JP4163995B2 - 監視診断システム - Google Patents

監視診断システム Download PDF

Info

Publication number
JP4163995B2
JP4163995B2 JP2003154928A JP2003154928A JP4163995B2 JP 4163995 B2 JP4163995 B2 JP 4163995B2 JP 2003154928 A JP2003154928 A JP 2003154928A JP 2003154928 A JP2003154928 A JP 2003154928A JP 4163995 B2 JP4163995 B2 JP 4163995B2
Authority
JP
Japan
Prior art keywords
failure
internal combustion
combustion engine
detection
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003154928A
Other languages
English (en)
Other versions
JP2004353618A (ja
Inventor
潔 桂木
喜美頼 小林
展久 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2003154928A priority Critical patent/JP4163995B2/ja
Publication of JP2004353618A publication Critical patent/JP2004353618A/ja
Application granted granted Critical
Publication of JP4163995B2 publication Critical patent/JP4163995B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の各部に設置された温度計、圧力計、流量計、振動計などの各検出手段により検出される性能データに基づいて内燃機関の各部の異常を検知し故障を診断する監視診断システムに関する。
【0002】
【従来の技術】
従来より、内燃機関の故障を予知する装置が提案されている(例えば、特許文献1参照)。
【0003】
この故障予知装置は、機関の各部の振動や温度、発生音等を検出するための複数のセンサと、これらの各センサの検出値の変化を予め各種の異常に応じて設定された標準的な変化傾向と比較し、特定の変化傾向の組み合わせと一致する傾向を示している場合にその変化傾向に該当する箇所の異常と判定する判定手段と、この判定手段による判定結果を予知信号として出力する出力手段とを備えている。
【0004】
このような構成の故障予知装置によれば、例えば振動センサを主軸受メタルに1個、シリンダブロックに2個、ギアケースに1個、排気マニホールドに1個ずつ設け、温度センサを主軸受メタルの裏側と各気筒の排気管に1個ずつ、潤滑油系に1個設け、音センサを機関の近傍に配置する、というように必要な箇所にそれぞれ必要なセンサを取り付けることにより、例えば、主軸受メタルに取り付けられた振動センサと温度センサとによって主軸受メタルの摩耗状態が判定でき、シリンダブロックに取り付けられた振動センサと主軸受メタルに取り付けられた温度センサとによってクランク軸の亀裂の有無を判定でき、ギアケースに取り付けられた振動センサと機関の近傍に配置された音センサとによってねじりダンパの異常の有無が判定できるようになっている。
【0005】
【特許文献1】
特許第3053304号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の故障予知装置では、個々の部位に取り付けられた種々のセンサによって個々の部位の故障の予知は可能であるものの、例えばある部位のセンサによる異常の検知が、他の部位の影響によるものである場合に、他の部位の故障まで予知できる構成とはなっていない。つまり、各部位のセンサが主として各部位の故障を予知するためにだけ使用されており、これら複数のセンサの検知出力を総合的に勘案して、内燃機関の故障箇所や故障内容を総合的に判断することまでは行われていないといった問題があった。
【0007】
また、各部位の状態をセンサによって直接検出する場合、センサ数が多くなるために必然的にコストアップにつながるといった問題もあった。
【0008】
さらに、各センサの検出データについても、検出部位やセンサの種類(圧力センサ、温度センサ、振動センサ等の種類)によって個別の問題があり、例えば、燃料供給系に設けられる圧力センサでは、配管内燃料の燃料ポンプの噴射に伴う圧力変動(ディーゼルエンジンでは、燃料フィルタ(FOフィルタ)後の燃料油圧には、スピル(噴射終わりの燃料ポンプからの逆流)により大きな圧力変動がある)を考慮せずに燃料圧力を検出した場合には、誤検知が頻繁に発生することになる。また、機関の排気温度を検出する温度センサでは、機関出力が変化することによる排気温度の変化には時間遅れがあるため、この時間遅れを考慮せずに温度センサによる検出温度(排気温度)を異常検知した場合、機関出力変化と排気温度変化とが対応せず、誤検知が頻繁に発生することになる。そのため、このような誤検知をそのまま放置して故障の判断を行ったのでは、精度の高い異常検知が行えないばかりでなく、誤った故障判断を行ってしまうといった問題が発生する。
【0009】
本発明は係る問題点を解決すべく創案されたもので、その目的は、内燃機関の各部に設置された温度計、圧力計、流量計、振動計などの各検出手段により検出される性能データに対して、各検出手段の特性等を考慮しつつ予め定められた手法によって異常の有無を検知し、異常が見つかった場合にはその異常の種類から総合的に判断して故障箇所と故障内容とを診断することにより、内燃機関の故障をいち早くかつより精度よく診断することのできる監視診断システムを提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明に係わる内燃機関の監視診断システムは、内燃機関の各検出部位にそれぞれ取り付けられた温度、圧力等を検出する検出手段と、前記内燃機関が設置された後の正常運転時の運転初期データに基づいて設定された性能データの正常範囲値を予め格納している正常範囲値データ格納手段と、前記各検出手段により各検出部位の値を直接的または間接的な手法により検出することによって得られる性能データと前記正常範囲値データ格納手段に格納されている正常範囲値とを比較することにより、前記各検出手段より得られた性能データが正常範囲値から外れている場合に異常を検知する異常検知手段と、この異常検知手段での検知結果に基づき、前記内燃機関の故障箇所と故障内容とを診断する故障診断手段と、を備えたことを特徴とする。
【0011】
このような特徴を有する本発明によれば、正常範囲値データ格納手段に格納される正常範囲値のデータは、実稼働する作業場に内燃機関が設置された後の正常運転時の運転初期データに基づいて設定されている。これにより、各内燃機関の設置状況に応じた適正な正常範囲値が設定されることになり、このように設定された正常範囲値と、圧力センサや温度センサ等の各検出手段より得られた圧力及び温度に関する性能データとを比較することで、その内燃機関の異常検知の精度を上げることが可能となる。
【0012】
この場合、前記正常範囲値は、設置される内燃機関の外部環境条件(大気温度、気圧、湿度、冷却水温度等)及び機関出力の大きさから前記内燃機関の各検出部位の正常値を数式化し、この数式と前記内燃機関が設置された後の正常時の運転初期データとを用いて計算により求めるように構成される。これにより、内燃機関の設置場所に応じて係数を決めることができるため、正常範囲値をより適正に設定することができる。
【0013】
また、前記正常値は、重み付き移動平均処理して得られたデータを用いて構成される。この場合、前記重み付き移動平均処理は、機関出力の時間変化と前記検出手段より得られる性能データの時間変化を一致させるように行う。機関出力より時間遅れの大きい(変化の遅い)性能データには少ない移動平均数で移動平均処理を行う一方、その正常値計算に用いる出力には多い移動平均数で移動平均処理を行うように構成する。
【0014】
すなわち、機関の出力が安定せず、出力の時間変化が大きい場合には、時間遅れのある性能データの正常範囲を、変化の早い出力から単純に上記数式を用いて求めたのでは誤差が大きく、異常検知の精度が落ちることになる。そこで、本発明では、出力変化に比べて時間遅れの大きい(変化の遅い)性能データには少ない移動平均数で移動平均処理を行い、その性能の正常値計算に用いる出力には多い移動平均数で移動平均処理を行うことにより、性能と出力の時間変化を一致させて、出力変化が大きいときの異常検知の精度の向上を図るものである。
【0015】
この場合、前記異常検知手段による各検知項目と前記内燃機関の各部位の故障名とを対応させた診断マップを予め格納している診断マップ格納手段をさらに備えており、前記故障診断手段は、前記異常検知手段での検知結果に基づき、前記診断マップ格納手段に格納されている診断マップから異常と判断された検知項目を含む故障名を検索し、診断結果として出力することを特徴とする。
【0016】
このような特徴を有する本発明によれば、予め用意されている診断マップから検知結果に合致する故障名を検索することで、検知結果を総合的に勘案した故障診断が可能となる。
【0017】
また、前記内燃機関の各部位の故障名とこの故障名に対応する対策情報とを対応させたガイダンスマップを予め格納しているガイダンスマップ格納手段をさらに備えており、前記故障診断手段は、前記診断マップから検索した故障名に基づき、前記ガイダンスマップから対策情報を抽出し、診断結果としてさらに出力することを特徴とする。
【0018】
このような特徴を有する本発明によれば、予め用意されているガイダンスマップから故障名に対応する対策情報を抽出することで、最終的に修理を完了するまでの作業手順等を現場作業者等に提示することが可能となる。そのため、現場作業者は、特に高度な専門的知識や豊富な経験がなくても、内燃機関を操作できる程度の技量があれば、その故障に対して即座に的確な修理を行うことが可能となる。
【0019】
さらに、前記故障診断手段は、前記異常検知手段での検知結果に加え、異常と判断された検知項目の性能データの時間変化率の大小を加味することにより、該当する故障名をさらに絞り込む構成としてもよい。
【0020】
例えば、燃料油圧の低下を検知した場合でも、その変化率が小さい場合(ゆっくりと変化する場合)には、例えば燃料こし器の目詰まりが考えられ、その変化率が大きい場合(急に変化する場合)には、燃料供給管の漏油や破損、燃料フィードポンプの異常や破損等が考えられる。そこで、本発明では、この性能データの時間変化率の大小を加味することで、今まで区別できなかった燃料こし器の目詰なのか、燃料供給管の漏油や破損等なのかを区別することが可能となり、故障診断の精度がさらに向上することになる。
【0021】
ところで、各検出手段による検出データは、その検出部位やセンサの種類(圧力センサ、温度センサ、振動センサ等の種類)によって個別の問題がある。例えば、燃料供給系に設けられる圧力センサでは、配管内燃料の燃料ポンプの噴射に伴う圧力変動を考慮せずに燃料圧力を検出した場合には、誤検知が頻繁に発生する可能性がある。
【0022】
そこで、本発明では、前記検知手段の一つが燃料配管系の圧力を検出する圧力センサである場合、前記燃料配管系と前記圧力センサとの間に細孔部を設けることにより、配管内燃料の燃料ポンプの噴射に伴う圧力変動を減衰させて平均的な燃料圧力を検出することを特徴とする。
【0023】
このような特徴を有する本発明によれば、燃料供給系の燃料油圧の検出の場合、すなわち燃料切れ、燃料フィードポンプ破損、燃料こし器目詰まり、燃料配管破損による燃料漏れなどの燃料系故障を検出する場合に、配管内燃料の燃料ポンプの噴射に伴う圧力変動を減衰させることにより、燃料圧力の検出精度とセンサの耐久性を向上させることができる。
【0024】
また、本発明では、前記検出手段の一つが前記内燃機関のクランク室に設けられた圧力センサである場合、前記クランク室と前記圧力センサとの間に細孔部を設けることにより、前記クランク室内のピストンやクランクの運動に伴う圧力変動を減衰させて平均的なクランク室圧力を検出することを特徴とする。
【0025】
このような特徴を有する本発明によれば、クランクケース内圧によるブローバイ検出の場合、すなわちピストンやクランクの焼き付き、リング異常、リングやライナ磨耗大などの故障をクランク室内の圧力により検出する場合に、クランク室内のピストンやクランクの運動に伴う圧力変動を減衰させることにより、クランク室圧力の検出精度とセンサの耐久性を向上させることができる。これにより、異常検知手段は、平均的なクランク室圧力と機器外部の大気圧との圧力差に対して、予め求めておいたブローバイガス量と当該圧力差との関係から、ブローバイガス量を精度良く推定することが可能となり、上記した故障も精度良く診断することが可能となる。
【0026】
さらに、本発明では、前記検出手段の一つが前記内燃機関のラジエータファンの近傍に設置された温度センサである場合、前記異常検知手段は、前記温度センサによる検出温度と機器外部の空気温度との温度差に基づいて前記ラジエータファンの空気流量を推定して異常を検知することを特徴とする。
【0027】
このような特徴を有する本発明によれば、ラジエータファンの空気流量の検出の場合、例えば発電機とエンジンとが一体に組み込まれたパッケージ形発電機では、パッケージ外部の空気温度とラジエータの前もしくは後の空気温度との温度差から、ラジエータファンの空気流量を推定して、冷却系の異常を検知する。これは、パッケージ形発電機では、機関やラジエータからの放熱量が空気流量と前記温度差との積に比例することから、この関係を利用して、ラジエータファン損傷、ラジエータ目詰まりなどの故障によって空気流量が低下した場合、空気温度差が増大することを利用するものである。
【0028】
また、上記構成の監視診断システムは、前記異常検知手段と前記故障診断手段とが無線及び/または有線による通信回線を介して接続されており、前記異常検知手段の検知結果が前記通信回線を通じて前記故障診断手段に送信されるように構成されていてもよい。この場合、前記検出手段、正常範囲値データ格納手段及び異常検知手段を内燃機関側に設け、故障診断手段を遠隔地に設置された情報処理装置に搭載する。これにより、内燃機関の異常情報が遠隔地に設置された情報処理装置で収集及び診断可能となる。ただし、例えば故障診断手段を内燃機関側に設けたり、異常検知手段を情報処理装置側に設けることによって、異常検知手段と故障診断手段を同じ機器内に一体的に組み込むことも可能である。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0030】
図1は、本発明の監視診断システムのシステム構成を示す機能ブロック図である。
【0031】
この監視診断システムは、大別すると、内燃機関及び発電機等の被駆動機(以下、「内燃機関」と称す)10の検知部位に設けられた各種センサ群1〜4、データ収集部5、異常検知部6、故障診断部7、正常範囲値データ格納部8、診断マップ格納部9a、ガイダンスマップ格納部9bにより構成されている。
【0032】
温度センサ群1の各温度センサ1aは、主軸受メタルの裏側、各気筒の排気管、潤滑油系、冷却水系などの必要箇所に必要個数取り付けられており、圧力センサ群2の各圧力センサ2aは、主に潤滑油系、冷却水系、吸入空気系、燃料供給系及びシリンダブロックのクランク室などの必要箇所に必要個数取り付けられており、流量センサ群3の各流量センサ3aは潤滑油系や燃料供給系などの必要箇所に必要個数取り付けられており、振動センサ群4の各振動センサ4aは、主軸受メタル、シリンダブロック、ギアケース、排気マニホールドなどの必要箇所に必要個数取り付けられている。
【0033】
このような各センサ群1〜4の取り付け自体は、従来技術でも示しているように、内燃機関の分野においては従来から行われていることであり、特に目新しいことではない。また、これらの各センサ1a〜4aからデータを収集すること自体も従来から行われていることである。ただし、本発明では、後述するように、任意のセンサの検知による性能データの検出方法に工夫を凝らせている。
【0034】
このような各センサ群1〜4により検出された性能データは、データ収集部5によって収集された後、異常検知部6に送られる。
【0035】
異常検知部6では、データ収集部5を介して得られる各センサ1a〜4aからの性能データと出力に重み付き移動平均処理して、正常範囲値データ格納部8に格納されている正常範囲値(これについては後述する)とを比較することにより、各センサ1a〜4aより得られた性能データが正常範囲値から外れている場合に異常を検知する。
【0036】
故障診断部7は、この異常検知部6での検知結果に基づき、診断マップ格納部9aに格納されている診断マップ(これについては後述する)を参照して、内燃機関10の故障箇所と故障内容とを診断し、その診断結果を出力する。また、故障診断部7は、診断マップから検索した故障名に基づき、ガイダンスマップ格納部9bに格納されているガイダンスマップ(これについても後述する)から対策情報を抽出し、診断結果として出力する。
【0037】
図2は、本実施形態における内燃機関10の構造の一例を示している。
【0038】
本実施形態の内燃機関10は、エンジン部11と発電機12とが筐体20内に一体に組み込まれたいわゆるパッケージ形発電機である。筐体(パッケージ)20の右上部には、外部の空気を筐体20内部に取り入れるための吸入口21が設けられており、吸入口21から取り入れられた空気の一部は、エアクリーナ13を介してエンジン部11で燃料を燃焼させた後、ターボチャージャ(T/C)14に導かれている。エンジン部11には、FOポンプ(図示省略)、FOフィルタ、LO(潤滑油)フィルタ、フィードポンプ(図示省略)、ラジエータなどが収容されているとともに、エンジン部11のクランクシャフトを介して駆動されるラジエータファン15が取り付けられており、ラジエータファン15の下流側の筐体(パッケージ)20に、内部空気を外部に放出するための導出口22が設けられている。
【0039】
−正常範囲値データ格納部8に格納される正常範囲値の説明−
正常範囲値データ格納部8に格納される正常範囲値のデータは、内燃機関10が設置された後の正常運転時の運転初期データに基づいて設定される。すなわち、内燃機関10は、設置場所や設置環境等によって正常運転時に得られる運転データが異なる。例えば、冬の厳しい北海道で使用する場合と、夏の暑い沖縄で使用する場合とでは、正常運転時に得られる運転データは当然に異なることになる。そのため、本発明では、正常範囲値データ格納部8に格納する正常範囲値のデータを、内燃機関10を設置した後の正常運転時に得られる運転初期データに基づいて設定する。これにより、内燃機関10の設置状況に応じた適正な正常範囲値が設定されることになる。
【0040】
この正常範囲値の設定方法を、内燃機関10の排気温度と機関出力との関係に着目して具体的に説明する。
【0041】
この正常範囲値のデータは、設置される内燃機関10の外部環境条件(大気温度、気圧、湿度、冷却水温度等)と内燃機関10の出力の大きさとに基づいて、正常値を、下式(1)〜(4)のように数式化する。
【0042】
【数1】
Figure 0004163995
【0043】
そして、この数式(1)〜(4)と、内燃機関10が設置された後の正常運転時の運転初期データとを用いて正常値を計算により求め、適正な許容値を考慮して、正常範囲幅を設定する。これにより、内燃機関10の設置場所に応じて係数を決めることができるため、正常範囲値(正常範囲幅)をより適正に設定することができる。
【0044】
なお、この正常範囲値による異常検知の手法については、上記で説明した内燃機関10の排気温度に限らず、給気圧力、冷却水の温度及び圧力、海水の圧力、潤滑油の温度及び圧力、燃料油の圧力及び流量など検出する大部分のデータに適用する。
【0045】
−異常検知部6の説明−
図3は、内燃機関10の正常運転時に得られる運転初期データの一例であり、排気温度(℃)と内燃機関10の出力(kW)との関係を示している。従来は、最大出力に対する排気温度を基に上限温度を設定し、この上限温度を超えたときに異常と判断していたが、本実施形態では、この運転初期データを、上記数式(1)〜(4)に当てはめて正常範囲値(正常範囲幅)を計算している。
【0046】
図4は、計算により求めた正常範囲値(図中、斜線を付して示す幅)を図3に示す運転初期データに重ね合わせて示したグラフである。すなわち、本実施形態の異常検知部6では、内燃機関10の出力(以下、「機関出力」ともいう。)に対して、排気温度がその機関出力に対する正常範囲値(斜線部分)内にある場合には正常と判断し、この正常範囲値を超えた場合に異常を検知する。
【0047】
<重み付き移動平均の説明>
ここで、機関出力が安定せず、出力の時間変化が大きい場合には、時間遅れのある性能データの正常範囲値を、変化の早い出力から単純に上記数式(1)〜(4)を用いて求めたのでは誤差が大きく、異常検知の精度が落ちることになる。そこで、本実施形態では、次のようにして異常検知の精度向上を図っている。
【0048】
すなわち、温度センサ1aより得られる性能データと、それの正常値計算に用いる出力に重み付き移動平均処理して得られたデータを用いている。この場合、重み付き移動平均処理は、温度センサ1aより得られる性能データと出力の時間変化を一致させるように設定する。出力に対して時間遅れの大きい(変化の遅い)性能データには少ない移動平均数で移動平均処理を行う一方、正常値計算に用いる出力は多い移動平均数で移動平均処理を行うように構成する。このように性能と出力の時間変化を一致させることで、正常範囲の誤差を少なくし、異常検知の精度の向上を図っている。
【0049】
図5は、機関出力(kW)と排気温度のタイミングチャートを示している。負荷変動の大きい機関出力に対して性能データである排気温度は時間遅れのあるデータとなっている。時間遅れは、特にエンジンの起動時と停止時に(すなわち、過渡状態において)顕著に現れる。そのため、エンジンの起動時や停止時も含めて、出力変化の大きい過渡状態では、この時間遅れを考慮しなければ、正しい異常検知が行えない。
【0050】
図6は、図5に示すグラフで負荷変動の大きい時の機関出力と排気温度との関係(図5中、破線で囲んだ部分)を時間軸を拡大して示したものであり、移動平均処理を行う前の状態である。因みに、図中の移動平均(出力:1,排温:1)とは、出力も排気温度も移動平均処理を行っていない(すなわち、出力及び排気温度共に移動平均数=1)ことを示している。ここで、上記数式(1)〜(4)を用いて計算した機関出力に対する排気温度の正常範囲値(正常範囲幅)は、図6に細い実線の波形幅で示すように、機関出力の変動に応じて不規則に変動している。そして、このグラフに、排気温度を検出する温度センサにより検知された排気温度データ(図中、符号81により示す)を重ね合わせると、排気温度に異常が無くても、図中の丸囲み部分及び黒丸部分で排気温度データが正常範囲値からはみ出す結果、この部分で異常を検知(誤検知)してしまうことになる。
【0051】
これに対し、図7は、機関出力及び排気温度の両方を、同数(出力及び排気温度共に同じ移動平均数)で移動平均処理を行った結果を示している。移動平均処理を行った結果、排気温度の実測データ81と出力の変化が平均化され、図6に示した場合に比べて誤検知の回数が減っている。しかしながら、このような性能と出力の同数の移動平均処理では、両者の時間変化は一致せず、図中の黒丸部分で排気温度データ81が正常範囲値からはみ出す結果、この部分で異常を検知(誤検知)することになる。
【0052】
これに対し、図8は、機関出力及び排気温度の両方を、異なる数(出力の移動平均数=60、排気温度の移動平均数=1)で移動平均処理を行った結果を示している。このような重み付き移動平均処理を行った結果、排気温度の実測データと正常範囲値の変化の時間遅れがほぼ一致したものとなっており、図7に示した場合に比べて異常検知の精度が大きく改善され、誤検知の回数が0回となっており、出力変動が大きいときの異常検知の精度が向上している。なお、図8には移動平均処理をしていない機関出力(符号98により示す)も参考に示している。
【0053】
因みに、図9は別の事例を示しており、エンジン起動時の機関出力と排気温度との関係を示したものである。
【0054】
図10は図9の起動時(破線で囲んだ部分)を時間軸を拡大して示しており、機関出力及び排気温度の両方を、同数(出力及び排気温度共に移動平均数=10)で移動平均処理を行った結果を示している。この場合、図中の白丸部分83で排気温度データ82が正常範囲値からはみ出す結果、この部分で異常を検知(誤検知)してしまうことになる。
【0055】
これに対し、図11は、機関出力及び排気温度を、重み付き移動平均処理(出力の移動平均数=20、排気温度の移動平均数=1)で移動平均処理を行った結果を示している。このように重み付き移動平均処理を行った結果、正常範囲値の変化が排気温度の実測データ82の時間遅れを考慮したものとなっている。つまり、図10に示した場合に比べて異常検知の精度が大きく改善されて誤検知の回数が0回となっており、異常検知の精度が向上している。
【0056】
<性能データの検出に関する本実施形態の説明>
(1)燃料供給系の燃料油圧の検出
燃料供給系に設けられる圧力センサ2aでは、配管内燃料の燃料(FO)ポンプの噴射に伴う圧力変動を考慮せずに燃料圧力を検出した場合には、誤検知が頻繁に発生することになる。
【0057】
図12は、図2に示すエンジン部11の燃料供給系の概略図である。
【0058】
燃料供給系は、図示しない燃料タンクと燃料ポンプ(FOポンプ)31に設けられたフィードポンプ32の入力側とが第1配管34によって接続され、フィードポンプ32の出力側とFOフィルタ33の入力側とが第2配管35によって接続され、FOフィルタ33の出力側とFOポンプ31の入力側とが第3配管36によって接続されている。そして、FOポンプ31の出力側が第4配管37を介して図示しない燃料タンクに接続された構成となっている。
【0059】
このような構成の燃料供給系においては、任意の配管(例えば、第3配管36)に燃料油圧を測定するための圧力センサ2aが取り付けられている。しかしながら、FOフィルタ33後の燃料油圧には、スピルにより大きな圧力変動がある。そのため、この圧力変動が原因で、圧力測定の精度が低下し、圧力センサ2aの寿命も低下することになる。
【0060】
そこで、本実施形態では、FOフィルタ33直後の第3配管36部分を分岐して、絞りφ0.3の圧力取出管38を接続し、この圧力取出管38に圧力センサ2aを接続している。すなわち、圧力取出管38に絞りφ0.3の細孔部38aを設けることにより、配管内燃料の燃料ポンプ31の噴射に伴う圧力変動を減衰させて平均的な燃料圧力を測定する構成としている。
【0061】
図13は、圧力センサ2aによって配管内の燃料油圧を測定した結果の一例を示している。圧力取出管38に細孔部38aを設けない場合には、図中符号91で示すように、0.2〜0.4MPaの範囲で圧力変動が生じているが、絞りφ0.3の細孔部38aを設けた場合、図中符号92で示すように、圧力変動が改善されており、平均的な燃料圧力の測定が可能となっている。この例では、絞りφ0.3の細孔部38aを圧力取出管38に設けることで、圧力変動を0.02MPa以下に低減できている。このように、配管内燃料の燃料ポンプ31の噴射に伴う圧力変動を減衰させることにより、燃料圧力の検出精度と圧力センサ2aの耐久性を向上させることができる。
【0062】
(2)クランク室内圧によるブローバイ検出
エンジン11のクランク室の圧力を測定する圧力センサ2aでは、クランク室内のピストンやクランクの運動に伴う圧力変動を考慮せずにクランク室圧力を検出した場合には、誤検知が頻繁に発生することになる。
【0063】
図14は、クランク室の圧力を測定する系の概略図であり、本発明の一例として、エンジン11の図示しないクランク室への給油口41部分を分岐して、絞りφ0.2の圧力取出管42を接続し、この圧力取出管42に圧力センサ2aを接続している。すなわち、圧力取出管42に絞りφ0.2の細孔部42aを設けることにより、クランク室内のピストンやクランクの運動に伴う圧力変動を減衰させて平均的なクランク室圧力を測定する構成としている。
【0064】
図15は、圧力センサ2aによってクランク室の圧力を測定した結果を示している。圧力取出管42に細孔部42aを設けない場合には、図中符号95で示すように、0.0〜0.9kPaの範囲で圧力変動が生じているが、絞りφ0.2の細孔部42aを設けた場合には、図中符号96で示すように、圧力変動が改善されており、平均的なクランク室圧力の測定が可能となっている。このように圧力変動を減衰させることにより、クランク室圧力の検出精度と圧力センサ2aの耐久性を向上させることができる。
【0065】
これにより、異常検知部6は、図16に示すように、平均的なクランク室圧力と機器外部の大気圧との圧力差に対して、予め求めておいたブローバイガス量と当該圧力差との関係から、ブローバイガス量を精度良く推定することが可能となり、後述する故障診断部7での故障診断も精度良く行うことができる。
【0066】
(3)ラジエータファンの空気流量の検出
内燃機関10のラジエータファン15(図2参照)の空気流量の検出の場合、図2に示すパッケージ形発電機では、パッケージ外部の空気温度とラジエータファン15の前もしくは後に設置された温度センサ1aにより検出された空気温度との温度差から、ラジエータファン15の空気流量を推定して、冷却系の異常を検知する。これは、パッケージ形発電機では、内燃機関10自体やラジエータからの放熱量が空気流量と前記温度差との積に比例する(空気温度差×空気流量∝(機関+発電機)放熱量)ことから、この関係を利用して、ラジエータファン損傷、ラジエータ目詰まりなどの故障によって空気流量が低下した場合、空気温度差が増大することを利用するものである。
【0067】
図17は、空気温度差から冷却系の異常を検知する様子を示したグラフであり、この例では、空気流量が低下して空気温度差が8℃を超えると(図中、丸で囲んだ部分)、冷却系の異常と判断している。すなわち、ラジエータファン15の損傷やラジエータ目詰まりなどの故障が発生していると考えられる。
【0068】
異常検知部6での処理を以上のように構成することにより、より精度の高い異常検知が可能であり、次段の故障診断部7に正確な異常検知データを提供することができ、故障診断部7での診断精度を向上させることができる。
【0069】
なお、上記で説明した以外の異常検知処理については、内燃機関10に関して従来から行われている異常検知処理を本発明においても利用することができるので、ここでは上記以外の他のセンサ(温度センサ、圧力センサ、振動センサ、流量センサ)の性能データによる異常検知処理については説明を省略する。
【0070】
−故障診断部7の説明−
故障診断部7は、異常検知部6による各検知項目と内燃機関10の各部位の故障名とを対応させた診断マップ格納部9aに格納されている診断マップを用いて故障診断を行うとともに、内燃機関の各部位の故障名とこの故障名に対応する対策情報とを対応させたガイダンスマップ格納部9bに格納されているガイダンスマップを用いて診断結果を出力する。
【0071】
図18は、診断マップのデータ構成例を示している。
【0072】
この診断マップは、縦の項目に故障名を列挙し、横の項目に異常検知名を列挙して、異常検知名から推定される故障名の箇所に丸印を付したデータ構成となっている。
【0073】
ここで、異常検知名の各項目に記載されている内容の意味については、図19に一覧形式でまとめている。
【0074】
故障診断部7は、異常検知部6での検知結果に基づき、診断マップ格納部9aに格納されている診断マップから、異常と判断された検知項目を含む故障名を検索し、これを診断結果として出力する。
【0075】
具体的には、図18に示す診断マップを参照すると、例えば異常検知項目が「排気偏温大」、「燃料油圧低」、「燃料流量大」の3項目である場合には、故障名として「燃料供給管漏油・破損」を特定し、異常検知項目が「排気偏温大」、「燃料油圧低」の2項目である場合には、故障名として「燃料供給管漏油・破損」、「燃料フィードポンプ異常・破損」、「燃料こし器目詰まり」の3つが選択される。
【0076】
このように、本実施形態の故障診断部7は、予め用意されている診断マップから、異常検知部6の検知結果に合致する故障名を検索することで、検知結果を総合的に勘案した故障診断を行っている。
【0077】
また、故障診断部7では、異常検知部6での検知結果に加え、異常と判断された検知項目の性能データの時間変化率の大小を加味することにより、該当する故障名をさらに絞り込む構成としている。
【0078】
例えば、燃料油圧の低下を検知した場合でも、その変化率が小さい場合(ゆっくりと変化する場合)には、例えば燃料こし器の目詰まりが考えられ、その変化率が大きい場合(急に変化する場合)には、燃料供給管の漏油や破損、燃料フィードポンプの異常や破損等が考えられる。なお、図18では、変化率が大きい故障名を○、小さい故障名を●で示している。
【0079】
このように、性能データの時間変化率の大小を加味することで、今まで区別できなかった燃料こし器の目詰なのか、燃料フィードポンプの漏油や破損等なのかを区別することが可能となり、故障診断の精度がさらに向上することになる。
【0080】
図20(a)〜(c)は、ガイダンスマップのデータ構成例を示している。
【0081】
このガイダンスマップは、個々の故障名ごとにその対策情報を格納したものであり、不良要因、点検、修理・整備の各項目からなっている。
【0082】
故障診断部7は、診断マップから検索した故障名に基づき、ガイダンスマップから対策情報を抽出し、診断結果として出力する。
【0083】
具体的には、図20に示すガイダンスマップを参照すると、診断マップから検索された故障名が例えば「燃料供給管漏油・破損」の場合(同図(a)参照)、その不良要因としては、「継手部シール不良」、「振動大による折損」、「スピル圧大による破損」とが対応付けられており、そのときの点検方法として、「管継手ボルトの緩み」、「管継手部パッキンの破損」、「燃料配管の振動大、亀裂」、「スピル圧の過大」、「燃料配管の振動大、亀裂」がそれぞれに対応付けられており、その修理・整備方法として、「増し締め」、「パッキン交換」、「振れ止め増強、配管交換」、「圧力低減装置設置:減衰弁など」、「燃料配管の補強・振止め、交換」がそれぞれに対応付けられている。診断結果として出力するのは、このような一覧表そのものを図示しない表示部に表示し、またはプリンタ等の出力手段から印字出力するようにしてもよいし、不良要因からさらに絞り込んだ内容のみを表示または印字出力するようにしてもよい。この場合、各表の上部に記載されている「異常内容、異常検知、最終状態」といった内容も合わせて表示または印字出力してもよい。ただし、出力形態としては、このような一覧表形式に限るものではなく、必要に応じて種々の形態に加工することが可能である。
【0084】
なお、上記実施形態では、診断マップとガイダンスマップを別ファイルとして構成し、別々の格納部9a,9bに格納しているが、診断/ガイダンスマップとして1つのファイルで構成し、1つの格納部に格納することが可能である。
【0085】
−本発明の監視診断システムの他の実施形態−
図21は、本発明の監視診断システムの他の実施形態を示している。
【0086】
この監視診断システムは、図1に示す異常検知部6と故障診断部7とが無線及び/または有線による通信回線(例えば、パケット通信網等)Nを介して接続されており、異常検知部6の検知結果が通信回線Nを通じて故障診断部7に送信される構成となっている。具体的には、データ収集部5、異常検知部6、正常範囲値データ格納部8が内燃機関10とともに例えば船舶等101に搭載されており、故障診断部7、診断マップ格納部9a、ガイダンスマップ格納部9bが遠隔地の例えばサービスセンターSSに設置されたパソコン等の情報処理装置102に搭載されている。これにより、内燃機関10の異常情報が遠隔地に設置された情報処理装置102で収集可能となり、内燃機関10の診断が遠隔地のサービスセンターSSで可能となる。サービスセンターSSでは、情報処理装置102により内燃機関10の診断、チェックを行って内燃機関10を常に監視し、その診断結果に基づいてメンテナンスや修理等の各種のサービスを提供する。
【0087】
【発明の効果】
本発明の故障診断システムによれば、正常範囲データ格納手段に格納される正常範囲値のデータは、内燃機関が設置された後の正常運転時の運転初期データに基づいて設定されている。これにより、各内燃機関の設置状況に応じた適正な正常範囲値が設定されることになり、このように設定された正常範囲値と、圧力センサや温度センサ等の各検出手段より得られた圧力及び温度に関する性能データとを比較することで、その内燃機関の異常検知精度が向上し、故障箇所や故障内容をより精度よく診断することができる。
【0088】
この場合、正常範囲値は、設置される内燃機関の外部環境条件(大気温度、気圧、湿度、冷却水温度等)及び機関出力の大きさから内燃機関の各検出部位の正常値の範囲幅を数式化し、この数式と内燃機関が設置された後の正常運転時の運転初期データとを用いて計算により求めるように構成したので、内燃機関の設置場所に応じて係数を決めることができるため、正常範囲値をより適正に設定することができる。
【0089】
また、異常検知部において、各検出手段より得られる性能データを重み付き移動平均処理して得られたデータを用いるように構成するとともに、検出手段より得られる性能データのうち、出力変化より時間遅れの大きい(変化の遅い)性能データには少ない移動平均数で移動平均処理を行う一方、その性能の正常範囲を求める出力には多い移動平均数で移動平均処理を行う構成としている。これにより、出力変動の大きい場合の異常検知の精度を向上させることができる。
【0090】
この場合、異常検知手段による各検知項目と内燃機関の各部位の故障名とを対応させた診断マップを予め格納している診断マップ格納手段をさらに備えており、故障診断手段は、異常検知手段での検知結果に基づき、診断マップから異常と判断された検知項目を含む故障名を検索する構成としている。このように、予め用意されている診断マップから検知結果に合致する故障名を検索することで、検知結果を総合的に勘案した精度の高い故障診断を行うことができる。
【0091】
また、内燃機関の各部位の故障名とこの故障名に対応する対策情報とを対応させたガイダンスマップを予め格納しているガイダンスマップ格納手段をさらに備えており、故障診断手段は、診断マップから検索した故障名に基づき、ガイダンスマップから対策情報を抽出し、診断結果としてさらに出力する構成としている。このように、予め用意されているガイダンスマップから故障名に対応する対策情報を抽出することで、最終的に修理を完了するまでの作業手順等を現場作業者等に提示することが可能となる。そのため、現場作業者は、特に高度な専門的知識や豊富な経験がなくても、内燃機関を操作できる程度の技量があれば、その故障に対して即座に的確な修理を行うことが可能となる。
【0092】
さらに、故障診断手段は、異常検知手段での検知結果に加え、異常と判断された検知項目の性能データの時間変化率の大小を加味して故障診断を行う構成としている。これにより、該当する故障名をさらに絞り込むことができ、故障診断の精度をより向上させることができる。
【0093】
また、検知手段の一つが燃料配管系の圧力を検出する圧力センサである場合、燃料配管系と圧力センサとの間に細孔部を設けることにより、配管内燃料の燃料ポンプの噴射に伴う圧力変動を減衰させて平均的な燃料圧力を検出することで、燃料圧力の検出精度とセンサの耐久性を向上させることができる。
【0094】
また、検出手段の一つが内燃機関のクランク室に設けられた圧力センサである場合、クランク室と圧力センサとの間に細孔部を設けることにより、クランク室内のピストンやクランクの運動に伴う圧力変動を減衰させて平均的なクランク室圧力を検出することで、クランク室圧力の検出精度とセンサの耐久性を向上させることができる。
【0095】
また、検出手段の一つが内燃機関のラジエータファンの近傍に設置された温度センサである場合、異常検知手段は、温度センサによる検出温度と機器外部の空気温度との温度差に基づいてラジエータファンの空気流量を推定して異常を検知する構成としている。これにより、例えば発電機とエンジンとが一体に組み込まれたパッケージ形発電機では、パッケージ外部の空気温度とラジエータの前もしくは後の空気温度との温度差から、ラジエータファンの空気流量を推定して、冷却系の異常を検知することができる。
【0096】
また、本発明の監視診断システムは、異常検知手段と故障診断手段とが無線及び/または有線による通信回線を介して接続されており、異常検知手段の検知結果が通信回線を通じて故障診断手段に送信される構成としてもよい。これにより、内燃機関の異常情報が遠隔地に設置された情報処理装置に搭載された故障診断手段によって診断可能となる。
【図面の簡単な説明】
【図1】本発明の監視診断システムのシステム構成を示す機能ブロック図である。
【図2】本実施形態における内燃機関の一例を示す概略構成図である。
【図3】内燃機関の正常運転時に得られる運転初期データの一例を示すグラフである。
【図4】計算により求めた正常範囲値を図3に示す運転初期データに重ね合わせて示したグラフである。
【図5】機関出力(kW)と排気温度との関係を示すタイミングチャートである。
【図6】図5に示すグラフの負荷変動の大きい時の機関出力と排気温度との関係を時間軸を拡大して移動平均処理していない状態で異常検知した場合のグラフである。
【図7】機関出力及び排気温度の両方を、同数の移動平均処理を行った結果を示すグラフである。
【図8】機関出力及び排気温度を異なる移動平均数として重み付き移動平均処理を行った結果を示すグラフである。
【図9】図5に示すグラフとは異なる事例の機関起動時の機関出力と排気温度との関係を示したグラフである。
【図10】機関出力及び排気温度の両方を、同数で移動平均処理を行った結果を示すグラフである。
【図11】機関出力及び排気温度の両方を、重み付き移動平均処理を行った結果を示すグラフである。
【図12】エンジン部の燃料供給系の概略図である。
【図13】圧力センサによって配管内の燃料油圧を測定した結果を示すグラフである。
【図14】クランク室の圧力を測定する系の概略図である。
【図15】圧力センサによってクランク室の圧力を測定した結果を示すグラフである。
【図16】クランク室圧力とブローバイガス量との関係を示すグラフである。
【図17】空気温度差から冷却系の異常を検出する様子を示したグラフである。
【図18】診断マップのデータ構成例を示す説明図である。
【図19】異常検知名の各項目に記載されている内容の意味を一覧形式でまとめた説明図である。
【図20】ガイダンスマップのデータ構成例を示す説明図である。
【図21】本発明の監視診断システムの他の実施形態を示すブロック図である。
【符号の説明】
1 温度センサ群
1a 温度センサ
2 圧力センサ群
2a 圧力センサ
3 流量センサ群
3a 流量センサ
4 振動センサ群
4a 振動センサ
5 データ収集部
6 異常検知部
7 故障診断部
8 正常範囲値データ格納部
9a 診断マップ格納部
9b ガイダンスマップ格納部
10 内燃機関
11 エンジン部
12 発電機
13 エアクリーナ
14 ターボチャージャ(T/C)
15 ラジエータファン
20 筐体
21 吸入口
22 導出口
31 燃料ポンプ(FOポンプ)
32 フィードポンプ
33 FOフィルタ
34 第1配管
35 第2配管
36 第3配管
37 第4配管
38 圧力取出管
38a 細孔部(絞りφ0.3)
41 給油口
42 圧力取出管
42a 細孔部(絞りφ0.2)

Claims (6)

  1. 内燃機関の監視診断システムにおいて、
    前記内燃機関の各検出部位にそれぞれ取り付けられた温度、圧力等を検出する検出手段と、
    前記内燃機関が設置された後の正常運転時の運転初期データに基づいて設定された性能データの正常範囲値を予め格納している正常範囲値データ格納手段と、
    前記各検出手段により各検出部位の値を直接的または間接的な手法により検出することによって得られる性能データと前記正常範囲値データ格納手段に格納されている正常範囲値とを比較することにより、前記各検出手段より得られた性能データが正常範囲値から外れている場合に異常を検知する異常検知手段と、
    この異常検知手段での検知結果に基づき、前記内燃機関の故障箇所と故障内容とを診断する故障診断手段とを備え
    前記検出手段の一つが前記内燃機関のクランク室に設けられた圧力センサであり、前記クランク室と前記圧力センサとの間に細孔部を設けることにより、前記クランク室内のピストンやクランクの運動に伴う圧力変動を減衰させて平均的なクランク室圧力を検出することを特徴とする監視診断システム。
  2. 前記異常検知手段は、前記圧力センサにより検出されたクランク室圧力と機関外部の大気圧との圧力差に対して、予め求めておいたブローバイガス量と前記圧力差との関係からブローバイガス量を推定して異常を検知することを特徴とする請求項1に記載の監視診断システム。
  3. 内燃機関の監視診断システムにおいて、
    前記内燃機関の各検出部位にそれぞれ取り付けられた温度、圧力等を検出する検出手段と、
    前記内燃機関が設置された後の正常運転時の運転初期データに基づいて設定された性能データの正常範囲値を予め格納している正常範囲値データ格納手段と、
    前記各検出手段により各検出部位の値を直接的または間接的な手法により検出することによって得られる性能データと前記正常範囲値データ格納手段に格納されている正常範囲値とを比較することにより、前記各検出手段より得られた性能データが正常範囲値から外れている場合に異常を検知する異常検知手段と、
    この異常検知手段での検知結果に基づき、前記内燃機関の故障箇所と故障内容とを診断する故障診断手段とを備え、
    前記検出手段の一つが前記内燃機関のラジエータファンの近傍に設置された温度センサであり、
    前記異常検知手段は、前記温度センサによる検出温度と機器外部の空気温度との温度差に基づいて前記ラジエータファンの空気流量を推定して異常を検知することを特徴とする監視診断システム。
  4. 前記異常検知手段による各検知項目と前記内燃機関の各部位の故障名とを対応させた診断マップを予め格納している診断マップ格納手段をさらに備えており、
    前記故障診断手段は、前記異常検知手段での検知結果に基づき、前記診断マップ格納手段に格納されている診断マップから異常と判断された検知項目を含む故障名を検索し、診断結果として出力することを特徴とする請求項1ないし請求項3のいずれか1項に記載の監視診断システム。
  5. 前記内燃機関の各部位の故障名とこの故障名に対応する対策情報とを対応させたガイダンスマップを予め格納しているガイダンスマップ格納手段をさらに備えており、
    前記故障診断手段は、前記診断マップから検索した故障名に基づき、前記ガイダンスマ ップから対策情報を抽出し、診断結果としてさらに出力することを特徴とする請求項に記載の監視診断システム。
  6. 前記故障診断手段は、前記異常検知手段での検知結果に加え、異常と判断された検知項目の性能データの時間変化率の大小を加味することにより、該当する故障名をさらに絞り込むことを特徴とする請求項4または請求項5に記載の監視診断システム。
JP2003154928A 2003-05-30 2003-05-30 監視診断システム Expired - Fee Related JP4163995B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154928A JP4163995B2 (ja) 2003-05-30 2003-05-30 監視診断システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154928A JP4163995B2 (ja) 2003-05-30 2003-05-30 監視診断システム

Publications (2)

Publication Number Publication Date
JP2004353618A JP2004353618A (ja) 2004-12-16
JP4163995B2 true JP4163995B2 (ja) 2008-10-08

Family

ID=34049445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154928A Expired - Fee Related JP4163995B2 (ja) 2003-05-30 2003-05-30 監視診断システム

Country Status (1)

Country Link
JP (1) JP4163995B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591107B2 (ja) * 2005-02-16 2010-12-01 トヨタ自動車株式会社 内燃機関の制御装置
JP2006242021A (ja) * 2005-03-01 2006-09-14 Fujitsu Ten Ltd 異常診断装置
JP4577165B2 (ja) * 2005-09-08 2010-11-10 株式会社デンソー 燃料噴射装置の異常診断装置
JP2007239612A (ja) * 2006-03-08 2007-09-20 Fujitsu Ten Ltd 異常診断装置
KR101004870B1 (ko) 2008-12-17 2010-12-28 현대중공업 주식회사 배기가스의 온도를 이용한 디젤엔진의 이상상태 진단방법
DE102011118962A1 (de) * 2011-11-19 2013-05-23 Robert Bosch Gmbh Diagnosemodul
KR101592783B1 (ko) * 2014-11-06 2016-02-12 현대자동차주식회사 하이브리드 차량의 배기온도센서 고장진단 장치 및 방법
JP6392101B2 (ja) * 2014-12-05 2018-09-19 日立建機株式会社 建設機械の管理システム
JP7160560B2 (ja) * 2018-05-15 2022-10-25 三菱重工業株式会社 故障診断システム及び故障診断方法
JP7188272B2 (ja) * 2019-05-09 2022-12-13 トヨタ自動車株式会社 ブローバイガス処理装置
JP6761511B1 (ja) * 2019-06-05 2020-09-23 株式会社 グローバルローエンロー 船舶用ディーゼルエンジン状態監視システム
CN117572137B (zh) * 2024-01-17 2024-03-29 山东海纳智能装备科技股份有限公司 一种七电平anpc高压变频器远程监测系统

Also Published As

Publication number Publication date
JP2004353618A (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
US9429092B2 (en) Fault detection and response techniques
JP4163995B2 (ja) 監視診断システム
Jones et al. A review of condition monitoring and fault diagnosis for diesel engines
JP3053304B2 (ja) 内燃機関の故障予知装置
WO2017110242A1 (ja) 内燃機関の異常検出装置
EP2937532B1 (en) Closed breather disconnection detection method
GB2389423A (en) Oil filter monitor
CN101512128A (zh) 用于探测内燃机涡轮增压器带伤工作的系统和方法
JP4313734B2 (ja) 監視診断システム
JP2008208751A (ja) エンジン構成部品の劣化度診断システム
CN101333951A (zh) 舰船滑油系统风险预警方法
US11821345B2 (en) Systems and methods for lubricant dilution detection
JP4825292B2 (ja) 舶用ディーゼルエンジンの異常検出方法
US7647156B2 (en) Method and system for using exhaust temperature anomalies to detect fugitive fueling of a reciprocating internal combustion engine
JPH0419312A (ja) エンジンブローバイガスの流量検知装置およびその検知方法
CN115190940B (zh) 诊断装置及诊断方法
Rinnanont et al. Advanced Predictive and Intelligent Analysis Methods for Machine Life Extension
JP5136342B2 (ja) 内燃機関のオイル劣化判定装置
CN107923817B (zh) 操作活塞式发动机的方法和检测汽缸盖垫片失效的结构
RU2469285C1 (ru) Способ диагностирования двигателя внутреннего сгорания с турбокомпрессором
JP4443561B2 (ja) 舶用ディーゼルエンジンおよびその異常検出装置ならびに異常検出方法
US11454144B1 (en) Lubricant dilution detection system
RU2336513C2 (ru) Способ оценки технического состояния двигателей внутреннего сгорания
RU2467301C1 (ru) Способ оценки технического состояния двигателя внутреннего сгорания
CN115788670A (zh) 一种发动机故障监测方法、装置、预警系统、车辆及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees