JP4168635B2 - アクティブマトリクス基板、電気光学装置、電子機器 - Google Patents

アクティブマトリクス基板、電気光学装置、電子機器 Download PDF

Info

Publication number
JP4168635B2
JP4168635B2 JP2002028125A JP2002028125A JP4168635B2 JP 4168635 B2 JP4168635 B2 JP 4168635B2 JP 2002028125 A JP2002028125 A JP 2002028125A JP 2002028125 A JP2002028125 A JP 2002028125A JP 4168635 B2 JP4168635 B2 JP 4168635B2
Authority
JP
Japan
Prior art keywords
region
body contact
source region
channel
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028125A
Other languages
English (en)
Other versions
JP2003228083A (ja
Inventor
幸哉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002028125A priority Critical patent/JP4168635B2/ja
Publication of JP2003228083A publication Critical patent/JP2003228083A/ja
Application granted granted Critical
Publication of JP4168635B2 publication Critical patent/JP4168635B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Thin Film Transistor (AREA)
  • Shift Register Type Memory (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アクティブマトリクス基板、電気光学装置、電子機器に関し、特に走査線駆動回路やデータ線駆動回路等の周辺駆動回路を内蔵したアクティブマトリクス基板を備えた電気光学装置の構成に関するものである。
【0002】
【従来の技術】
従来の電気光学装置、例えば液晶装置に用いられるアクティブマトリクス基板の分野では、走査線駆動回路やデータ線駆動回路等、画素部を駆動するための周辺駆動回路を基板上に作り込んだ駆動回路内蔵型のものが提供されている。この種の電気光学装置では、周辺駆動回路の構成素子と画素を駆動するスイッチング素子とが共通のプロセスで製造される。例えば、液晶装置において周辺駆動回路を構成する素子は、画素を駆動する薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)と同時に形成されるので、駆動回路を別の基板上に形成してその基板を実装する液晶装置と比較して、装置全体の小型化やコスト低減を図る上で有利となる。
【0003】
一方、絶縁体上に単結晶シリコン層からなる半導体層を形成し、その半導体層にトランジスタ素子等の半導体デバイスを形成するSOI(Silicon on Insulator)技術は、素子の高速化や低消費電力化、高集積化等の利点を有するものとして知られている。そこで、このSOI技術を用いて作製される単結晶シリコン層をチャネル領域とするTFTを電気光学装置の周辺駆動回路に適用することにより、小さい占有面積で能力の高い周辺駆動回路を実現することができる。また、周辺駆動回路を構成するTFTでは、画素スイッチング用のTFTよりも高速応答性や低消費電力などが要求されることから、PチャネルTFTとNチャネルTFTを組み合わせた相補型の構成がよく用いられている。
【0004】
【発明が解決しようとする課題】
ところが、上記単結晶シリコン層をチャネル領域に用いたTFTを含む周辺駆動回路には、例えば多結晶シリコン層を用いたTFTなどと比べて単結晶シリコン層の駆動能力が高いが故に、特にNチャネルTFTの耐圧が低いという問題があった。
【0005】
すなわち、一般的なバルク半導体デバイスでは、下地基板を通じてトランジスタのチャネル領域を所定の電位に固定することができるため、チャネル領域の電位変化によって起こる寄生バイポーラ現象などによって素子の耐圧などの電気的特性を劣化させることがない。これに対して、SOI構造のTFTでは、チャネル下部が下地絶縁膜により完全に分離されているため、チャネル領域を所定の電位に固定することができず、チャネル領域が電気的に浮いた状態(フローティング状態)となる。
【0006】
このとき、ドレイン領域近傍の電界で加速されたキャリアと結晶格子との衝突によるインパクトイオン化現象によって余剰キャリアが発生し、この余剰キャリアがチャネルの下部に蓄積する。このようにしてチャネル下部に余剰キャリアが蓄積してチャネル電位が上昇すると、ソース−チャネル−ドレインのNPN(Nチャネル型の場合)構造が見かけ上のバイポーラ素子として動作するため、異常電流により素子のソース−ドレイン間耐圧が劣化するなど、電気的な特性が悪化するという問題がある。このようなチャネル部が電気的に浮いた状態であることに起因する一連の現象を基板浮遊効果と呼ぶ。なお、正孔よりも電子の方が移動度が高いため、一般には電子をキャリアとするNチャネルトランジスタの方が正孔をキャリアとするPチャネルトランジスタよりもインパクトイオン化現象が激しく生じ、基板浮遊効果が大きくなる。
【0007】
そこで、従来から、チャネル領域と所定の経路で電気的に接続されたボディコンタクト領域を設け、チャネル領域に蓄積された余剰キャリアをこのボディコンタクト領域から引き抜くことで基板浮遊効果を抑制する技術が採用されている。この種のボディコンタクト領域を有するSOI構造のトランジスタを含む半導体装置は、例えば特開平9−246562号公報に開示されている。
【0008】
ところが、ボディコンタクト領域を備えたトランジスタはある程度高い耐圧を確保できる反面、ボディコンタクト領域を有することで素子の占有面積が大きくなるという欠点があった。したがって、多数のデータ線や走査線等の配線ピッチに応じて多くの論理回路を用意する必要がある周辺駆動回路にボディコンタクト領域を備えたトランジスタを採用すると、回路レイアウトが難しくなり、配線の狭ピッチ化、ひいては表示装置としての高精細化に限界が生じることになる。
【0009】
ここで、Nチャネルトランジスタでは耐圧低下の問題があるものの、Pチャネルトランジスタでは基板浮遊効果による悪影響がさほど生じず、ある程度の耐圧を確保できるため、Pチャネルトランジスタではボディコンタクト領域を設けずにフローティングボディ構造を採ることもできる。しかしながら、従来、周辺駆動回路で用いていた相補型トランジスタを全てPチャネルトランジスタに置き換えたとすると、消費電力が著しく増大するとともに、周辺駆動回路からの発熱が大きくなる、等の新たな問題が発生する。この種の問題は、液晶装置に限らず、他の電気光学装置にも共通の問題である。
【0010】
本発明は、上記の課題を解決するためになされたものであって、単結晶半導体層を用いたトランジスタを一つの構成要素とする周辺駆動回路であって、充分な耐圧を有して電気的特性に優れ、小型化、低消費電力化が実現可能な周辺駆動回路を内蔵したアクティブマトリクス基板、およびそれを用いた電気光学装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明の電気光学装置は、複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板を備えた電気光学装置であって、前記アクティブマトリクス基板上に、単結晶半導体層からなるチャネル領域を有するTFTを一つの構成要素とする走査線駆動回路が形成され、前記走査線駆動回路にソースタイ構造をなすNチャネルTFTが用いられていることを特徴とする。
【0012】
SOIのトランジスタ構造には、従来から、例えば次の4種類の構造が提案されている。図18は、単結晶シリコン層11にソース領域12、チャネル領域13、ドレイン領域14がそれぞれ形成され、チャネル領域13上にゲート電極15が配置されただけの「フローティングボディ構造」のTFTである。このTFTにおいては、チャネル領域13が所定の電位に固定されず、チャネル領域13がフローティング状態となっている。なお、符号16,17はともにコンタクトである。
【0013】
それに対して、図19,図20,図17はチャネル領域の電位が固定されたものであり、図19はチャネル領域13の側方にチャネル領域13に蓄積された余剰キャリアを引き抜くためのボディコンタクト領域18(右上がりの斜線で示す)を設けた「T型ゲート構造」のTFT、図20はチャネル領域13の両側方にボディコンタクト領域18a,18bを設けた「H型ゲート構造」のTFT、である。なお、符号19はボディコンタクト領域に接続されたコンタクトである。図17はソース領域12の縁にボディコンタクト領域18c,18dを設け、ソース領域12とボディコンタクト領域18c,18dを共通のコンタクト16,17で同時に所定の電位に固定する、いわゆる「ソースタイ構造」と呼称されるTFTである。
【0014】
図から明らかなように、ボディコンタクト構造を取る3種類のTFTのうち、図19に示すT型ゲート構造と図20に示すH型ゲート構造のものは、ボディコンタクト領域をチャネル領域の側方にはみ出させた設計となっており、半導体層のパターンが大きくなるばかりか、ボディコンタクト領域を所定の電位に固定するためのコンタクトと配線とが別個に必要になり、他の2つに比べて1個のトランジスタの占有面積が大きくなるため、本発明の周辺駆動回路には使用しないことにする。これに対して、図17に示すソースタイ構造のものは、ソース領域の縁にボディコンタクト領域を設けているので、半導体層のパターン自体が大きくなることがなく、しかもソース領域とボディコンタクト領域で一つのコンタクトを共有しているので、占有面積が図18のフローティングボディ構造のものとほとんど変わらない。
【0015】
そのため、ソースタイ構造のTFTの使用により、通常であれば基板浮遊効果が大きいNチャネルTFTであっても、トランジスタ素子の占有面積を大きくすることなく、チャネル領域の余剰キャリアをボディコンタクト領域から引き抜くことで基板浮遊効果を抑制でき、所望のソース−ドレイン間耐圧を確保することができる。すなわち、上記本発明の電気光学装置においては、アクティブマトリクス基板上に単結晶半導体層を有するTFTを備えた走査線駆動回路が内蔵され、走査線駆動回路にソースタイ構造をなすNチャネルTFTが用いられているので、耐圧等の電気的特性に優れた小型の走査線駆動回路を備えた電気光学装置を実現することができる。
【0016】
そこで、本発明においては、走査線駆動回路を構成する多数のTFTの中で、ソースタイ構造をなすNチャネルTFTと、もともと耐圧低下の心配のないフローティングボディ構造をなすPチャネルTFTを使い分ければよいことになる。そのときに着目すべき点は、図17に示すソースタイ構造は、ソース側とドレイン側が非対称の構成であり、ソースとドレインの関係が逆転してはならない構成であるのに対し、図18に示すフローティングボディ構造は、ソース側とドレイン側が対称の構成であり、ソースとドレインの関係が逆転してもかまわない構成であるという点である。よって、上記2種のTFTの使い分けの基本的な考え方は、回路中で入力信号等に応じてソースとドレインの関係が逆転するような個所ではソースタイ構造は使用できず、フローティングボディ構造を使用しなければならない。一方、ソースとドレインの関係が固定した個所ではソースタイ構造、フローティングボディ構造ともに使用できるということである。そして、本発明においては、フローティングボディ構造を使用する場合には、耐圧確保の点からPチャネルTFT限定である。
【0017】
以上のことから、より具体的には、前記走査線駆動回路は、トランスミッションゲートとインバータとを有する複数のラッチ回路と、波形制御回路と、バッファ回路とを含むものであり、前記トランスミッションゲートにフローティングボディ構造のPチャネルTFTを用いることができる。
【0018】
上記の各部のうち、トランスミッションゲートは、入力された選択パルス信号を次段に順次転送する機能を有しており、場合によってソースとドレインの関係が逆転することが考えられるので、フローティングボディ構造を使用することになる。その場合でもPチャネルTFTを使用することにより、耐圧低下の問題を回避することができる。
【0019】
さらに、前記インバータ、前記波形制御回路、および前記バッファ回路にPチャネルTFTおよびNチャネルTFTを相補的に組み合わせた相補型TFTが用いられるとともに、この相補型TFTを構成するNチャネルTFTがソースタイ構造をなす構成を用いることが望ましい。
【0020】
走査線駆動回路の各部のうち、ラッチ回路において、2段のインバータ入力が互いの出力に接続されたフリップフロップと呼ばれる構成部分は転送データを一時的に保持する機能を有するものであり、波形制御回路およびバッファ回路はラッチ回路からの出力を論理演算し、画素領域の走査線に信号を供給する機能を有するものである。これら各部はソースとドレインの位置関係が常に固定されているため、ソースタイ構造のTFTを用いることができる。よって、相補型TFTを用いることにより片チャネルTFTを用いた場合と比べてはるかに低消費電力化を図ることができる。このとき、相補型TFTにはNチャネルTFTが含まれるので、そのNチャネルTFTはソースタイ構造を採る必要があり、そうすることによって所望の耐圧を確保することができる。
【0021】
さらに、上記の各部における相補型TFTを構成するPチャネルTFTをもソースタイ構造としてもよい。PチャネルTFTに関しては、耐圧の心配がないので、フローティングボディ構造を用いてもよいが、ソースタイ構造の採用により耐圧をより向上することができる。
【0022】
また、本発明の他の電気光学装置は、複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板を備えた電気光学装置であって、前記アクティブマトリクス基板上に、単結晶半導体層からなるチャネル領域を有するTFTを一つの構成要素とするデータ線駆動回路が形成され、前記データ線駆動回路にソースタイ構造をなすNチャネルTFTが用いられていることを特徴とする。
【0023】
上では走査線駆動回路について述べたが、データ線駆動回路についても全く同様のことが言える。すなわち、電気光学装置を構成するアクティブマトリクス基板上に単結晶半導体層を有するTFTを備えたデータ線駆動回路が内蔵され、そのデータ線駆動回路にソースタイ構造をなすNチャネルTFTが用いられているので、耐圧等の電気的特性に優れた小型のデータ線駆動回路を備えた電気光学装置を実現することができる。
【0024】
より具体的には、前記データ線駆動回路は、クロックドインバータとインバータとを有する複数のラッチ回路と、波形制御回路と、バッファ回路と、サンプルホールド回路とを含むものであり、前記サンプルホールド回路にフローティングボディ構造のPチャネルTFTを用いることができる。
【0025】
上記の各部のうち、サンプルホールド回路は、各データ線に設けられたサンプリング用のスイッチ(トランジスタ)からなり、外部から供給される画像信号をサンプリング制御信号に従ってサンプリングし、各データ線に供給するものである。サンプルホールド回路は、場合によってソースとドレインの関係が逆転することが考えられるので、フローティングボディ構造を使用することになる。その場合でもPチャネルTFTを使用することにより、耐圧低下の問題を回避することができる。
【0026】
さらに、前記クロックドインバータ、前記インバータ、前記波形制御回路、および前記バッファ回路に相補型TFTが用いられるとともに、この相補型TFTを構成するNチャネルTFTがソースタイ構造をなす構成を採用することが望ましい。
【0027】
データ線駆動回路の各部のうち、ラッチ回路においてクロックドインバータおよびインバータで構成されるフリップフロップは、転送データを一時的に保持する機能を有するものであり、波形制御回路およびバッファ回路はラッチ回路からの出力と選択期間調整信号を論理演算し、表示データをデータ線に供給するためのサンプルホールド回路に入力する機能を有するものである。これら各部はソースとドレインの位置関係が常に固定されているため、ソースタイ構造のTFTを用いることができる。よって、相補型TFTを用いることにより片チャネルTFTを用いた場合と比べてはるかに低消費電力化を図ることができる。このとき、相補型TFTにはNチャネルTFTが含まれるので、そのNチャネルTFTはソースタイ構造を採る必要があり、そうすることによって所望の耐圧を確保することができる。
【0028】
さらに、上記の各部における相補型TFTを構成するPチャネルTFTをもソースタイ構造とすれば、耐圧をより向上できて好ましいことは、上記の走査線駆動回路側と同様である。
【0029】
また、本発明の他の電気光学装置は、複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板を備えた電気光学装置であって、前記アクティブマトリクス基板上に、単結晶半導体層からなるチャネル領域を有するTFTを一つの構成要素とする走査線駆動回路およびデータ線駆動回路が形成され、前記走査線駆動回路および前記データ線駆動回路にソースタイ構造をなすNチャネル薄膜トランジスタが用いられていることを特徴とする。すなわち、本発明の電気光学装置において、本発明の特徴点である上記の走査線駆動回路、データ線駆動回路をともに兼ね備えていてもよいことは勿論である。
【0030】
上記の目的を達成するために、本発明のアクティブマトリクス基板は、複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板であって、単結晶半導体層からなるチャネル領域を有するTFTを一つの構成要素とする走査線駆動回路が基板上に形成され、前記走査線駆動回路にソースタイ構造をなすNチャネル薄膜トランジスタが用いられていることを特徴とする。もしくは、単結晶半導体層からなるチャネル領域を有するTFTを一つの構成要素とするデータ線駆動回路が基板上に形成され、前記データ線駆動回路にソースタイ構造をなすNチャネル薄膜トランジスタが用いられていることを特徴とする。
【0031】
本発明のアクティブマトリクス基板によれば、耐圧等の電気的特性に優れた小型の走査線駆動回路やデータ線駆動回路を備えた電気光学装置を容易に実現することができる。
【0032】
本発明の電子機器は、上記本発明の電気光学装置を備えたことを特徴とする。この構成によれば、上記本発明の電気光学装置を表示部として使用することにより、低消費電力で小型の表示部を備えた電子機器を実現することができる。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
[液晶装置]
まず、本発明に係る電気光学装置として、液晶装置を一例にとって説明する。この液晶装置は、後述するように、TFTアレイ基板(アクティブマトリクス基板)と対向基板とが互いに一定の間隙をもって貼付され、この間隙に液晶が挟持された構成となっている。
【0034】
図1は、この液晶装置の電気的な構成を示すブロック図である。この図に示すように、液晶装置100を構成するTFTアレイ基板において、表示領域100aの外側周辺には、データ線駆動回路200および走査線駆動回路400を含む周辺駆動回路が設けられている。すなわち、本実施の形態は、TFTアレイ基板上に周辺駆動回路が形成された周辺回路内蔵型のアクティブマトリクス駆動方式の液晶装置である。
【0035】
ここで、表示領域100aには、m本の走査線が、X方向に沿って平行に配列して形成される一方、(6・n)本のデータ線が、Y方向に沿って平行に配列して形成されるとともに、これらの走査線3aとデータ線6aとの各交差に対応して、画素110がマトリクス状に配列されている。この画素110は、例えば図2に示されるように、TFT116aのゲートが走査線3aに接続される一方、そのソースがデータ線6aに接続されるとともに、そのドレインが矩形状の画素電極118aに接続されている。さらに、画素電極118aと、上記対向基板の対向面に形成される対向電極108との両電極間には、液晶105が挟持されて液晶層が構成されている。さらに、この液晶層に蓄積される電荷のリークを防ぐために、蓄積容量119aが、画素電極118aと一定電位VEEとの間において液晶層と並列に付加されている。なお、画素スイッチング用のTFT116aにはフローティングボディ構造のPチャネルTFTが用いられている。
【0036】
次に、この電気光学装置における周辺回路について説明する。まず、周辺回路のうち、走査線駆動回路400は、1垂直走査期間において、走査信号G1、G2、…、Gmを、走査線3aの各々に対しパルス的に順次供給するものである。一方、データ線駆動回路200は、1水平走査期間において、すなわち、1本の走査線3aに走査信号が走査線駆動回路400によって供給されている期間において、サンプリング制御信号S1、S2、…、Snを、サンプリング制御信号線114aの各々に順次供給するものである。
【0037】
また、データ線駆動回路200の一部を構成するサンプルホールド回路300は、データ線6aの1本毎に設けられるサンプリングスイッチ301から構成される。そして、各サンプリングスイッチ301は、画像信号線115aに供給される画像信号を、サンプリング制御信号S1、S2、…、Snにしたがってサンプリングして、対応するデータ線6aに供給するものである。
【0038】
ここで、本実施形態においては、データ線6aが相隣接する6本毎にブロック化されるとともに、このブロックに対応して設けられる6個のサンプリングスイッチ301が、同一のサンプリング制御信号によって同時に画像信号のサンプリングを行う構成となっている。一方、本実施形態における6本の画像信号線115aには、予めシリアル−パラレル変換された6系統の画像信号VID1〜VID6が、詳細には、1系統の画像信号を6系統に分配されるとともに時間軸に6倍に伸長された画像信号VID1〜VID6が、図示しない外部画像処理回路から供給される構成となっている。このため、あるサンプリング制御信号Si(iは、1≦i≦nを満たす整数)が供給されると、図1において左から数えて(6・i−5)本目〜(6・i)本目の6本のデータ線6aに、それぞれ画像信号VID1〜VID6が同時にサンプリングされることとなる。
【0039】
このような構成において、ある走査線3aに走査信号が供給されると、まず、当該走査線に接続されるTFT116aがすべてオンし、次に、この状態において、サンプリング制御信号S1、S2、…、Snが順番に供給されると、データ線6aが左から6本毎に、画像信号VID1〜VID6がサンプリングされる結果、オンしたTFT116aに対応する液晶層に書き込まれて、所定の期間保持される。
【0040】
この際、各画素110の液晶層に印加される電圧レベルに応じて液晶分子の配向や秩序が変化するので、その光変調によって階調表示が行われることなる。例えば、液晶を通過する光量は、ノーマリーホワイトモードであれば、印加電圧が高くなるにつれて制限される一方、ノーマリーブラックモードであれば、印加電圧が高くなるにつれて緩和されるので、表示領域100aでは、画像信号に応じたコントラストを持つ光が各画素毎に出射される。このため、所定の表示が可能となっているのである。
【0041】
<データ線駆動回路>
次に、データ線駆動回路200の詳細について説明する。図1に示されるように、データ線駆動回路200は、n段接続されたラッチ回路202と、各ラッチ回路202による転送信号Q1〜Qnの位相を調整するn個の波形制御回路204と、各波形制御回路の出力信号X1〜Xnの駆動能力を高めるn個のバッファ回路206とから構成される。なお、n段のラッチ回路202を総称してXシフトレジスタと呼ぶことにする。
【0042】
このXシフトレジスタは、水平走査期間の最初に供給されるスタートパルスSPXを、各段のラッチ回路202により、クロック信号CLX(およびその反転クロック信号CLX’)にしたがって順次転送して、転送信号Q1〜Qnとして出力するものである。ここで、各ラッチ回路202の一例としては、例えば、図3に示されるような構成が挙げられる。図において、各ラッチ回路202は、それぞれクロックドインバータ222、226およびインバータ224から構成され、いずれもPチャネルTFTおよびNチャネルTFTを組み合わせて相補的に構成されている。そして、この相補型TFTを構成するNチャネルTFTがソースタイ構造となっている。PチャネルTFTについては、ソースタイ構造、フローティングボディ構造のいずれでもよい。
【0043】
奇数段のラッチ回路202において、クロックドインバータ222は、入力側に供給される信号(スタートパルスSPX)を、クロック信号CLXのHレベル期間であって、かつ、反転クロック信号CLX’のLレベル期間で反転して出力するものである。次に、インバータ224は、クロックドインバータ222の出力を反転して、当該段の転送信号として出力されるものである。また、クロックドインバータ226は、インバータ224の出力たる当該段の出力信号を、クロック信号CLXのLレベル期間であって、かつ、反転クロック信号CLX’のHレベル期間で反転して、インバータ224の入力側に帰還するものである。このように互いの出力を他方の入力に接続するようにインバータ、クロックドインバータを構成したものは一般にフリップフロップと呼ばれる。一方、偶数段のラッチ回路202におけるクロックドインバータ222、226は、奇数段におけるクロックドインバータ222、226と、供給されるクロック信号が入れ替わった関係にある。
【0044】
このため、Xシフトレジスタにおける各段のラッチ回路202から出力される転送信号Q1、Q2、…、Qnは、図6に示すように出力されることとなる。すなわち、第1段目のラッチ回路202が、水平走査期間の最初に供給されるスタートパルスSPXを、クロック信号CLXの立ち上がりで取り込んで、転送信号Q1として出力した後、以降の第2〜第n段のラッチ回路202が、転送信号Q1を、クロック信号CLXの半周期分だけ順次遅延させて、転送信号Q2〜Qnとして出力することとなる。
【0045】
このように転送信号Q1〜Qnは、クロック信号CLXの半周期毎に順次シフトした関係にあるので、図6に示されるように、相隣接するもの同士においてその半分期間が互いに重複する。そこで、この重複期間を除去するために、例えば図4に示されるような波形制御回路204が設けられている。図において、波形制御回路204は、各ラッチ回路202の出力に対応して設けられ、各々は、NAND回路204aとインバータ204bとの直列接続からなる。波形制御回路204もラッチ回路202と同様、相補型TFTが用いられ、NチャネルTFTがソースタイ構造となっている。PチャネルTFTについては、ソースタイ構造、フローティングボディ構造のいずれでもよい。
【0046】
このうち、奇数段目に対応するNAND回路204aは、対応するラッチ回路202から供給される転送信号と位相調整信号ENB1との否定論理積信号を、一方、偶数段目のNAND回路204aは、対応するラッチ回路202から供給される転送信号と位相調整信号ENB2との否定論理積信号を、それぞれ出力するものである。
【0047】
ここで、位相調整信号ENB1、ENB2は、ともにクロック信号CLX(およびその反転クロック信号CLX’)と同期して供給されるものであり、その信号波形は、図6に示される通りである。すなわち、位相調整信号ENB1、ENB2は、そのパルス幅がクロック信号CLX(反転クロック信号CLX’)よりも若干狭められ、かつ、両者のパルス期間が排他的である信号である。
【0048】
そして、各段のラッチ回路202による転送信号Q1、Q2、…、Qnは、波形制御回路204のそれぞれによって、互いに重複期間を持たないように、位相調整信号ENB1またはENB2のパルス幅に制限されて、サンプリング制御信号X1、X2、…、Xnとしてバッファ回路206に供給されることとなる。
【0049】
次に、バッファ回路206は、駆動能力が後段となるにつれて大きくなるインバータを、複数段直列した構成となっており、波形制御回路204によるサンプリング制御信号X1、X2、…、Xnを、波形整形するとともに、駆動能力を高めて、サンプリング制御信号S1、S2、…、Snとしてサンプルホールド回路300に供給するものである。なお、波形制御回路204におけるインバータ204bを、バッファ回路206における初段のインバータとする場合もある。バッファ回路206についてもラッチ回路202や波形制御回路204と同様、相補型TFTが用いられ、NチャネルTFTがソースタイ構造となっている。PチャネルTFTについては、ソースタイ構造、フローティングボディ構造のいずれでもよい。
【0050】
また上述したように、サンプルホールド回路300は、データ線6aの1本毎に設けられるサンプリングスイッチ301から構成されているが、各サンプリングスイッチ301は、フローティングボディ構造のPチャネルTFTで構成されている。
【0051】
<走査線駆動回路>
次に、走査線駆動回路400の詳細について説明する。
この走査線駆動回路400は、図5に示すように、m段接続されたラッチ回路402を構成する双方性シフトレジスタ111と、双方向性シフトレジスタ111の各段の出力に対応して夫々設けられた複数の波形制御回路112aおよびバッファ回路112bとを備えて構成されている。
【0052】
双方向性シフトレジスタ111について詳述する。
図5に示すように、双方向性シフトレジスタ111の各段は、方向制御信号の一例としての2値の転送方向制御信号D及びその反転信号DINVに応じて転送方向が固定される転送方向制御部と、所定周期のクロック信号の一例としての基準クロック信号CLおよびその反転信号CLINVに基づいて転送信号を生成する転送信号生成部とから構成されている。また、転送信号生成部は、基準クロック信号CLおよびその反転信号CLINVの2値レベル(ON状態とOFF状態)が変化する毎に、入力信号の取り込みを行う信号取込部と、取り込んだ信号の帰還を行って、各段における転送信号を生成すると共に、次段に転送する帰還部とを含んで構成されている。
【0053】
まず、転送方向制御部は、トランスミッションゲート114、115、116及び117を夫々含んで構成されている。トランスミッションゲート114及び116は、信号DがON状態の時に転送可能となり転送方向を順方向の一例としてのU→D方向に制限するように構成及び接続されている。トランスミッションゲート115及び117は、信号DINVがON状態の時に転送可能となり転送方向を逆方向の一例としてのD→U方向に制限するように構成及び接続されている。そして、双方向性シフトレジスタ111の各段には、制限する転送方向が互いに異なるトランスミッションゲート114及び115またはトランスミッションゲート116及び117が交互に設けられている。
【0054】
次に、転送信号生成部は、信号取込部がトランスミッションゲート118及び120を、また、帰還部がトランスミッションゲート119及び121を含んで構成されている。
【0055】
双方向性シフトレジスタ111の奇数段に設けられた信号取込部のトランスミッションゲート118は、前記転送方向制御部により転送方向がU→D方向に制限された場合には、トランスミッションゲート114を介して転送される前段の転送信号を、また、転送方向がD→U方向に制限された場合には、トランスミッションゲート117を介して転送される前段の転送信号を、信号CLがON状態の時に自段の転送信号として取り込むように構成及び接続されている。
【0056】
また、トランスミッションゲート118と接続される帰還部のトランスミッションゲート119は、トランスミッションゲート118を介して取り込まれた転送信号に、クロック信号CLの反転信号CLINVがON状態の期間に帰還をかけるように構成及び接続されている。
【0057】
トランスミッションゲート118,119には2段のインバータ122,123からなるフリップフロップ124が接続されており、各フリップフロップ124から出力される転送信号Q1〜Qmが波形制御回路112aおよびバッファ回路112bにそれぞれ入力される構成となっている。
【0058】
本実施の形態の場合、各トランスミッションゲート114〜121は、フローティングボディ構造のPチャネルTFTで構成されている。この場合、これまで述べたトランスミッションゲートでは、ハイとローの2値のうちローレベルがON状態に相当する。その一方、フリップフロップ124、波形制御回路112aおよびバッファ回路112bには、相補型TFTが用いられ、相補型TFTを構成するNチャネルTFTがソースタイ構造となっている。PチャネルTFTについては、ソースタイ構造、フローティングボディ構造のいずれでもよい。
【0059】
<各駆動回路の構成素子の具体例>
次に、データ線駆動回路200のラッチ回路202におけるインバータ224を構成する相補型TFTを例に挙げて、各駆動回路を構成するTFT素子を説明する。図7は、このインバータ224を従来のフローティングボディ構造のTFTで構成した場合の平面図、図8は、このインバータ224を本発明のソースタイ構造のTFTで構成した場合の平面図であり、図9は、図8のA−A’線に沿う断面図である。
【0060】
これらの図に示されるように、PチャネルTFT10Pは、ソース領域4202のゲート側とドレイン領域4204のゲート側にそれぞれ不純物の低濃度領域4212、4214が設けられ、同様に、NチャネルTFTは、ドレイン領域4302のゲート側とソース領域4304のゲート側にそれぞれ不純物の低濃度領域4312、4314が設けられている。すなわち、本実施の形態の場合、PチャネルTFT、NチャネルTFTはともにLDD(Lightly Doped Drain)構造を採っている。
【0061】
また、Pチャネル型およびNチャネル型で兼用されるゲート電極4002は、クロックドインバータ222、226の出力配線と接続(または兼用)されるものである。一方、電源の高位側電圧Vddが印加される配線4004は、PチャネルTFTのソース領域4202に対し、層間絶縁膜4012およびゲート絶縁膜4100に開口するコンタクトホール4010を介して接続され、また、電源の低位側電圧Vssが印加される配線4006は、NチャネルTFTのソース領域4304に対し、コンタクトホール4010を介して接続されている。そして、インバータ224の出力となる配線4008は、PチャネルTFTのドレイン領域4204とNチャネルTFTのドレイン領域4302とに、それぞれコンタクトホール4010を介して接続されている。
【0062】
回路的には、インバータ224では各TFTのソースとドレインの関係が固定しているため、図7に示すフローティングボディ構造、図8に示すソースタイ構造をともに使用することができる。ところが、実際にはNチャネルTFTにフローティングボディ構造を採用すると耐圧低下の問題が生じるため、本発明では図7に示す構成は使用せず、図8に示す構成を使用する。これにより、高い耐圧を確保することができる。すなわち、図8の構成においては、電源の高位側電圧Vddが印加される配線4004に接続されたPチャネルTFTのソース領域4202の縁に高濃度のN型不純物が導入されたボディコンタクト領域18Nが設けられ、ソース領域4202とボディコンタクト領域18Nとに跨るようにコンタクト17Nが設けられている。その一方、電源の低位側電圧Vssが印加される配線4006に接続されたNチャネルTFTのソース領域4304の縁に高濃度のP型不純物が導入されたボディコンタクト領域18Pが設けられ、ソース領域4304とボディコンタクト領域18Pとに跨るようにコンタクト17Pが設けられている。
【0063】
本実施の形態の液晶装置においては、走査線駆動回路400の複数のラッチ回路402を構成するトランスミッションゲート114〜121にフローティングボディ構造のPチャネルTFTを用いているので、ボディコンタクト領域が不要となり、素子面積が増加することなく、微細なレイアウトが可能となる。また、この部分は電源ライン間を接続しないため、消費電力が増えることもない。その一方、その他のフリップフロップ124、波形制御回路112aおよびバッファ回路112bに相補型TFTを用いるとともに、この相補型TFTを構成するNチャネルTFTにソースタイ構造を用いているので、回路動作に支障が生じることなく、耐圧低下の問題を回避できると同時に、低消費電力化を図ることができる。さらに、相補型TFTを構成するPチャネルTFTもソースタイ構造とすれば、耐圧をより向上することができる。これにより、耐圧等の電気的特性に優れた小型の走査線駆動回路を実現することができる。
【0064】
同様に、データ線駆動回路200を構成するサンプルホールド回路300にフローティングボディ構造のPチャネルTFTを用いる一方、その他、複数のラッチ回路202を構成するクロックドインバータ222,226、インバータ224、波形制御回路204、バッファ回路206に相補型TFTを用いるとともに、この相補型TFTを構成するNチャネルTFTにソースタイ構造を用いているので、回路動作に支障が生じることなく、耐圧低下の問題を回避できると同時に、低消費電力化を図ることができる。さらに、相補型TFTを構成するPチャネルTFTもソースタイ構造とすれば、耐圧をより向上することができる。これにより、耐圧等の電気的特性に優れた小型のデータ線駆動回路を実現することができる。
【0065】
<液晶装置の全体構成>
次に、上述した実施の形態に係る液晶装置の全体構成について図10および図11を参照して説明する。ここで、図10は、液晶装置100の構成を示す斜視図であり、図11は、図10におけるC−C’線に沿う断面図である。
【0066】
これらの図に示すように、液晶装置100は、画素電極118a等が形成されたガラスや、半導体、石英などからなるTFTアレイ基板10と、対向電極108等が形成されたガラスなどの透明な対向基板20とが、スペーサSPの混入されたシール材52によって一定の間隙を保って、互いに電極形成面が対向するように貼り合わせられるとともに、この間隙に電気光学材料としての液晶105が封入された構造となっている。なお、シール材52は、対向基板20の周辺に沿って形成されるが、液晶105を封入するために一部が開口している。このため、液晶105の封入後に、その開口部分が封止材SRによって封止されている。
【0067】
ここで、TFTアレイ基板10の対向面であって、シール材52の外側の一辺においては、上述したデータ線駆動回路200が形成され、Y方向に延在するデータ線6aを駆動する構成となっている。さらに、この一辺には複数の外部回路接続端子102が形成されて、シリアル−パラレル変換された画像信号VID1〜VID6などの各種信号を入力する構成となっている。また、この一辺に隣接する2辺には、2個の走査線駆動回路400が形成されて、X方向に延在する走査線3aをそれぞれ両側から駆動する構成となっている。なお、走査線3aに供給される走査信号の遅延が問題にならないのであれば、走査線駆動回路400を片側1個だけに形成する構成でも良い。ほかに、TFTアレイ基板10においては、データ線6aへの画像信号の書込負荷を低減するため、各データ線6aを、画像信号のサンプリングに先行するタイミングにおいて、所定電位にプリチャージするプリチャージ回路を形成しても良い。
【0068】
一方、対向基板の対向電極108は、貼合せ部分における4隅のうち、少なくとも1箇所において設けられた導通材によって、TFTアレイ基板10との電気的導通が図られている。他に、対向基板20には、液晶装置100の用途に応じて、例えば、ストライプ状、モザイク状、トライアングル状等に配列したカラーフィルタが設けられ、例えば、クロムやニッケルなどの金属材料、カーボンやチタンなどをフォトレジストに分散した樹脂ブラックなどの遮光膜が設けられる。なお、色光変調の用途の場合には、カラーフィルタは形成されずに遮光膜が対向基板20に設けられる。また、必要に応じて液晶装置10に光を照射するバックライトが、いずれか一方の基板の背面側に設けられる。
【0069】
加えて、TFTアレイ基板10および対向基板20の対向面には、それぞれ所定の方向にラビング処理された配向膜(図示省略)などが設けられる一方、その各背面側には配向方向に応じた偏光子(図示省略)がそれぞれ設けられる。ただし、液晶105として、高分子中に液晶を微小粒として分散させた高分子分散型液晶を用いれば、前述の配向膜や偏光子などが不要となる結果、光利用効率が高まるので、高輝度化や低消費電力化などの点において有利である。
【0070】
<電子機器>
次に、上述した液晶装置を各種の電子機器に適用した場合について説明する。この場合、電子機器は、図14に示するように、主に、表示情報出力源1000、表示情報処理回路1002、周辺駆動回路1004、液晶装置100、クロック発生回路1008ならびに電源回路1010を備えて構成されている。このうち、表示情報出力源1000は、ROM(Read Only Memory)、RAM(Random Access Memory)などのメモリや、光ディスク装置などのストレージユニット、画像信号を同調して出力する同調回路等を含み、クロック発生回路1008からのクロック信号に基づいて、所定フォーマットの画像信号などの表示情報を表示情報処理回路1002に出力するものである。また、表示情報処理回路1002は、上述したシリアル−パラレル変換回路や、増幅・極性反転回路、ローテーション回路、ガンマ補正回路、クランプ回路等の周知の各種処理回路を含んで構成されており、クロック信号に基づいて入力された表示情報からデジタル信号を順次生成し、クロック信号CLKとともに駆動回路1004に出力するものである。駆動回路1004は、液晶装置100を駆動するものであり、上述したデータ線駆動回路200や、サンプルホールド回路300、走査線駆動回路400のほか、製造後の検査に用いる検査回路などを含んだものである。電源回路1010は、上述の各回路に所定の電源を供給するものである。
【0071】
次に、上述した液晶装置を具体的な電子機器に用いた例のいくつかについて説明する。
まず、上記実施の形態の液晶装置を光変調手段として備えた投射型表示装置の構成について、図13を参照して説明する。
図13は、上記実施の形態の液晶装置を液晶ライトバルブ(光変調手段)として用いた投射型表示装置の要部を示す概略構成図である。図13において、符号810は光源、813、814はダイクロイックミラー、815、816、817は反射ミラー、818は入射レンズ、819はリレーレンズ、820は出射レンズ、822、823、824は液晶ライトバルブ、825はクロスダイクロイックプリズム、826は投射レンズを示す。
【0072】
光源810はメタルハライド等のランプ811とランプの光を反射するリフレクタ812とからなる。青色光、緑色光反射のダイクロイックミラー813は、光源810からの光束のうちの赤色光を透過させるとともに、青色光と緑色光とを反射する。透過した赤色光は反射ミラー817で反射されて、上記実施形態の液晶装置を備えた赤色光用液晶ライトバルブ822に入射される。一方、ダイクロイックミラー813で反射された色光のうち緑色光は緑色光反射のダイクロイックミラー814によって反射され、上記実施形態の液晶装置を備えた緑色光用液晶ライトバルブ823に入射される。なお、青色光は第2のダイクロイックミラー814も透過する。青色光に対しては、光路長が緑色光、赤色光と異なるのを補償するために、入射レンズ818、リレーレンズ819、出射レンズ820を含むリレーレンズ系からなる導光手段821が設けられ、これを介して青色光が上記実施形態の液晶装置を備えた青色光用液晶ライトバルブ824に入射される。
【0073】
各液晶ライトバルブにより変調された3つの色光はクロスダイクロイックプリズム825に入射する。このプリズムは4つの直角プリズムが貼り合わされ、その内面に赤光を反射する誘電体多層膜と青光を反射する誘電体多層膜とが十字状に形成されている。これらの誘電体多層膜によって3つの色光が合成されて、カラー画像を表す光が形成される。合成された光は、投射光学系である投射レンズ826によってスクリーン827上に投射され、画像が拡大されて表示される。
【0074】
上記構成の投射型表示装置は、上記実施の形態の液晶装置を備えたものであるので、低消費電力で表示品位に優れた投射型表示装置を実現することができる。
【0075】
図14は、携帯電話の一例を示した斜視図である。図14において、符号2000は携帯電話本体を示し、符号2001は上記液晶装置を用いた表示部を示している。
【0076】
図15は、腕時計型電子機器の一例を示した斜視図である。図15において、符号2100は時計本体を示し、符号2101は上記液晶装置を用いた表示部を示している。
【0077】
図16は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。図16において、符号2200は情報処理装置、符号2202はキーボードなどの入力部、符号2204は情報処理装置本体、符号2206は上記液晶装置を用いた表示部を示している。
【0078】
図14〜図16に示す電子機器は、上記実施の形態の液晶装置を用いた表示部を備えているので、低消費電力で表示品位に優れた液晶表示部を備えた電子機器を実現することができる。
【0079】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば上記実施の形態で例示した走査線駆動回路、データ線駆動回路の具体的な構成はほんの一例であって、これ以外に種々の構成が適用可能である。
【0080】
【発明の効果】
以上、詳細に説明したように、本発明によれば、走査線駆動回路やデータ線駆動回路にソースタイ構造をなすNチャネルTFTが用いられているので、トランジスタ素子の占有面積を大きくすることなく、チャネル領域の余剰キャリアをボディコンタクト領域から引き抜くことで基板浮遊効果を抑制し、所望のソース−ドレイン間耐圧を確保することができる。これにより、耐圧等の電気的特性に優れた小型の周辺駆動回路を備えた電気光学装置を実現することができる。また、ソースタイ構造のNチャネルTFTとPチャネルTFTを組み合わせた相補型TFTの採用により、低消費電力化を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る液晶装置の電気的な回路構成を示すブロック図である。
【図2】 同、液晶装置における画素の構成を示す等価回路図である。
【図3】 同、液晶装置におけるデータ線駆動回路のラッチ回路の構成を示す等価回路図である。
【図4】 同、液晶装置におけるデータ線駆動回路の波形制御回路の構成を示す等価回路図である。
【図5】 同、液晶装置における走査線駆動回路の構成を示す等価回路図である。
【図6】 同、液晶装置におけるデータ線駆動回路の動作を説明するためのタイミングチャートである。
【図7】 同、データ線駆動回路のラッチ回路におけるインバータを構成する相補型TFTのパターンレイアウトであり、従来のフローティングボディ構造のTFTで構成した場合の平面図である。
【図8】 同図であり、本発明のソースタイ構造のTFTで構成した場合の平面図である。
【図9】 図8のA−A’線に沿う断面図である。
【図10】 同、液晶装置の構造を示す斜視図である。
【図11】 同、液晶装置の構造を説明するための一部断面図である。
【図12】 同、液晶装置を適用した電子機器の概略構成を示すブロック図である。
【図13】 本発明の電子機器の一例である投射型液晶表示装置を示す概略構成図である。
【図14】 本発明の電子機器の一例を示す斜視図である。
【図15】 本発明の電子機器の他の例を示す斜視図である。
【図16】 本発明の電子機器のさらに他の例を示す斜視図である。
【図17】 SOIのトランジスタ構造の一例であって、ソースタイ構造のTFTを示す平面図である。
【図18】 同例であって、フローティングボディ構造のTFTを示す平面図である。
【図19】 同例であって、T型ゲート構造のTFTを示す平面図である。
【図20】 同例であって、H型ゲート構造のTFTを示す平面図である。
【符号の説明】
3a 走査線
6a データ線
10 TFTアレイ基板(アクティブマトリクス基板)
11 単結晶シリコン層(単結晶半導体層)
13 チャネル領域
100 液晶装置(電気光学装置)
100a 表示領域
112a 波形制御回路(走査線駆動回路側)
114〜121 トランスミッションゲート
116a TFT(スイッチング素子)
118a 画素電極
124 フリップフロップ
200 データ線駆動回路
202,402 ラッチ回路
204 波形制御回路(データ線駆動回路側)
206,112b バッファ回路
222,226 クロックドインバータ
224 インバータ
300 サンプルホールド回路
400 走査線駆動回路
1004 周辺駆動回路

Claims (12)

  1. 複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板を備えた電気光学装置であって、
    前記アクティブマトリクス基板上に、単結晶半導体層有する薄膜トランジスタを一つの構成要素とする走査線駆動回路が形成され、
    前記単結晶半導体層が、ドレイン領域、チャネル領域およびソース領域を有し、前記ソース領域の一部にボディコンタクト領域が設けられ
    前記ソース領域と前記ボディコンタクト領域とが、コンタクト部を介して同一の電位に固定されており、
    前記ボディコンタクト領域は、前記ドレイン領域、前記チャネル領域および前記ソース領域が並ぶ方向である第1の方向に沿って前記ソース領域の縁部にのみ形成され、かつ、前記第1の方向と直交する第2の方向における幅が異なる領域を有し、
    前記ボディコンタクト領域のうち、前記コンタクト部が設けられた領域の前記第2の方向の幅が、前記コンタクト部が設けられた領域以外の領域の前記第2の方向の幅よりも広いことを特徴とする電気光学装置。
  2. 前記走査線駆動回路は、トランスミッションゲートとインバータとを有する複数のラッチ回路と、波形制御回路と、バッファ回路とを含むものであり、前記トランスミッションゲートにフローティングボディ構造のPチャネル薄膜トランジスタが用いられたことを特徴とする請求項1に記載の電気光学装置。
  3. 前記インバータ、前記波形制御回路、および前記バッファ回路にPチャネル薄膜トランジスタおよびNチャネル薄膜トランジスタを相補的に組み合わせた相補型薄膜トランジスタが用いられるとともに、該相補型薄膜トランジスタを構成するNチャネル薄膜トランジスタが、ソース領域の一部にボディコンタクト領域が設けられ前記ソース領域と前記ボディコンタクト領域とが同一の電位に固定される構造をなしていることを特徴とする請求項2に記載の電気光学装置。
  4. 前記相補型薄膜トランジスタを構成するPチャネル薄膜トランジスタも、ソース領域の一部にボディコンタクト領域が設けられ前記ソース領域と前記ボディコンタクト領域とが同一の電位に固定される構造をなしていることを特徴とする請求項3に記載の電気光学装置。
  5. 複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板を備えた電気光学装置であって、
    前記アクティブマトリクス基板上に、単結晶半導体層有する薄膜トランジスタを一つの構成要素とするデータ線駆動回路が形成され、
    前記単結晶半導体層が、ドレイン領域、チャネル領域およびソース領域を有し、前記ソース領域の一部にボディコンタクト領域が設けられ
    前記ソース領域と前記ボディコンタクト領域とが、コンタクト部を介して同一の電位に固定されており、
    前記ボディコンタクト領域は、前記ドレイン領域、前記チャネル領域および前記ソース領域が並ぶ方向である第1の方向に沿って前記ソース領域の縁部にのみ形成され、かつ、前記第1の方向と直交する第2の方向における幅が異なる領域を有し、
    前記ボディコンタクト領域のうち、前記コンタクト部が設けられた領域の前記第2の方向の幅が、前記コンタクト部が設けられた領域以外の領域の前記第2の方向の幅よりも広いことを特徴とする電気光学装置。
  6. 前記データ線駆動回路は、クロックドインバータとインバータとを有する複数のラッチ回路と、波形制御回路と、バッファ回路と、サンプルホールド回路とを含むものであり、前記サンプルホールド回路にフローティングボディ構造のPチャネル薄膜トランジスタが用いられたことを特徴とする請求項5に記載の電気光学装置。
  7. 前記クロックドインバータ、前記インバータ、前記波形制御回路、および前記バッファ回路にPチャネル薄膜トランジスタおよびNチャネル薄膜トランジスタを相補的に組み合わせた相補型薄膜トランジスタが用いられるとともに、該相補型薄膜トランジスタを構成するNチャネル薄膜トランジスタが、ソース領域の一部にボディコンタクト領域が設けられ前記ソース領域と前記ボディコンタクト領域とが同一の電位に固定される構造をなしていることを特徴とする請求項6に記載の電気光学装置。
  8. 前記相補型薄膜トランジスタを構成するPチャネル薄膜トランジスタも、ソース領域の一部にボディコンタクト領域が設けられ前記ソース領域と前記ボディコンタクト領域とが同一の電位に固定される構造をなしていることを特徴とする請求項7に記載の電気光学装置。
  9. 複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板を備えた電気光学装置であって、
    前記アクティブマトリクス基板上に、単結晶半導体層有する薄膜トランジスタを一つの構成要素とする走査線駆動回路およびデータ線駆動回路が形成され、
    前記単結晶半導体層が、ドレイン領域、チャネル領域およびソース領域を有し、前記ソース領域の一部にボディコンタクト領域が設けられ
    前記ソース領域と前記ボディコンタクト領域とが、コンタクト部を介して同一の電位に固定されており、
    前記ボディコンタクト領域は、前記ドレイン領域、前記チャネル領域および前記ソース領域が並ぶ方向である第1の方向に沿って前記ソース領域の縁部にのみ形成され、かつ、前記第1の方向と直交する第2の方向における幅が異なる領域を有し、
    前記ボディコンタクト領域のうち、前記コンタクト部が設けられた領域の前記第2の方向の幅が、前記コンタクト部が設けられた領域以外の領域の前記第2の方向の幅よりも広いことを特徴とする電気光学装置。
  10. 複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板であって、
    単結晶半導体層有する薄膜トランジスタを一つの構成要素とする走査線駆動回路が基板上に形成され、
    前記単結晶半導体層が、ドレイン領域、チャネル領域およびソース領域を有し、前記ソース領域の一部にボディコンタクト領域が設けられ
    前記ソース領域と前記ボディコンタクト領域とが、コンタクト部を介して同一の電位に固定されており、
    前記ボディコンタクト領域は、前記ドレイン領域、前記チャネル領域および前記ソース領域が並ぶ方向である第1の方向に沿って前記ソース領域の縁部にのみ形成され、かつ、前記第1の方向と直交する第2の方向における幅が異なる領域を有し、
    前記ボディコンタクト領域のうち、前記コンタクト部が設けられた領域の前記第2の方向の幅が、前記コンタクト部が設けられた領域以外の領域の前記第2の方向の幅よりも広いことを特徴とするアクティブマトリクス基板。
  11. 複数の走査線と、複数のデータ線と、前記走査線および前記データ線に接続された複数のスイッチング素子と、各スイッチング素子に接続された複数の画素電極とを含む表示領域を有するアクティブマトリクス基板であって、
    単結晶半導体層有する薄膜トランジスタを一つの構成要素とするデータ線駆動回路が基板上に形成され、
    前記単結晶半導体層が、ドレイン領域、チャネル領域およびソース領域を有し、前記ソース領域の一部にボディコンタクト領域が設けられ
    前記ソース領域と前記ボディコンタクト領域とが、コンタクト部を介して同一の電位に固定されており、
    前記ボディコンタクト領域は、前記ドレイン領域、前記チャネル領域および前記ソース領域が並ぶ方向である第1の方向に沿って前記ソース領域の縁部にのみ形成され、かつ、 前記第1の方向と直交する第2の方向における幅が異なる領域を有し、
    前記ボディコンタクト領域のうち、前記コンタクト部が設けられた領域の前記第2の方向の幅が、前記コンタクト部が設けられた領域以外の領域の前記第2の方向の幅よりも広いことを特徴とするアクティブマトリクス基板。
  12. 請求項1ないし9のいずれか一項に記載の電気光学装置を備えたことを特徴とする電子機器。
JP2002028125A 2002-02-05 2002-02-05 アクティブマトリクス基板、電気光学装置、電子機器 Expired - Fee Related JP4168635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028125A JP4168635B2 (ja) 2002-02-05 2002-02-05 アクティブマトリクス基板、電気光学装置、電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028125A JP4168635B2 (ja) 2002-02-05 2002-02-05 アクティブマトリクス基板、電気光学装置、電子機器

Publications (2)

Publication Number Publication Date
JP2003228083A JP2003228083A (ja) 2003-08-15
JP4168635B2 true JP4168635B2 (ja) 2008-10-22

Family

ID=27749440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028125A Expired - Fee Related JP4168635B2 (ja) 2002-02-05 2002-02-05 アクティブマトリクス基板、電気光学装置、電子機器

Country Status (1)

Country Link
JP (1) JP4168635B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017706B2 (ja) * 1997-07-14 2007-12-05 株式会社半導体エネルギー研究所 半導体装置
KR20020003246A (ko) * 2000-03-10 2002-01-10 구사마 사부로 전기 광학 장치 및 전자 기기
JP3632565B2 (ja) * 2000-05-18 2005-03-23 セイコーエプソン株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2003228083A (ja) 2003-08-15

Similar Documents

Publication Publication Date Title
US6448953B1 (en) Driving circuit for electrooptical device, electrooptical device, and electronic apparatus
JP3846057B2 (ja) 電気光学装置の駆動回路及び電気光学装置並びに電子機器
JP4998142B2 (ja) 電気光学装置及び電子機器
JP3635972B2 (ja) 電気光学装置の駆動回路、電気光学装置および電子機器
TWI325131B (en) Driving circuit of electro-optical device, electro-optical device having driving circuit, and electronic apparatus
JP4058847B2 (ja) 電気光学装置の駆動回路および電気光学装置および投射型表示装置
JP3855575B2 (ja) 電気光学装置の駆動回路、電気光学装置および電子機器
JP3893819B2 (ja) 電気光学装置の駆動回路、データ線駆動回路、走査線駆動回路、電気光学装置、および電子機器
JP4168635B2 (ja) アクティブマトリクス基板、電気光学装置、電子機器
JP3843658B2 (ja) 電気光学装置の駆動回路及び電気光学装置並びに電子機器
JP3757646B2 (ja) 電気光学装置の駆動回路及び電気光学装置
JP2001188520A (ja) 電気光学装置の駆動回路、電気光学装置及び電子機器
JP3633255B2 (ja) 電気光学装置の駆動回路、電気光学装置及び電子機器
KR20040010360A (ko) 전기 광학 장치, 전기 광학 장치용 구동 회로, 전기 광학장치를 구동하는 구동 방법 및 전자 기기
JP4419394B2 (ja) 電気光学パネルの駆動方法及び駆動回路、これを用いた電気光学パネル、並びに電子機器
JP2000310964A (ja) 電気光学装置の駆動回路及び電気光学装置並びに電子機器
JP4529484B2 (ja) 電気光学装置及び電子機器
JP3770061B2 (ja) データ線駆動回路、走査線駆動回路、電気光学パネルおよび電子機器
JP3654292B2 (ja) 電気光学装置の駆動回路及び電気光学装置並びに電子機器
JP3726675B2 (ja) 電気光学パネル、その駆動回路、データ線駆動回路、走査線駆動回路および電子機器
JP4111235B2 (ja) 電気光学装置の駆動回路及び電気光学装置並びに電子機器
JP4406231B2 (ja) 電気光学装置及び電子機器
JP2004046201A (ja) 駆動回路、電気光学装置、及び電子機器
JP2006243759A (ja) 電気光学装置の駆動回路、データ線駆動回路、走査線駆動回路、電気光学装置、および電子機器
JP3821148B2 (ja) 電気光学装置の駆動回路及び電気光学装置並びに電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4168635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees