前記図9に示すフローのスタート後のステップSA1において、クランク角信号、エアフローセンサ出力、O2センサ出力、アクセル開度、エンジン水温等のデータを入力し、続くステップSA2において、アクセル開度から求めた目標トルクとクランク角信号から求めたエンジン回転数Neとに基づいて、燃料噴射量マップから基本燃料噴射量Qbaseを読み込むとともに、その噴射時期ITbaseを予め設定したマップから読み込む。この噴射時期のマップには、エンジン水温Tw及びエンジン回転数Neに対応する最適な噴射時期が実験的に求められて記録されており、例えば、エンジン水温Twやエンジン回転数Neが異なれば燃料噴霧の着火遅れ時間が異なるので、このことに対応して基本的な噴射時期ITbaseが設定されている。
【0045】
続いて、ステップSA3では、エンジン水温Twが設定水温Tw0よりも低いか否か判別する。この設定水温Tw0は、エンジン1の冷間始動時における触媒22の未暖機状態に対応する水温であり、エンジン水温Twが設定水温Tw0よりも低いyesであれば、ステップSA4に進んで、触媒22の暖機を促進するために主噴射の分割制御を行うことを示すフラグFpをオンにして(Fp=1)、図10のステップSB1に進む。つまり、エンジン1の冷間始動時に触媒22が未暖機状態になっていれば、主噴射の分割制御により排気温度を高めて、触媒22の昇温を図るようにしている。一方、エンジン水温Twが設定水温Tw0以上になっていれば(ステップSA3でno)、触媒22は暖機状態にあると判定して、ステップSA5に進む。
【0046】
このステップSA5では、触媒22におけるNOxの吸収量を推定する。この推定は、例えば車両の走行距離とその間の燃料の総噴射量とを積算し、その積算値に基づいて行うようにすればよい。或いは、エンジン1の運転時間とその間の燃料の総噴射量とを積算し、さらにエンジン1の運転状態に基づいてその積算値を修正して、その修正後の積算値に基づいてNOx吸収量を推定するようにしてもよい。そして、続くステップSA6において、NOx吸収量の推定値が設定値以上か否か判別し、推定値が設定値よりも小さければステップSA16に進む一方、推定値が設定値以上でyesならばステップSA7に進み、このステップSA7で、NOx放出制御を行う期間であることを示すフラグF1をオンにして(F1=1)、ステップSA8に進む。
【0047】
このステップSA8では、触媒22の温度状態(触媒温度Tc)を推定する。この推定は、例えば現在までの所定期間におけるエンジン水温Twの履歴とその間のエンジン回転数や車速等に基づいて行うようにすればよく、或いは、触媒22の近傍の排気通路20に温度センサを設けて、このセンサからの出力に基づいて直接的に推定するようにしてもよい。続いて、ステップSA9において、推定した触媒温度Tcが触媒22のNOx除去性能の低くなる第1設定温度Tc1(例えば250°C)よりも低いか否か判別する。この判別がyesであれば、触媒22は未暖機状態になっていて、NOxの吸収又は放出作用がかなり低下しているので、ステップSA10に進んで、フラグFpをオン状態にし(Fp=1)、ステップSA20に進む。
【0048】
つまり、NOx吸収量が多くなり触媒22の浄化性能が低下すると考えられる場合であっても、触媒22が未暖機状態であれば、NOxの放出による触媒22のリフレッシュを十分に促進することはできず、また、放出されたNOxを十分に還元浄化することもできないので、このときには、後述の如き主噴射の分割制御によって、触媒22の昇温を図るようにする。
【0049】
また、前記ステップSA9の判別結果がnoであれば、ステップSA11に進んでフラグFpをクリアし、続くステップSA12では、NOx放出制御の経過時間を計測するための第1タイマ値T1(初期値は零)をインクリメントする。続いて、ステップSA13において、その第1タイマ値T1が予め設定したしきい値T10以上になったか否か判別する。このしきい値T10は、予め設定したNOx放出制御の期間に対応する値なので、判別結果がnoであればステップSA14に進み、燃焼室4の空燃比が略理論空燃比付近になるように基本燃料噴射量Qbaseを増量補正する燃料増量補正量Qc(Qc=R1)を決定して、ステップSA20に進む。
【0050】
すなわち、例えばエアフローセンサ11の出力から求められる吸入空気量に基づいて、この吸入空気量に対して空燃比が略理論空燃比付近になるような燃料噴射量を演算して、燃料増量補正量Qcを決定する。一方、前記ステップSA13の判別結果がyesであれば、NOx放出制御を行う期間は終了したので、ステップSA15で燃料増量補正量Qcを零にし(Qc=0)、ステップSA16でフラグF1をクリアして(Fp=0)、ステップSA20に進む。
【0051】
つまり、NOx吸収量が多くなり触媒22の浄化性能が低下すると考えられる場合であって、かつ触媒22が暖機状態であれば、NOx放出制御を行って該触媒22からNOxを放出させかつ還元浄化することで、触媒22のリフレッシュを図るようにしている。
【0052】
また、前記ステップSA6において、NOx吸収量の推定値が設定値よりも小さいと判定されて進んだステップSA17では、フラグF1の状態を判別して、オン状態でyesならば(F1=1)、NOx放出制御の途中なので前記ステップSA8に進む一方、オフ状態でnoならば(F1=0)、NOx放出制御を行う期間ではないので、続くステップSA18で第1タイマ値T1をリセットし(T1=0)、続くステップSA19でフラグFpをクリアして(Fp=0)、ステップSA20に進む。
【0053】
前記ステップSA10,SA14,SA16,SA18に続いて、ステップSA20では、エンジン1が加速運転状態になっているかどうか判定する。そして、アクセル開度やエンジン回転数の変化状態等に基づいてエンジン1の加速運転状態が判定されれば、続くステップSA21でフラグFpをオン状態にする一方(Fp=1)、エンジン1が加速運転状態でなければ、フラグFpの状態はそのままで、図10のステップSB1に進む。このように、エンジン1の加速運転状態では、触媒22の状態に拘わらず主噴射の分割制御を行うことにより、排気圧力を増大させてターボ過給機25の過給効果を高めるようにしている。
【0054】
前記ステップSA20,SA21に続いて、図10に示すフローのステップSB1では、まず、フラグFpがオン状態か否か判別する。この判別結果がnoならばステップSB6に進む一方、判別結果がyesならばステップSB2に進み、基本燃料噴射量Qbaseに燃料増量補正量Qcを加えて、総燃料噴射量Qtを演算する。ここで、フラグF1がオン状態になっていなければ、即ち触媒22がNOxの吸収過剰状態でなければ、燃料増量補正量Qc=0なので、総燃料噴射量Qtは基本燃料噴射量Qbaseに等しくなる。続いて、ステップSB3では、前記総燃料噴射量Qtを3等分して、それぞれ最終的な第1、第2及び第3燃料噴射量Q1,Q2,Q3とする。
【0055】
続いて、ステップSB4において、第1〜第3燃料噴射時期IT1〜IT3をそれぞれ設定する。ここで、図4(c)に示すように、第1噴射時期IT1は基本的な噴射時期ITbaseと同じであり、続く第2噴射時期IT2及び第3噴射時期IT3は、それぞれ先の噴射が終了してインジェクタ5が閉じてから設定間隔Δt(噴射休止間隔:例えばΔt=900マイクロ秒)を空けて設定される。この設定間隔Δtとしては、略500マイクロ秒ないし略1ミリ秒の範囲内でエンジン1の運転状態に応じて実験的に決定された最適値がマップとして記録されており、このマップから読み込まれて設定される。
【0056】
続いて、ステップSB5では、噴射終了判定サブルーチンの制御手順を実行する。これは、詳しい説明は省略するが、主噴射を分割したときに、3番目の噴射の終了時期がATDC35°CAよりも遅くなるかどうか判定して、遅くなると判定されたときには、各噴射の間の噴射休止間隔Δtを縮めたり、或いは、図4(e)に示すように、余分な燃料を気筒2の圧縮行程中盤以降でプレ噴射させるために、プレ噴射量Qpや噴射時期ITpを設定したりするものである。そして、噴射終了判定サブルーチンを行った後に、図11のステップSC1〜SC11に進んで、後述の如く主噴射を3回に分割して実行する。
【0057】
つまり、このフローでは、フラグFpがオン状態になっているとき(Fp=1)、言い換えると、1)エンジン1の冷間始動時に触媒22が未暖機状態になっているとき、2)エンジン1の運転中にNOx放出制御を行うときであって、かつ燃料噴射量を増量補正する前に未暖機状態の触媒22を暖めるとき、3)エンジン1が加速運転状態になっているときの3つのうちのいずれか1つのときに、主噴射の分割制御を行うようにしている。
【0058】
また、前記ステップSB1でフラグFpがオフ状態になっていると判定されて進んだステップSB6では、フラグF1がオン状態になっているか否か判別する。そして、この判別結果がno(F1=0)ならばステップSB11に進む一方、判別結果がyes(F1=1)ならばステップB7に進んで、前記ステップSB2と同様に基本燃料噴射量Qbaseに燃料増量補正量Qcを加えて、総燃料噴射量Qtを演算する。即ち、エンジン1の燃焼室4の平均的空燃比が略理論空燃比になるような総燃料噴射量Qtを演算する。続いて、ステップSB8において、プレ噴射の燃料噴射量Qp及び噴射時期ITpをそれぞれ設定する。すなわち、プレ噴射の噴射量はエンジン1の運転状態に対応する最適値がマップとして記録されていて、このマップから読み込まれるようになっており、その噴射割合は、例えば主噴射の8〜23%の範囲内に設定される。
【0059】
尚、前記プレ噴射の燃料噴射量Qpを燃料増量補正量Qcとしてもよく、こうすれば、制御の演算を簡略化できる。また、プレ噴射は図4(d)に示すように、気筒2の吸気行程初期から圧縮行程前半までの間に行われるのが好ましく、この実施形態ではプレ噴射の噴射時期ITpは気筒2の吸気行程前半に設定されている。
【0060】
続いて、ステップSB9において、前記総燃料噴射量Qtからプレ噴射量Qpを減算した後に3等分して、それぞれ最終的な第1、第2及び第3燃料噴射量Q1,Q2,Q3とする。続くステップSB10では、前記ステップSB4と同様にして第1〜第3燃料噴射時期IT1〜IT3をそれぞれ設定する。尚、この場合も第1噴射時期IT1は基本的な噴射時期ITbaseと同じであり、続く第2噴射時期IT2及び第3噴射時期IT3は、それぞれ先の噴射が終了してインジェクタ5が閉じてから設定間隔Δtを空けて設定される。この設定間隔Δtも略500マイクロ秒ないし略1ミリ秒の範囲内の値とされ、また、エンジン1の運転状態に応じてマップから読み込まれる。そして、図11のステップSC1〜SC11に進んで、後述の如く主噴射を3回に分割して実行する。
【0061】
つまり、フラグF1がオン状態になっているとき(F1=1)、言い換えると、触媒22が暖機状態でかつNOx吸収過剰状態になっているときには、エンジン1の燃焼室4の空燃比が略理論空燃比付近かそれよりもリッチな状態になるように燃料噴射量を増量補正するとともに、その増量した燃料の一部を気筒2の吸気行程前半にプレ噴射する一方、残りの燃料を気筒の圧縮上死点近傍で3分割して噴射するようにしている。
【0062】
さらに、前記ステップSB6でフラグF1がオフ状態になっていると判定されて進んだステップSB11では、クランク角信号に基づいて基本噴射時期ITbaseなったか否か判別し、噴射時期になるまで待って(ステップSB11でno)、噴射時期になれば(ステップSB11でyes)、ステップSB12に進んで主噴射を行い、基本燃料噴射量Qbaseの燃料をインジェクタ5により燃焼室4に一括噴射して、しかる後にリターンする。つまり、エンジン1の通常の運転状態では、燃料噴射は一括して行うようにしているので、インジェクタ5の開閉作動回数を相対的に少なくして、信頼性を高めることができる。
【0063】
そして、前記図10のステップSB5,SB10に続いて、図11のステップSC1では、プレ噴射量Qpの値が零であるか否か判別し、Qp=0でYESならばステップSC5に進む一方、Qp≠0でNOであればステップSC2に進み、クランク角信号に基づいてプレ噴射時期ITpなったか否か判別する。そして、噴射時期になるまで待って(ステップSC2でNO)、噴射時期になれば(ステップSC2でYES)、ステップSC3に進んでプレ噴射を行い、噴射量Qpの燃料をインジェクタ5により燃焼室4に噴射する。続いて、ステップSC4において、プレ噴射量を零にして(Qp←0)、ステップSC5に進む。
【0064】
続いて、ステップSC5では、クランク角信号に基づいて第1噴射時期IT1なったか否か判別し、噴射時期になるまで待って(ステップSC5でNO)、噴射時期になれば(ステップSC5でYES)、ステップSC6に進んで第1の燃料噴射を行い、噴射量Q1の燃料をインジェクタ5により燃焼室4に噴射する。続くステップSC7では、同様にクランク角信号に基づいて第2噴射時期IT2になったか否か判別し、噴射時期になるまで待って(ステップSC7でNO)、噴射時期になれば(ステップSC7でYES)、ステップSC8に進んで第2の燃料噴射を実行する。
【0065】
続いて、ステップSC9では、第3の燃料噴射量Q3の値が零であるか否か判別し、Q3=0でYESならばリターンする一方、Q3≠0でNOであればステップSC10に進む。そして、クランク角信号に基づいて第3噴射時期IT3になったか否か判別し、噴射時期になるまで待って(ステップSC10でNO)、噴射時期になれば(ステップSC10でYES)、ステップSC11に進んで第3の燃料噴射を実行して、しかる後にリターンする。
【0066】
前記図9〜図11に示す各フローにおいて、図9に示すステップSA2で、エンジン1の目標トルクに応じて燃料の基本噴射量等を決定し、図11に示すステップSC1〜SC11でインジェクタ5により燃料を噴射させるという制御手順により、該インジェクタ5による燃料の噴射状態を少なくともエンジン1の運転状態に応じて制御する基本燃料噴射制御手段35aが構成されている。そして、この基本燃料噴射制御手段35aは、エンジン1の通常の運転状態では、インジェクタ5により気筒の圧縮上死点近傍において燃料を一括して噴射させるものである。
【0067】
また、図9に示すフローのステップSA6〜SA16の各ステップの制御手順により、触媒22からNOxを放出させるとき、排気中の酸素濃度が低下するようにインジェクタ5による燃料噴射量を増量補正する噴射量補正手段35bが構成されている。そして、この噴射量補正手段35bは、エンジン1の燃焼室4の平均的な空燃比が略理論空燃比になるように燃料噴射量を増量補正するものである。
【0068】
さらに、図10に示すフローのステップSB1〜SB10の各ステップの制御手順により、触媒22からNOxを放出させるとき、前記噴射量補正手段35bによる燃料噴射量の増量補正が行われる前に、インジェクタ5により燃料を気筒の圧縮上死点近傍で3回に分割して噴射させる噴射形態補正手段35cが構成されている。そして、この噴射形態補正手段35cは、前記噴射量補正手段35bにより燃料噴射量を増量補正するとき、気筒の圧縮上死点近傍での主噴射に加えて、インジェクタ5により圧縮行程でのプレ噴射を行わせるものである。
【0069】
したがって、この実施形態に係るディーゼルエンジンの燃料噴射制御装置Aによれば、まず、通常の運転状態では基本燃料噴射制御手段35aにより、図4(a)に示すように、各気筒2の圧縮上死点近傍でインジェクタ5から基本燃料噴射量Qbaseの燃料が一括して噴射され、エンジン1は燃焼室4の平均的空燃比がリーンな状態で運転される。そして、燃焼に伴い生成するNOxが触媒22に吸収されて、その吸収量が過剰な状態になると、該触媒22からNOxを放出させて還元浄化するNOx放出制御が行われる。
【0070】
このとき、例えばエンジン1が長時間、所定の低回転運転状態とされ、触媒22が未暖機状態に対応する低温状態になっていれば、まず、噴射形態補正手段35cにより主噴射の分割制御が行われて、インジェクタ5により燃料が気筒の圧縮上死点近傍で3回に分割して噴射される。この分割噴射により、燃料噴霧の空気との混合状態が大幅に改善され、空気利用率も向上して燃焼による熱発生率が増大するとともに、燃焼の終了が遅角側にずれることで、図8に例示するように排気温度が上昇し、これにより、排気通路20の触媒22の温度状態を速やかに高めることができる。
【0071】
そして、このようにして触媒22を速やかに昇温させて暖機状態にした後にNOx放出制御が行われ、噴射量補正手段35bによって、燃焼室の平均的な空燃比が略理論空燃比になるようにインジェクタ5からの燃料噴射量が増量補正される。これにより、排気中の酸素濃度が低下しかつCOやHC等の還元剤成分の濃度が十分に高められるので、前記のように昇温されている触媒22から速やかにNOxを放出させ、かつ十分に還元浄化することができる。しかも、このとき、燃料の一部を気筒2の吸気行程前半でプレ噴射するようにしているので、燃料噴射量を増量しても燃料噴霧が過度に濃い状態になることはなく、よって、スモークの急増を防止できる。
【0072】
つまり、この実施形態では、触媒22のリフレッシュのためのNOx放出制御の際に、燃料噴射量の増量補正に先立って予め触媒22の温度状態を高めることで、燃料の増量によって排気中の酸素濃度を低下させたときには、触媒22から極めて効率良くNOxを放出させ、かつそのNOxを十分に還元浄化することができる。
【0073】
しかも、そのように燃料噴射量を増量補正する前に行う主噴射の分割制御によって、排気中のHC,CO濃度が高まるので、その後の燃料噴射量の増量補正によって一時的にNOxの生成が盛んになっても、生成されたNOxがCO,HCと反応することになり、大気中へのNOx排出量が急増することはない。
【0074】
そして、前記のように触媒22を極めて効率よくリフレッシュできる結果として、エンジン1の運転中にNOx放出制御を行う時間を相対的に短くするこっとができるので、燃料噴射量の増量に伴う燃費悪化を抑制することができる。しかも、主噴射の分割制御によって、前記のように燃焼状態が極めて良好なものになり、また、噴射終了時期は相対的に遅くなるものの、その間、燃焼室4の圧力が相対的に長く十分に高い状態に維持され、いわゆる等容度の向上により機械効率も高められて、燃費改善が図られる。
【0075】
(他の実施形態)
本発明は前記実施形態に限定されるものではなく、その他の種々の実施形態を包含するものである。すなわち、前記実施形態では、主噴射の分割制御によって燃料を3回に分割して噴射するようにしているが、これに限らず、排気中のHC濃度やCO濃度が高まりかつ触媒22の温度状態が高まるよう、分割回数は2回ないし7回のいずれか1つに設定すればよい。
【0076】
また、前記実施形態では、エンジン1の通常の運転状態では主噴射は一括して行うようにしているが、これに限らず、主噴射は基本的に2回以上に分割して行い、かつ噴射休止期間Δtを100マイクロ秒ないし1ミリ秒の範囲内に相対的に短めに設定するようにしてもよい。このようにすれば、例えば主噴射を2分割噴射とすることで、図7に示すように燃費率を向上させることができる。そして、この場合には、NOx放出制御のときに主噴射の分割回数を増大させるとともに、噴射休止間隔Δt増大させるようにすれば、前記実施形態の作用効果が高まる。
【0077】
また、前記実施形態では、触媒22の温度状態を推定して、その温度状態が低いときに、燃料噴射量の増量補正に先だって触媒22の昇温のための主噴射の分割制御を行うようにしているが、これに限らず、NOx放出制御を行うときには常に、まず主噴射の分割制御によって触媒22の温度状態を高め、その後に燃料噴射量を増量補正するようにしてもよい。また、その際、主噴射の分割回数は、燃料噴射量の増量補正前の方が増量補正の開始後よりも多くなるようにしてもよく、こうすることで、触媒22の昇温をさらに効果的に行うことができる(図8参照)。
【0078】
さらに、前記実施形態では、NOx放出制御の際に、主噴射の他の追加噴射としてインジェクタ5により気筒の吸気行程ないし圧縮行程ででプレ噴射を行わせるようにしているが、これに限らず、気筒の膨張行程や排気行程で追加の燃料噴射(ポスト噴射)を行わせるようにしてもよい。例えば、エンジン1の高負荷運転状態ではプレ噴射を行わせ、一方、エンジン1の低中負荷運転状態ではポスト噴射を行わせることで、エンジン1の負荷状態の異なる広い運転領域においてスモークの増大を抑えながら、排気中の酸素濃度を低下させることができる。
【0079】
或いは、前記プレ噴射を行わせたり、特に気筒の膨張行程前半でポスト噴射を行わせるとともに、主噴射の分割回数噴射休止間隔を増大させるようにしてもよく、こうすれば、前記プレ及びポスト噴射によって燃料噴射量が増量されても、そのことによるエンジン出力の増大を緩和して、NOx放出制御に付随するトルクショックの発生を防止することができる。
【0080】
【発明の効果】
以上説明したように、請求項1の発明に係るディーゼルエンジンの燃料噴射制御装置によると、エンジンの運転中にNOx吸収材からNOxを放出させるときには、遅くとも噴射量補正手段により燃料噴射量を増量補正する時点で主噴射を複数回に分割させて、その噴射回数を増大させ、NOx吸収材を速やかに昇温させるようにしたので、前記の燃料噴射量の増量補正によって排気中の酸素濃度を低下させかつ還元剤成分の濃度を高めることにより、前記NOx吸収材からのNOx放出等を十分に促進し、燃費悪化を抑制しながらNOx吸収材をリフレッシュすることができる。また、主噴射の分割制御により燃焼状態を大幅に改善できるので、スモークの急増も防止できる。
【0081】
請求項2の発明によると、NOx吸収材のリフレッシュの際に、燃料噴射量を増量補正する前に主噴射の分割制御を開始することで、予めNOx吸収材の温度状態を高めて、極めて効率良くNOx吸収材をリフレッシュできる。また、燃料噴射量の増量時に一時的にNOx排出量が増えることも抑制できる。
【0082】
請求項3の発明によると、主噴射の分割回数を2回ないし7回に設定し、かつ噴射休止間隔を500マイクロ秒ないし1ミリ秒の範囲内とすることで、請求項1又は2の発明による効果を十分に得ることができる。
【0083】
請求項4の発明によると、エンジンの通常の運転状態には主噴射を一括噴射とすることにより、燃料噴射弁の開閉作動回数を相対的に少なくして、信頼性を向上できる。
【0084】
請求項5の発明によると、エンジンの通常の運転状態でも主噴射を分割噴射とすることで、全体として燃焼改善を図ることができる。また、NOx吸収材のリフレッシュの際には噴射休止間隔を増大させることによってもリフレッシュを促進できる。
【0085】
請求項6の発明によると、NOx吸収材のリフレッシュの際に、主噴射の分割回数を燃料噴射量の増量補正前の方が多くなるように補正することで、NOx吸収材の温度状態を速やかに高めることができる。
【0086】
請求項7の発明によると、燃料噴射量の増量補正時にその燃料の一部を追加噴射とすることで、エンジンの燃焼状態の悪化やトルク変動を抑制できる。
【0087】
請求項8の発明によると、NOx吸収材のリフレッシュの際に燃料噴射量の増量に伴うエンジン出力の増大を緩和して、トルクショックを防止することができる。
【0088】
請求項9の発明によると、エンジンの要求出力に対応する基本的な燃料噴射量を主噴射するとともに、増量分の燃料をプレ噴射することで、制御手順を簡略化できる。
【図面の簡単な説明】
【図1】 本発明の構成を示す説明図である。
【図2】 実施形態に係るディーゼルエンジンの燃料噴射制御装置の全体構成を示す図である。
【図3】 NOx吸収材によるNOx吸収浄化性能(a)及び触媒金属によるNOx還元浄化性能(b)の温度依存性を表すグラフの一例を示す図である。
【図4】 主噴射を一括(a)、2分割(b)、又は3分割(c)して行うとき、並びにプレ噴射を行うとき(d)(e)について、それぞれの噴射形態を表した説明図である。
【図5】 燃料噴射の分割回数及び噴射休止間隔をそれぞれ変化させたときの、排気中のCO濃度の変化特性を示すグラフ図である。
【図6】 排気中のNOx濃度の変化特性を示す図4相当図である。
【図7】 エンジンの燃費率の変化特性を示す図4相当図である。
【図8】 排気温度の変化特性を示す図4相当図である。
【図9】 燃料噴射制御における基本燃料噴射量の設定手順及びNOx放出制御の処理手順を示すフローチャート図である。
【図10】 燃料噴射制御における噴射形態の設定手順を示すフローチャート図である。
【図11】 燃料噴射制御におけるインジェクタの作動制御の処理手順を示すフローチャート図である。
【符号の説明】
A ディーゼルエンジンの燃料噴射制御装置
1 ディーゼルエンジン
2 気筒
4 燃焼室
5 インジェクタ(燃料噴射弁)
20 排気通路
22 触媒(NOx吸収材)
35a 基本燃料噴射制御手段
35b 噴射量補正手段
35c 噴射形態補正手段

Claims (9)

  1. エンジンの気筒内燃焼室に燃料を直接、噴射供給する燃料噴射弁と、
    エンジンの排気通路に配設され、酸素濃度の高い酸素過剰雰囲気の排気中のNOxを吸収する一方、酸素濃度の低下に伴い前記吸収したNOxを放出するNOx吸収材と、
    前記燃料噴射弁による燃料の噴射状態を少なくともエンジンの運転状態に応じて制御する基本燃料噴射制御手段と、
    前記NOx吸収材からNOxを放出させるとき、排気中の酸素濃度が低下するように前記燃料噴射弁による燃料噴射量を増量補正する噴射量補正手段とを備えたディーゼルエンジンの燃料噴射制御装置において、
    前記NOx吸収材からNOxを放出させるとき、遅くとも前記噴射量補正手段による燃料噴射量の増量補正と同時に、前記燃料噴射弁によ気筒の圧縮上死点近傍での燃料噴射回数を増大させる噴射形態補正手段を設けたことを特徴とするディーゼルエンジンの燃料噴射制御装置。
  2. 請求項1において、
    噴射形態補正手段は、噴射量補正手段による燃料噴射量の増量補正が行われる前に、燃料噴射弁による気筒の圧縮上死点近傍での燃料噴射回数を増大させるものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  3. 請求項1又は2のいずれかにおいて、
    噴射形態補正手段は、気筒の圧縮上死点近傍における燃料噴射の回数を2回ないし7回のいずれか1つに設定するとともに、燃料噴射弁を、一度閉じてから次に開くまでの噴射休止間隔が500マイクロ秒ないし1ミリ秒の範囲内になるように開閉作動させるものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  4. 請求項1又は2のいずれかにおいて、
    基本燃料噴射制御手段は、燃料噴射弁により気筒の圧縮上死点近傍において燃料を一括して噴射させるものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  5. 請求項1又は2のいずれかにおいて、
    基本燃料噴射制御手段は、燃料噴射弁により気筒の圧縮上死点近傍において燃料を2回以上に分割して噴射させるとともに、該燃料噴射弁を、一度閉じてから次に開くまでの噴射休止間隔が100マイクロ秒ないし1ミリ秒の範囲内になるように開閉作動させるものであり、
    噴射形態補正手段は、前記燃料噴射弁による燃料噴射の噴射休止間隔を増大させるものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  6. 請求項2において、
    噴射形態補正手段は、気筒の圧縮上死点近傍における燃料噴射の回数を、燃料噴射量の増量補正前の方が増量補正の開始後よりも多くなるように補正するものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  7. 請求項1又は2のいずれかにおいて、
    噴射形態補正手段は、噴射量補正手段により燃料噴射量が増量補正されるとき、気筒の圧縮上死点近傍での燃料噴射に加えて、燃料噴射弁により少なくとも1回の追加の燃料噴射を行わせるように構成されていることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  8. 請求項7において、
    噴射形態補正手段は、追加の燃料噴射として気筒の吸気行程ないし圧縮行程、又は膨張行程前半のいずれか一方で副噴射を行わせるとともに、気筒の圧縮上死点近傍における燃料噴射の回数及び噴射休止間隔の少なくとも一方を、エンジンの出力トルクが減少するように補正するものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
  9. 請求項8において、
    噴射形態補正手段は、気筒の圧縮上死点近傍において燃料噴射弁によりエンジンの要求出力に対応する分量の燃料を噴射させるとともに、噴射量補正手段による増量補正分の燃料を副噴射させるものであることを特徴とするディーゼルエンジンの燃料噴射制御装置。
JP23135199A 1999-08-18 1999-08-18 ディーゼルエンジンの燃料噴射制御装置 Expired - Fee Related JP4211151B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23135199A JP4211151B2 (ja) 1999-08-18 1999-08-18 ディーゼルエンジンの燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23135199A JP4211151B2 (ja) 1999-08-18 1999-08-18 ディーゼルエンジンの燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2001055950A JP2001055950A (ja) 2001-02-27
JP4211151B2 true JP4211151B2 (ja) 2009-01-21

Family

ID=16922270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23135199A Expired - Fee Related JP4211151B2 (ja) 1999-08-18 1999-08-18 ディーゼルエンジンの燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP4211151B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303188A (ja) * 2001-03-30 2002-10-18 Mazda Motor Corp ディーゼルエンジンの燃料噴射方法
JP2003065115A (ja) * 2001-08-22 2003-03-05 Mazda Motor Corp エンジンの排気浄化装置及びそのコンピュータ・プログラム
JP4774653B2 (ja) * 2001-08-22 2011-09-14 マツダ株式会社 エンジンの排気浄化装置及びそのコンピュータ・プログラム
CN100453776C (zh) * 2002-02-12 2009-01-21 五十铃自动车株式会社 废气净化系统和废气净化方法
JP4845762B2 (ja) * 2007-02-13 2011-12-28 本田技研工業株式会社 内燃機関の排ガス浄化装置
CN102165171A (zh) * 2008-09-29 2011-08-24 丰田自动车株式会社 内燃机的燃料喷射控制装置
JP6519297B2 (ja) * 2015-04-21 2019-05-29 三菱自動車工業株式会社 内燃機関

Also Published As

Publication number Publication date
JP2001055950A (ja) 2001-02-27

Similar Documents

Publication Publication Date Title
JP4389372B2 (ja) エンジンの燃料制御装置
JP3985083B2 (ja) ディーゼルエンジンの排気浄化装置
EP1077321B1 (en) A fuel injection control system for a diesel engine
JP2000320386A (ja) ディーゼルエンジンの燃料噴射装置
US6434929B1 (en) Control apparatus for direct injection engine
JP3817961B2 (ja) 火花点火式直噴エンジンの制御装置
JP4122803B2 (ja) ディーゼルエンジンの燃料噴射制御装置
US20040255577A1 (en) Exhaust purification device and exhaust purification method of internal combustion engine
JP2001065397A (ja) エンジンの燃料噴射制御装置
JP4211151B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP3601395B2 (ja) 内燃機関の排気浄化装置
JPH11218048A (ja) エンジンの制御装置
JP6311739B2 (ja) エンジンの制御装置
JP5257519B2 (ja) 内燃機関の制御装置
JP4329176B2 (ja) ディーゼルエンジンの制御装置及び制御方法
JP5257520B2 (ja) 内燃機関の制御装置
JP4442003B2 (ja) ディーゼルエンジンの燃料噴射装置
JP4211147B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP2001159311A (ja) エンジンの排気浄化装置
JP4337183B2 (ja) エンジンの制御装置及びエンジンの制御装置の異常診断装置
JP4211148B2 (ja) ディーゼルエンジンの制御装置
JP2001241345A (ja) ディーゼルエンジンの燃料制御装置
JP2001098975A (ja) エンジンの制御装置、およびディーゼルエンジンの制御装置
JP2002061531A (ja) 火花点火式エンジンの燃料制御装置
JP4306034B2 (ja) エンジンの排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees