JP4188750B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP4188750B2
JP4188750B2 JP2003133807A JP2003133807A JP4188750B2 JP 4188750 B2 JP4188750 B2 JP 4188750B2 JP 2003133807 A JP2003133807 A JP 2003133807A JP 2003133807 A JP2003133807 A JP 2003133807A JP 4188750 B2 JP4188750 B2 JP 4188750B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
gallium nitride
light
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003133807A
Other languages
English (en)
Other versions
JP2003309287A (ja
Inventor
典克 小出
直樹 柴田
史郎 山崎
潤一 梅崎
道成 佐々
正好 小池
勇 赤崎
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Toyoda Gosei Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003133807A priority Critical patent/JP4188750B2/ja
Publication of JP2003309287A publication Critical patent/JP2003309287A/ja
Application granted granted Critical
Publication of JP4188750B2 publication Critical patent/JP4188750B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、可視単波長、特に青色領域から紫色領域まで、及び紫外線領域で発光可能な、ダブルヘテロ接合構造を有する窒化ガリウム系化合物半導体による発光素子に関する。
【0002】
【従来の技術】
従来、窒化ガリウム系半導体から成る発光素子として、図1と同様な構造のものがある。この発光素子は、サファイア基板上に窒化ガリウム系化合物半導体をエピタキシャル成長させたものである。これは、層構成としては本発明の層構成と同じであり、発光メカニズムも同じである。この発光素子では、発光層からの発光は、ほぼ等方的であり、使用目的である光取り出し方向には発光される光量の一部しか放射されない。
【0003】
【発明が解決しようとする課題】
つまり、せっかく発光しても必要とする方向に放射される光が限られ、無駄な方向に出ていることを意味し、多方向からの視認性は良いものの、目的方向における発光効率としては低いものとなるという問題がある。
【0004】
従って本発明は上記の課題を解決するために成されたものであり、その目的は、窒化ガリウム系半導体発光素子において、発光素子の発光取り出し効率を向上させることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するため本発明の特徴ある構成は、発光層をその禁制帯幅よりも大きな禁制帯幅の層で挟んだダブルヘテロ接合構造を有する窒化ガリウム系化合物半導体から成る発光素子において、基板上に、 AlN から成るバッファ層と、 AlGaN 及び GaN の多層膜から成る反射層と、n-GaNからなるn層と、発光層と、p-AlGaNからなるp層と、素子上面側の光取り出し側に形成されたITOから成る電極とを有することを特徴とする。
【0006】
【作用および発明の効果】
本発明は上記のように、素子上面側の光取り出し側に形成されたITOから成る電極とを有する。ITOは透明電極であるので、光出力が無駄にならず、発光の効率を向上させることができる。
また、 AlGaN 及び GaN の多層膜から成る反射層を有するので、光取り出し側への光出力が増大する。
【0007】
【実施例】
以下、本発明を具体的な実施例に基づいて説明する。
(構成)
図1は、サファイア基板1を用いて製造した窒化ガリウム系発光素子100の構造を示した模式的断面図である。サファイア基板1の上に、窒化アルミニウム(AlN) 緩衝層2が形成されて、その上に発光素子の最下層として、Siをドープした窒化ガリウム( n + - GaN ) 層3が形成されている。この窒化ガリウム層3をベースにして、ZnおよびSiドープの半絶縁層もしくは弱いp型となる窒化インジウムガリウム(In x Ga1-x N ) 層4が形成され、その上にクラッド層(活性層の禁制帯幅よりも大きい禁制帯幅を有する層)として窒化アルミガリウム( p - Al0.1Ga0.9N)層5が形成され、さらにその上にp層としてMgドープの窒化ガリウム(GaN) 層6が形成されている。そして、その上にアルミニウム(Al)で第一電極層7が設けられている。また、窒化ガリウム層3の一部で分離溝9で分離された領域に対して接続孔が設けられ、アルミニウム(Al)で第二電極層8が設けられている。なおこの発光素子100の場合、光はサファイア基板1の側(図1の矢印)から取り出される。
【0008】
そして、本発明の特徴として、この第一実施例では前記緩衝層(バッファ層)2を反射防止膜10として用いてある。この発光素子100は、発光層となるのが半絶縁層もしくは弱いp型となる窒化インジウムガリウム(In x Ga1-x N ) 層4とその上のクラッド層として窒化アルミガリウム( p - Al0.1Ga0.9N)層5との間で、ここから発光された光をサファイア基板1側から取り出す。ただし発光される光は等方的であるので、光取り出し側に全てが放射されるわけではない。発光される光は波長λが約485nm の青色であり、この波長に対して反射防止層となるためには、
【数 1】
d= λ/4n (n:層の屈折率)・・・・(1)
の厚さdを持つ層であることが必要である。従って、反射防止層であるということは窒化アルミニウム(AlN) 緩衝層(バッファ層)2が(1) 式を満たす厚さdを有することを意味する。
【0009】
緩衝層2である窒化アルミニウム(AlN) 層の前後は、その波長領域に対しては屈折率が図2(a) に示すような関係があるので、従って必要とされる緩衝層2の厚さdが約619 Åとなることがわかった。また、この厚さの時の反射率が波長485nm 近傍で最も小さい値をとることが図2(b) のシミュレーション結果からも示されている。従ってこの厚さの時に緩衝層2は最も光をよく透過し、反射防止層10としての役割を果たす。
【0010】
(製法)
以下にこの窒化ガリウム発光素子100の形成方法を述べる。
(a) 図1において、(1,1,-2,0)面(即ち、a面)を結晶成長面とするサファイア基板1を有機洗浄の後、結晶成長部に設置する。そして成長炉を真空排気の後、水素を供給し、内部を1200℃まで上昇させる。これによりサファイア基板1上に付着していた余分な炭化水素系ガス等が取り除かれる。次にサファイア基板1の温度を 600℃程度まで降温し、トリメチルアルミニウム(TMA) およびアンモニア(NH3) を供給して、サファイア基板1上に619 Å( 約62nm) 程度の膜厚をもつ窒化アルミ(AlN) 緩衝層(バッファ層)2を形成する。
(b) 次に、TMA のみの供給を止め、基板温度を1040℃まで上昇し、トリメチルガリウム(TMG) およびシラン(SiH4)を供給し、Siドープのn型窒化ガリウム( n + - GaN ) 層3を形成する。
(c) 次に、トリメチルインジウム(TMI) およびTMG およびシラン(SiH4)を供給して、厚さ0.4 μm のInドープの窒化インジウムガリウム(In0.1Ga0.9N) 層4を形成する。
(e) 次に、TMA 、TMG およびジクロペンタジウムマグネシウム(Cp2Mg) を供給して、厚さ0.4 μm のMgドープの窒化アルミガリウム(Al0.1Ga0.9N) 層5を形成する(これを後にp層とする)。
(f) その後、真空チャンバーに移して、Mgのドープされた窒化アルミガリウム(p - Al0.1Ga0.9N)層5および窒化ガリウム(GaN) 層6に対して電子線照射処理を行う。この電子線照射処理により、窒化アルミガリウム( p - Al0.1Ga0.9N)層5および窒化ガリウム(GaN) 層(最上層)6がp型伝導を示すようになる。ここで典型的な電子線照射処理条件を表1に示す。
【表1】
Figure 0004188750
【0011】
(g) 次に、最上層6の上に、第一電極層として厚さ200nm のアルミニウム電極層7、分離領域に第二電極層8を形成した。この電極層7、8は発光素子の電極となる。
(h) 上記の素子が一枚のサファイア基板1の上に多数形成されるので、各素子をダイヤモンドカッタで切断しチップとする。そして、各素子に対して、アルミニウム電極層7と8に電圧を印加することで、本発光素子の光が反射防止層10の側から出力される。なおこの第一実施例の構成では、アルミニウム電極層7は反射率を100 %としても問題ない。
【0012】
(第二実施例)
図3は、緩衝層2の上に窒化アルミガリウム( Al0.1Ga0.9N)層31と窒化ガリウム( GaN ) 層32の多層膜を形成して反射層30を形成した場合の発光素子300で、この実施例の場合、光取り出し側は上部の電極側としてある。従って上部電極を透明なITO膜33で形成し、一部コンタクト用としてAl電極7を設けてある。この反射層30は上部の発光領域である4、5から放射された光を上部に反射するよう屈折率を大きくする。そのため、窒化アルミガリウム( Al0.1Ga0.9N)層31と窒化ガリウム( GaN ) 層32の多層構造を多数形成する。窒化アルミガリウム( Al0.1Ga0.9N)の屈折率n2 は2.426 、窒化ガリウム( GaN ) の屈折率n1 は2.493 とその差は小さいが、基板のサファイアの屈折率ns が1.78であるので、これを反射の条件の式、
【数 2】
Figure 0004188750
によって求める。それぞれの膜厚は、反射率が高くなるような厚さに設定し、窒化アルミガリウム( Al0.1Ga0.9N)層31は46.37nm 、窒化ガリウム( GaN ) 層32は45.63nm というシミュレーションから得られた最適値を形成目標厚さとしている。
【0013】
この反射層30の形成は窒化アルミガリウム( Al0.1Ga0.9N)層31と窒化ガリウム( GaN ) 層32各一組では反射率が不十分であるので、多層構造とする。そこで、基板上の窒化アルミニウム(AlN) 層の形成後、通常の窒化ガリウム系の層形成プロセスを用いて、上記の層を交互に層を重ねていく。その結果、(2) 式からN=30(多重層の数)では反射率が64.40 %となり、N=50では反射率が86.29 %となり、かなりの光量の反射が得られることが判る。
【0014】
(第三実施例)
図4に示す発光素子400では、光取り出し側を上面とし、発光素子形成後にサファイア基板1を穿って直接発光素子のベース層であるSiドープのn型窒化ガリウム( n + - GaN ) 層3を露出させ、そこに反射層としてのAlなどの金属電極40を形成した場合である。ただし余分なリーク等が生じないよう、金属電極40は周囲のAlN バッファ層2と接触しないように構成する。反射層としての金属電極40は全て光を上方側へ反射させる構成でよいので反射率100 %に形成してある。またこのサファイア基板1は周囲に台をなす形となるので(図4)、下側の金属電極40側は、サファイア基板1と基板をのせる台との間にスペースを形成する。それで金属電極40は、そのスペースを用いてコンタクトをとることができ、光取り出し側を発光素子400の上面に広く形成することができる利点がある。
【0015】
(第四実施例)
図5の場合では、光取り出し側をやはり上方とする構成であるが、図3のように反射層を発光素子のベース部、つまりサファイア基板1と発光素子との間に形成するのではなく、また図4のようにサファイア基板1に穴を穿つことはしないで、直接サファイア基板1の裏面上に金属反射層50を形成する構成である。基板の裏面側に形成するのでこの金属反射層50は電極としては利用できず、従って電極は図3と同様な構成である。サファイア基板1は窒化ガリウム発光素子500の発光波長に呈して透明であるので、サファイア基板1の底面で反射する光はサファイア基板通過による減衰はほとんどなく、光取り出し側の上方へ向かう。この金属反射層50はサファイア基板表面に形成するだけでよいので容易に形成することができる。
【0016】
なお請求項で述べた構成の変形例として、以下のようなものがあげられる。
[1] 前記反射層もしくは前記反射防止層が、Alx Ga1-x N (0≦x≦1)で出来ていることを特徴とする請求項2に記載の発光素子。
[2] 前記反射層もしくは前記反射防止層が、Alx1Ga1-x1N とAlx2Ga1-x2N ( X1 ≠X2 、0≦X1 ≦1、0≦X2 ≦1)からなる多重層であることを特徴とする請求項2に記載の発光素子。
[3] 前記多重層が反射層である場合に、該多重層の何れかの第一層が、その第一層の隣の、該発光素子の光取り出し側と反対側の第二層に対して屈折率が大きくなる関係を有することを特徴とする[2] に記載の発光素子。
[4] 前記電極層が金属層であることを特徴とする請求項3記載の発光素子。
[5] 前記反射層が金属層であること、そして前記金属層が、該発光素子の絶縁性基板の下側に設けられていることを特徴とする請求項1に記載の発光素子。
などである。
【0017】
なお請求項でいう窒化ガリウム系多重層とは、窒化ガリウムを基本とする多元素材料で、窒化アルミガリウム( Al0.1Ga0.9N)や窒化インジウムガリウム(In0.1Ga0.9N) などがある。
【図面の簡単な説明】
【図1】本発明の第一実施例を示す、サファイア基板上に作成した窒化ガリウム系化合物半導体発光素子の模式的構成断面図。
【図2】第一実施例の反射層の関係説明図および反射率シミュレーション結果図。
【図3】第二実施例で示す発光素子の模式的構成断面図。
【図4】第三実施例で示す発光素子の模式的構成断面図。
【図5】第四実施例で示す発光素子の模式的構成断面図。
【符号の説明】
100、300、400、500 窒化ガリウム系ダイオード(発光素子)
1 サファイア基板
2 窒化アルミニウム(AlN) 緩衝層
3 Siをドープしたn型窒化ガリウム( n + - GaN ) 層
4 Siドープの窒化インジウムガリウム(In0.1Ga0.9N) 層
5 無添加の窒化ガリウム(GaN) 層(クラッド層)
6 Mgドープのp型窒化アルミガリウム( p - Al0.1Ga0.9N)層
7 第一電極層(アルミニウム電極)
8 第二電極層(アルミニウム電極)
9 分離領域
10 反射防止膜
30 反射層(多層構造)
31 窒化アルミガリウム( Al0.1Ga0.9N)層(屈折率小)
32 窒化ガリウム( GaN ) 層(屈折率大)
33 ITO(透明電極)
40 金属電極(反射層)
41 ITO(透明電極)
50 金属反射層
51 ITO(透明電極)

Claims (2)

  1. 発光層をその禁制帯幅よりも大きな禁制帯幅の層で挟んだダブルヘテロ接合構造を有する窒化ガリウム系化合物半導体から成る発光素子において、
    基板上に、 AlN から成るバッファ層と、 AlGaN 及び GaN の多層膜から成る反射層と、n-GaNからなるn層と、発光層と、p-AlGaNからなるp層と、素子上面側の光取り出し側に形成されたITOから成る電極とを有することを特徴とする発光素子。
  2. 前記p-AlGaNからなるp層の上にp-GaNからなるp層を有し、前記ITOから成る電極は当該p-GaNからなるp層の上に形成されたことを特徴とする請求項1に記載の発光素子。
JP2003133807A 2003-05-12 2003-05-12 発光素子 Expired - Lifetime JP4188750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133807A JP4188750B2 (ja) 2003-05-12 2003-05-12 発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133807A JP4188750B2 (ja) 2003-05-12 2003-05-12 発光素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19006994A Division JP3717196B2 (ja) 1994-07-19 1994-07-19 発光素子

Publications (2)

Publication Number Publication Date
JP2003309287A JP2003309287A (ja) 2003-10-31
JP4188750B2 true JP4188750B2 (ja) 2008-11-26

Family

ID=29398324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133807A Expired - Lifetime JP4188750B2 (ja) 2003-05-12 2003-05-12 発光素子

Country Status (1)

Country Link
JP (1) JP4188750B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395899C (zh) * 2004-09-23 2008-06-18 璨圆光电股份有限公司 具有增强发光亮度的氮化镓发光二极管结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809692B2 (ja) * 1989-04-28 1998-10-15 株式会社東芝 半導体発光素子およびその製造方法
JP2699661B2 (ja) * 1991-01-08 1998-01-19 日本電気株式会社 半導体多層反射膜
JP2666228B2 (ja) * 1991-10-30 1997-10-22 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子
JP3251046B2 (ja) * 1992-03-03 2002-01-28 シャープ株式会社 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法
JPH05259508A (ja) * 1992-03-13 1993-10-08 Omron Corp 発光素子
JP3243768B2 (ja) * 1992-07-06 2002-01-07 日本電信電話株式会社 半導体発光素子
JPH06151955A (ja) * 1992-10-29 1994-05-31 Victor Co Of Japan Ltd 半導体発光素子
JP3717196B2 (ja) * 1994-07-19 2005-11-16 豊田合成株式会社 発光素子

Also Published As

Publication number Publication date
JP2003309287A (ja) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3717196B2 (ja) 発光素子
JP5037169B2 (ja) 窒化物系半導体発光素子及びその製造方法
US9236533B2 (en) Light emitting diode and method for manufacturing same
JP5044692B2 (ja) 窒化物半導体発光素子
JP5849215B2 (ja) 紫外半導体発光素子
TWI381547B (zh) 三族氮化合物半導體發光二極體及其製造方法
WO2010100844A1 (ja) 窒化物半導体素子及びその製造方法
EP2164115A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JPH1168158A (ja) 窒化ガリウム系化合物半導体装置
JP2005116794A (ja) 窒化物半導体発光素子
CN107408602B (zh) Uv发光二极管
JP2008103665A (ja) 窒化物半導体デバイス及びその製造方法
JP2007200932A (ja) 窒化物半導体素子の製造方法
KR20120055391A (ko) 나노로드 발광소자
KR101289442B1 (ko) 분포 브래그 반사기를 포함하는 질화물 반도체 발광소자 및 그 제조 방법
US20100140647A1 (en) Semiconductor light emitting diode
US20050079642A1 (en) Manufacturing method of nitride semiconductor device
JP2006210692A (ja) 3族窒化物系化合物半導体発光素子
JP5380516B2 (ja) 窒化物半導体発光素子
JP4341623B2 (ja) 発光素子及びその製造方法
JP4188749B2 (ja) 発光素子及びその製造方法
JP4188750B2 (ja) 発光素子
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
JP2015043468A (ja) 紫外半導体発光素子
JP2009026865A (ja) Iii族窒化物系化合物半導体発光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term