JP4197872B2 - 正確度を向上させて水中標的位置に負荷を配備する装置およびそのような装置を制御する方法 - Google Patents

正確度を向上させて水中標的位置に負荷を配備する装置およびそのような装置を制御する方法 Download PDF

Info

Publication number
JP4197872B2
JP4197872B2 JP2001568789A JP2001568789A JP4197872B2 JP 4197872 B2 JP4197872 B2 JP 4197872B2 JP 2001568789 A JP2001568789 A JP 2001568789A JP 2001568789 A JP2001568789 A JP 2001568789A JP 4197872 B2 JP4197872 B2 JP 4197872B2
Authority
JP
Japan
Prior art keywords
ship
sound
thrusters
data
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001568789A
Other languages
English (en)
Other versions
JP2003528004A (ja
Inventor
バーナード、フランソワ
Original Assignee
バーナード、フランソワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19760681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4197872(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by バーナード、フランソワ filed Critical バーナード、フランソワ
Publication of JP2003528004A publication Critical patent/JP2003528004A/ja
Application granted granted Critical
Publication of JP4197872B2 publication Critical patent/JP4197872B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • B63B79/15Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/20Monitoring properties or operating parameters of vessels in operation using models or simulation, e.g. statistical models or stochastic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/42Diving chambers with mechanical link, e.g. cable, to a base of closed type with independent propulsion or direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/42Towed underwater vessels
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/002Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/04Manipulators for underwater operations, e.g. temporarily connected to well heads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/74Systems using reradiation of acoustic waves, e.g. IFF, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Atmospheric Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Probability & Statistics with Applications (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Earth Drilling (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Control Of Position Or Direction (AREA)
  • Navigation (AREA)
  • Control And Safety Of Cranes (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Paper (AREA)

Description

【0001】
本発明は、標的を水中標的位置に配備する装置に関し、装置には、音線を送信するビーコン、および水中標的位置に対して装置の配置を制御する複数のスラスタを設ける。
【0002】
このような装置は国際特許第99/61307号から知られる。
【0003】
先行技術の装置が、例えば最大3,000メートル以上の深い海底で最大1000トン以上の負荷を配備および/または回収するのに使用されている。配備中に、装置は海面に浮かぶ船上の制御機器によって制御される。制御機器は、装置の正確な位置を可能な限り正確に知る必要がある。そのため、装置の板上にあるビーコンが、海水を通して船に音線を送信する。適切な音波受信器がこの音線を受信し、これを、船に対する装置の位置の計算に使用する電気信号に変換する。
【0004】
しかし、海水中で装置の深度が増加するにつれ、海水中での音波の屈曲により、位置測定の正確度が低下することが分かっている。
【0005】
したがって、本発明の目的は、海水中または他の流体中で使用中に、このような装置の位置測定の正確度をさらに向上させることである。さらに、このような位置測定がオンライン(実時間)で必要である。
【0006】
この目的を達成するため、冒頭で規定したような装置は、前記装置を取り巻く流体中の音速を測定する音速メータを設けることを特徴とする。したがって、流体中の特定位置にある音の速度を連続的に測定し、音速プロファイル、つまり流体の深さの関数として音速に関するデータの更新に使用することができる。これらのデータから、音線の局所的屈曲をオンライン(実時間)で判断することができる。これまで、このようなオンラインでの判断は不可能であった。これによって、位置測定を実時間で補正することができる。
【0007】
好ましい実施形態では、スラスタが、トルク制御機能を提供するよう配置された第1組のスラスタ、および少なくとも翻訳機能を提供するよう配置された第2組のスラスタを備え、第2組のスラスタの各スラスタに回転式アクチュエータを設ける。
【0008】
これは非常に有利な実施形態である。配備中に負荷に取り付ける装置の望ましくない回転を防止し、したがって国際特許第99/61307号で既に説明されているように、負荷を担持する巻き上げワイヤの捻れおよび旋回に関する全ての問題を回避するため、スラスタが2個しか必要でない。さらに、所望の水平座標まで負荷を取り付けた状態の装置の配置を制御するため、回転式スラスタが2個しか必要でない。したがって、装置を伴う負荷を下降させる前に、装置は、負荷を所望の水平座標まで移動させることができ、その座標に到達したら、スラスタが負荷を所望の座標に維持し、負荷の望ましくない回転を防止する一方、巻き上げ線が負荷を海底の所望の位置へと下降させることができる。海底の所望の標的位置に到達した場合のみ、トルク制御専用のスラスタによって、負荷にとって可能な所望の方位への回転を実行する必要がある。
【0009】
負荷を所望の位置へと配備する水中装置上の回転式スラスタが、米国特許第5,898,746号から知られることが認識される。
【0010】
装置には、装置に取り付けた負荷の重量を測定するロード・セルを設けることが好ましい。負荷を海底に置くと、この重量が突然減少する。したがって、負荷の重量が突然に減少したことを示す信号を使用して、いつ装置を負荷から取り外してよいか判断することができる。
【0011】
本発明は、物体を水中の標的位置に配備する装置を駆動するよう配置された処理構成にも関し、装置には、音線を送信するビーコン、水中の標的位置に対する装置の位置を制御する複数のスラスタ、および装置を取り巻く流体中の音速を測定する音速メータを備え、処理構成には音線を受信する音響受信器を備え、処理構成は、装置の位置を判断するための計算に、音線から取得したデータを使用するよう構成され、処理構成は、音速メータからの音速メータ・データをオンラインで受信して流体中の音速プロファイルを判断して、装置によって流体を通して送信される音線の屈曲を音速プロファイルから計算し、装置の位置を実時間で判断する計算にこれを使用することを特徴とする。
【0012】
このような処理構成は、水中非常に深くとも非常に高い正確度で、所望の方向で所望の位置へ前記装置を駆動する制御することができる。負荷を伴う装置を下降させる間、処理構成は音速データを絶えず受信し、水面から装置の深度までの音速データを備える音速プロファイルを判断する。処理構成はこれらのデータを使用して、水中の深度の関数として音波の屈曲を判断し、装置の位置計算を補正する。
【0013】
このような処理構成は、水面に浮かぶ船舶上にあってもよい。しかし、音速プロファイルを判断し、音線の屈曲を計算する機能の部分は、装置自体上でも他の位置に配置された1つまたは複数のプロセッサによって実行することができる。
【0014】
さらなる音速メータを水面のすぐ下に設けて、水面層における音の屈曲に関する実際のデータを提供し、さらに装置の位置計算を補正することが好ましい。
【0015】
装置から電送された音線の受信は、船体に取り付けた音響アレイによって実行することが好ましい。
【0016】
非常に好ましい実施形態では、船舶、音線および装置には全て、個々の上下浮動、横揺れおよび縦揺れを測定する別個のジャイロコンパスを設ける。これらのジャイロコンパスからの出力データを使用して、装置の位置測定の正確度をさらに向上させる。
【0017】
本発明は、このような船舶および装置をともに備えるシステムにも関する。
【0018】
本発明は、物体を水中の標的位置に配備する装置を駆動する方法にも関し、装置には、音線を送信するビーコン、水中の標的位置に対する装置の配置を制御する複数のスラスタ、および装置を取り巻く流体中の音の速度を測定する音速メータを設け、方法は、
・音線を受信するステップと、
・装置の位置を判断する計算に音線から取得したデータを使用するステップとを備え、
方法は、
・音速メータから音速メータ・データを受信して、流体中の音速プロファイルを判断するステップと、
・装置から流体を通して送信された音波の屈曲を音速プロファイルから計算し、装置の位置を決定する計算にこれを使用するステップとを特徴とする。
【0019】
この方法は、処理構成によってロードされた後、適切なコンピュータ・プログラムによって完全に制御することができる。したがって、本発明は、処理構成によってロードされた後、前記構成に上記で規定したような方法を実行する能力を提供するデータおよび命令を備えるコンピュータ・プログラム製品にも関する。
【0020】
このようなコンピュータ・プログラム製品を設けたデータ・キャリアも請求される。
【0021】
以下で、図面を参照しながら本発明について詳細に説明する。図面は、本発明を例示するだけであって、その範囲を制限するものではなく、その範囲は添付の請求の範囲によってのみ規定される。
【0022】
(好ましい実施形態の説明)
図1を参照すると、レイアウトは、ライザ2の起点である旋回式採集スタック11を伴うFPSO1を表し、前記ライザは海底4にあるライザ・ベース3に接続される。採集の寿命において、許容可能な動的偏位範囲内に留まることがFPSO1にとって最も重要であり、したがってFPSO1は、錨6によって、あるいはパイルによって保持される係留脚5によって海底4に係留される。
【0023】
採集船1によって石油またはガスを採掘するには、幾つかの比較的重い物体を高い正確度で海底4に配置する必要がある。
【0024】
係留脚5によって適切で安全な錨を固定するには、その係留脚5がほぼ同じ長さを有する必要がある。この用途では、実際には50トン以上の重量の錨を使用することができ、これを数メートル以内の正確度で海底4に配置する。さらに、錨6自体が非常に重いばかりでなく、錨6に取り付けた係留脚も、錨6自体の重量の数倍に等しい重量を有する。
【0025】
また、「テンプレート」、「重力ライザ・ベース」、「採集マニホルド」など、他の物体も、比較的高い正確度で海底4に配置する必要がある。
【0026】
図1に図示され、海で石油およびガスの採掘に必要であり、海底に配置しなければならない物体は、非常に重量があるばかりでなく、非常に高価でもある。
【0027】
図2は、先行技術の船舶20を示し、自身上にクレーン21のような巻き上げ手段を有する。クレーン21には巻き上げワイヤ22を設け、これによって物体または負荷23を海底に配置することができる。負荷23を配置するためには、表面支持体をクレーン21とともに移動させる必要がある。
【0028】
その結果、任意の時に負荷23の慣性が克服されるが、負荷23の加速のため、制御不可能な状況が発生し、それによって標的区域を飛び越してしまう。巻き上げワイヤ22および負荷23は海流などの影響を受けやすいという事実から、巻き上げワイヤ22を下降させた場合、負荷23は下方向に直線移動しない。船舶20の上下浮動、横揺れおよび縦揺れも、達成できる正確度にマイナスの影響を与える。
【0029】
図3は、海底4に負荷43を配備する水中装置またはシステム50を設けたクレーン船40を示す。船舶40は、第1巻き上げワイヤ42を設けた第1巻き上げ手段、例えばウィンチ41を備える。この巻き上げワイヤ42によって、例えばテンプレートなどの負荷43を海底に配備し、配置することができる。
【0030】
上述したように、浮採集プラットフォームを使用する油田およびガス田の採掘では、海底4に幾つかの重い物体を配置する必要があり、さらに物体を非常に高い正確度で海底4に配置しなければならない。現今は採掘を深い所でしなければならず、最大で3000m以上にもなり、必要な正確度を達成することがさらに困難になっている。例えば、解決すべき問題の一つは、巻き上げワイヤ42が担持する負荷43に発生し得る回転である。
【0031】
配備時に負荷43の位置を制御し、必要な正確度以内で負荷43を海底4に配置できるようにするため、装置またはシステム50は吊り上げワイヤ42に固定されている。システム50の好ましい実施形態を、図4、図5、図6aおよび図6bに関して説明する。
【0032】
システム50は吊り上げワイヤ42の端部に係合してよい。あるいは、システム50は負荷43自体に直接係合してよい。システム50は、スラスタ56(i)(i=1、2、3・・・IでIは整数である)などの駆動手段を設けた第1または主モジュール51を備える(図4および図5)。システムはさらに第2またはカウンタ・モジュール52を備える。このカウンタ・モジュール52にもスラスタ56(i)を設ける。使用時には、主モジュール51およびカウンタ・モジュール52のスラスタを吊り上げワイヤ42の対向する側に配置する。
【0033】
システム50は第2吊り上げワイヤ45によって船舶40に結合される。このワイヤ45は例えば第2ウィンチ44などの第2巻き上げ手段を使用して操作することができる。第2巻き上げワイヤ45は、例えばAフレーム49によって船外へ設置される。第2ウィンチ44および第2巻き上げワイヤ45は通常、それぞれ第1巻き上げ手段48および第1巻き上げワイヤ42より軽量である。システム50はさらに命綱46によって船舶40に接続される。この命綱46は巻き上げワイヤ45に取り付けるか、第3ウィンチ47から別個に下降させることができる。システム50に動力を提供する供給電力配線、さらに電気配線または光ファイバを、例えば命綱に収容する。システム50には、通常、電力を流体動力に変換する手段を設ける。したがって、流体動力は、制御に、つまりスラスタ56(i)および補助工具の快適装備に使用される。
【0034】
最近、作業の深度が増加しているので、負荷43および長い巻き上げワイヤ42の捻れおよび回転の問題が重大になってくる。重い負荷43を巻き上げワイヤ42の下側に取り付けるので、このような捻れおよび回転が巻き上げワイヤをかなり摩耗させることになり、巻き上げワイヤに深刻な損傷が発生することがある。この摩耗は、巻き上げワイヤ42が破損し、負荷43が喪失するほど深刻になることがある。別の問題は、ワイヤの多大な捻れのため、船舶にあるワイヤがシーブから外れることがあることである。
【0035】
主モジュール51およびカウンタ・モジュール52それぞれのスラスタ56(i)を吊り上げワイヤ42の対向する側に配置するという事実から、巻き上げワイヤ42には両方向に逆トルクがかかる。この方法で、システムにより捻れ防止器具が形成される。この捻れ防止器具の能力を改善するため、主モジュール51とカウンタ・モジュール52間の距離を変更できることが好ましい。
【0036】
図4は、海底4に負荷43を配備するシステム50に可能な実施形態の詳細な概要図を示す。図5は、図4によるシステムを上から示す。
【0037】
システム50は、主モジュール51、カウンタ・モジュール52およびアーム53を備える。アーム53は主モジュール51から取り外すことができる。つまり、主モジュール51はモジュール式システムとして別個に使用することもできる。アーム53には窪み54を設ける。この窪み54の対向する側に2つのジャッキ57、58を設け、その少なくとも一方は他方に対して移動することができる。これらのジャッキ57、58の端面の間で、負荷43のクレーン・ブロックなどの物体又はケーブル42を締め付けることができる。ジャッキ57、58と物体間の接触を改善するため、ジャッキの個々の端部に、専用ゴムなどの高い摩擦材料からの摩擦要素でライニングを施した締め付けシューを設ける。
【0038】
使用時には、スラスタ56(i)を使用して、海底4の標的区域に対してシステム50を配置することができる。スラスタ56(i)は、主にシステム50の内側にある第1位置から、スラスタがシステム50から突き出した位置へと順次作動させるようにすることができる。2つの上部スラスタ56(2)、56(3)は、水中システム50に対して回転可能である。これは、例えば個々の回転式アクチュエータ65(1)、65(2)に設置する。その目的については以下で説明する。スラスタ56(2)は、図4aでは拡大して図示されている。
【0039】
図5には、主モジュールを第2吊り上げワイヤ45および/または命綱46に接続するには、主モジュール52の頂部に2つの位置61、62があることが図示されている。主モジュール51を別個に使用する場合は、位置61を使用することができる。主モジュール61は、モジュール61を配備する時に、空中でも水中でもバランスをとる。
【0040】
システム50を使用する場合、船舶40とシステム50との接続は、システムを空中と水中の両方で平衡に維持するために位置62に固定される。システムのバランスを改善するため、補助釣合錘55をシステム50に固定することができる。
【0041】
使用時には、装置50には浮力がない。水中におけるシステムの可動性を改善するため、アーム53には、下降中に圧力増加による構造的損傷を回避し、採集段階では迅速な排水を保証するために穴59を設ける。
【0042】
上述したように、主モジュール51に対してカウンタ・モジュール52を移動できると有利である。これは、ジャック64aを使用することによって達成できる。
【0043】
モジュール51は外フレームおよび内フレーム(両方とも図示せず)を備える。内フレームは円筒形であることが好ましい。外フレームを内フレームに接続することにより、非常に強力な構造を達成することができる。構造の強度は、システムの時期尚早の疲労を回避するために必要である。
【0044】
モジュール51は、例えば部分的に高張力鋼で作成し、それによって第1巻き上げワイヤ42または第2巻き上げワイヤ45の一体部品として使用するよう設計される。つまり、モジュール52の上側が巻き上げワイヤ45の第1部分に接続され、モジュール51の下側が巻き上げワイヤ45の第2部分に接続されるか、モジュール51の下側が負荷に直接取り付けられる。この方法で、巻き上げワイヤにかかる負荷がモジュール51を通して伝達される。
【0045】
前述したように、モジュール51には、命綱46を通って送出された電力を流体動力に変換するため、スラスタ・ドライブ270を設ける。このスラスタ・ドライブ270はモータ、ポンプ、マニホルドおよび液圧リザーバを備えることができる。このような変換手段は当業者には知られ、本明細書でさらに説明する必要はない。絶対位置と他の物体に対する相対位置との両方で、その位置に関する該当データを制御システムおよび/または船舶40上のオペレータに通信するため、モジュール51は、さらに、以下で詳細に説明するセンサ手段および制御手段を備える。モジュール51は、センサ接続箱を装備する。さらに、モジュール51は光源87、上下浮動、横揺れおよび縦揺れセンサを含むジャイロコンパス256、パンあおりカラー・カメラ97、ディジクォーツ深度センサ253を含むUSBL応答器255、音速メータ258、およびソナーダイン・ミニ・ロヴナヴ264を備える。モジュール51の下側には、幾つかのプラットフォーム光源94、パンおよびS.I.T.カメラ93、高度計262、ドップラー・ログ・ユニット266、および二重ヘッド・スキャニング・ソナー260が装着される。これらは、使用時にその下に透明な海水のみがあるよう設置される。これらは、図6aおよび図6bに概略的に図示される。これはどこにでも、例えばモジュール52の下側にでも配置してよいことを理解されたい。さらに、ロード・セル268はシステム51の一部である。これらの構成要素は全て、図7bに概略的に図示される。
【0046】
上述したように、負荷が所期の深度に到達したら、必要な正確度を達成するには、高解像度のソナー機器260をドップラー・ログ・ユニット266で測定した距離ログとともに使用することが重要である。ソナー機器260は、海底に配置された少なくとも1つの物体に対する位置を判断するために使用される。距離ログを使用すると、大きい半径内でセンチメートルのオーダーの正確度を達成しながら、海上支援からの位置決め動作を、さらにLBL(長基線)アレイ(または他のUSBLなど)のような他の音響応答器装置からの位置決め動作から解離することが可能になる。
【0047】
図7aは、船舶40に設置された電子機器200を示し、図7bは音速メータ248およびジャイロコンパス252を伴う配備可能な音響アレイ250を示す。図7bは、水中システム50に設置した水中電子機器249も示す。
【0048】
図7aに示す機器は4つのプロセッサを備える。つまりナビゲーション・プロセッサ202、音響プロセッサ224、ソナー制御プロセッサ236、およびスラスタ制御プロセッサ240である。ナビゲーション・プロセッサ202は、相互通信および相補性のために他の3つのプロセッサ224、236、240とインタフェースをとる。
【0049】
ナビゲーション・プロセッサ202は、表面位置決め機器DGPS(相対全地球測位システム)204、船舶のジャイロコンパス206、4つのディスプレイ・ユニット208、210、212、214、プリンタ・ユニット218、キーボード220、マウス222、光ファイバ・(デ)マルチプレクサ・ユニット244ともインタフェースをとる。必要に応じて、ナビゲーション・プロセッサ202の1つのSVGA信号出力を2つ以上のディスプレイ・ユニットに送信するため、ビデオ・スプリッタ216を設けてもよい。図7aでは、ディスプレイ・ユニット212、214はビデオ・スプリッタ216を介してナビゲーション・プロセッサ202に接続される。
【0050】
光ファイバ(デ)マルチプレクサ・ユニット244は、音響プロセッサ224、ソナー制御プロセッサ236、およびスラスタ制御プロセッサ240にも接続される。
【0051】
音響プロセッサ224はコマンドおよび制御ユニット226に接続され、これはキーボード230、マウス232およびディスプレイ・ユニット228に接続され、これが全てまとめてUSBL表面ユニット234を形成する。
【0052】
音響プロセッサ224は、運動センサ・ユニット252および速度メータ248を伴う配備可能な音響アレイ250に接続される。使用時には、音響アレイ250は船舶40のキールの2.5メートル下に装着することが好ましい。
【0053】
光ファイバ・(デ)マルチプレクサ・ユニット244が、さらに、水中システム50に設置された光ファイバ・(デ)マルチプレクサ246に接続される。両方の光ファイバ・(デ)マルチプレクサ244、246を相互接続する光ファイバは、命綱46に収容することが好ましい(図3)。
【0054】
ソナー制御プロセッサ236はディスプレイ・ユニット238に接続される。スラスタ制御プロセッサ240はディスプレイ・ユニット242に接続される。
【0055】
水中機器249は、図7bではブロック図の形態で図示される。ディジクォーツ深度センサ253を伴うUSBL応答器255、運動センサ256を伴うジャイロコンパス、(着脱式)音速メータ258、二重ヘッド・スキャニング・ソナー260、高度計262、ソナーダイン・ミニ・ロヴナヴ264、ドップラー・ログ266、ロード・セル268、およびスラスタ・ドライブ・コントロール270が全て光ファイバ・(デ)マルチプレクサ246に接続される。
【0056】
さらに、図7bは、海底に、または配備すべき負荷に(または海底に既にある構造に)設置できる2つのビーコン272、274を示す。これらのビーコン272、274は、例えばソナーダイン・ミニ・フォヴナヴ264(または同等の機器)により問い合わせるものであり、音響信号をシステム50に送り返すことができ、これをシステム50自体が使用して、これらのビーコンに対する距離および方位を判断し、測定することができる。このような音響遠隔測定リンクの結果、非常に高精度の相対位置測定ができる。このようなビーコンの数は、図7bに示す2個に制限されない。
【0057】
機能
図7aおよび図7bに示す構成要素の機能は次の通りである。
【0058】
ナビゲーション・プロセッサ202は、船舶の姿勢およびその固定オフセットを計算するため、海上の位置決め機器のデータ(DGPS受信器、DGPS補正、船舶のジャイロコンパスおよび船舶の運動センサ204および206)を収集する。
【0059】
ナビゲーション・プロセッサ202は、光ファイバ・(デ)マルチプレクサ244および246を介して、システム50のナビゲーション計器、つまりドップラー・ログ266、高度計262、およびジャイロコンパスおよび運動センサ256に様々な設定を送信する。設定後、これはこれらの計器からデータを受信し、さらに音響プロセッサ244を介してシステム50の距離/方位および深度データを受信し、システムの姿勢および絶対座標を計算して表示する。
【0060】
ナビゲーション・プロセッサ202の統合ソフトウェアが開発されており、これにはシステム50の初期の方向を決定し、多くの中間地点から選択して、初期の位置決めを実行するため、手動または自動モードで作業することができる動的位置決めコントローラ・ソフトウェアを含む。さらに、船上のオペレータは選択された中間地点に対するオフセットを入力することができ、オフセットは、システム50の方向に対するXY座標で入力される。位置を安定させ、フィルタリングするため、ディスプレイ・ユニット208〜214の画面(電子ページ)上にある特別設計のウィンドウの構成を介して幾つかの他のタイプの海中位置決め装置を選択するという、別の可能性もある。オペレータが最適な結果を獲得するために可能な限り多くの手段を有することを保証するため、ソフトウェアのその他の部分ではシステム50の位置をオンライン(実時間)で計算するために使用中の海中計器の様々な状態を示すようになっている。
【0061】
システム50上の上下浮動、横揺れおよび縦揺れセンサ88を含む搭載ジャイロコンパス256は、海底に設置されるシステム50および負荷43両方の正確な姿勢に関するデータを提供する。海面では、制御バン内でオペレータが、下降中に、しかし負荷43が最終検証のために海底に配置されてからも、これらの姿勢をオンライン(実時間)でチェックすることができる。
【0062】
船舶のジャイロコンパス206、さらに同じ機能のために使用できる音響アレイに設置した運動センサ252を伴うジャイロコンパスは、船舶の方向をナビゲーション・プロセッサ202に送信する。ナビゲーション・プロセッサ202はこの船舶の方向を使用して、様々なオフセットを計算する。
【0063】
ディスプレイ・ユニット208、210、212および214はそれぞれ、制御バン内でオペレータのためにおよび海洋部門オペレータ用船橋上にある別の人のために、ナビゲーションの設定、海底の眺め、海面の眺めを表示するよう構成される。
【0064】
USBL命令および制御ユニット226は、システムの制御および構成を提供し、オペレータが制御するためのマン・マシン・インタフェースを表示するパーソナル・コンピュータで構成される。
【0065】
音響プロセッサ224は、受信信号、深海速度測定および船舶の姿勢で相関プロセスを実行する1つのVMEラックで構成される。さらに、これは使用するビーコンの座標を計算する。音響プロセッサ224は、イーサネット(登録商標)を通してナビゲーション・プロセッサ202に連結される。
【0066】
音響アレイ250は、送信および受信手段を含む。また1つまたは複数のビーコンと音響通信する変換器として使用することができる。このような変換器のモードは、命綱46が故障し、呼び掛け信号をシステム50へと送信できない場合に有用である。これで、音響呼び掛け信号は海水を通して変換器から直接送信することができる。他の全てのケースで、音響アレイ250は受信モードで使用される。受信は、音響アレイ250に対するビーコンの距離および方位角を測定する2つの直交受信ベースで実行される。各受信ベースは2つの変換器を含む。各受信信号は、ディジタル信号処理のため、増幅され、フィルタリングされて、音響プロセッサ224に転送される。
【0067】
音響アレイ250に設置された音速メータ248は、船舶40のすぐ下にある重要で不安定な音速プロファイルを実時間で更新している。これは、船舶40のすぐ下にあるこれらの層では海水の乱流が非常に激しいようであるので非常に重要である。
【0068】
ジャイロコンパス252は、海中のシステム50の位置に関するデータを修正するため、音響プロセッサ224に音響アレイの姿勢を送信する運動センサ・ユニットとして使用することが好ましい。
【0069】
好ましい実施形態では、ビーコン274は応答器モードで作業し、以下の特徴を有する。
−音響プロセッサ224が生成する呼び掛け開始信号は音響信号ではなく電気信号で、船舶40とシステム50間のケーブル・リンクを通してビーコン274に送信される。
−呼び掛け頻度は、マン・マシン・インタフェースを通してオペレータにより遠隔制御される。
【0070】
上述したように、ビーコン274は応答器モードで使用することもできる。これで、ビーコン274は、音響アレイ250が送信した表面音響信号によって作動し、次にコード化音響信号を通して音響アレイ250に音響応答信号を送出する。
【0071】
ビーコン274に含まれるディジクォーツ深度センサ253によって、システム50の非常に正確な深度データを音響プロセッサ224に送信することができる。音響プロセッサ244はこれらのデータを使用し、システム50の海中位置およびその負荷の計算を改善する。
【0072】
海中システム50に搭載された音速メータ258は、下降および回収中に、海中システムの深度における海水中の音速に関するデータを音響プロセッサ224に送信する。音速データは、深度の関数として計算された海水中の音速プロファイルを更新して、海水中の深度の関数としてこれらのプロファイルから音線の屈曲を計算し、したがってシステム50の海中位置の計算を補正するために使用される。
【0073】
二重ヘッド・スキャニング・ソナー260は、海底の人工または天然の標的までのシステム50の距離および方向を測定し、対応するデータをディジタル値としてナビゲーション・プロセッサ202に出力するために使用される。このような人工または天然の標的の位置を予め画定するか、ナビゲーション・システムが選択された標的それぞれに座標を割り当てることができる。物体に座標を与えた後、これを局所座標系のナビゲーション基準として使用することができる。その結果、相対座標の正確度が0.1メートルになる。
【0074】
システム50に装着された高度計262は、水中システム50から海底までの垂直距離を測定し、出力測定データを音響プロセッサ224に送信する。
【0075】
ドップラー・ログ・ユニット266は、水中システム50の深度における海水流の値および方向に関するデータを提供する。これらのデータは2つの方法で使用される。
【0076】
まず第1に、ドップラー・ログ・ユニット266および運動センサ266付きジャイロコンパスから受信したデータは、音響プロセッサ224が、USBLの使用に関するランダム・ノイズをオンライン(実時間)で平滑化するのに使用する。このような平滑化を獲得するため、例えばカルマン・フィルタ、サロモンセン・フィルタ、サロモンセン光フィルタ、または他の適切なフィルタなど、フィルタを主プロセッサ・ユニット224内で使用する。このようなフィルタは当業者には知られている。付録Aに簡単な要約を示すことができる。
【0077】
第2に、海流の強度、海流の方向に関するドップラー・ログ・ユニット266の出力データは、水中システム50の現在の方向および所期の方向に関するデータとともに、ナビゲーション・プロセッサ202を介してスラスタ制御プロセッサ240に送信される。所期の方向に基づき、スラスタ・ドライブ・コントロール270は自動的に制御される。手動制御も提供することができる。
【0078】
非常に有利な実施形態では、ドップラー・ログ・ユニット266(または他の適切なセンサ)を使用して、システム50を取り巻く海水の温度および/または塩分を測定する。局所的温度および/または塩分に関するデータはナビゲーション・プロセッサ202に送信され、これは海水の深度の関数として温度および/または塩分を計算し、更新する。これらのデータは、海水を通る音波の屈折を判断し、したがってシステム50の位置の計算を補正するのにも使用される。
【0079】
ソナーダイン・ミニ・ロヴナヴ264はオプションであり、上記で説明したように海底の局所的ビーコンに対するシステム50の相対位置を提供するために使用することができる。例えば、長基線(LBL)アレイは、既に海底に設置し、その目的で使用することができる。
【0080】
ロード・セル268は、水中システム50と係合した状態の負荷43の重量を測定するのに使用される。この重量が減少した場合、これは負荷が現在、海底(または他の標的位置)に配置され、システム50を負荷43から取り外せることの指標である。ロード・セルからの出力データは、(デ)マルチプレクサ244、246を通してナビゲーション・プロセッサ202に送信される。
【0081】
スラスタ・ドライブ・コントロール270は、以下で詳細に説明するように、水中システム50を所望の位置に運ぶため、スラスタ56(i)を駆動するのに使用する。
【0082】
図7aでは、4つの異なるプロセッサ202、224、236および240が本発明によるシステムの機能を実行するよう図示されている。しかし、システムは代替的に、パラレルまたはマスター・スレーブ構成の1つのメイン・フレーム・コンピュータを含め、他の適切な数の協働するプロセッサで実行できることが理解される。遠方に配置したプロセッサを使用してもよい。機能の一部を実行するため、水中システム50上にプロセッサを設けてもよい。
【0083】
プロセッサは、ハード・ディスク、リード・オンリー・メモリ(ROM)、電気的に消去可能なプログラマブル・リード・オンリー・メモリ(EEPROM)およびランダム・アクセス・メモリ(RAM)などを含むメモリ・コンポーネントを含むが、積極的に図示していない。これらのメモリ・タイプの全てを必ずしも設ける必要はない。
【0084】
キーボード220、230およびマウス222、232の代わりに、またはそれに加えて、タッチ・スクリーンなどの当業者に知られた入力手段も設けることができる。
【0085】
図示の構成全体内の通信はいずれも無線でよい。
【0086】
図5には、上スラスタ56(2)および56(3)がスラスタ56(1)および56(4)とは別の方向に配向された状態が図示される。スラスタ56(2)、56(3)は回転式アクチュエータ65(1)、65(2)に装着され、それにより、スラスタ56(2)、56(3)を最大360°回転して、これを方向転換することができる。スラスタ56(2)、56(3)は、それぞれが異なる方向に配向できるよう、別個に制御できることが好ましい。
【0087】
スラスタ制御プロセッサ240が水中システム50を正確に配置できるため、ナビゲーション・プロセッサ202とスラスタ制御プロセッサ240の間に共通の座標系を確立しなければならない。まず第1に、ナビゲーション・プロセッサ202が使用する標準的な座標系がある。しかし、水中システム50には2つの他の座標基準系を確立することが好ましい。
【0088】
図8は3つの異なる座標系を示す。ナビゲーション・プロセッサ202に関する座標系は、「ナビゲーション・グリッド」で示される。この座標系はこの「ナビゲーション・グリッド」の方向およびその垂線を使用する。
【0089】
スラスタ56(2)、56(3)は、「スラスタ平均方向」と呼ばれる方向に駆動力を提供するよう制御される。この方向は垂線とともに第2座標系を画定する。
【0090】
第3座標系は「システム方向」に対して画定され、これはスラスタ56(1)、56(4)を相互接続する線に直角の方向として定義される。
【0091】
これで、水中システム50が辿る経路の誤差は、「平均誤差」と呼ばれるスラスタ中間方向に平行な1つの成分と、「垂線平均誤差」と呼ばれるスラスタ中間方向に直角の成分とに分割できる誤差ベクトルに関して定義することができる。水中システム50の適切なセンサは、ナビゲーション・プロセッサ202にスラスタ中間方向およびシステム方向を提供する。これらのデータから、ナビゲーション・プロセッサ202は図8に示すようなグリッドを生成する。
【0092】
誤差は、所望の位置DPからシステム位置TPを引いた値と定義され、したがってナビゲーション・グリッド基準に対してベクトルRΦENが生成される。つまり下式になる。
DP−TP=RΦEN
さらに、
ΦTNはシステム方向からナビゲーション・グリッドの方向を引いた値であり、
ΦMTは平均スラスタ方向からシステム方向を引いた値である。
これで次式になる。
DP−TP=RΦEMEM=ΦEN−(ΦTN+ΦMT
これでRΦEMが分かるので、平均値および平均誤差の垂線を計算することができる。
【0093】
2つのスラスタ56(1)および56(4)を使用して、吊り上げケーブル42によって与えられた捻り力、機器の抗力および位置決め制御装置の方向転換によって誘発される回転モーメントを打ち消す。方向の制御ループには、ナビゲーション・プロセッサ202に実際のシステム方向および所望のシステム方向を提供する必要がある。実際のシステム方向は、ジャイロコンパス256によって測定される。所望の方向はオペレータが手動で入力する。これらの2つの方向から、ナビゲーション・プロセッサ202の制御ループが、必要な方向と実際の方向間の角距離を、さらにそれに従ってシステム50を移動するのに必要な回転方向を計算する。次に、スラスタ制御プロセッサ240が制御する単純な制御ループが、スラスタ56(1)および56(4)への動力を調節し、システム50を適切に回転する。
【0094】
システム50に電源投入すると、スラスタの平均方向がシステム方向に平行に配向されるよう、両方のスラスタ56(2)および56(3)を配向することが好ましい。次に、スラスタ56(2)、56(3)に、システム方向からの小さいベクトル角度偏差が与えられ、システム50の2つの面における位置決めを補助する。このベクトルのサイズは、好ましくは手動で調節可能であり、実際の海の状態に応じて異なる各作業に応じて構成する必要があることがある。スラスタ56(2)および56(3)をセンタリングし、方向転換したら、位置決めループがシステム50の制御を引き継ぐことができる。
【0095】
位置決めループはさらに2つの位相を備える。
【0096】
システム50がまだ海面付近にある間に実行される第1の次の位相では、海流方向がドップラー・ログ・ユニット266によって測定される。海流方向はナビゲーション・プロセッサ202に送信される。この方向を使用して、ナビゲーション・プロセッサ202から適切な命令を受信するスラスタ制御プロセッサ240は、スラスタ平均方向がほぼ海流方向と反対になるよう、回転式アクチュエータ65(1)、65(2)を駆動する。このように回転式アクチュエータ65(1)、65(2)が回転している間、スラスタ56(i)のいずれにも動力が供給されていない。システム方向は光ファイバ・ジャイロコンパス256によって測定される。深度はディジクォーツ深度センサ254によって、高度は高度計262によって絶えず測定される。次に、位置決めループが、上式にしたがって計算される平均誤差に対しての平均値および正規分布を使用し、スラスタ56(2)および56(3)に動力を提供して、システム50を所望の位置へと運ぶ。
【0097】
スラスタ56(2)、56(3)によって負荷43を伴うシステム50を所望の座標へ駆動する間、スラスタ56(1)、56(4)を使用して、システム50およびその負荷43の回転を打ち消す。これにより制御が向上する。というのは、特に重い負荷の場合に、回転運動の結果、負荷に他の望ましくない運動が生じることがあり、これは制御が困難だからである。負荷を伴うシステム50が、所望の座標上にある場合、負荷はシステム50とともに巻き上げワイヤ42によって下降する。負荷43の下降中、負荷43はシステム50によって絶えず制御され、これを回転させずに所望の位置に維持する。
【0098】
次の位相では、システム50は例えば海底4から約200m以下である。次に、ドップラー・ログ・ユニット266は底部トラック・モードに入る。これによって、作業は、海底4の標的位置への最終アプローチのため、より正確で高速な応答モードに変化する。次に、ドップラー・ログ・ユニット266および運動センサ256付きのジャイロコンパスを使用して、USBLのランダム・ノイズをフィルタリングする。フィルタリングしたら、正確なシステム50の速度を含むナビゲーション・データの良好な読取りによって、位置制御ループが極めて迅速化かつ安定する。数センチメートルまでの動作制御が獲得される高度に微調整された制御ループが、結果として生じる。次に、ソナー・ユニット260およびドップラー・ログ・ユニット266を使用して、標的ポイントの周囲に関する情報を提供し、したがって負荷43を適正な座標および適正な方向に配置することができる。次に、必要に応じて、スラスタ制御プロセッサ240によって制御されたとおり、スラスタ56(1)、56(4)により負荷43に回転を与えることができる。
【0099】
正規平均誤差を減少させるため、スラスタ56(2)、56(3)に2つの制御ループ、つまり平均誤差制御ループおよびさらなる制御ループを設ける。
【0100】
平均誤差制御ループは、平均誤差を減少させるよう、両方のスラスタ56(2)、56(3)に合わせて動力を等しく調節する。システム50が標的座標に到達するにつれ、スラスタ56(2)、56(3)への駆動出力は、システム50が海流中でその位置を移動できるようなレベルへと減少する。つまり、駆動出力は、最初は平均誤差に比例したレベルに設定された。しかし、システム50が標的座標に近づくにつれ、制御ループはスラスタ56(2)、56(3)に加わる駆動出力を徐々に減少させる。システム50が標的座標に到達するにつれ、スラスタ56(2)、56(3)への駆動出力が海流の強度を打ち消す平衡に到達する。平均誤差制御ループは、両方のスラスタ56(2)、56(3)に等しい記号の等しい力を提供する。
【0101】
正規平均誤差を減少させるため、さらなる制御ループを提供する。このさらなる制御ループは、海流に対して直角の運動が生成されるよう、スラスタ56(2)、56(3)に加えられる個々の力を調節する。さらなる制御ループは、このため、両方のスラスタ56(2)、56(3)に反対の記号の等しい力を加える。正規平均誤差を減少させるためにスラスタ56(2)、56(3)に加えられる力は、システム50が標的座標へと移動するにつれ、ゼロへと直線に減少することが好ましい。平均誤差の垂線がゼロに達したポイントで、海流方向が変化していないと仮定すると、システム50は正確に海底4の標的位置の上に位置し、スラスタ56(2)、56(3)に動力が供給されて、システム50を適正な座標上に維持し、海流を補正する。
【0102】
海流の方向が変化すると、上述した制御ループがスラスタに加わる力を調節し、最終的にシステムの方向を変化させる必要がある。新しい海流方向がシステム50に作用するので、システム50が標的座標から移動するにつれ、正規平均誤差が増加し始める。この効果を克服するため、正規平均誤差のサイズを再び制御して、ゼロへ減少させる。海流またはシステム50の自然のドリフトを打ち消すよう、システムの方向を変更する。
【0103】
回転式アクチュエータ65(1)、65(2)の回転方向は、垂線平均誤差の記号によって画定される。回転式アクチュエータ65(1)、65(2)を必要な位置に回転するのに必要な時間を短縮するため、スラスタ制御プロセッサ240がアルゴリズムを使用して、必要な方向への最短ルートを画定する。
【0104】
例えばナビゲーション・プロセッサ202に接続されたジョイスティック(図示せず)などによる手動制御も配置されることが想定される。
【0105】
システム50の位置決め中に、速度制御も加えることが好ましい。システム50が標的の座標に近づくにつれ、システム50の速度が低下することが好ましい。例えば、システム50と標的間の距離が所定の第1閾値より大きい場合、スラスタは、システム50に最大速度を提供するよう制御される。この第1閾値と標的座標への距離の第2閾値との間に、直線に減少する速度プロファイルを使用し、第2閾値は第1閾値より小さい。第2閾値より小さい距離以内で、システムはほぼゼロの速度に維持される。
【0106】
USBLの測定
USBLの測定原理は、2つの変換器間の正確な位相測定に基づく。1つの実施形態では、短基線(SBL)と超短基線(USBL)との組合せを使用し、それによって位相の曖昧さなく変換器間に大きい距離を使用することができる。USBLでは、正確度は信号対雑音比、および(干渉計測定法のように)変換器間の距離に依存する。次に、寸法に関して距離と流体力学的部品によって制限された周波数の兼ね合いをとる。
【0107】
曖昧さは、SBL測定値を相関データ処理と組み合わせて使用することにより、計算される。信号対雑音比は、このような相関処理の使用によって改善される。下式はUSBLの一般的正確度を画定する。
Figure 0004197872
ここで、
Figure 0004197872
は標準角偏差、
Lは変換器の距離、
λは波長、
θは方位角である。
【0108】
上記で与えられた式は、変換器の距離Lを増加することによって、つまりアレイを増加させることによって改善されることを示す。さらに、周波数が高くなると正確度が向上する。流体力学的側面および位相の曖昧さがこれらのパラメータを減少させる。信号対雑音比は、相関データ処理を使用することにより増加する。
【0109】
距離および正確度を最適にするため、位相メータ測定には16kHzの周波数を使用することが好ましい。相関プロセスによって、多重通路の識別のために、狭いパルス長を維持しながら、距離範囲を増加させることができる。
【0110】
曖昧さの位相測定のため、システムはSBLで作動して、範囲セクタを判断し、セクタ内のUSBLで作動して、最高の正確さを達成する。
【0111】
範囲は、かなり低い周波数を使用することにより、8000mを上回る距離まで増加してもよい。
【0112】
付録A
カルマン・フィルタ
カルマン・フィルタは、恐らく海洋産業で最もよく知られた技術である。これは、最新の履歴に基づいて計算された予想値に向かう比較に基づいた高速のフィルタリング方法を与える。カルマン・フィルタリングについては詳細しないが、例えばM.S. GrewalおよびA.P. Andrews Prentice Hallによる「Kalman Filtering - Theory and Practice」(ISBN 0-13-211335-X)を参照されたい。
【0113】
位置トラックを速度データ(ドップラー・ログ)と組み合わせることができ、各ポイントは、隣接ポイント、時間の距離および実際の速度に基づいて改善される。カルマン値と改善される速度との間の重みは、ドップラー効率係数によって決定され、値が高いほど速度を考慮に入れる。
利点: 欠点:
非常に高速である かなり「平滑でない」結果
速度で改善できる 速度と位置の最善の組合せではない
【0114】
単純フィルタ
単純フィルタは、全ての位置を急いで調べ、最小の二乗誤差を与える平滑な曲線を計算する。つまりある種の最小二乗適合線である。
利点: 欠点:
高速である ドップラー・ログ・データを使用しない
結果が平滑である 曲線トラックに似ていない
【0115】
サロモンセン・フィルタ
サロモンセン・フィルタはデンマークの数学者でオルフス大学の教授兼博士であるHans Anton Salomonsenにちなんで命名され、高統合フィルタである。これはドップラー・トラックの短期間の安定性を利用し、これを位置トラックの長期の耐性と組み合わせる。
【0116】
説明
フィルタは、トラックに沿って時間を付加した位置データ、さらにドップラー・データがある状況で使用する。ドップラー・データは、通常は非常に精密であるが、絶対位置に関する情報は一切与えない。これに対して、位置データは絶対位置であるが、通常はそれほど精密でない。
【0117】
フィルタは2組のデータを組み合わせて、絶対位置を有する精密なトラックを生成する。これは以下のように実行する。
1.ドップラー・データを使用して、トラック、つまり三次式近似として形成されるトラックの形状を構築する。
2.起点(0,0)から開始し、ドップラー・データによって画定された通りの速度を使用する。
3.次に、位置データを使用してトラックを正確に位置決めする。トラックは、最小二乗技術を使用して可能な限り良好に、位置データに適合するよう並進、回転、および直線に延伸/圧縮される。
4.主に並進となる。しかし、他の変形も、ドップラー・データにあり得る系統的誤差を補正する働きをする。
【0118】
位置データは、2での修正でのみ使用するという事実は、位置データがかなり平均化を課されることを意味する。これは、位置測定の不確定さを減少させる。したがって、多くの位置データがある場合は、トラックの絶対位置が単独の各位置測定よりはるかに精密になると予想される。
H.A.サロモンセン
【0119】
数学的説明
アルゴリズムは5つのステップに分割される
ステップ1:
各ポイントの加速度を計算する
1/2h k+1 (X ”+X k+1 ”)=X k+1 ’−X
ここで
=t −t k−1
=速度測定のタイムスタンプ
’=t における速度測定値
”=t における加速度測定値
ステップ2:
加速度および速度、および(以前の速度測定値および加速度に基づいて)以前に計算した位置に基づき、次の位置を計算する。
k+1 =Sqr(h k+1 )/6(2X ”+X k+1 ’)+h +1X ’+X
ここで =t において計算した位置(速度タイムスタンプ)
ステップ3:
(第1速度測定値を使用して)実際のタイムスタンプで位置を計算する
X(t)=1/2h k+1 {((h k+1 ) 2(t-t k )+1/3(t k +1-t) 3-1/3(h k+1 ) 3)X k+1 /3(t-t k ) 3X k+1 }
ここで
X(t)=時間tにおける位置
ステップ4:
第1速度測定値の位置を位置計算値に加算する
ステップ5:
位置計算値を現実の位置線の適合度に合わせて移動、回転、延伸または圧縮する
利点: 欠点
最高のドップラーと位置を組み合わせる 複雑なマトリクスのために遅くなる
全データを考慮に入れる 良好なドップラー・ログに依存する
結果が平滑である
【0120】
サロモンセン光
サロモンセン・フィルタの光バージョンは、NaviBatオンライン・プログラムで最初に導入され、解決の高速化を2つの方法の良い方と組み合わせるよう考案された。
【0121】
オンラインの性質のため、フィルタ・ポイントの決定に履歴を使用するだけである。したがって、結果は線の開始時に比較的粗く、移動するにつれ良好になる。
【0122】
基本操作
フィルタは、リセット・コールから開始して、フィルタを初期化する。リセットは、第1速度測定値を使用して実行される。フィルタは速度と位置のデータ両方を使用する。三次式近似曲線は、速度記録を使用し、位置をこの曲線に可能な限り良好に適合させて生成する。
【0123】
フィルタは、後に処理するため、保存した位置記録を読みとる。
【0124】
速度記録を読み取ったら、「ノット」を作成する。以前の速度記録と現在の速度記録(単位は時間)との間に位置読取り値がある場合は、それを調節して曲線に適合させる。
【0125】
履歴
フィルタ利得パラメータは0から1の値で、ドップラー・ログ・データおよび履歴が流ポイントに及ぼす影響を制御する。
【0126】
1の値では、ライン上にあるドップラー・ログ・データおよび履歴はより大きい重みを有する。値が小さくなるのは、有効な速度記録より多くの位置記録がある場合のみである。
【0127】
有用な値は0.9から1の範囲、例えば0.99である。
【0128】
誤差補正
位置および速度記録は、以前のデータを使用して予測した値と比較することができる。いつデータを拒否するか、制限を設定してもよい。
【0129】
リセット
多くの誤ったデータ・ポイントがある場合は、フィルタがトラックを失う危険がある。オペレータはフィルタを手動でリセットする、つまり履歴を抹殺することができる(自動リセットを設計するために試みられる)。
利点: 欠点
最善のドップラーと位置を組み合わせる ライン開始時に「平滑でない」
高速である
全体的結果が平滑である
ノイズの多いドップラー・データを扱える
【図面の簡単な説明】
【図1】 沖合石油化学採収専用のFPSO(浮遊、採集、貯蔵および荷下ろしシステム)の略図を示す。
【図2】 先行技術によるクレーン船を示し、比較的長いワイヤ・ロープでクレーン・ブロックに装備された負荷を表し、それによって大きい深度では負荷の制御が事実上不可能であることを理解することができる。
【図3】 先行技術により海底との間で負荷を配備および/または回収するクレーン船および水中システムを示す。
【図4】 水中システムの可能な実施形態の詳細な概要図を示す。
【図4a】 回転式スラスタの1つの詳細な概要図を示す。
【図5】 上から見た水中システムを示す。
【図6a】 幾つかの検出器を伴う主要モジュールの下側を示す。
【図6b】 幾つかの検出器を伴う主要モジュールの下側を示す。
【図7a】 船舶上の電子機器の略ブロック図を示す。
【図7b】 音線に関する、および水中システムに関する電子機器の略ブロック図を示す。
【図8】 水中システムをその標的位置へと駆動する間に使用する3つの異なる座標系の定義を示す。

Claims (24)

  1. 標的である物体(43)を水中の標的位置に配備する装置(50)であって、該装置(50)は、該装置(50)の位置を決定するために水面上の船舶に音線を送信するビーコンと、水中の標的位置に対する前記装置(50)の位置を制御するために複数のスラスタ(56(i)、i=1,2・・・Iで、Iは整数)とを備え、前記装置(50)は、該装置(50)の下降および回収中に該装置(50)を取り巻く流体中の音速を連続的に測定するための音速メータ(258)を備え、該音速メータ(258)は実時間で音速データを前記船舶に送信して、実時間で深度の関数として計算された水中の音速プロファイルを更新し、前記装置(50)の決定された位置を補正するために用いられることを特徴とする装置。
  2. 前記スラスタが、トルク制御機能を提供するよう配置された第1組のスラスタ(56(1)、56(4))、および少なくとも並進機能を提供するよう配置された第2組のスラスタ(56(2)、56(3))を備え、前記第2組のスラスタ(56(2)、56(3))の各スラスタに回転式アクチュエータ(65(1)、65(2))を設ける、請求項1に記載の装置。
  3. 前記装置に、使用中の装置の横揺れおよび縦揺れを感知する運動センサ(256)付きジャイロコンパスを設ける、請求項1に記載の装置。
  4. 装置に、前記装置の外側にある少なくとも1つの物体に対する前記装置の位置を判断するソナー・ユニット(260)を設ける、請求項1に記載の装置。
  5. 装置に、前記流体の流れ強度を測定するドップラー・ログ・ユニット(266)を設ける、請求項4に記載の装置。
  6. 装置と係合する負荷(43)の重量を測定するロード・セル(268)を備える、請求項1に記載の装置。
  7. 装置に、前記流体中の温度を測定し、温度データを前記船舶に実時間で送信する温度センサ(266)を設ける、請求項1に記載の装置。
  8. 装置に、前記流体の塩分を測定し、塩分データを前記船舶に実時間で送信する塩分メータ(266)を設ける、請求項1に記載の装置。
  9. 標的である物体(43)を水中の標的位置に配備する装置(50)を駆動するように配置された処理構成であって、前記装置は、該装置の位置を決定するために水面上の船舶に音線を送信するビーコンと、前記水中の標的位置に対する前記装置の位置を制御するための複数のスラスタ(56(i)、i=1、2・・・I、Iは整数)と、前記装置の下降および回収中に該装置を取り巻く流体中の音速を連続的に測定し、音速データを実時間で前記船舶に送信する音速メータ(258)とを備え、前記処理構成には前記音線を受信する音響受信器(250)が備えられ、該処理構成は前記装置の位置を決定するための計算に、前記音線から取得したデータを使用するように構成され、前記処理構成は、前記音速メータ(258)からの音速メータ・データをオンラインで受信して深度の関数として前記流体中の音速プロファイルを連続的に更新し、前記装置によって流体を通して送信される前記音線の屈曲を前記音速プロファイルから計算し、前記装置の位置を実時間で決定するために、更新された音速プロファイルを用いて前記計算を補正することを特徴とする処理構成。
  10. 装置の前記スラスタが、トルク制御機能を提供するよう構成された第1組のスラスタ(56(1)、56(4))、および少なくとも並進機能を提供するよう配置された第2組のスラスタ(56(2)、56(3))を備え、前記第2組のスラスタ(56(2)、56(3))の各スラスタに回転式アクチュエータ(65(1)、65(2))を設け前記処理構成が、使用時に以下の機能を実行するよう構成され、つまり
    ・前記第1組のスラスタ(56(1)、56(4))の前記スラスタへの駆動出力印加を制御して、前記第1組の前記スラスタ(56(1)、56(4))によって生成された駆動力によって定まる第1面内の所望の方向に前記装置(50)を維持し、
    ・前記第2組のスラスタ(56(2)、56(3))の前記スラスタおよび前記回転式アクチュエータ(65(1)、65(2))への駆動出力印加を制御して、前記装置(50)をスラスタ平均方向および前記スラスタ平均方向に対して直角の方向に、所望の位置まで移動させ、前記スラスタ平均方向および前記スラスタ平均方向に平行な方向が、前記第2組の前記スラスタ(56(2)、56(3))によって生成された駆動力によって定まる第2面内にある、請求項9に記載の処理構成。
  11. 前記装置内で前記第1および第2面が一致せず、処理構成が、装置(50)上の運動センサ(256)付きジャイロコンパスから、使用中の装置の横揺れおよび縦揺れに関する第1感知信号を受信するよう構成される、請求項10に記載の処理構成。
  12. 運動センサ(256)付きジャイロコンパスからの第1感知信号が、装置の姿勢を判断する計算に使用される、請求項11に記載の処理構成。
  13. 装置が温度センサ(266)を含み、処理構成が、前記温度センサから温度データを受信し、前記流体中の温度プロファイルを更新して、前記装置の位置の実時間判断の補正を補助するよう構成される、請求項9に記載の処理構成。
  14. 装置が塩分メータ(266)を含み、処理構成が、前記塩分メータから塩分データを受信し、前記流体中の塩分プロファイルを更新して、前記装置の位置の実時間判断を補正するよう構成される、請求項9に記載の処理構成。
  15. 請求項9による処理構成を設けた船舶。
  16. 船舶に、船舶の船体に取り付けた音響アレイ(250)、および前記音響アレイ(250)と通信するよう構成された船上の超短基線表面ユニット(234)とを設け、音響アレイ(250)が、少なくとも前記装置(50)から音響信号を受信し、前記処理構成に音響アレイ出力データを提供するよう構成され、前記処理構成が、前記音響アレイ出力データに基づいて、前記音響アレイ(250)に対する少なくとも前記装置(50)の位置の計算を実時間で実行するよう構成された、請求項15に記載の船舶。
  17. 音響アレイ(250)が、船舶のすぐ下の流体層で音速を測定し、音速メータ出力データを前記処理構成に提供する音速メータ(248)を備え、前記処理構成が、前記音速メータ出力データに基づき、前記装置(50)の前記位置の前記計算を実時間で補正するよう構成された、請求項16に記載の船舶。
  18. 音響アレイ(250)が、音響アレイ(250)の上下浮動、横揺れおよび縦揺れを測定し、音響アレイ・ジャイロコンパス出力データを前記処理構成に提供する音響アレイ・ジャイロコンパス(252)を備え、処理構成が、前記音響アレイ・ジャイロコンパス出力データに基づき、前記装置(50)の前記位置の前記計算を実時間で補正するよう構成された、請求項16に記載の船舶。
  19. 船舶が、船舶の上下浮動、横揺れおよび縦揺れを測定し、船舶ジャイロコンパス出力データを前記処理構成に提供する船舶ジャイロコンパス(206)を備え、処理構成が、前記船舶ジャイロコンパス出力データに基づき、前記装置(50)の前記位置の前記計算を実時間で補正するよう構成された、請求項15に記載の船舶。
  20. 請求項15から19のうちのいずれか1項に記載の船舶および請求項1から8までのうちのいずれか1項に記載の装置を備え、装置および処理構成が相互に通信するよう構成されたシステム。
  21. 装置および処理構成が、光ファイバで相互接続された光ファイバ・(デ)マルチプレクサ(244、246)を介して結合される、請求項20に記載のシステム。
  22. 水中の標的位置に標的である物体(43)を配備する装置(50)を駆動する方法であって、
    該装置は、該装置の位置を決定するために水面上の船舶に音線を送信するビーコンと、水中の標的位置に対する前記装置の位置決めを制御するための複数のスラスタ(56(i)、i=1、2・・・Iで、Iは整数)と、前記装置の下降および回収中に該装置を取り巻く流体中の音速を連続的に測定し、音速データを実時間で前記船舶に送信する音速メータ(258)とを備え、前記方法は、
    前記ビーコンからの音線を受信するステップと、
    前記装置の位置を決定する計算に前記音線から獲得したデータを使用するステップと、
    前記音速メータ(258)から音速メータ・データを受信して、深度の関数として前記音速プロファイルを更新するステップと、
    前記装置から流体を通して送信された前記音線の屈曲を、前記音速プロファイルから計算し、前記装置の位置を決定するために、更新された音速プロファイルを用いて前記計算を補正するステップと、
    を含むことを特徴とする方法。
  23. 処理構成にデータおよび命令をロードした後請求項22による方法を実行する能力を提供する、データおよび命令を備えるコンピュータ・プログラム。
  24. 請求項1による装置において、更に、前記船舶の直下の流体層内で音速を測定する第2音速メータ(248)を備えて、第2音速メータ(248)の出力データを提供し、実時間におけるこの出力データに基づいて前記装置の位置を補正することを特徴とする装置。
JP2001568789A 2000-03-20 2000-03-20 正確度を向上させて水中標的位置に負荷を配備する装置およびそのような装置を制御する方法 Expired - Fee Related JP4197872B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NL2000/000184 WO2001070568A1 (en) 2000-03-20 2000-03-20 Apparatus for deploying a load to an underwater target position with enhanced accuracy and a method to control such apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004284876A Division JP4485895B2 (ja) 2004-09-29 2004-09-29 音速メータを備えた音響アレイを含む、水中の装置の位置を測定する装置
JP2008209115A Division JP2009047699A (ja) 2008-08-15 2008-08-15 ナビゲーション・プロセッサ、該ナビゲーション・プロセッサを備えた処理構成、該ナビゲーション・プロセッサを備えた測定システム及び水中システムの位置及び姿勢を測定する方法

Publications (2)

Publication Number Publication Date
JP2003528004A JP2003528004A (ja) 2003-09-24
JP4197872B2 true JP4197872B2 (ja) 2008-12-17

Family

ID=19760681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001568789A Expired - Fee Related JP4197872B2 (ja) 2000-03-20 2000-03-20 正確度を向上させて水中標的位置に負荷を配備する装置およびそのような装置を制御する方法

Country Status (15)

Country Link
US (3) US6771563B1 (ja)
EP (3) EP1908682B1 (ja)
JP (1) JP4197872B2 (ja)
CN (1) CN1253345C (ja)
AT (3) ATE281345T1 (ja)
AU (2) AU3465300A (ja)
BR (1) BR0017171A (ja)
CA (1) CA2401587C (ja)
DE (3) DE60039374D1 (ja)
DK (2) DK1265785T3 (ja)
EA (1) EA004201B1 (ja)
ES (2) ES2231166T3 (ja)
MX (1) MXPA02009187A (ja)
NO (2) NO20024432L (ja)
WO (1) WO2001070568A1 (ja)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052334A (en) * 1998-08-04 2000-04-18 Rowe-Deines Instruments System and method for measuring wave directional spectrum and wave height
EP1908682B1 (en) 2000-03-20 2011-04-20 Francois Bernard Navigation processor, processor arrangement and measuring system comprising such a navigation processor and a method of measuring position and attitude of an underwater system
JP2007500638A (ja) 2003-07-31 2007-01-18 ソーラー セーラー ピーティーワイ リミテッド 無人海洋艇
CN1325930C (zh) * 2004-12-01 2007-07-11 南京市长江河道管理处 水下目标自动定位方法及其系统
US7711322B2 (en) * 2005-06-15 2010-05-04 Wireless Fibre Systems Underwater communications system and method
US7333394B2 (en) * 2005-06-22 2008-02-19 Basilico Albert R Navigational aid for diver
US7969822B2 (en) * 2005-07-15 2011-06-28 Estate Of Albert R. Basilico System and method for extending GPS to divers and underwater vehicles
US7272074B2 (en) * 2005-07-15 2007-09-18 Basilico Albert R System and method for extending GPS to divers and underwater vehicles
US7454972B2 (en) * 2005-09-07 2008-11-25 Luna Innovations Incorporated Method and apparatus for acoustically weighing moving loads
US7376045B2 (en) * 2005-10-21 2008-05-20 Pgs Geophysical As System and method for determining positions of towed marine seismic streamers
JP5200010B2 (ja) * 2006-06-02 2013-05-15 シーダブリューエフ ハミルトン アンド カンパニー リミテッド 海洋船舶の制御に関する改善
WO2008045788A2 (en) * 2006-10-06 2008-04-17 Kimberly Blakesley Anchoring system
DE102007012911A1 (de) * 2007-03-19 2008-11-13 Atlas Elektronik Gmbh Verfahren zur Navigation eines Unterwasserfahrzeugs
US20080300742A1 (en) * 2007-05-30 2008-12-04 Oceaneering International, Inc. Hybrid remotely/autonomously operated underwater vehicle
US7847925B2 (en) 2007-06-18 2010-12-07 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
ITMI20080602A1 (it) 2008-04-07 2009-10-08 Eni Spa Metodo e sistema di estinzione di un pozzo sottomarino per l'estrazione di idrocarburi in condizione di rilascio incontrollato di fluidi
ITMI20080604A1 (it) * 2008-04-07 2009-10-08 Eni Spa Metodo e sistema di determinazione della posizione di una fuoriuscita di fluidi in ambiente sottomarino
US20100139130A1 (en) * 2008-12-08 2010-06-10 Wagenaar Dirk C Underwater Excavation Tool
US8254208B2 (en) * 2008-12-08 2012-08-28 Teledyne Rd Instruments, Inc. Multi-state beamforming array
WO2010138624A1 (en) 2009-05-27 2010-12-02 Teledyne Rd Instruments System and method for determining wave characteristics from a moving platform
US9360583B2 (en) 2009-10-01 2016-06-07 Halliburton Energy Services, Inc. Apparatus and methods of locating downhole anomalies
ITMI20092044A1 (it) * 2009-11-20 2011-05-21 Saipem Spa Metodo e gruppo di scavo per disporre una tubazione in un letto di un corpo d'acqua
US8442709B2 (en) * 2009-12-11 2013-05-14 Lockheed Martin Corporation Underwater investigation system providing unmanned underwater vehicle (UUV) guidance based upon updated position state estimates and related methods
WO2011103271A2 (en) * 2010-02-18 2011-08-25 US Seismic Systems, Inc. Fiber optic personnel safety systems and methods of using the same
US8599649B1 (en) 2010-03-09 2013-12-03 The United States Of America As Represented By The Secretary Of The Navy Laser-based method of detecting underwater sound through an ice layer
CN101975949B (zh) * 2010-10-12 2012-10-24 苏州桑泰海洋仪器研发有限责任公司 一种多用户水下超短基线定位设备与方法
NO332453B1 (no) * 2010-11-03 2012-09-17 Nat Oilwell Varco Norway As Lofteverktoy for a motvirke tvinning av i hovedsak dykkede tau
RU2501038C1 (ru) * 2012-07-05 2013-12-10 Открытое акционерное общество "Концерн "Океанприбор" Гидроакустическая система
CN102975831B (zh) * 2012-11-22 2015-07-08 中国船舶重工集团公司第七○二研究所 水下吊物的存储与转运装置
CN103057679B (zh) * 2013-01-11 2015-05-20 哈尔滨工程大学 双智能水下机器人相互对接装置及对接方法
BR112016002576A2 (pt) * 2013-08-13 2017-08-01 Propocean As estabilização de um tubo de coluna ascendente
CN103605373B (zh) * 2013-10-22 2016-02-24 浙江工业大学 水下多角度检测定位装置
CN103760909B (zh) * 2014-01-23 2018-01-02 河海大学常州校区 一种水下探测装置的控制系统
GB2523407B (en) * 2014-02-25 2018-05-16 Technip France Multi-cable subsea lifting system
CN103823205B (zh) * 2014-02-28 2017-01-18 上海交通大学 一种水下定位导航系统和方法
EP2952994A1 (en) * 2014-06-03 2015-12-09 GE Energy Power Conversion Technology Ltd System and method for dynamic positioning
JP6576624B2 (ja) * 2014-09-24 2019-09-18 五洋建設株式会社 水中測位システム及び水中測位方法
US9505479B2 (en) * 2014-10-31 2016-11-29 The Boeing Company Position-locking for a watercraft using an auxiliary water vessel
CN105629307B (zh) * 2014-10-31 2017-12-12 中国科学院声学研究所 一种海底管线探测与测量声学系统与方法
EP3109399B1 (de) * 2015-06-23 2017-08-09 BAUER Spezialtiefbau GmbH Messvorrichtung und verfahren zur vermessung eines loches im boden
JP6534039B2 (ja) * 2015-08-18 2019-06-26 清水建設株式会社 揚重旋回制御装置
CN106483501B (zh) * 2015-09-01 2019-04-23 北京自动化控制设备研究所 一种基于dop值分析声学定位系统多应答器最优布阵方法
CN105297677A (zh) * 2015-11-24 2016-02-03 中船勘察设计研究院有限公司 一种利用水下声信标定位混凝土联锁排的方法
CN105823505B (zh) * 2016-03-21 2018-01-09 广东小天才科技有限公司 一种检测智能终端入水的方法及装置
NL2016832B1 (en) 2016-05-25 2017-12-12 Jumbo Maritime B V Method for lowering an object in a water body, as well as a vessel for carrying out such a method, and an anti-twist frame for use with such a method
CA3008342A1 (en) * 2017-03-02 2018-09-02 Chris Bueley Sound velocity sensor for underwater use and method for determining underwater sound velocity
WO2018191425A1 (en) * 2017-04-11 2018-10-18 Portland State University Wideband acoustic positioning with precision calibration and joint parameter estimation
US11073384B2 (en) * 2017-10-27 2021-07-27 King Abdulaziz University Systems and methods for mixed layer depths
CN109765523B (zh) * 2018-12-21 2022-11-01 山东省科学院海洋仪器仪表研究所 基于自适应akf的单应答器斜距水声定位方法及系统
NL2022366B1 (en) * 2019-01-10 2020-08-13 Boskalis Bv Baggermaatschappij Supervisory control arrangement for a vessel
NL2026122B1 (en) * 2020-07-23 2022-03-28 Boskalis Bv Baggermaatschappij Method, system and assembly for releasing a submergible load from a floater
CN112977736A (zh) * 2021-03-23 2021-06-18 中国水产科学研究院黄海水产研究所 一种具有声学评估系统智能位置校正设备的科学考察船
CN112977728A (zh) * 2021-03-23 2021-06-18 中国水产科学研究院黄海水产研究所 用于声学评估系统的智能位置校正设备
NO20220589A1 (en) * 2022-05-19 2023-11-20 Braaten Tech As Apparatus, system and method for monitoring a subsea load
FR3138204B1 (fr) * 2022-07-21 2024-10-25 Ifremer Institut Francais De Rech Pour Lexploitation De La Mer Dispositif de détermination de l’allongement d’un lien
KR102602421B1 (ko) * 2022-10-28 2023-11-15 (주)지오시스템리서치 목표 수심이 설정되는 채수 제어 장치 및 이를 이용한 채수 시스템

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381485A (en) 1965-10-23 1968-05-07 Battelle Development Corp General purpose underwater manipulating system
US3388372A (en) * 1967-05-22 1968-06-11 Gen Precision Inc Determination of ocean sound velocity profiles
US3842398A (en) * 1972-05-08 1974-10-15 Dynamics Corp Massa Div Apparatus and method for deployment of expendable velocimeter to eliminate doppler shift error in the measurements
US4121190A (en) * 1976-07-20 1978-10-17 The Academy Of Applied Science, Inc. Method of and apparatus for sonar detection and the like with plural substantially orthogonal radiation beams
US4118782A (en) * 1977-03-24 1978-10-03 The United States Of America As Represented By The Secretary Of The Navy Digital sound velocity calculator
US4229809A (en) * 1979-01-29 1980-10-21 Sperry Corporation Acoustic under sea position measurement system
FR2519769B1 (fr) * 1982-01-12 1985-09-20 Thomson Csf Systeme de positionnement acoustique
US5208785A (en) * 1990-09-26 1993-05-04 Rowe, Deines Instruments Incorporated Broadband acoustic doppler current profiler
DE4319607A1 (de) * 1993-06-14 1994-12-15 Atlas Elektronik Gmbh Verfahren zum Bestimmen von Tiefenwerten eines Gewässers
US5410519A (en) * 1993-11-19 1995-04-25 Coastal & Offshore Pacific Corporation Acoustic tracking system
US5528555A (en) * 1994-12-09 1996-06-18 The United States Of America As Represented By The Secretary Of The Navy System and method for compensating for towed array motion induced errors
US5608689A (en) * 1995-06-02 1997-03-04 Seabeam Instruments Inc. Sound velocity profile signal processing system and method for use in sonar systems
US5691903A (en) * 1995-09-08 1997-11-25 The United States Of America As Represented By The Secretary Of The Navy Integrated cable navigation and control system
JP3765122B2 (ja) 1996-05-07 2006-04-12 石川島播磨重工業株式会社 潜水体及びその潜水位置制御方法
SE506569C2 (sv) 1996-05-10 1998-01-12 Asea Atom Ab Metod och anordning vid rörelsekorrektion och positionering av en upphängningsanordning
US5995882A (en) * 1997-02-12 1999-11-30 Patterson; Mark R. Modular autonomous underwater vehicle system
US5734623A (en) * 1997-04-07 1998-03-31 The United States Of America As Represented By The Secretary Of The Navy Fiber optic sound velocity profiler
JP3388688B2 (ja) * 1997-04-11 2003-03-24 沖電気工業株式会社 音響測位装置
US5947051A (en) * 1997-06-04 1999-09-07 Geiger; Michael B. Underwater self-propelled surface adhering robotically operated vehicle
DE19748453B4 (de) 1997-11-03 2006-11-16 Iveco Magirus Ag Feuerlöschroboter
NL1009277C2 (nl) 1998-05-28 1999-11-30 Francois Bernard Werkwijze en inrichting voor het nauwkeurig plaatsen van relatief zware voorwerpen op en wegnemen van zware voorwerpen van de zeebodem.
US6052334A (en) * 1998-08-04 2000-04-18 Rowe-Deines Instruments System and method for measuring wave directional spectrum and wave height
EP1908682B1 (en) 2000-03-20 2011-04-20 Francois Bernard Navigation processor, processor arrangement and measuring system comprising such a navigation processor and a method of measuring position and attitude of an underwater system
US20060256653A1 (en) * 2005-05-05 2006-11-16 Rune Toennessen Forward looking systems and methods for positioning marine seismic equipment

Also Published As

Publication number Publication date
US7277359B2 (en) 2007-10-02
NO20024432D0 (no) 2002-09-17
ES2309444T3 (es) 2008-12-16
US20040233784A1 (en) 2004-11-25
DE60015609D1 (de) 2004-12-09
US6771563B1 (en) 2004-08-03
ATE399707T1 (de) 2008-07-15
CN1253345C (zh) 2006-04-26
AU2000234653B2 (en) 2004-10-21
EP1908682B1 (en) 2011-04-20
WO2001070568A1 (en) 2001-09-27
DE60039374D1 (de) 2008-08-14
EP1481891B1 (en) 2008-07-02
US20070104031A1 (en) 2007-05-10
CA2401587C (en) 2007-07-31
ATE281345T1 (de) 2004-11-15
EP1265785A1 (en) 2002-12-18
EP1265785B1 (en) 2004-11-03
NO20081403L (no) 2002-11-20
ES2231166T3 (es) 2005-05-16
BR0017171A (pt) 2003-07-01
EA200201005A1 (ru) 2003-02-27
NO20024432L (no) 2002-11-20
DK1265785T3 (da) 2005-02-21
ATE506250T1 (de) 2011-05-15
EP1481891A1 (en) 2004-12-01
CA2401587A1 (en) 2001-09-27
DK1481891T3 (da) 2008-11-10
US7173880B2 (en) 2007-02-06
DE60045882D1 (de) 2011-06-01
CN1450967A (zh) 2003-10-22
EP1908682A1 (en) 2008-04-09
JP2003528004A (ja) 2003-09-24
MXPA02009187A (es) 2004-05-04
AU3465300A (en) 2001-10-03
EA004201B1 (ru) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4197872B2 (ja) 正確度を向上させて水中標的位置に負荷を配備する装置およびそのような装置を制御する方法
AU2000234653A1 (en) Apparatus for deploying a load to an underwater target position with enhanced accuracy and a method to control such apparatus
US5507596A (en) Underwater work platform support system
EP0046800B1 (en) Riser angle positioning system and process
RU2419574C1 (ru) Буксируемый подводный аппарат
JP2002516222A (ja) 物体または負荷を海床へと展開するための装置および方法
FI126828B (fi) Menetelmä kohteen keilaamiseksi veden alta ja tähys vedenpinnan alapuolelta tapahtuvaa kohteen keilaamista varten
GB1579191A (en) Stabilizing system on a semi-submerisible crane vessel
RU2610149C1 (ru) Буксируемый подводный аппарат, оснащенный гидроакустической аппаратурой для обнаружения заиленных объектов и трубопроводов и последующего их мониторинга
JP2022526981A (ja) 浮遊物体に接続された懸垂アンカーラインを検査する方法
JPH04307386A (ja) 水中ソナー走査方法及び装置
JP4485895B2 (ja) 音速メータを備えた音響アレイを含む、水中の装置の位置を測定する装置
JP2009047699A (ja) ナビゲーション・プロセッサ、該ナビゲーション・プロセッサを備えた処理構成、該ナビゲーション・プロセッサを備えた測定システム及び水中システムの位置及び姿勢を測定する方法
CA2569992C (en) A navigation processor, a system comprising such a navigation processor and a method of controlling an underwater system by such a navigation processor
JPH10299020A (ja) 水中構造物の据付・沈設方法及び装置
CN100335365C (zh) 用于提高精度地将载荷配置到水下目标位置的装置
AU2008200200B2 (en) Navigation processor, processor arrangement and measuring system comprising such a navigation processor and a method of measuring position and attitude of an underwater system
AU2004210548B2 (en) Apparatus for deploying a load to an underwater target position with enhanced accuracy and a method to control such apparatus
JP6725812B2 (ja) ブイ式波高計測装置
JPS61169528A (ja) 捨石船
OA12234A (en) Apparatus for deploying a load to an underwater target position with enhanced accuracy and a method to control such apparatus.
JPS5926913B2 (ja) 海洋調査船の安定保持制御方法および安定保持制御用位置検知装置
JP2019196624A (ja) 水中作業支援方法及び水中作業支援システム
JP2899687B2 (ja) 水中移動装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050324

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060508

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070912

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080515

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080616

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080715

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees