JP4063465B2 - 空気調和機及びマルチタイプの空気調和機 - Google Patents

空気調和機及びマルチタイプの空気調和機 Download PDF

Info

Publication number
JP4063465B2
JP4063465B2 JP2000004462A JP2000004462A JP4063465B2 JP 4063465 B2 JP4063465 B2 JP 4063465B2 JP 2000004462 A JP2000004462 A JP 2000004462A JP 2000004462 A JP2000004462 A JP 2000004462A JP 4063465 B2 JP4063465 B2 JP 4063465B2
Authority
JP
Japan
Prior art keywords
control valve
indoor
flow
heat exchanger
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000004462A
Other languages
English (en)
Other versions
JP2001194027A (ja
Inventor
琢也 向山
利彰 吉川
茂樹 大西
雅弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000004462A priority Critical patent/JP4063465B2/ja
Publication of JP2001194027A publication Critical patent/JP2001194027A/ja
Application granted granted Critical
Publication of JP4063465B2 publication Critical patent/JP4063465B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍サイクルの凝縮熱の一部を再熱の目的のために使用する空気調和機に係り、より詳細には、温度と湿度の制御性を高めるとともに、冷媒流動音を低減することにより、温度と湿度と騒音に対する快適性を向上させる空気調和機に関するものである。
【0002】
【従来の技術】
従来の冷凍サイクルの凝縮熱の一部を再熱の目的のために使用する空気調和機は、主として、回転数可変型圧縮機と、室外側熱交換器と、第1流量制御弁と、熱的に2分割された室内側熱交換器とを順次接続し、この2分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルを備えている。
【0003】
上記従来の空気調和機では、室外側熱交換器を凝縮器として使用し、2分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、第1流量制御弁の開度は固定し、第2流量制御弁の開度を調節することで室内側空気の温度と湿度の制御を行っている。
【0004】
図11は、上記運転モードにおいて第2流量制御弁の開度を2段階に調節した場合の、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御可変領域の一例を示したものである。
【0005】
【発明が解決しようとする課題】
従来の空気調和機の上記運転モードにおいて、第2流量制御弁の開度は調節されるが、第1流量制御弁の開度は固定されて運転されていたので、冷媒流量の制御可変領域は制限される。
【0006】
また、第2流量制御弁は室内側に設置されるため、圧縮機回転数を上昇させて冷媒流量を増加させた場合、第2流量制御弁を通過する冷媒流動音による室内側騒音が増大する。同様に、再熱器として使用する室内側熱交換器の冷媒入口では、冷媒は依然として高圧であるため、冷媒流量の増加に伴い室内側騒音が増大する。したがって室内の騒音に対する快適性を維持するため、圧縮機回転数の制御可変領域、すなわち冷媒流量の制御可変領域は制限される。
【0007】
以上のことから、上記運転モードにおいて、室内側熱交換器の冷媒流量の制御可変領域は制限されるため、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御可変領域についても図11に示すように限られた範囲となり、室内側空気の温度と湿度を広範囲に制御することができないという問題点があった。
【0008】
さらに、従来の空気調和機では、作動冷媒に主としてR22が使用されていたが、オゾン層破壊防止の目的のため、R410Aなどのハイドロフルオロカーボン系冷媒への代替化が進行中であり、このR410Aは、R22に比べ動作圧力が高くなるため、上記第2流量制御弁における冷媒差圧も大きくなり、冷媒流動音により室内側騒音が増大するという問題点があった。
【0009】
この発明は、かかる問題点を解決するためになされたもので、冷凍サイクルの凝縮熱の一部を再熱の目的のために使用する空気調和機において、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御可変領域を拡大することで、室内側の温度と湿度に対する快適性を向上し、さらに、室内側熱交換器へ流入する冷媒の流動音、および室内側に設けられた第2流量制御弁の冷媒流動音を抑制することで、室内側の騒音に対する快適性を向上することを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る空気調和機は、圧縮機、室外側熱交換器、第1流量制御弁、熱的に複数に分割された室内側熱交換器を順次接続し、熱的に複数に分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルと、室内側送風機と、室外側送風機と、を有する空気調和機において、第1流量制御弁及び第2流量制御弁の少なくとも何れか一方の冷媒流路に多孔質体を設け、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードを備え、圧縮機の回転数を制御する圧縮機回転数制御部と、この圧縮機回転数制御部の温度を検出する手段と、この検出結果に応じて室内側送風機の送風量と、室外側送風機の送風量とを制御する手段と、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、圧縮機回転数制御部の温度の検出結果に応じて、室内側送風機の送風量および室外側送風機の送風量を制御することにより、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行う制御手段と、を備えたことを特徴とする。
【0011】
この発明に係る空気調和機は、圧縮機、室外側熱交換器、第1流量制御弁、熱的に複数に分割された室内側熱交換器を順次接続し、熱的に複数に分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルと、室内側送風機と、室外側送風機と、を有する空気調和機において、第1流量制御弁及び第2流量制御弁の少なくとも何れか一方の冷媒流路に多孔質体を設け、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードを備え、目標となる室内温度および室内湿度を外部から設定する手段と、室内側空気の温度および湿度を検出する手段と、目標室内温度と検出室内温度との差および目標室内湿度と検出室内湿度との差を演算する手段と、この演算結果に応じて室内側送風機及び室外側送風機の送風量の送風量と、圧縮機の回転数と、第1流量制御弁の開度と、第2流量制御弁の開度とを制御する手段と、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、目標室内温度と検出室内温度との差および目標室内湿度と検出室内湿度との差の演算結果に応じて室内側送風機及び室外側送風機の送風量と、圧縮機の回転数と、第1流量制御弁の開度と、第2流量制御弁の開度とを制御することにより、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行う制御手段と、を備えたことを特徴とする。
【0012】
この発明に係る空気調和機は、第2流量制御弁をその開度を多段階に調節が可能な流量制御弁で構成したことを特徴とする。
【0013】
この発明に係る空気調和機は、第1流量制御弁をその開度を多段階に調節が可能な流量制御弁で構成したことを特徴とする。
【0014】
この発明に係る空気調和機は、第2流量制御弁と並列に、冷媒の流動抵抗体として、オリフィスの前後またはそのいずれかに多孔体を使用したオリフィス体を備えたことを特徴とする。
【0015】
この発明に係る空気調和機は、第2流量制御弁をその開度を全閉と全開の間で2段階に調節が可能な流量制御弁で構成したことを特徴とする。
【0016】
この発明に係る空気調和機は、第2流量制御弁と直列に、冷媒の流動抵抗体として、流路に多孔体を使用したオリフィス体を備えたことを特徴とする。
【0017】
この発明に係る空気調和機は、第1流量制御弁は、冷媒流路に多孔質体を使用しないことを特徴とする。
【0018】
この発明に係る空気調和機は、請求項1又は請求項2記載の空気調和機において、第1流量制御弁と、室内側熱交換器と、第2流量制御弁との接続体を複数について並列接続して構成したことを特徴とする。
【0019】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図面を参照して説明する。
図1〜5は実施の形態1を示す図で、図1は空気調和機の冷凍サイクル図、図2は制御装置の要部ブロック図、図3は各機器の制御に対する室内側熱交換器による潜熱熱交換量と顕熱熱交換量との関係図、図4は室内側熱交換器による潜熱熱交換量と顕熱熱交換量との制御可変範囲を示した図、図5設定された目標温・湿度と実際の温・湿度との差の値に対応した、各アクチュエータに対する制御指令信号のマトリックス構成例を示す図である。
【0020】
図1に示すように、圧縮機1と、室外側熱交換器2と、第1流量制御弁3と、室内側熱交換器4aと、第2流量制御弁5と、室内側熱交換器4bとを順次接続した構成であり、室内側熱交換器4aと室内側熱交換器4bは熱的に分割されている。圧縮機1、室外側熱交換器2、および第1流量制御弁3は室外ユニットA側であり、室内側熱交換器4a、第2流量制御弁5、室内側熱交換器4bは室内ユニットB側である。
【0021】
第2流量制御弁5には、冷媒流路に多孔質体を使用した多段階に開度調節が可能な流量制御弁を用い、第1流量制御弁3についても冷媒流路に多孔質体を使用した多段階に開度調節が可能な流量制御弁を用いる。多孔質体には、0.1μmから300μmの径で構成された燒結金属を使用する。
多段階に開度調節が可能な流量制御弁としては、例えば電子制御式膨張弁が挙げられる。
【0022】
さらに、圧縮機1に回転数可変型圧縮機を用い、これを制御する圧縮機回転数制御部を備える。作動流体となる冷媒にはハイドロフルオロカーボン系冷媒(具体的にはR410AやR407C等)を用い、冷凍機油にはアルキルベンゼン系油、エステル系油、エーテル系油等を使用する。
【0023】
図2に示すように、空気調和機の制御回路は、制御部8に第1流量制御弁3と、室内側空気温度センサ6と、室内側空気湿度センサ7と、吸入温度センサ13と、室内側送風機9と、室外側送風機10と、圧縮機回転数制御部11とを接続した構成である。吸入温度センサ13は、圧縮機1に設置された吸入冷媒温度を検出するものである。また、目標となる室内側空気温・湿度を、外部から制御部8へ設定する機能を有する目標温・湿度設定装置12を備える。制御部8は、記憶機能と、演算機能と、接続された各機器へ制御指令信号を出力する機能とを備える。
【0024】
以上のような空気調和機の構成において、図1中矢印の方向に冷媒を流した場合、第1流量制御弁3・第2流量制御弁5を設けたことにより、冷凍サイクルの凝縮熱の一部を室内側熱交換器4aにおいて再熱の目的で使用することができる。以下、室外側熱交換器2を凝縮器として使用し、室内側熱交換器4aを再熱器として使用し、室内側熱交換器4bを蒸発器として使用する運転モードについて考える。
【0025】
室内側熱交換器4aを再熱器として使用する場合、冷媒は第1流量制御弁3で減圧されるが、室内側熱交換器4aへ流入する冷媒は依然として高圧であり、冷媒流動音による騒音が問題となる。これに対し、本実施の形態では、第1流量制御弁3の冷媒流路に多孔質体を使用することで、室内側熱交換器4aへ流入する冷媒が整流され冷媒流動音の抑制が可能となる。
【0026】
また、第1流量制御弁3と第2流量制御弁5とにより冷媒に対し絞りが作用するが、気液二相となった冷媒がこのような絞り作用をうけると冷媒流動音が生じる。特に、第2流量制御弁5においては、気液二相となった冷媒が通過する可能性が高く、さらに室内側に設置されていることから冷媒流動音による騒音が問題となる。
【0027】
また、本実施の形態のように、作動流体となる冷媒にR410A等の比較的高圧で作動する冷媒を使用した場合、絞り前後での冷媒差圧が大きくなり、上記の冷媒流動音の発生がより顕著となる。これに対し、本実施の形態では、第2流量制御弁5の冷媒流路に多孔質体を用いることにより、冷媒流動音を抑制し、低騒音な空気調和機を実現している。
【0028】
次に、上記のような室外側熱交換器2を凝縮器として使用し、室内側熱交換器4aを再熱器として使用し、室内側熱交換器4bを蒸発器として使用する運転モードにおける、室内側熱交換器による潜熱熱交換量と顕熱熱交換量について説明する。
【0029】
室内側送風量と、室外側送風量と、第1流量制御弁開度と、第2流量制御弁開度と、圧縮機運転周波数とをそれぞれ変化させた場合、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の推移傾向は図3に示すようになる。
一般に、圧縮機運転周波数、室内側送風量、室外側送風量をそれぞれ増加させると、室内側熱交換器による熱交換量は、各量について図示矢印の方向へ推移する。
同様に、第1流量制御弁開度、第2流量制御弁開度をそれぞれ減少させると、室内側熱交換器による熱交換量は、各量について図示矢印の方向へ推移する。
【0030】
従来の空気調和機では、圧縮機運転周波数及び第2流量制御弁開度の調節により、室内側熱交換器による潜熱熱交換量と顕熱熱交換量を制御していた。さらに、上記冷媒流動音の増大を考慮すると、高周波数域で圧縮機を運転することができず、また、第2流量調節弁開度についても2段階の調節であったため、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御可能な範囲は、図11に示すように限られていた。
【0031】
本実施の形態では、上記のように第2流量制御弁5での冷媒流動音が抑制されるため、圧縮機運転周波数を上昇させて冷媒動作圧が高い状態での運転が可能である。また、室内側送風量、室外側送風量、第1流量制御弁開度および第1流量制御弁開度についても、これらを調節する機能を備える。したがって、室内側熱交換器による潜熱熱交換量と顕熱熱交換量は、図4の斜線部で示すように、広範囲にわたっての制御が可能となる。
【0032】
これにより、例えば、従来は、顕熱熱交換量を抑えた状態での高潜熱負荷への対応は困難であったが、圧縮機運転周波数および第1流量制御弁開度を増加させることで対応が可能となる。また、室内側送風量を抑えた状態でも、第1・第2流量制御弁の開度調節により顕熱熱交換量の増加が可能となり、空気調和機の低騒音化を図ることができる。具体的な制御は、以下のような方法による。
【0033】
目標温・湿度設定装置12により目標となる室内側温・湿度を設定する。制御部8において、設定された温度と、室内側空気温度センサ6による温度の検出結果との差Δtを演算する。同様に、制御部8において、設定された湿度と、室内側空気湿度センサ7による湿度の検出結果との差ΔRHを演算する。制御部8は、各Δtの値とΔRHの値との組み合わせ毎に、室内側送風機9と、室外側送風機10と、圧縮機回転数制御部11と、第1流量制御弁3と、第2流量制御弁5とに対する制御指令信号のマトリックス状の情報をあらかじめ記憶している。
【0034】
このマトリックスの構成例を図5に示す。上記ΔRHの値が変化する領域として想定しうる領域をm個の区間に分け、任意のi番目の区間の代表値をΔRHi(ΔRH1≦ΔRHi<ΔRHm)とする。同様に、Δtの値についても、n個の区間のうち任意のj番目の区間の代表値をΔtj(Δt1≦Δtj<Δtn)とする。ΔRHiとΔtjの組み合わせに対し、制御指令信号の組である指令ijを対応させる。すなわちm×n個の制御指令信号の組で、マトリックスを構成している。指令ijの内容は、上記のように、室内側送風機9と、室外側送風機10と、圧縮機回転数制御部11と、第1流量制御弁3と、第2流量制御弁5とに対する各制御指令信号の組である。
【0035】
上記のようなマトリックスを用い、ΔtとΔRHの演算結果に基づいて各制御指令信号を選択し、制御部8より出力することで、室内側熱交換器による潜熱熱交換量と顕熱熱交換量を変化させる。以上のような方法で制御を行うことにより、室内側空気の温度と湿度を広範囲に制御可能なだけでなく、速やかに目標温・湿度に到達が可能な空気調和機を実現している。
【0036】
なお、本実施の形態では、第1流量制御弁3および第2流量制御弁5に多段階に開度調節が可能な流量制御弁を用いたが、開度調節可能な段階が多いほどよりきめ細かく、開度調節可能な範囲が広いほどより幅広い範囲で室内側空気の温度と湿度が制御可能となる。
【0037】
なお、本実施の形態において、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御可能な範囲を広げるため、圧縮機1の回転数を増加させたり、室外側送風機10の回転数を減少させた場合、圧縮機回転数制御部11の制御基板温度の上昇を招く。この基板温度の過昇を防ぐために、圧縮機1あるいは室外側送風機10の回転数の可変範囲は制限される。これに対し、圧縮機回転数制御部11に温度センサを設置し、基板温度があらかじめ設定された一定値以上になった場合に、室外側送風機10の回転数を増加させ、またこれに伴い室内側送風機9の回転数を変化させる制御指令信号を出力する構成とすることで、より広範囲にわたる、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御が可能となる。
【0038】
実施の形態2.
以下、この発明の実施の形態2を図面を参照して説明する。
図6は実施の形態2を示す図で、空気調和機の冷凍サイクル図である。作動冷媒および制御回路の構成は、実施の形態1と同様である。図6に示すように、実施の形態1の冷凍サイクルの構成に加え、第2流量制御弁5と並列に、オリフィス前後に燒結金属等の多孔体を設置したオリフィス体14を接続した構成である。このようにオリフィス前後に多孔体を設置することで、絞りにより発生する冷媒流動音を抑制することができ、空気調和機の低騒音化を実現している。
【0039】
本実施の形態では、実施の形態1と同様に、室外側熱交換器2を凝縮器として使用し、室内側熱交換器4aを再熱器として使用し、室内側熱交換器4bを蒸発器として使用する運転モードにおいて、室内側熱交換器による潜熱熱交換量と顕熱熱交換量は、図4の斜線部で示すように、広範囲にわたっての制御が可能となる。特に、本実施の形態では、第2流量制御弁5を全閉した状態でもオリフィス体14を通じて常に冷媒が循環する構成となっているので、第2流量制御弁5として開度調節が全開と全閉の2段階のような簡単な流量制御弁を用いても冷凍サイクルの実現を可能としている。
【0040】
実施の形態3.
以下、この発明の実施の形態3を図面を参照して説明する。
図7は実施の形態3を示す図で、空気調和機の冷凍サイクル図である。
図7に示すように、実施の形態1の冷凍サイクルの構成に加え、第2流量制御弁5前後に直列に、オリフィス前後に燒結金属等の多孔体を設置したオリフィス体14aおよびオリフィス体14bを接続した構成である。このようにオリフィス前後に多孔体を設置することで、絞りにより発生する冷媒流動音を抑制することができ、空気調和機の低騒音化を実現している。
【0041】
特に本実施の形態では、第2流量制御弁5前後にオリフィス体を設けることにより、第2流量制御弁5における冷媒差圧が抑えられ、第2流量制御弁5の耐圧を減らすことができる。また、冷媒差圧が抑えられるため、第2流量制御弁5における冷媒流動音に対する抑制効果が向上する。
【0042】
本実施の形態では、実施の形態1と同様に、室外側熱交換器2を凝縮器として使用し、室内側熱交換器4aを再熱器として使用し、室内側熱交換器4bを蒸発器として使用する運転モードにおいて、室内側熱交換器による潜熱熱交換量と顕熱熱交換量は、図4の斜線部で示すように、広範囲にわたっての制御が可能となる。
【0043】
特に、本実施の形態では、室内側熱交換器4a後の絞りを、オリフィス体14aと、オリフィス体14bと、第2流量制御弁5とで行うため、冷媒に対し第2流量制御弁5による絞りを補助的に作用させることができ、冷媒流量制御性が向上する。
【0044】
なお、以上実施の形態1から実施の形態3で説明した空気調和機においては、室外ユニット側に第1流量制御弁3を備える例を示したが、図8に示すように室内ユニット側に第1流量制御弁3を設置しても、同様の効果を達成できる。
また、そのように構成した第1流量制御弁3と、室内側熱交換器と、第2流量制御弁との接続体を複数について並列接続してマルチタイプの空気調和機を構成してもよい。
【0045】
なお、以上実施の形態1から実施の形態3で説明した空気調和機においては、第1流量制御弁3、または、第1流量制御弁3および第2流量制御弁5において、多孔質体により冷媒流動音の抑制を実現している。従って、弁体あるいはその周辺に、特に消音材を添付する必要がないため、リサイクル性に優れる。
【0046】
実施の形態4.
以下、この発明の実施の形態4を図面を参照して説明する。
図9は実施の形態4を示す図で、空気調和機の冷凍サイクル図である。図に示すように、圧縮機1と、四方切換弁15と、室外側熱交換器2と、第1流量制御弁3と、室内側熱交換器4aと、第2流量制御弁5と、室内側熱交換器4bとを順次接続した構成であり、室内側熱交換器4aと室内側熱交換器4bは熱的に分割されている。
【0047】
さらに、圧縮機吐出側配管と室内側熱交換器とを、四方切換弁15、室外側熱交換器2、および第1流量制御弁3をバイパスして結ぶ配管によって接続し、この配管の途中に第3流量制御弁16を設置し、上記バイパス経路の開閉を行う。また、上記第3流量制御弁16と直列に逆止弁17を設置し、室内側熱交換器側から圧縮機側への冷媒の流動を防止する構成である。
【0048】
第2流量制御弁5には、冷媒流路に多孔質体を使用した多段階に開度調節が可能な流量制御弁を用いる。多孔質体には、0.1μmから300μmの径で構成された燒結金属を使用する。作動流体となる冷媒には、ハイドロフルオロカーボン系冷媒(具体的にはR410AやR407C等)を用い、冷凍機油には、アルキルベンゼン系油、エステル系油、エーテル系油等を使用する。
【0049】
以上のような空気調和機の構成において、第3流量制御弁16を閉じた状態で、冷媒を図9中矢印の方向に冷媒を流したとき、室外側熱交換器2を凝縮器、室内側熱交換器4aを再熱器、室内側熱交換器4bを蒸発器として使用する運転が可能となる。この運転モードにおいて、室外側空気温度が低下していくにつれ、室外側熱交換器による熱交換量が増加するため、室内側熱交換器4aで再熱の目的で使用される凝縮熱量は減少し、顕熱熱交換量を抑えた状態での高潜熱負荷への対応が困難となる。
【0050】
これに対し、本実施の形態において、第3流量制御弁16を開き、第1流量制御弁3を閉じ、図9中矢印の方向に冷媒を流す運転を行った場合、圧縮機より吐出された冷媒の大部分は室外側熱交換器2をバイパスして室内側熱交換器へ流入する。こうすることで、冷凍サイクル中の凝縮熱の大部分を、室内側熱交換器4aで再熱の目的での利用が可能となり、例えば1℃といったような低い室外側空気温度においても、顕熱熱交換量を抑えた状態での高潜熱負荷への対応を実現している。すなわち、室外側空気温度の低下する冬季においても、室内側空気温度を低下させることなく除湿量を確保した運転が可能となる。
【0051】
なお、上記の運転では、室外側熱交換器2へも冷媒の流入があるため、運転を継続していくにつれ、室外側熱交換器2内に冷媒が溜まり込む。このために室内側熱交換器内の冷媒が不足する場合は、第1流量制御弁3を完全に閉じることなく若干開くことで、室内側熱交換器内の冷媒が不足することなく、その効果を達成できる。
【0052】
なお、作動冷媒にR410A等の比較的高圧で動作する冷媒を使用し、上記のようにバイパス回路を開いた運転を行うと、第2流量制御弁5前後における冷媒差圧が大きくなるため、冷媒流動音の発生が懸念される。これに対し、本実施の形態では第2流量制御弁5に多孔質体を使用することで冷媒流動音を抑制しているため、上記のような運転を行った場合でも、室内における低騒音性が確保される。
【0053】
実施の形態5.
以下、この発明の実施の形態5を図面を参照して説明する。
図10は実施の形態5を示す図で、空気調和機の冷凍サイクル図である。図に示すように、圧縮機1と、四方切換弁15と、室外側熱交換器2と、第1流量制御弁3と、室内側熱交換器4aと、第2流量制御弁5と、室内側熱交換器4bとを順次接続した構成であり、室内側熱交換器4aと室内側熱交換器4bは熱的に分割されている。
【0054】
さらに、圧縮機吸入側配管と室内側熱交換器とを、第1流量制御弁3、室外側熱交換器2、四方切換弁15をバイパスして結ぶ配管によって接続し、この配管の途中に第3流量制御弁16を設置し、上記バイパス経路の開閉を行う。また、上記第3流量制御弁16と直列に逆止弁17を設置し、圧縮機側から室内側熱交換器側への冷媒の流動を防止する構成である。
【0055】
第2流量制御弁5には、冷媒流路に多孔質体を使用した多段階に開度調節が可能な流量制御弁を用いる。上記多孔質体には、0.1μmから300μmの径で構成された燒結金属を使用する。作動流体となる冷媒には、ハイドロフルオロカーボン系冷媒(具体的にはR410AやR407C等)を用い、冷凍機油には、アルキルベンゼン系油、エステル系油、エーテル系油等を使用する。
【0056】
以上のような空気調和機の構成において、実施の形態4で述べたように、第3流量制御弁16を閉じた状態で、冷媒を図10中破線矢印の方向に冷媒を流し、室外側熱交換器2を凝縮器、室内側熱交換器4aを再熱器、室内側熱交換器4bを蒸発器として使用する運転モードとしたとき、室外側空気温度が低下していくにつれ、顕熱熱交換量を抑えた状態での高潜熱負荷への対応が困難となる。
【0057】
これに対し、本実施の形態において、第3流量制御弁16を開き、第1流量制御弁3を閉じ、図10中矢印の方向に冷媒を流す運転を行った場合、圧縮機1より吐出された冷媒は、四方切換弁15、室内側熱交換器を通過し、室外側熱交換器2をバイパスして大部分は圧縮機1へ吸入される。こうすることで、冷凍サイクル中の凝縮熱の大部分を、室内側熱交換器4bで再熱の目的での利用が可能となり、例えば1℃といったような低い室外側空気温度においても、顕熱熱交換量を抑えた状態での高潜熱負荷への対応を実現している。すなわち、室外側空気温度の低下する冬季においても、室内側空気温度を低下させることなく除湿量を確保した運転が可能となる。
【0058】
実施の形態6.
圧縮機1を回転数可変型圧縮機で構成し、冷凍サイクル中蒸発過程における冷媒の過熱状態を検出する手段と、この検出結果に基づいて、第1流量制御弁3及び第2流量制御弁5の少なくとも一方の開度と、圧縮機1の回転数との制御を行うことにより、広範囲の室内側潜熱・顕熱負荷に対応した運転が可能となるだけでなく、速やかに室内温・湿度を目標温・湿度に調節することが可能となる。
【0059】
実施の形態7.
圧縮機1を回転数可変型圧縮機で構成し、冷凍サイクル中凝縮過程における冷媒の過冷却状態を検出する手段と、この検出結果に基づいて、第1流量制御弁3及び第2流量制御弁5の少なくとも一方の開度と、圧縮機1の回転数との制御を行うことにより、広範囲の室内側潜熱・顕熱負荷に対応した運転が可能となるだけでなく、速やかに室内温・湿度を目標温・湿度に調節することが可能となる。
【0060】
【発明の効果】
この発明に係る空気調和機は、圧縮機、室外側熱交換器、第1流量制御弁、熱的に複数に分割された室内側熱交換器を順次接続し、熱的に複数に分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルと、室内側送風機と、室外側送風機と、を有する空気調和機において、第1流量制御弁及び第2流量制御弁の少なくとも何れか一方の冷媒流路に多孔質体を設け、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、冷媒流動音が抑制され、騒音に対する快適性の向上が可能となる。また、圧縮機の回転数を制御する圧縮機回 転数制御部と、この圧縮機回転数制御部の温度を検出する手段と、この検出結果に応じて室内側送風機の送風量と、室外側送風機の送風量とを制御する手段と、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、圧縮機回転数制御部の温度の検出結果に応じて、室内側送風機の送風量および室外側送風機の送風量を制御することにより、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行う制御手段と、を備えたので、広範囲の室内側潜熱・顕熱負荷に対応した運転が可能となる。
【0061】
この発明に係る空気調和機は、圧縮機、室外側熱交換器、第1流量制御弁、熱的に複数に分割された室内側熱交換器を順次接続し、熱的に複数に分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルと、室内側送風機と、室外側送風機と、を有する空気調和機において、第1流量制御弁及び第2流量制御弁の少なくとも何れか一方の冷媒流路に多孔質体を設け、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、冷媒流動音が抑制され、騒音に対する快適性の向上が可能となる。また、目標となる室内温度および室内湿度を外部から設定する手段と、室内側空気の温度および湿度を検出する手段と、目標室内温度と検出室内温度との差および目標室内湿度と検出室内湿度との差を演算する手段と、この演算結果に応じて室内側送風機及び室外側送風機の送風量の送風量と、圧縮機の回転数と、第1流量制御弁の開度と、第2流量制御弁の開度とを制御する手段と、室外側熱交換器を凝縮器として使用し、熱的に複数に分割された室内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、目標室内温度と検出室内温度との差および目標室内湿度と検出室内湿度との差の演算結果に応じて室内側送風機及び室外側送風機の送風量と、圧縮機の回転数と、第1流量制御弁の開度と、第2流量制御弁の開度とを制御することにより、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行う制御手段と、を備えたので、広範囲の室内側潜熱・顕熱負荷に対応した運転が可能となるだけでなく、速やかに室内温・湿度を目標温・湿度に調節することが可能となる。
【0062】
また、第2流量制御弁をその開度を多段階に調節が可能な流量制御弁で構成したので、第2流量制御弁の弁開度を調節することで、室内側熱交換器による潜熱熱交換量と顕熱熱交換量とを変化させることが可能となる。
【0063】
また、第1流量制御弁をその開度を多段階に調節が可能な流量制御弁で構成したので、第1流量制御弁の弁開度を調節することで、室内側熱交換器による潜熱熱交換量と顕熱熱交換量とを変化させることが可能となる。
【0064】
また、第2流量制御弁と並列に、冷媒の流動抵抗体として、オリフィスの前後またはそのいずれかに多孔体を使用したオリフィス体を備えたので、絞りにより発生する冷媒流動音を抑制することができ、空気調和機の低騒音化を実現できる。
【0065】
また、第2流量制御弁と並列にオリフィス体を備え、第2流量制御弁をその開度を全閉と全開の間で2段階に調節が可能な流量制御弁で構成したので、第2流量制御弁に簡単な構成のものを使用できる。
【0066】
また、第2流量制御弁と直列に、冷媒の流動抵抗体として、流路に多孔体を使用したオリフィス体を備えたので、絞りにより発生する冷媒流動音を抑制することができ、空気調和機の低騒音化を実現している。また、第2流量制御弁における冷媒差圧が抑えられ、第2流量制御弁の耐圧を減らすことができる。また、冷媒差圧が抑えられるため、第2流量制御弁における冷媒流動音に対する抑制効果が向上する。
【0067】
この発明に係るマルチタイプの空気調和機は、請求項1又は請求項2記載の空気調和機において、第1流量制御弁と、室内側熱交換器と、第2流量制御弁との接続体を複数について並列接続して構成したので、広範囲の室内側潜熱・顕熱負荷に対応した運転が可能となる。
【図面の簡単な説明】
【図1】 実施の形態1を示す図で、空気調和機の冷凍サイクル図である。
【図2】 実施の形態1〜3を示す図で、制御装置の要部ブロック図である。
【図3】 実施の形態1〜3を示す図で、各機器の制御に対する室内側熱交換器による潜熱熱交換量と顕熱熱交換量との関係図である。
【図4】 実施の形態1〜3を示す図で、室内側熱交換器による潜熱熱交換量と顕熱熱交換量との制御可変範囲を示した図である。
【図5】 実施の形態1〜3を示す図で、設定された目標温・湿度と実際の温・湿度との差の値に対応した各アクチュエータに対する制御指令信号のマトリックス構成例を示す図である。
【図6】 実施の形態2を示す図で、空気調和機の冷凍サイクル図である。
【図7】 実施の形態3を示す図で、空気調和機の冷凍サイクル図である。
【図8】 実施の形態1〜3を示す図で、空気調和機の冷凍サイクルにおいて、第1流量制御弁を室内ユニット側に設置した場合の冷凍サイクル図である。
【図9】 実施の形態4を示す図で、空気調和機の冷凍サイクル図である。
【図10】 実施の形態5を示す図で、空気調和機の冷凍サイクル図である。
【図11】 従来の空気調和機の室内側熱交換器による、潜熱熱交換量と顕熱熱交換量の制御可変領域の一例を示した図である。
【符号の説明】
A 室外ユニット、B 室内ユニット、1 圧縮機、2 室外側熱交換器、3 第1流量制御弁、4a 室内側熱交換器、4b 室内側熱交換器、5 第2流量制御弁、6 室内側空気温度センサ、7 室内側空気湿度センサ、8 制御部、9 室内側送風機、10 室外側送風機、11 圧縮機回転数制御部、12 目標温・湿度設定装置、13 吸入温度センサ、14 オリフィス体、15 四方切換弁、16 第3流量制御弁、17 逆止弁。

Claims (9)

  1. 圧縮機、室外側熱交換器、第1流量制御弁、熱的に複数に分割された室内側熱交換器を順次接続し、前記熱的に複数に分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルと、室内側送風機と、室外側送風機と、を有する空気調和機において、
    前記第1流量制御弁及び前記第2流量制御弁の少なくとも何れか一方の冷媒流路に多孔質体を設け、前記室外側熱交換器を凝縮器として使用し、前記熱的に複数に分割された室内側熱交換器のうち前記第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードを備え
    圧縮機の回転数を制御する圧縮機回転数制御部と、
    この圧縮機回転数制御部の温度を検出する手段と、
    この検出結果に応じて前記室内側送風機の送風量と、前記室外側送風機の送風量とを制御する手段と、
    前記室外側熱交換器を凝縮器として使用し、前記熱的に複数に分割された室内側熱交換器のうち前記第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、前記圧縮機回転数制御部の温度の検出結果に応じて、前記室内側送風機の送風量および前記室外側送風機の送風量を制御することにより、前記室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行う制御手段と、
    を備えたことを特徴とする空気調和機。
  2. 圧縮機、室外側熱交換器、第1流量制御弁、熱的に複数に分割された室内側熱交換器を順次接続し、前記熱的に複数に分割された室内側熱交換器間に第2流量制御弁を接続して形成される冷凍サイクルと、室内側送風機と、室外側送風機と、を有する空気調和機において、
    前記第1流量制御弁及び前記第2流量制御弁の少なくとも何れか一方の冷媒流路に多孔質体を設け、前記室外側熱交換器を凝縮器として使用し、前記熱的に複数に分割された室内側熱交換器のうち前記第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードを備え
    目標となる室内温度および室内湿度を外部から設定する手段と、
    室内側空気の温度および湿度を検出する手段と、
    前記目標室内温度と前記検出室内温度との差および前記目標室内湿度と前記検出室内湿度との差を演算する手段と、
    この演算結果に応じて前記室内側送風機及び前記室外側送風機の送風量の送風量と、前記圧縮機の回転数と、前記第1流量制御弁の開度と、前記第2流量制御弁の開度とを制御する手段と、
    前記室外側熱交換器を凝縮器として使用し、前記熱的に複数に分割された室内側熱交換器のうち前記第2流量制御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ下流側を蒸発器として使用する運転モードにおいて、前記目標室内温度と前記検出室内温度との差および前記目標室内湿度と前記検出室内湿度との差の演算結果に応じて前記室内側送風機及び前記室外側送風機の送風量と、前記圧縮機の回転数と、前記第1流量制御弁の開度と、前記第2流量制御弁の開度とを制御することにより、室内側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行う制御手段と、
    を備えたことを特徴とする空気調和機。
  3. 前記第2流量制御弁をその開度を多段階に調節が可能な流量制御弁で構成したことを特徴とする請求項1又は請求項2記載の空気調和機。
  4. 前記第1流量制御弁をその開度を多段階に調節が可能な流量制御弁で構成したことを特徴とする請求項1又は請求項2記載の空気調和機。
  5. 前記第2流量制御弁と並列に、冷媒の流動抵抗体として、オリフィスの前後またはそのいずれかに多孔体を使用したオリフィス体を備えたことを特徴とする請求項1又は請求項2記載の空気調和機。
  6. 前記第2流量制御弁をその開度を全閉と全開の間で2段階に調節が可能な流量制御弁で構成したことを特徴とする請求項記載の空気調和機。
  7. 前記第2流量制御弁と直列に、冷媒の流動抵抗体として、流路に多孔体を使用したオリフィス体を備えたことを特徴とする請求項1又は請求項2記載の空気調和機。
  8. 前記第1流量制御弁は、冷媒流路に多孔質体を使用しないことを特徴とする請求項1又は請求項2記載の空気調和機。
  9. 請求項1又は請求項2記載の空気調和機において、前記第1流量制御弁と、前記室内側熱交換器と、前記第2流量制御弁との接続体を複数について並列接続して構成したことを特徴とするマルチタイプの空気調和機。
JP2000004462A 2000-01-13 2000-01-13 空気調和機及びマルチタイプの空気調和機 Expired - Lifetime JP4063465B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004462A JP4063465B2 (ja) 2000-01-13 2000-01-13 空気調和機及びマルチタイプの空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004462A JP4063465B2 (ja) 2000-01-13 2000-01-13 空気調和機及びマルチタイプの空気調和機

Publications (2)

Publication Number Publication Date
JP2001194027A JP2001194027A (ja) 2001-07-17
JP4063465B2 true JP4063465B2 (ja) 2008-03-19

Family

ID=18533251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004462A Expired - Lifetime JP4063465B2 (ja) 2000-01-13 2000-01-13 空気調和機及びマルチタイプの空気調和機

Country Status (1)

Country Link
JP (1) JP4063465B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758902B1 (ko) 2004-11-23 2007-09-14 엘지전자 주식회사 멀티 공기조화 시스템 및 그 제어방법
CN103307685B (zh) * 2013-07-05 2016-01-20 机械工业第三设计研究院 回南天专用空调及其控制方法
CN110657489B (zh) * 2019-10-25 2021-04-13 南京天加环境科技有限公司 一种改进的除湿再热系统及其控制方法
JP7248922B2 (ja) * 2021-06-23 2023-03-30 ダイキン工業株式会社 空気調和装置

Also Published As

Publication number Publication date
JP2001194027A (ja) 2001-07-17

Similar Documents

Publication Publication Date Title
JP5213817B2 (ja) 空気調和機
JP3740637B2 (ja) 空気調和機
EP1921400B1 (en) Simultaneous cooling-heating multiple type air conditioner
JP2007085730A (ja) 空気調和機、空気調和機の運転方法
JP3800210B2 (ja) 水熱源ヒートポンプユニット
JP6880204B2 (ja) 空気調和装置
JP2002089988A (ja) 空気調和機、空気調和機の運転方法
WO2010015123A1 (en) Constant temperature dehumidifying air-conditioner
WO2012085965A1 (ja) 空気調和機
KR20190088692A (ko) 멀티형 공기조화기
JP2000274879A (ja) 空気調和機
JP2007232265A (ja) 冷凍装置
JPH06201220A (ja) 冷暖房混在型エンジン駆動ヒートポンプシステム
JP4389430B2 (ja) 空気調和機
JP2001065953A (ja) 空気調和機及びその制御方法
JP4063465B2 (ja) 空気調和機及びマルチタイプの空気調和機
JP4187008B2 (ja) 空気調和装置
JP3936345B2 (ja) 空気調和機
JP2008121997A (ja) 空気調和機
JP4221922B2 (ja) 流量制御装置、絞り装置及び空気調和装置
JP2005291553A (ja) マルチ型空気調和装置
KR100885566B1 (ko) 공기 조화기의 제어방법
CN110207417B (zh) 空调系统
JP2001090977A (ja) 空気調和機
JP4391188B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4063465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term