JP4201990B2 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP4201990B2
JP4201990B2 JP2001028870A JP2001028870A JP4201990B2 JP 4201990 B2 JP4201990 B2 JP 4201990B2 JP 2001028870 A JP2001028870 A JP 2001028870A JP 2001028870 A JP2001028870 A JP 2001028870A JP 4201990 B2 JP4201990 B2 JP 4201990B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air conditioner
flow
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001028870A
Other languages
English (en)
Other versions
JP2002228273A (ja
JP2002228273A5 (ja
Inventor
雅弘 中山
賢一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001028870A priority Critical patent/JP4201990B2/ja
Publication of JP2002228273A publication Critical patent/JP2002228273A/ja
Publication of JP2002228273A5 publication Critical patent/JP2002228273A5/ja
Application granted granted Critical
Publication of JP4201990B2 publication Critical patent/JP4201990B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Description

【0001】
【発明の属する技術分野】
この発明は、冷媒圧縮方式冷凍サイクルを用いたヒートポンプ式の空気調和機に係わり、冷房運転時と暖房運転時に室外熱交換器および室内熱交換器の冷媒流路の系路数を変化させる冷凍サイクルを用いた空気調和機に関するものである。
【0002】
【従来の技術】
空気調和機において、熱交換器をより効率的に使用するためには、次のことに留意することが望ましい。すなわち、この熱交換器を蒸発器として使用する場合には、冷媒を通すパス内における冷媒の圧損を考慮して、パスの並列接続数を複数とした多パス構成を採用することが望ましく、また、凝縮器として使用する場合は、冷媒の圧損が小さいので、冷媒の熱伝達率を考慮すると、パスの並列接続数を少なくした少パス構成を採用することが望ましい。
【0003】
図9は、以上の点を考慮した従来の空気調和機を示している。この空気調和機は、室外機6に設けられた圧縮機1、四方弁2、室外熱交換器3、減圧器4と、室内機7に設けられた室内熱交換器5とを順次配管接続することによって冷凍サイクルを構成している。
【0004】
室外機6は、上記各要素の他に室外送風機(プロペラファン)11、室外送風機モータ13、室外熱交換器3の入口側と出口側に設けた冷媒回路切換弁15a,15bおよび15cを備えている。また、室内機7は、室内熱交換器5の他に室内熱交換器冷房入口側冷媒分配器8、室内熱交換器冷房出口側冷媒分配器9、室内送風機(貫流ファン)12および室内送風機モータ14を備えている。なお、符号16は液接続配管を、また、符号17はガス接続配管をそれぞれ示している。
【0005】
この空気調和機では、上記冷媒回路切換弁15a,15bおよび15cを冷房運転と暖房運転に応じて選択的に開閉動作させることにより、室外熱交換器3のパス数を変えている。すなわち、図9に示す冷房運転時には、冷媒回路での冷媒流れ方向が実線矢印方向となる。そこで、上記切換弁15a,15cを閉じ、切換弁15bを開けることにより、凝縮器として動作する室外熱交換器3での冷媒のパス数を1に設定している。このように、冷房運転時に室外熱交換器3の冷媒パスを直列(1パス)にすれば、冷媒流速向上による冷媒熱伝達率向上によってエネルギー効率が向上する。
【0006】
一方、図10に示す暖房運転時には、冷媒回路での冷媒流れ方向が点線矢印方向となる。そこで、切換弁15a,15bを開け、切換弁15bを閉じることにより、蒸発器として動作する室外熱交換器3での冷媒のパス数を2に設定している。このように、暖房運転時に室外熱交換器3の冷媒パスを並列(2パス)にすれば、この室外熱交換器3での圧力損失による暖房運転時のエネルギー効率の低下を少なくすることができる。
【0007】
【発明が解決しようとする課題】
しかしながら、3個の冷媒回路切換弁15a〜15cを使用する上記従来の空気調和機は、コストがアップするとともに、これらを収納するための大きなスペースが必要になるという問題があった。また、上記切換弁15a〜15cにおける冷媒圧力損失が熱交換器の性能に著しく大きな影響を与えるので、冷房、暖房に応じた冷媒のパス数の切換えによって熱交換器の性能向上を図ることは事実上困難であった。
【0008】
この発明は上記に鑑みてなされたもので、熱交換器の冷媒流路の系路数の変更をエネルギー効率の向上を図りながら安価かつコンパクトな手段を用いて実施することができる空気調和機を得ることを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、この発明にかかる空気調和機は、複数の冷媒路を有した室内熱交換器及び室外熱交換器を含んで構成される冷凍サイクルを備えた空気調和機であって、前記室内熱交換器及び室外熱交換器の少なくとも一方に、冷媒路切換弁を併設し、前記冷媒路切換弁は、前記各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートと、冷房運転と暖房運転の切換による前記冷凍サイクル内の冷媒の流れ方向の切換に基づくこれらのポートの圧力差によって移動されて前記各冷媒を直列接続と並列接続とに切り換え、前記室内熱交換器及び/又は室外熱交換器のパス数を変える弁体とを備えることを特徴とする。
【0010】
この発明によれば、前記冷媒路切換弁が、前記各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートを有し、冷房運転と暖房運転時におけるこれらのポートの圧力差によって切換え作動して、前記熱交換器の各冷媒を直列接続と並列接続とに切り換える。つまり、1つの冷媒流切換弁によって熱交換器のパス数を変える。
【0011】
つぎの発明にかかる空気調和機は、上記に発明において、前記冷媒路切換弁は、冷房運転時に前記各冷媒路を流れる冷媒の流れが前記熱交換器に向かう空気の流れと対向し、前記暖房運転時に前記各冷媒路を流れる冷媒の流れが前記空気の流れと並向するよう切換作動することを特徴とする。
【0012】
この発明によれば、冷房運転時に前記各冷媒路を流れる冷媒の流れが前記熱交換器に向かう空気の流れと対向するように、また、暖房運転時に前記各冷媒路を流れる冷媒の流れが前記空気の流れと並向するよう前記冷媒路切換弁が切換作動する。
【0013】
つぎの発明にかかる空気調和機は、複数の冷媒路を有した室内熱交換器及び室外熱交換器を含んで構成される冷凍サイクルを備えた空気調和機であって、前記室内熱交換器に冷媒路切換弁を併設し、前記冷媒路切換弁は、前記各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートと、冷房運転と再熱除湿運転時あるいは暖房運転と再熱除湿運転時におけるこれらのポートの圧力差によって移動されて、前記各冷媒を直列接続と並列接続とに切り換え、前記室内熱交換器のパス数を変える弁体と、この弁体を固定する弁体固定手段とを備え、前記室内熱交換器の各冷媒路によって構成される路中に流量制御弁を介在させたことを特徴とする。
【0014】
この発明によれば、冷媒路切換弁が、前記各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートを有し、冷房運転と再熱除湿運転時あるいは暖房運転と再熱除湿運転時におけるこれらのポートの圧力差によって移動されて、前記各冷媒回路を直列接続と並列接続とに切り換える。そして、前記弁体を弁体固定手段によって固定することができ、また、前記流量制御弁の流量制御に基づく圧力差を前記冷媒路切換弁に作用させることができる。
【0015】
つぎの発明にかかる空気調和機は、上記の発明において、冷媒として、R410AなどのR32/125混合冷媒、R32単体冷媒、二酸化炭素を使用することを特徴とする。
【0016】
この発明によれば、エネルギー効率が高い運転を実現でき、かつ、地球温暖化を防止することができるR410AなどのR32/125混合冷媒、R32単体冷媒、二酸化炭素が冷媒として使用される。
【0017】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかる空気調和機の好適な実施の形態を詳細に説明する。
【0018】
実施の形態1.
図1は、この発明に係る空気調和機の第1の実施の形態を示している。なお、この図1では、図9に示す要素に対応する要素に同一の符号を付してある。この空気調和機は、室外機6に設けられた圧縮機1、四方弁2、室外熱交換器3、減圧器4と、室内機7に設けられた室内熱交換器5とを順次配管接続することによって冷凍サイクルを構成している。
【0019】
上記室外機6は、上記各要素の他に室外送風機(プロペラファン)11、室外送風機モータ13、差圧スライド式冷媒回路切換弁10も備えている。また、室内機7は、室内熱交換器5の他に、この室内熱交換器5の冷房入口側に設けられた冷媒分配器8、該室内熱交換器5の冷房出口側に設けられた冷媒分配器9、室内送風機(貫流ファン)12および室内送風機モータ14を備えている。なお、符号16は液接続配管を、また、符号17はガス接続配管をそれぞれ示している。
【0020】
図1は、冷房運転の状態を示しており、この状態では、冷媒が実線矢印方向に流れる。室外熱交換器3は複数に分割され(この例では、4分割)、パス51、52,53および54を形成している。これらのパス51,52,53および54は、それぞれ冷媒回路61,62,63および64を介して上記差圧スライド式冷媒回路切換弁10に接続されている。四方弁2と差圧スライド式冷媒回路切換弁10は、冷媒回路71,72を介して接続され、流量制御弁4と差圧スライド式冷媒回路切換弁10は、冷媒回路73,74を介して接続されている。
【0021】
つぎに、この実施の形態1にかかる空気調和機の動作について説明する。冷房運転時、圧縮機1から吐出された冷媒は、四方弁2を通って冷媒回路71,72に流入する。冷媒回路71に流入した冷媒は、差圧スライド式冷媒回路切換弁10のポート81、冷媒回路61、パス51、パス53、冷媒回路63,62、パス54、冷媒回路64および差圧スライド式冷媒回路切換弁10のポート84を通って冷媒回路74に流入した後、流量制御弁4に至って凝縮する。この後、冷媒は、液接続配管16、冷媒分配器8、室内熱交換器5および冷媒分配器9を通って蒸発し、ついで、ガス接続配管17と四方弁2を通って圧縮機1に戻る。
【0022】
以上の冷媒の流れから明らかなように、冷房運転時においては、室外熱交換器3が凝縮器として作用する。このとき、室外熱交換器3においては、パス51,52,53および54が直列に接続された1つのパスが構成されるので、該交換機3の管内流速が増大して、その熱交換性能が向上する。
【0023】
なお、冷媒回路72に流入した冷媒は、この冷媒回路72が接続される差圧スライド式冷媒回路切換弁10のポート82がスライド弁体21によって封止されているため、差圧スライド式冷切換弁10内へ流れ込むことはない。また、ポート83もスライド弁体21によって封止されているため、冷媒が差圧スライド式冷媒回路切換弁10内から漏れ出すことはない。
【0024】
ここで、差圧スライド式冷媒回路切換弁10のポート81とポート84の冷媒圧力を比較すると、パス51,52,53および54が直列に接続されていることに起因した冷媒圧力損失分の増加のため、ポート81の方が高くなる。このため、スライド弁体21は、このポート81,84における冷媒圧力の差で白抜き矢印22方向に付勢されて移動し、その結果、上記ポート82,83が共にスライド弁体21によって封止される。
【0025】
図2は、暖房運転時の状態を示しており、この状態では、冷媒が点線矢印の方向に流れる。すなわち、圧縮機1から吐出された冷媒は、四方弁2、ガス接続配管17、室内熱交換器5の冷房出口側に設けられた冷媒分配器9、室内熱交換器5、室内熱交換器5の冷房入口側に設けられた冷媒分配器8を通って凝縮する。その後、冷媒は、液接続配管16および流量制御弁4に至って低圧二相冷媒となり、冷媒回路73,74に流入する。
【0026】
冷媒回路74に流入した冷媒は、差圧スライド式冷媒回路切換弁10のポート84、冷媒回路64、パス54、パス52、冷媒回路62、冷媒回路切換弁10内、該冷媒回路切換弁10のポート82および冷媒回路72を順次流れて蒸発した後、四方弁2を通って圧縮機1に戻る。
【0027】
また、冷媒回路73に流入した冷媒は、ポート83を介して差圧スライド式冷媒回路切換弁10内に流入した後、冷媒回路63、パス53、パス51、冷媒回路61、ポート81および冷媒回路71を順次流れて蒸発した後、四方弁2を通って圧縮機1に戻る。
【0028】
上記冷媒の流れから明らかなように、暖房運転時においては、室外熱交換器3が蒸発器として作用する。このとき、室外熱交換器3において、パス51,53からなる流路と、パス52、54からなる流路とが互いに並列接続された2つのパスが構成されるので、室外熱交換器3の冷媒圧力損失が低下して、その熱交換性能が向上する。
【0029】
この状態における差圧スライド式冷媒回路切換弁10のポート81とポート84の冷媒圧力を比較すると、室外熱交換器3内の冷媒の圧力損失分だけポート84の方が高くなる。このため、スライド弁体21は、この圧損に基づく差圧により白抜き矢印23の方向に付勢されて移動し、ポート81を封止する。
【0030】
図3は、差圧スライド式冷媒回路切換弁10の構造を例示した破断斜視図である。この差圧スライド式冷媒回路切換弁10のスライド弁体21は、円筒状ピストン91,92および93と、これらのピストンを連結する部材94,95とによって構成されており、円筒状容器96内をスライド移動することによって冷媒回路の切換を行う。
【0031】
このスライド弁体21は、そのピストン91,92および93にピストンリング97を巻くことによって、スライド移動時における冷媒の漏れを防止している。ピストンリング97は、耐摩耗性および冷媒に対する耐候性を有した材料(例えば、金属材料でなじみ性向上のためにリン酸処理をしたものや、対摩耗性向上のためにクロムメッキ処理をしたもの、漏れシール性を向上させるためにテフロン材を使用したものなど)で形成されている。
【0032】
なお、筒状容器96は、接続される配管の径に比して十分に大きな径を有している。したがって、冷媒回路切換弁10を通過する冷媒の圧力損失は、上記配管を通過する冷媒の圧力損失に比して著しく小さく、ほぼ無視することができる程度になる。
【0033】
この実施の形態1に係る空気調和機は以上のように構成されているので、冷房運転、暖房運転のいずれにおいても高いエネルギー効率を得ることができる。また、図9に示す従来例が冷媒回路切換のために弁を3つ使用していたのに対して、この実施の形態1の空気調和機では、1つの冷媒回路切換弁10を用いて従来例と同様の機能を得ることができるので、構造の簡単化を図れるとともに、安価かつコンパクトに構成することが可能である。加えて、従来例に比して冷媒圧力損失が低減されるので、エネルギー効率の高い運転を実現することができる。
【0034】
上記実施の形態1においては、冷媒回路切換弁10を室外熱交換器3に適用しているが、この冷媒回路切換弁10を室内熱交換器5に適用しても同様のエネルギー効率の向上効果を得ることができる。なお、室内熱交換器5が設けられた室内機7は、室外機6に比して配管設置スペースが小さいが、上記冷媒回路切換弁10は、コンパクトに構成することができるので、室内機7に対しても容易に設置することが可能である。
【0035】
冷媒回路切換弁10を室内熱交換器5に適用した場合の熱交換器効率向上効果は、該冷媒回路切換弁10を室外熱交換器3に適用した場合のそれとほぼ同等である。しかし、ユニット運転時のエネルギー効率向上効果は、室外熱交換器3の熱交換器効率向上によるよりも室内熱交換器5の熱交換器効率向上による方が高く、したがって、室内機7への導入が容易な上記冷媒回路切換弁10を使用するこの実施例によれば、従来例にも増してユニット運転時のエネルギー効率を高めることが可能である。
【0036】
上記実施の形態1では、冷房運転および暖房運転に応じて冷媒回路を切り換えるようにしているが、上記ポート81とポート84に、あるしきい値以上の差圧が作用した場合にスライド弁体21が移動するように冷媒回路切換弁10を構成して、冷媒回路の切り換えを行うことができる。
【0037】
一例として、室内熱交換器5にこのような冷媒回路切換弁10を適用した時の動作について説明する。冷房通常能力運転時は、冷媒のパス数が2となるように冷媒回路切換弁10のスライド弁体21が移動する。これにより、室内熱交換器5での冷媒圧力損失が低減して、エネルギー効率を高めた運転が可能になる。一方、冷房低能力運転時は、冷媒のパス数が1となるように冷媒回路切換弁10のスライド弁体21が移動する。この冷房低能力運転時は、圧縮機回転数が小さくて冷媒流量が少なくなるので、室内熱交換器での冷媒圧力損失が小さくなる。そこで、パス数を1にすれば、冷媒流速の増大によって熱交換効率が向上し、その結果、エネルギー効率の高い運転が実現される。なお、あるしきい値以上の差圧に基づいてスライド弁体21を移動させる手段の一例として、ピストンリング97の表面を粗くしてその摩擦抵抗を大きくするという手段がある。
【0038】
図4は、実施の形態1における他の第1変形例を示している。この第1変形例は、室外熱交換器3と冷媒回路切換弁10とを結ぶ冷媒回路61、62、63、64の接続態様において上述した実施の形態1と相違している。
【0039】
この第1変形例においては、室外熱交換器3として、数列の伝熱管から構成されたプレートフィンアンドチューブ熱交換器を用い、2パス構成の冷媒回路を構成している。この実施例において、室外熱交換器3は、室外送風機11により送風された室外空気と熱交換する。
【0040】
冷房運転のために室外熱交換器3を凝縮器として使用する場合は、冷媒の流れと空気の流れを対向流化した方が、熱交換効率は高くなる。従って、図4に示したように、室外熱交換器3と冷媒回路61、62、63、64を接続すれば、空気の流れ方向(白抜きの矢印)と冷媒の流れ方向(実線の矢印)が対向するので、熱交換効率が高くなって運転時のエネルギー効率が向上する。
【0041】
一方、暖房運転のために室外熱交換器3を蒸発器として使用する場合は、冷媒の流れと空気の流れを並向流化した方が熱交換効率が高くなる。暖房運転時においては、冷媒の流れ方向が矢印の方向とは逆になるので、該冷媒の流れと空気の流れとが並向することとなり、このため、熱交換効率が高くなって運転時のエネルギー効率が向上する。
【0042】
図5は、この発明の第1の実施の形態における他の第2変形例を示している。この第2変形例は、差圧スライド式冷媒回路切換弁10のスライド弁体21のピストン形成数を4にすることによって、室外熱交換器3に6個のパス51,52,53,54,55,56を形成した構成を有する。なお、図5は冷房運転時の状態を示しており、このとき、実線矢印の方向に冷媒が流れる。すなわち、圧縮機1から吐出された冷媒は、四方弁2、冷媒回路71,72に流入し、この冷媒回路71に流入した冷媒は、差圧スライド式冷媒回路切換弁10のポート81、冷媒回路61、パス51、パス54、冷媒回路64、冷媒回路65、パス55、パス52、冷媒回路62、冷媒回路63、パス53、パス56、冷媒回路66およびポート85を通って冷媒回路75に流入した後、流量制御弁4に至って凝縮する。他の構成ならびに作用については、図1に示した実施の形態1と同じである。この第2変形例のように、室外熱交換器3の冷媒流路の分割数を増加させても、冷媒のパスを1パスで構成することができる。
【0043】
図6は、第2変形例における暖房運転時の状態を示しており、この状態では、冷媒が点線矢印方向に流れる。すなわち、流量制御弁4を通った冷媒は、冷媒回路73,74,75に流入する。この冷媒回路73に流入した冷媒は、ポート83、冷媒回路64、パス54、パス51、冷媒回路61、ポート81および冷媒回路71を通って四方弁2に流入する。また、この冷媒回路74に流入した冷媒は、ポート84、冷媒回路65、パス55、パス52、冷媒回路62、ポート82、冷媒回路72を通って四方弁2に流入する。さらに、冷媒回路75に流入した冷媒は、ポート85、冷媒回路66、パス56、パス53、冷媒回路63、ポート82、冷媒回路72を通って四方弁4に流入する。なお、他の作用は、図2の場合と同様である。
【0044】
実施の形態2
図7、図8は、この発明の第2の実施の形態を示している。なお、これらの図において、前記第1の実施の形態の構成要素と同一の要素には同一の符号を付してある。図7は、冷房運転の例を示したものであり、この例では、実線矢印方向に冷媒が流れる。この第2の実施の形態においても、室内機7の室内熱交換器5に差圧スライド式冷媒回路切換弁10が接続されている。室内熱交換器5は、4分割されてパス101、102、103、104を形成している。そして、室内交換器5のパス103と差圧スライド式冷媒回路切換弁10との間に流量制御弁111が接続されている。
【0045】
図7の空気調和機の動作および作用について説明する。冷房運転時において、圧縮機1から吐出された冷媒は、四方弁2、室外熱交換器3、流量制御弁4および液接続配管16を通って室内機7に至る。このとき、冷媒は、流量制御弁4で減圧されて、低圧二相冷媒となる。また、差圧スライド式冷媒回路切換弁10のスライド弁体21が固定装置112によって図示の位置に固定されるとともに、第2の流量制御弁111が全開されている。
【0046】
室内機7に流入した冷媒は、まず、室内熱交換器5のパス103とパス104に流れ込む。そして、パス103,104から流出した冷媒は、それぞれパス101,102に流れ込んで蒸発した後に合流し、ついで、ガス接続配管17および四方弁2を通って圧縮機1に至る。
【0047】
一方、室内機7においては、白抜き矢印で示すように、空気がパス101からパス102に向って、また、パス103からパス104に向かって流れる。このように、この第2の実施の形態の空気調和機では、室内熱交換器5を蒸発器として作用させて冷房運転を行う。
【0048】
続いて、図8に示した空気調和機の動作および作用について説明する。図8は、再熱除湿運転の例であり、この例では、冷媒が実線矢印の方向に流れる。再熱除湿運転とは、室温低下を押さえつつ除湿を行う運転方式である。具体的には、室内熱交換器5を凝縮器と蒸発器に分割して運転を行い、蒸発器にて除湿、冷却した空気を、凝縮器にて再加熱する。これにより、室内での顕熱熱交換能力と該能力の制御範囲とを通常の冷房運転より拡大させることができる。
【0049】
再熱除湿運転時において、圧縮機1から吐出された冷媒は、四方弁2を通って室外熱交換器3、流量制御弁4および液接続配管16を通って室内機7に至る。このとき、流量制御弁4は全開された状態で使用され、このため、冷媒は減圧されない。
【0050】
一方、再熱除湿運転時においては、差圧スライド式冷媒回路切換弁10のスライド弁体21および固定装置112が解放されて、スライド弁体21が冷媒回路切換弁10に作用する冷媒回路の圧力に応じて動き得る状態になっている。
【0051】
この再熱除湿運転では、冷媒回路における減圧装置として第2の流量制御弁111を使用する。従って、差圧スライド式冷媒回路切換弁10のポート121,124おける冷媒圧力を比較すると、流量制御弁111での減圧分だけポート124の方が高いため、スライド弁体21はこの圧力差により矢印115の方向に押しつけられて移動し、図示の位置に固定される。
【0052】
これにより、冷媒が実線矢印方向に流れ、パス102とパス104が凝縮器として動作するとともに、パス101と103が蒸発器として動作する。また、図8における室内機7での空気の流れは、図7の空気調和機と同様に、パス101から102、パス103から104の方向に流れる。
【0053】
従って、この空機調和機によれば、蒸発器として動作するパス101と103において空気を冷却、減湿し、その後、凝縮器として動作するパス102と104においてその空気を加熱するという再熱除湿運転を行うことができる。
【0054】
図7に示した冷房運転では、室内熱交換器5が2パスの冷媒回路を構成して動作するのに対して、図8に示した再熱除湿運転では、室内熱交換器5が1パスの冷媒回路を構成して動作する。
【0055】
従って、冷房運転では、室内熱交換器5での冷媒圧力損失が減少して、エネルギー効率の高い運転が実施できる。また、再熱除湿運転では、室内熱交換器5での冷媒圧力損失が増えるものの、冷媒蒸発温度が低下することによって除湿量が増加するので、より除湿能力が大きい再熱除湿運転が実施できる。それ故、従来の空気調和機の再熱除湿運転と比較して、潜熱熱交換器能力と顕熱熱交換能力の制御範囲を拡大することができる。
【0056】
図7、図8において、冷房から再熱除湿への運転モードの切換は、圧縮機1の運転中でも可能であるが、該圧縮機1を停止してから切り換えた方が冷媒回路内の圧力がバランスするので、冷媒流動に起因する異常音の発生の可能性が少なくなる。すなわち、圧縮機1の停止後に冷房から再熱除湿への運転モードの切換を行えば、第2の流量制御弁111の減圧作用に基づいて生じる圧力差によってスライド弁体21が図7の位置から図8の位置に徐々に移動するので、上記異常音を伴うことなく再熱除湿運転が開始される。
【0057】
再熱除湿から冷房への運転モードの切換は、圧縮機1を停止した状態で行う。この時、冷媒回路内の圧力がバランスし、冷媒は温度が低い室内熱交換器5へ溜まり混もうとして室外機6から流入してくる。
【0058】
この時のパス101とパス104の温度を比較すると、パス101の方が低く、したがって、差圧スライド式冷媒回路切換弁10のポート121における冷媒流入量は、ポート124における冷媒流入量よりも多くなる。この結果、スライド弁体21は、図8の位置から図7の位置に徐々に移動した後、固定装置112によって冷房運転が可能な位置に固定される。
【0059】
なお、室内と室外の温度差が少ない場合には、冷媒流入量が少なくなるので、スライド弁体21を移動させる駆動力が生じにくくなる。この時は、符号113に示すようなバネ力を外部からスライド弁体21に作用させて、該弁体21を移動させてやればよい。すなわち、圧縮機1は停止されているので、上記スライド弁体21の移動によって冷媒回路内の圧力がバランスし、冷媒回路切換弁10内の圧力もバランスする。スライド弁体21を移動させる駆動力は微小なもので済むので、上記外部バネ力113は微小でよい。また、上記固定装置112は、予め知られるスライド弁体21の必要移動時間後に動作させることによってスライド弁体21を固定する。
【0060】
上記再熱除湿から冷房への運転モードの切換は、圧縮機1の運転中においても可能である。この場合には、まず最初に第2の流量制御弁111を全開とする。これにより、矢印115の方向の押圧力は室内熱交換器5での冷媒圧力損失に相当することになるので、上記外部バネ力113をこの圧力損失によって生じる力以上に設定してやれば、スライド弁体21を図7に示す位置まで移動することができる。そこで、固定装置112によってスライド弁体21を固定すれば、冷房運転を始めることができる。
【0061】
冷房運転時に室内熱交換器5に生じる圧力損失と、再熱除湿運転時に第2の流量制御弁111で生じる減圧量とを比較すると、後者の方がはるかに大きい。それ故、外部バネ力113を付加しても、再熱除湿運転時にスライド弁体21が移動しないといった不都合は生じない。
【0062】
なお、再熱除湿から冷房への運転モードの切換をつぎのようにして行ってもよい。すなわち、四方弁2を切り換えて暖房運転を行い(冷媒の流れ方向は、実線矢印とは反対の方向)、スライド弁体21を図7の位置に移動させる。そして、固定装置112によりスライド弁体21を固定してから、四方弁2を切り換えて冷房運転に移行してもよい。
【0063】
再熱除湿運転時は、室内機7内に第2の流量制御弁111が存在するので、この流量制御弁111の上流側から気液二相流が流入すると、不連続な冷媒流動音が発生して不快感を与える。
【0064】
この対策として、図8に示すように、冷媒回路切換弁10の筒状容器とスライド弁体21とで画成される隙間に多孔体(発泡金属や燒結金属、セラミックなど)を埋め込むという手段を採用することができる。この手段によれば、第2の流量制御弁111により混合された状態の気液二相流が流入することになるので、冷媒流動音の発生が押さえられる。なお、上記多孔体の空隙率を大きくすることにより、ここを通過する冷媒圧力損失を最小限にすることができる。
【0065】
なお、上記においては、実施の形態2として冷房運転と再熱除湿運転の例を示したが、四方弁2の流れ方向を暖房方向に切り換えて、暖房運転と再熱除湿運転を実施する場合にも同様の効果が得られる。この時、室外熱交換器3は蒸発器として動作する。また、四方弁2の流れ方向が冷房方向である場合と比較して、暖房方向での再熱除湿運転はより加熱できる熱量が多く、このため、暖房しながら除湿を行う(例えば、降雪地など多湿空気条件での暖房で、窓や壁などへの結露を防止するのに有効)ことが可能となる。
【0066】
上述した実施の形態2では、冷房運転と再熱除湿運転とで冷媒回路を切り換えているが、例えば、冷房や暖房運転時に、第2の流量制御弁111を全開とし、冷媒流量に応じてスライド弁体21の固定装置112を動作させるように構成しても良い。すなわち、冷媒流量の多い冷房通常能力運転時は、冷媒のパス数が2となるようにスライド弁体21の固定装置112を動作させることにより、室内熱交換器5での冷媒圧力損失を低減して、エネルギー効率の高い運転を実施することができる。
【0067】
一方、圧縮機回転数が低い冷房低能力運転時は、冷媒流量が少なくなるので、室内熱交換器5での冷媒圧力損失が小さくなる。そこで、冷媒のパス数が1となるようにスライド弁体21の固定装置112を動作させることにより、冷媒流速の増大による熱交換効率の向上によって、エネルギー効率の高い運転を実現することができる。
【0068】
なお、上記実施の形態2においても、図3、図4、図5および図6に示した実施の形態1と同様な構造を採用して、この実施の形態1と同様の効果を達成することが可能である。
【0069】
上述した実施の形態1,2では、圧縮方式の冷凍サイクルに用いる冷媒として種々のものを適用することができる。例えば、HCFC冷媒であるR22や、HFC系冷媒(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41、RC318などや、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC系冷媒(ブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種の混合冷媒)、自然冷媒(空気、二酸化炭素、水、アンモニアなどや、これら冷媒の数種の混合冷媒)、また、これらHCFC系、HFC系、HC系冷媒、自然冷媒、HFE系冷媒(エーテル系冷媒)などの数種を混合した冷媒など、どんな冷媒を用いてもその効果が発揮される。
【0070】
特に、HC系冷媒や自然冷媒は、地球温暖化係数が低いので、このような冷媒を使用すれば、運転時のエネルギー効率向上と合わせて、地球温暖化を防止することができる。また、特にR410AなどのR32/125混合冷媒、R32単体冷媒、二酸化炭素などは、動作圧力が高いため、高い圧力差を冷媒回路切換弁10に作用させること、つまり、スライド弁体21に大きな駆動力を作用させることができるので、このような冷媒を使用すれば、冷媒回路の切換動作をより確実に行うことができる。
【0071】
一方、冷凍サイクルに用いる冷凍機油も種々のものを用いることができる。すなわち、冷媒に対して非相溶性または難溶性の冷凍機油、もしくは相溶性の冷凍機油、あるいは、アルキルベンゼン系、鉱油系、エステル油系、エーテル油系、フッ素油系などの冷凍機油のいずれを用いても、その効果が発揮される。
【0072】
なお、実施の形態1,2において使用した差圧スライド式冷媒回路切換弁10は、その中を流れる冷媒の差圧により動作するので、その設置姿勢が縦、横いずれの場合でも、その機能に差を生じない。また、冷媒回路切換弁10は、その動作をより確実なものとするため、外部から駆動力が加わるような構造(電磁コイルや空気圧による駆動など)にしても、その機能は満足される。
【0073】
【発明の効果】
以上に説明したように、この発明によれば、室内熱交換器及び室外熱交換器の少なくとも一方に併設される冷媒路切換弁が、対応する熱交換器の各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートと、冷房運転と暖房運転時におけるこれらのポートの圧力差によって移動されて、前記各冷媒回路を直列接続と並列接続とに切り換え、前記室内熱交換器及び/又は室外熱交換器のパス数を変える弁体とを備えた構成を有するので、冷房運転、暖房運転ともエネルギー効率の高い運転が可能であり、また、冷媒路切換弁の構造が簡単になるので、その動作不良を減少して信頼性を向上することができるとともに、低コスト化、コンパクト化を図ることができる。加えて、冷媒圧力損失が十分に抑制して、エネルギー効率の高い運転を実現することができる。
【0074】
つぎの発明によれば、冷房運転時に前記各冷媒路を流れる冷媒の流れが前記熱交換器に向かう空気の流れと対向するように、また、暖房運転時に前記各冷媒路を流れる冷媒の流れが前記空気の流れと並向するよう前記冷媒路切換弁が切換作動するので、冷房運転時および暖房運転時のいずれにおいても熱交換率を向上して各運転時のエネルギー効率を高めることができる。
【0075】
つぎの発明によれば、室内熱交換器に併設される冷媒路切換弁が、該交換器の各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートと、冷房運転と再熱除湿運転時あるいは暖房運転と再熱除湿運転時におけるこれらのポートの圧力差によって移動されて、前記各冷媒回路を直列接続と並列接続とに切り換え、前記室内熱交換器のパス数を変える弁体と、この弁体を固定する弁体固定手段とを備え、前記室内熱交換器の各冷媒路によって構成される路中に流量制御弁を介在させた構成を有するので、冷房運転または暖房運転ではエネルギー効率を図れ、また、再熱除湿運転ではより除湿能力を高めることができる。したがって、潜熱熱交換器能力と顕熱熱交換能力の制御範囲をより拡大することが可能になる。
【0076】
つぎの発明によれば、冷媒として、R410AなどのR32/125混合冷媒、R32単体冷媒、二酸化炭素を使用するので、一層エネルギー効率が高い運転を実現できるとともに、地球温暖化を防止することができる。
【図面の簡単な説明】
【図1】 この発明の第1の実施の形態にかかる空気調和機の冷房運転時の状態を示す回路図である。
【図2】 図1に示した空気調和機の暖房運転時の状態を示す回路図である。
【図3】 この発明の第1の実施の形態において使用される冷媒流路切換弁の構造の一例を示す破断斜視図である。
【図4】 この発明の第1の実施の形態の第1変形例である空気調和機の冷房運転時の状態を示す回路図である。
【図5】 この発明の第1の実施の形態の第2変形例である空気調和機の冷房運転時の状態を示す回路図である。
【図6】 図5に示した空気調和機の暖房運転時の状態を示す回路図である。
【図7】 この発明の第2の実施の形態にかかる空気調和機の冷房運転時の状態を示す回路図である。
【図8】 図7に示した空気調和機の再熱除湿運転時の状態を示す回路図である。
【図9】 従来の空気調和機の冷房運転時の状態を示す回路図である。
【図10】 図9に示した空気調和機の暖房運転時の状態を示す回路図である。
【符号の説明】
1 圧縮機、2 四方弁、3 室外熱交換器、4 流量制御弁、5 室内熱交換器、10 差圧スライド式冷媒回路切換弁、21 スライド弁体。

Claims (4)

  1. 複数の冷媒路を有した室内熱交換器及び室外熱交換器を含んで構成される冷凍サイクルを備えた空気調和機であって、
    前記室内熱交換器及び室外熱交換器の少なくとも一方に、冷媒路切換弁を併設し、
    前記冷媒路切換弁は、前記各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートと、冷房運転と暖房運転の切換による前記冷凍サイクル内の冷媒の流れ方向の切換に基づくこれらのポートの圧力差によって移動されて前記各冷媒を直列接続と並列接続とに切り換え、前記室内熱交換器及び/又は室外熱交換器のパス数を変える弁体とを備えることを特徴とする空気調和機。
  2. 前記冷媒路切換弁は、冷房運転時に前記各冷媒路を流れる冷媒の流れが前記熱交換器に向かう空気の流れと対向し、前記暖房運転時に前記各冷媒路を流れる冷媒の流れが前記空気の流れと並向するよう切換作動することを特徴とする請求項1に記載の空気調和機。
  3. 複数の冷媒路を有した室内熱交換器及び室外熱交換器を含んで構成される冷凍サイクルを備えた空気調和機であって、
    前記室内熱交換器に冷媒路切換弁を併設し、
    前記冷媒路切換弁は、前記各冷媒路の内の最上流側冷媒路および最下流側冷媒路にそれぞれ連通する第1および第2のポートと、冷房運転と再熱除湿運転時あるいは暖房運転と再熱除湿運転時におけるこれらのポートの圧力差によって移動されて前記各冷媒を直列接続と並列接続とに切り換え、前記室内熱交換器のパス数を変える弁体と、この弁体を固定する弁体固定手段とを備え、
    前記室内熱交換器の各冷媒路によって構成される路中に流量制御弁を介在させたことを特徴とする空気調和機。
  4. 冷媒として、R410AなどのR32/125混合冷媒、R32単体冷媒、二酸化炭素を使用することを特徴とする請求項1〜3のいずれか一つに記載の空気調和機。
JP2001028870A 2001-02-05 2001-02-05 空気調和機 Expired - Lifetime JP4201990B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028870A JP4201990B2 (ja) 2001-02-05 2001-02-05 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028870A JP4201990B2 (ja) 2001-02-05 2001-02-05 空気調和機

Publications (3)

Publication Number Publication Date
JP2002228273A JP2002228273A (ja) 2002-08-14
JP2002228273A5 JP2002228273A5 (ja) 2005-10-27
JP4201990B2 true JP4201990B2 (ja) 2008-12-24

Family

ID=18893290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028870A Expired - Lifetime JP4201990B2 (ja) 2001-02-05 2001-02-05 空気調和機

Country Status (1)

Country Link
JP (1) JP4201990B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350341B (zh) * 2012-06-18 2016-07-20 松下知识产权经营株式会社 热交换器和空调机
JP6798009B2 (ja) * 2017-04-11 2020-12-09 三菱電機株式会社 冷凍サイクル装置
WO2019225005A1 (ja) * 2018-05-25 2019-11-28 三菱電機株式会社 熱交換器及び冷凍サイクル装置
CN114674096B (zh) * 2022-05-20 2022-08-12 海尔(深圳)研发有限责任公司 冷媒分配装置、换热器及空调器

Also Published As

Publication number Publication date
JP2002228273A (ja) 2002-08-14

Similar Documents

Publication Publication Date Title
JP4803199B2 (ja) 冷凍サイクル装置
WO2009087733A1 (ja) 冷凍サイクル装置および四方弁
JP3918421B2 (ja) 空気調和機、空気調和機の運転方法
JP5005122B2 (ja) 車両用空調装置
JP2007085730A (ja) 空気調和機、空気調和機の運転方法
KR101176482B1 (ko) 냉난방 동시형 멀티 공기조화기
WO1998006983A1 (fr) Conditionneur d'air
JP3998024B2 (ja) ヒートポンプ床暖房空調装置
JP3702855B2 (ja) ヒートポンプ床暖房空調装置
JP2012037224A (ja) 冷媒流路切換ユニット
JP2001082761A (ja) 空気調和機
JP4103363B2 (ja) 流量制御装置、冷凍サイクル装置および空気調和装置
JP7105580B2 (ja) 空気調和機
JP2002221353A (ja) 空気調和機
JP4201990B2 (ja) 空気調和機
JP6671491B2 (ja) 熱交換器および冷凍サイクル装置
JP6553539B2 (ja) 統合弁装置
JP2003050061A (ja) 空気調和装置
JP2002081779A (ja) 空気調和機
JP4221922B2 (ja) 流量制御装置、絞り装置及び空気調和装置
JP2005016881A (ja) 空気調和装置
KR20050043089A (ko) 히트 펌프
JP4063465B2 (ja) 空気調和機及びマルチタイプの空気調和機
JP4151236B2 (ja) 流量制御装置及び空気調和装置
JP2005201500A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Ref document number: 4201990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term