JP4150237B2 - X線管 - Google Patents

X線管 Download PDF

Info

Publication number
JP4150237B2
JP4150237B2 JP2002276016A JP2002276016A JP4150237B2 JP 4150237 B2 JP4150237 B2 JP 4150237B2 JP 2002276016 A JP2002276016 A JP 2002276016A JP 2002276016 A JP2002276016 A JP 2002276016A JP 4150237 B2 JP4150237 B2 JP 4150237B2
Authority
JP
Japan
Prior art keywords
target
ray
electron
extraction window
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002276016A
Other languages
English (en)
Other versions
JP2004111336A (ja
Inventor
知幸 岡田
通浩 伊藤
務 稲鶴
昌彦 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2002276016A priority Critical patent/JP4150237B2/ja
Publication of JP2004111336A publication Critical patent/JP2004111336A/ja
Application granted granted Critical
Publication of JP4150237B2 publication Critical patent/JP4150237B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線を発生するX線管に関する。
【0002】
【従来の技術】
X線管では、電子銃によって陰極のカソードで発生させた電子を高速で放射し、その高速の電子を陽極であるターゲット支持体のターゲットに衝突させてX線を発生させ、その発生させたX線をX線取出窓から管外に取り出す。X線管には、X線の発生方向により、ターゲットに対して入射した電子ビームと発生したX線とが反対側に位置する透過型と、ターゲットに対して入射した電子ビームと発生したX線とが同じ側に位置する反射型とがある。また、X線管には、真空容器の構造として、密封型と開放型とがある。X線取出窓は、X線を透過する材料から形成されており、金属等からなる管球容器に気密性が保持されて接合されている。
【0003】
X線管は、工業分野や医療分野における検査装置、診断装置等の様々な分野で利用されている。例えば、マイクロフォーカスX線装置は、非破壊検査により電子部品等の実装検査や品質保証を行うために、X線管を利用して内部の欠陥等を微小焦点のX線により観察する。この際、マイクロフォーカスX線装置では、微細な内部構造を観察するので、ターゲットから被観察物までの距離を短くすることによる高い拡大率が要求される。さらに、X線管では、高い拡大率にしても鮮明な観察画像を得るために、ターゲットとX線取出窓とを近づけて焦点径を小さくすることが要求される。
【0004】
【特許文献1】
特開平8−222159号公報
【0005】
【特許文献2】
特開平11−273597号公報
【0006】
【発明が解決しようとする課題】
しかしながら、反射型のX線管では、ターゲットに入射した電子ビームの一部が反射され、その反射電子がX線取出窓等に衝突する。このような反射電子がX線取出窓等に衝突すると、衝突箇所では熱を発生する。この熱によりX線取出窓等が加熱され、X線取出窓と管球容器との接合部の気密が保たれなくなったり、長時間の加熱によりX線取出窓に穴があいてしまうこともある。このような問題に対処するために、特許文献1や特許文献2等にはターゲットからの反射電子をX線取出窓等に衝突させない技術が開示されている。例えば、特許文献2に記載された発明では、X線取出窓に反射電子が衝突する前に反射電子を遮蔽する手段(シールド)を設けている。しかし、このシールドが管球容器に直接取り付けられているので、反射電子の衝突によって加熱されたシールドの熱が管球容器に伝わる。さらに、この熱が管球容器からX線取出窓に伝わって接合部の気密性を低下させたり、あるいは、この熱によってターゲット支持体近傍が加熱されてターゲット支持体が膨張し、ターゲットの形状変化によりX線焦点位置がずれる場合がある。
【0007】
そこで、本発明は、反射電子に起因する熱の影響を防止するX線管を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明に係るX線管は、カソードから電子入射方向に電子を放射する電子銃と、放射した電子をターゲットに入射させてX線を放射する反射型のターゲットを有するターゲット支持体とを備えるX線管であって、ターゲットから放射したX線をX線管外へ取り出すX線取出窓と、内部に電子銃及びターゲット支持体が設けられるとともにX線取出窓が設けられ、内部が真空状態に保持される管球容器と、ターゲット支持体に設けられ、少なくともターゲットで反射した電子を遮蔽する電子遮蔽手段とを備え、X線取出窓は、ターゲットから放射したX線のX線管外への取出方向がターゲットに入射する電子ビームの反射方向と一致する位置に設けられ、電子遮蔽手段は、X線取出窓及び管球容器から空間的に隔離し、一端側がターゲット支持体に取り付けられ、他端側がターゲットとX線取出窓との間に配置され、少なくともターゲットで反射した電子を遮蔽するとともにターゲットから放射したX線を透過することを特徴とする。
【0009】
このX線管によれば、電子遮断手段によりターゲットで反射した電子を遮断することによって、反射電子をX線取出窓や管球容器に衝突させない。また、その電子遮断手段がターゲット支持体に設けられてX線取出窓等と空間的に離れているので、反射電子の衝突によって電子遮断手段が加熱されても、その熱がX線取出窓等に伝わらない。そのため、X線取出窓等が反射電子によって加熱されないので、X線管の気密性を保持することができる。なお、電子遮蔽手段では、反射電子以外にも、後方散乱電子等の他の電子も遮蔽する場合がある。
【0011】
このX線管によれば、ターゲットに入射した電子ビームの反射方向上に電子遮断手段を配置することによって、電子遮断手段によりX線の取出方向と同じ方向で反射してくる反射電子をX線取出窓の前方で遮断し、反射電子をX線取出窓に衝突させない。また、その電子遮断手段がターゲット支持体に取り付けられてX線取出窓等と空間的に離れているので、反射電子の衝突によって電子遮断手段が加熱されても、その熱がX線取出窓等に伝わらない。さらに、このX線管では、X線の取出方向が入射した電子ビームの反射方向と一致しているので(すなわち、X線の取出方向とターゲットとのなす角が電子ビームのターゲットへの入射角と同じ角度なので)、ターゲットに円形の電子ビームを入射させることにより、円形の焦点形状のX線ビームを得ることができる。なお、電子遮蔽手段では、反射電子以外にも、後方散乱電子等の他の電子も遮蔽する場合がある。
【0012】
本発明に係るX線管は、カソードから電子入射方向に電子を放射する電子銃と、放射した電子をターゲットに入射させてX線を放射する反射型のターゲットを有するターゲット支持体とを備えるX線管であって、ターゲットから放射したX線をX線管外へ取り出すX線取出窓と、内部に電子銃及びターゲット支持体が設けられるとともにX線取出窓が設けられ、内部が真空状態に保持される管球容器と、ターゲット支持体に設けられ、少なくともターゲットで反射した電子を遮蔽する電子遮蔽手段とを備え、X線取出窓は、ターゲットから放射したX線のX線管外への取出方向がターゲットに入射する電子ビームの反射方向と異なる位置に設けられ、電子遮蔽手段は、X線取出窓及び管球容器から空間的に隔離し、ターゲット支持体に形成され、少なくともターゲットで反射した電子を遮蔽することを特徴とする。
【0013】
このX線管によれば、電子遮断部によりX線の取出方向とは異なる方向で反射してくる反射電子を遮断することによって、反射電子を管球容器等に衝突させない。さらに、X線取出窓の配置によってX線の取出方向を電子ビームの反射方向と異ならせているので、電子遮断部をX線取出窓とターゲットとの間に配置する必要がなく、電子遮断部をX線透過材料で形成しなくてもよい。また、その電子遮断部がターゲット支持体に一体で形成されてX線取出窓等と空間的に離れているので、反射電子の衝突によって電子遮断部が加熱されても、その熱がX線取出窓等に伝わらないし、部品点数も削減できる。なお、電子遮蔽部では、反射電子以外にも、後方散乱電子等の他の電子も遮蔽する場合がある。
【0014】
本発明の上記X線管は、電子銃を、X線取出窓から取り出されたX線の焦点形状が円形となるように、楕円形の電子ビームを放射するように構成してもよい。
【0015】
このX線管によれば、X線の取出方向が電子ビームの反射方向と一致しないが、電子銃の電子レンズや電子源によってターゲットに入射させる電子ビームを楕円形状とすることにより、円形のX線ビームを発生させる。
【0016】
本発明の上記X線管は、ターゲットおよびターゲット支持体を冷却する冷却手段を備えるように構成してもよい。
【0017】
このX線管によれば、冷却手段によりターゲットおよびターゲット支持体を冷却することによって、電子ビームによるターゲットへの損傷を和らげる。また、ターゲットの形状が安定し、X線焦点位置がずれない。さらに、ターゲットおよびターゲット支持体とともに電子遮断手段(電子遮断部)も冷却できる。そのため、電子遮断手段(電子遮断部)が反射電子によって加熱されることによる電子遮断手段(電子遮断部)の温度上昇も抑制できる。したがって、電子遮蔽手段(電子遮蔽部)の熱がX線取出窓等に伝わらないので、X線管の気密性を保持することができる。
【0018】
本発明の上記X線管は、ターゲットはグランド電位であり、カソードにはマイナス高電圧が印加されるように構成してもよい。また、本発明の上記X線管では、X線取出窓は、管球容器に形成される傾斜面に設けられ、傾斜面は、ターゲット側に傾斜させて形成されるように構成してもよい。
【0019】
このX線管によれば、ターゲットをグランド電位とすることにより、ターゲットと管球容器(X線取出窓)との間に電位差がなくなり、X線取出窓とターゲットとを近づけることができる。そのため、マイクロフォーカスX線装置等では、ターゲットから被観察物までの距離を短くすることができ、高い拡大率とすることができる。
【0020】
【発明の実施の形態】
以下、図面を参照して、本発明に係るX線管の実施の形態を説明する。
【0021】
本発明は、ターゲットからの反射電子等に起因する加熱を防止するために、ターゲット支持体に設けた電子遮断手段により反射電子の進行を遮断し、反射電子がX線取出窓等に衝突するのを防止する。特に、本発明では、X線取出窓を電子ビームの反射方向と同じ方向に位置させた場合及びX線取出窓を電子ビームの反射方向と異なる方向に位置させた場合に対応して電子遮断手段(電子遮断部)を各々設ける。さらに、本発明では、ターゲット自体及び反射電子によって加熱される電子遮断手段(電子遮断部)を冷却するために、ターゲットおよびターゲット支持体に冷却手段を設ける。
【0022】
本実施の形態では、本発明をマイクロフォーカスX線検査装置に組み込まれる反射型のX線管に適用する。本実施の形態には、X線取出窓の配置により2つの実施の形態があり、第1の実施の形態がターゲットからの電子ビームの反射方向と同じ方向にX線取出窓を配置させる場合であり、第2の実施の形態がターゲットからの電子ビームの反射方向と異なる方向にX線取出窓を配置させる場合である。特に、第1の実施の形態では密封型及び開放型について説明し、第2の実施の形態では密封型についてのみ説明する。なお、本実施の形態においては、ターゲット支持体とターゲットが一体構造であるため、支持体一体化ターゲットをターゲット4又は24、電子ビームが入射する面をターゲット面4bとする(図1乃至図5参照)。
【0023】
まず、第1の実施の形態について説明する。図1及び図2を参照して、密封型のX線管1の構成について説明する。図1は、第1の実施の形態に係る密封型のX線管の構成を示す平断面図である。図2は、図1のターゲット近傍の拡大断面図である。
【0024】
X線管1は、マイクロフォーカスX線検査装置に組み込まれるX線管であり、円形のX線ビームや高拡大率とするためにターゲット4とX線取出窓5間の短間隔等が求められる。そして、X線管1では、ターゲット4とX線取出窓5間とを短間隔とするため及びターゲット4を水冷式で冷却するために、ターゲット4をグランド電位としている。さらに、X線管1では、反射電子がX線取出窓5に衝突することを防止する。
【0025】
X線管1は、管球容器2によって真空密封されており、官球容器2の内部に電子を発生する電子銃3及びX線を発生するターゲット4が設けられている。また、X線管1は、管球容器2にターゲット4で発生したX線を取り出すX線取出窓5が設けられている。さらに、X線管1は、ターゲット面4bに反射電子を吸収する反射電子吸収層6が取り付けられている。
【0026】
管球容器2は、金属製の完全密封型の円筒状容器であり、内部を真空状態に保持する。管球容器2は、内部に電子発生部2aとX線発生部2bを形成している。電子発生部2aには電子銃3が収容され、電子銃3はその中心軸GAが管球容器2の中心軸CAと一致するように配置される。X線発生部2bにはターゲット4が収容され、ターゲット4はその中心軸TAが管球容器2の中心軸CAと直交するように配置される。
【0027】
電子銃3は、カソード3a及びグリッド電極3d,3d等を備えている。カソード3aは、電力供給により発熱し、電子を発生する。集束電極3bは、電子レンズとして機能し、フォーカスアパーチャ3cに電界を形成し、ターゲット面4bに向けて放射された入射電子ビームIBを集束させるとともに加速させる。そして、電子銃3では、カソード3aから放射する際の電子ビームの形状やフォーカスアパーチャ3cに形成する電界の作用によって円形の入射電子ビームIBを形成し、その入射電子ビームIBをターゲット面4bに向けて出射する。
【0028】
ターゲット4は、アノードとして機能し、金属製で中空部4aを形成している。ターゲット4は、その中心軸TAが電子入射方向ID(管球容器2の中心軸CA)と直交するように配置される。さらに、ターゲット4は、その電子ビーム入射面であるターゲット面4bが電子入射方向IDに対して所定角θ傾斜させて形成されている。つまり、入射電子ビームIBは、ターゲット面4bに対して入射角θで入射する。そして、ターゲット4では、高加速された入射電子ビームIBがターゲット面4bに衝突すると、X線を発生する。この際、ターゲット4では入射電子ビームIBの一部をターゲット面4bで反射し、その反射電子ビームRBがターゲット面4bに対して反射角θで出射する。
【0029】
さらに、ターゲット4では、冷却手段としてポンプ(図示せず)により中空部4a内で水が循環され、その水の流量が制御されることによって温度が調整される。ターゲット4では、この冷却手段により電子の衝突等によって発生する熱による温度上昇を防止し、ターゲット面4bの損傷を和らげ、形状を安定させている。そのため、X線焦点位置も、ずれることなく安定する。なお、ターゲット4は、アノードとして機能するが、グランド電位としている。このため、ターゲット4と管球容器2(X線取出窓5)とを近づけて配置し、マイクロフォーカスで高い拡大率とすることができるとともに、ターゲット4を水冷式で冷却することができる。
【0030】
X線取出窓5は、ベリリウム等のX線を透過する材料で形成され、板状である。X線取出窓5は、その中心線XL(X線取出窓5に対して垂線)がターゲット面4bからの電子ビームの反射方向RD(ターゲット面4bと反射角θをなす方向)と一致する位置に配置される。そのために、管球容器2の先端面の一部を形成する傾斜面2cは、X線取出窓5の中心線XL(反射方向RD)と直交するように、ターゲット4側に傾斜させて形成されている。そして、X線取出窓5は、その傾斜面2cに開口された開口部2dにロウ付けにより接着され、このロウ付けにより管球容器2との気密性を保持している。
【0031】
なお、X線管1では、上記のように、電子をターゲット面4bに入射角θで入射させてその角θでX線を取り出すとともに管球容器2の傾斜面2cをターゲット4側に傾斜させることによって、ターゲット面4bとX線取出窓5との間隔を短くしている。
【0032】
反射電子吸収層6は、電子の吸収性及びX線の透過性に優れ、熱伝導率が良い低原子番号の材料(例えば、ベリリウム、ダイヤモンド、グラファイト等)で形成される。反射電子吸収層6は、板状であり、その半面6aがターゲット4の電子銃3に対して反対面4cにロウ付けにより接着されている。さらに、接着されていない半面6bが、反射方向RDと直交するように、ターゲット面4b側に折り曲げられている。したがって、反射電子吸収層6の非接着半面6bは、ターゲット面4bとX線取出窓5との間に位置するとともに、X線取出窓5と平行である。非接着半面6bの長さ及び幅は、反射電子を十分に遮断できる大きさかつX線取出窓5で取り出されるX線を十分に通過させるだけの大きさを有している。
【0033】
反射電子吸収層6は、反射電子ビームRBが衝突して熱を発しても、ロウ付けによりターゲット4と密着しているので、ターゲット4からの冷却作用により温度が上昇しない。また、反射電子吸収層6は、X線取出窓5や管球容器2とは所定空間離れているので、反射電子ビームRBによって加熱されたとしても、その熱がX線取出窓5や管球容器2には伝わらない。
【0034】
それでは、図1及び図2を参照して、X線管1における動作について説明する。
【0035】
電子銃3では、カソード3aに電流が供給されて発熱し、電子を発生する。このカソード3aで発生した電子は、カソード3aとターゲット4との間の高電位差により、ターゲット4側に加速されて放射される。カソード3aから放出された電子は、集束電極3bのフォーカスアパーチャ3cにより形成されている電界の電子レンズを通過することによって集束される。そして、円形の入射電子ビームIBとなって、ターゲット面4bに入射角θで入射する。
【0036】
ターゲット4では、高速の入射電子ビームIBがターゲット面4bに衝突すると、X線が発生し、ターゲット面4bからX線が放射される。また、高速の入射電子ビームIBがターゲット面4bに入射すると、その電子の一部が反射角θで反射する。この際、ターゲット4では、電子の衝突によって発熱しても、水の循環による冷却作用により温度上昇が抑えられる。
【0037】
そして、ターゲット面4bからのX線ビームXB及び反射電子ビームRBは、反射電子吸収層6に達する。この際、ターゲット4で発生したX線のうち反射方向RDに放射されたX線ビームXBは、反射電子吸収層6を透過してX線取出窓5に向かう。一方、反射電子の中でも特に反射電子ビームRBは、反射電子吸収層6に吸収されてその進行が遮断され、X線取出窓5には到達しない。この際、反射電子吸収層6では、電子の衝突によって発熱しても、ターゲット4における冷却作用により温度上昇が抑えられる。
【0038】
反射電子吸収層6を透過したX線ビームXBは、X線取出窓5を透過してX線管1外に取り出される。この取り出されたX線ビームXBは、ターゲット面4bから放射されたX線の中でも円形の入射電子ビームIBが反射方向RDに放射されたX線であるので、その焦点形状が円形となっている。
【0039】
X線管1によれば、反射電子吸収層6によってX線取出窓5に向かう反射電子の進行を遮断することができるので、X線取出窓5では反射電子が衝突することはなく、反射電子による熱の影響を受けない。また、X線管1によれば、反射電子吸収層6をターゲット4に取り付けることによって、反射電子吸収層6を管球容器2及びX線取出窓5から空間的に隔離しているので、反射電子吸収層6で熱が発生してもその熱が管球容器2及びX線取出窓5に伝わらない。その結果、管球容器2及びX線取出窓5は直接的にも間接的にも反射電子に起因する熱の影響を受けないので、X線管1の気密性を保持することができる。
【0040】
さらに、X線管1によれば、ターゲット4に冷却手段を設けることによって、ターゲット4のみならず反射電子吸収層6にも冷却作用を及ぼす。反射電子吸収層6の熱がX線取出窓5等に伝わらないので、X線管1の気密性を保持することができる。また、X線管1によれば、電子の反射方向RDに放射されたX線を取り出す位置にX線取出窓5を配置したので、円形の入射電子ビームIBにより円形のX線ビームXBを取り出すことができる。
【0041】
図3を参照して、開放型のX線管11の構成について説明する。図3は、第1の実施の形態に係る開放型のX線管の構成を示す一部断面の平面図である。X線管11は、密封型のX線管1と管球容器の構成のみ異なるので、その点についてのみ説明する。なお、X線管11では、X線管1と同様の構成については、同一の符号を付し、その説明を省略する。
【0042】
X線管11は、X線の発生時には管球容器12によって真空状態が保持される。管球容器12は、カソード3aやターゲット4bの交換等のメンテナンスを可能とするために、開閉機構(図示せず)を備えている。管球容器12は、この開閉機構による開放後も真空状態を保持するために排気機構を備えている。排気機構としては、管球容器12に開口された排気口12eに排気管12fが接続され、その排気管12fに排気ポンプ12gが接続されている。X線管11では、X線の発生時には、管球容器12の開閉機構が閉じられるとともに、排気ポンプ12gが作動して真空状態を保持している。
【0043】
X線管11によれば、X線管1の効果に加えて、カソード3aやターゲット4b等のメンテナンスを行うことができる。
【0044】
次に、第2の実施の形態について説明する。図4及び図5を参照して、密封型のX線管21の構成について説明する。図4は、第2の実施の形態に係る密封型のX線管の構成を示す平断面図である。図5は、図4のターゲット近傍の拡大断面図である。なお、第2の実施の形態では、第1の実施の形態に係るX線管1と同様の構成については同一の符号を付し、その説明を省略する。
【0045】
X線管21は、マイクロフォーカスX線検査装置に組み込まれるX線管であり、円形のX線ビームや高拡大率とするためにターゲット24とX線取出窓25間の短間隔等が求められる。また、X線管21は、ターゲット24とX線取出窓25間とを短間隔とするため及びターゲット24を水冷式で冷却するために、ターゲット24をグランド電位としている。さらに、X線管21では、反射電子がX線取出窓25や管球本体22に衝突することを防止する。
【0046】
X線管21は、管球容器22によって真空密封されており、官球容器22の内部に電子を発生する電子銃23及びX線を発生するターゲット24が設けられている。また、X線管21は、管球容器22にターゲット24で発生したX線を取り出すX線取出窓25が設けられている。さらに、X線管21は、ターゲット24に反射電子を吸収する反射電子吸収部24dが形成されている。
【0047】
管球容器22は、金属製の完全密封型の円筒状容器であり、内部を真空状態に保持する。管球容器22は、内部に電子発生部22aとX線発生部22bを形成している。電子発生部22aには電子銃23が収容され、電子銃23はその中心軸GAが管球容器22の中心軸CAと一致するように配置される。X線発生部22bにはターゲット24が収容され、ターゲット24はその中心軸TAが管球容器22の中心軸CAと直交するように配置される。
【0048】
電子銃23は、カソード3a及び集束電極3b等を備えている。なお、電子銃23では、第1の実施の形態に係る電子銃3とは異なり、カソード3aから放射する際の電子ビームの形状やフォーカスアパーチャ3cにより形成される電界の電子レンズの作用によって楕円形の入射電子ビームIBを形成し、その入射電子ビームIBをターゲット24に向けて出射する。この楕円形の形状は、X線取出窓25から焦点形状が円形となるX線ビームXBを取り出せるような形状に調整されている。
【0049】
ターゲット24は、アノードとして機能し、金属製で中空部4aを形成している。ターゲット24は、その中心軸TAが電子入射方向ID(管球容器22の中心軸CA)と直交するように配置される。さらに、ターゲット24は、その先端面であるターゲット面4bが電子入射方向IDに対して所定角θ傾斜させて形成されている。そして、ターゲット24では、高加速された入射電子ビームIBがターゲット面4bに衝突すると、X線を発生する。この際、ターゲット24では入射電子ビームIBの一部をターゲット面4bで反射し、その反射電子ビームRBがターゲット面4bに対して反射角θで出射する。さらに、ターゲット24は、第1の実施の形態に係るターゲット4と同様の冷却手段を備えている。
【0050】
また、ターゲット24には、反射電子を吸収するために、その形状の一部を変形させた反射電子吸収部24dが形成されている。反射電子吸収部24dは、板状であり、ターゲット面4b上の電子銃23から最も離れた位置に突出している。そして、反射電子吸収部24dは、反射方向RDと直交するように、ターゲット面4bに対して電子銃23側に傾斜している。反射電子吸収部24dの長さ及び幅は、反射電子を十分に遮断できる大きさかつX線取出窓25で取り出されるX線を遮断しない大きさを有している。
【0051】
反射電子吸収部24dは、反射電子ビームRBが衝突して熱を発しても、ターゲット24と一体で形成されているので、ターゲット24での冷却作用により温度が上昇しない。また、反射電子吸収部24dは、X線取出窓25や管球容器22とは所定空間離れているので、反射電子ビームRBに加熱されたとしても、その熱がX線取出窓25や管球容器22には伝わらない。
【0052】
なお、反射電子吸収部24dは、ターゲット24と同一の材料で形成されているので、電子のみならずX線も吸収してしまう。そのために、第1の実施の形態のようにX線取出窓を反射方向RD上に配置させると、X線取出窓からX線を取り出すことができない。そこで、第2の実施の形態では、X線を反射方向RDとは異なる方向から取り出している。
【0053】
X線取出窓25は、ベリリウム等のX線を透過する材料で形成され、板状である。X線取出窓25は、その中心線XL(X線取出窓25に対して垂線)がターゲット面4bからの電子ビームの反射方向RDと異なる位置(具体的には、中心線XLとターゲット面4bとのなす角θ’が反射方向RDとターゲット面4bとの反射角θより大きくなる位置)に配置される。この中心線XLとターゲット面4bとのなす角θ’は、X線取出窓25に反射電子が入射しない角度(θより大きい角度)であり、その条件を満たす角度の中でも出来るだけ小さい角度に設定されている。そのために、管球容器22の先端面の一部を形成する傾斜面22cは、X線取出窓25の中心線XLと直交するように、ターゲット24側に傾斜させて形成されている。そして、X線取出窓25は、その傾斜面22cに開口された開口部22dにロウ付けにより接着され、このロウ付けにより管球容器22との気密性を保持している。
【0054】
なお、X線管21では、上記のように、電子ビームをターゲット面4bに入射角θで入射させて、その角θより大きいが出来る限り小さく設定された角度であるθ’でX線を取り出すとともに管球容器22の傾斜面22cをターゲット24側に傾斜させることによって、ターゲット面4bとX線取出窓25との間隔を短くしている。
【0055】
それでは、図4及び図5を参照して、X線管21における動作について説明する。
【0056】
電子銃23では、カソード3aに電流が供給されて発熱し、電子を発生する。このカソード3aで発生した電子は、カソード3aとターゲット24との間の高電位差により、ターゲット24側に加速されて放射される。カソード3aから放射された電子は、集束電極3bのフォーカスアパーチャ3cにより形成されている電界の電子レンズを通過することによって集束される。そして、楕円形の入射電子ビームIBとなって、ターゲット面4bに入射角θで入射する。
【0057】
ターゲット24では、高速の入射電子ビームIBがターゲット面4bに衝突すると、X線が発生し、ターゲット面4bからX線が放射される。また、高速の入射電子ビームIBがターゲット面4bに入射すると、その電子ビームの一部が反射角θで反射する。この際、ターゲット24では、電子の衝突によって発熱しても、水の循環による冷却作用により温度上昇が抑えられる。
【0058】
そして、ターゲット面4bからの反射電子ビームRBは、反射電子吸収部24dに達する。反射電子ビームRBは、反射電子吸収部24dに吸収されてその進行が遮断され、管球容器22には到達しない。この際、反射電子吸収部24dでは、電子の衝突によって発熱しても、ターゲット24における冷却作用により温度上昇が抑えられる。
【0059】
ターゲット24で発生したX線のうち反射方向RDより深い角度で放射されたX線ビームXBは、X線取出窓25を透過してX線管21外に取り出される。この取り出されたX線ビームXBは、反射方向RDより深い角度でX線を取り出すために、電子銃23で入射電子ビームの形状を楕円形状に調整しているので、その焦点形状が円形となっている。
【0060】
X線管21によれば、反射電子吸収部24dによって反射電子の進行を遮断するとともにX線の取出方向を電子ビームの反射方向RDからずらしているので、管球容器22及びX線取出窓25では反射電子が衝突することなく、反射電子による熱の影響を受けない。また、X線管21によれば、反射電子吸収部24dをターゲット24に一体で形成することによって、反射電子吸収部24dを管球容器22及びX線取出窓25から空間的に隔離しているので、反射電子吸収部24dで熱が発生してもその熱が管球容器22及びX線取出窓25に伝わらない。その結果、管球容器22及びX線取出窓25は直接的にも間接的にも反射電子に起因する熱の影響を受けないので、X線管21の気密性を保持することができる。
【0061】
さらに、X線管21によれば、ターゲット24に冷却手段を設けることによって、ターゲット24に一体で形成された反射電子吸収部24dにも冷却作用を及ぼす。特に、X線管21では、ターゲット24に楕円形の入射電子ビームIBを入射させているので、円形の入射電子ビームに比べてターゲット24に熱的な作用を及ぼさない。そのため、ターゲット面4bの電子ビームによる損傷を和らげる。また、ターゲット面4bの形状が安定し、X線焦点位置がずれない。また、X線管21によれば、X線の取出方向を電子ビームの反射方向RDからずらしているので、反射電子を吸収する手段をX線透過材料で形成する必要がなく、ターゲット24と同じ材料により、ターゲット24と一体で反射電子吸収部24dを形成することができる。そのため、別体で反射電子吸収手段を設ける必要がないので、部品点数が削減する。
【0062】
なお、X線管21を、第1の実施の形態で示したように、開放型のX線管として構成してもよい。
【0063】
以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
【0064】
例えば、本実施の形態では冷却手段としてターゲット支持体の中空部内で水をポンプにより循環させる構成としたが、水道管に接続して水を流すだけでもよいし、水冷式以外の別の手段により冷却してもよいし、あるいは、大型のターゲット支持体の場合にはそれ自体がヒートシンクとして機能するので、冷却手段を設けなくてもよい場合がある。
【0065】
また、本実施の形態ではX線取出窓から円形のX線ビームを取り出したが、X線取出窓から楕円のX線ビームを取り出して、その楕円のX線ビームを、X線取出窓から垂直ではなく、浅い角度で取り出すことにより円形のX線ビームを見かけ上取り出すことも可能である。
【0066】
また、本実施の形態ではマイクロフォーカスX線装置で用いられるX線管に適用したが、医療用の検査装置等の他の装置に適用してもよい。
【0067】
また、本実施の形態では反射電子吸収層や反射電子吸収部では反射電子を遮断しているが、反射電子のみならず、後方散乱電子等の他の電子も遮断する。
【0068】
【発明の効果】
本発明に係るX線管は、電子遮断手段によりターゲットからの反射電子を遮断するので、反射電子がX線取出窓や管球容器に衝突しない。また、その電子遮断手段がターゲット支持体に設けられてX線取出窓や管球容器と空間的に離れているので、電子遮断手段で熱が発生してもその熱がX線取出窓等に伝わらない。そのため、X線取出窓等が反射電子に起因する熱の影響を受けない。
【0069】
特に、本発明に係るX線管は、X線の取出方向と電子ビームの反射方向とを一致させている場合、ターゲットに円形の電子ビームを入射させることにより、円形の焦点形状のX線ビームを取り出すことができる。また、本発明に係るX線管は、X線の取出方向と電子ビームの反射方向とを異ならせている場合、ターゲットに楕円形の電子ビームを入射させることにより、円形の焦点形状のX線ビームを取り出すことができる。
【0070】
さらに、本発明に係るX線管は、冷却手段によりターゲットおよびターゲット支持体を冷却することによって、ターゲットおよびターゲット支持体とともに電子遮断手段も冷却できるので、電子遮断手段が反射電子によって加熱されても温度上昇しない。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る密封型のX線管の構成を示す平断面図である。
【図2】図1のターゲット近傍の拡大断面図である。
【図3】本発明の第1の実施の形態に係る開放型のX線管の構成を示す一部断面の平面図である。
【図4】本発明の第2の実施の形態に係る密封型のX線管の構成を示す平断面図である。
【図5】図4のターゲット近傍の拡大断面図である。
【符号の説明】
1,11,21…X線管、2,12,22…管球容器、2a…電子発生部、2b…X線発生部、2c,22c…傾斜面、2d,22d…開口部、12e…排気口、12f…排気管、12g…排気ポンプ、3,23…電子銃、3a…カソード、3b…集束電極、3c…フォーカスアパーチャ、3d…グリッド電極、4,24…ターゲット、4a…中空部、4b…ターゲット面、4c…反対面、24d…反射電子吸収部、5,25…X線取出窓、6…反射電子吸収層、6a…接着半面、6b…非接着半面、CA…管球容器の中心軸、GA…電子銃の中心軸、IB…入射電子ビーム、ID…電子入射方向、RB…反射電子ビーム、RD…反射方向、TA…ターゲットの中心軸、XB…X線ビーム、XL…X線取出窓の中心線

Claims (6)

  1. カソードから電子入射方向に電子を放射する電子銃と、前記放射した電子をターゲットに入射させてX線を放射する反射型のターゲットを有するターゲット支持体とを備えるX線管であって、
    前記ターゲットから放射したX線を前記X線管外へ取り出すX線取出窓と、
    内部に前記電子銃及び前記ターゲット支持体が設けられるとともに前記X線取出窓が設けられ、内部が真空状態に保持される管球容器と、
    前記ターゲット支持体に設けられ、少なくとも前記ターゲットで反射した電子を遮蔽する電子遮蔽手段と
    を備え、
    前記X線取出窓は、前記ターゲットから放射したX線の前記X線管外への取出方向が前記ターゲットに入射する電子ビームの反射方向と一致する位置に設けられ、
    前記電子遮蔽手段は、前記X線取出窓及び前記管球容器から空間的に隔離し、一端側が前記ターゲット支持体に取り付けられ、他端側が前記ターゲットと前記X線取出窓との間に配置され、少なくとも前記ターゲットで反射した電子を遮蔽するとともに前記ターゲットから放射したX線を透過することを特徴とするX線管。
  2. カソードから電子入射方向に電子を放射する電子銃と、前記放射した電子をターゲットに入射させてX線を放射する反射型のターゲットを有するターゲット支持体とを備えるX線管であって、
    前記ターゲットから放射したX線を前記X線管外へ取り出すX線取出窓と、
    内部に前記電子銃及び前記ターゲット支持体が設けられるとともに前記X線取出窓が設けられ、内部が真空状態に保持される管球容器と、
    前記ターゲット支持体に設けられ、少なくとも前記ターゲットで反射した電子を遮蔽する電子遮蔽手段と
    を備え、
    前記X線取出窓は、前記ターゲットから放射したX線の前記X線管外への取出方向が前記ターゲットに入射する電子ビームの反射方向と異なる位置に設けられ、
    前記電子遮蔽手段は、前記X線取出窓及び前記管球容器から空間的に隔離し、前記ターゲット支持体に形成され、少なくとも前記ターゲットで反射した電子を遮蔽することを特徴とするX線管。
  3. 前記電子銃は、前記X線取出窓から取り出されたX線の焦点形状が円形となるように、楕円形の電子ビームを放射することを特徴とする請求項2に記載するX線管。
  4. 前記ターゲットおよび前記ターゲット支持体を冷却する冷却手段を備えることを特徴とする請求項1〜3のいずれか1項に記載するX線管。
  5. 前記ターゲットはグランド電位であり、前記カソードにはマイナス高電圧が印加されることを特徴とする請求項1〜4のいずれか1項に記載するX線管。
  6. 前記X線取出窓は、前記管球容器に形成される傾斜面に設けられ、
    前記傾斜面は、前記ターゲット側に傾斜させて形成されることを特徴とする請求項1〜5のいずれか1項に記載するX線管。
JP2002276016A 2002-09-20 2002-09-20 X線管 Expired - Fee Related JP4150237B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276016A JP4150237B2 (ja) 2002-09-20 2002-09-20 X線管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276016A JP4150237B2 (ja) 2002-09-20 2002-09-20 X線管

Publications (2)

Publication Number Publication Date
JP2004111336A JP2004111336A (ja) 2004-04-08
JP4150237B2 true JP4150237B2 (ja) 2008-09-17

Family

ID=32272032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276016A Expired - Fee Related JP4150237B2 (ja) 2002-09-20 2002-09-20 X線管

Country Status (1)

Country Link
JP (1) JP4150237B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289502B1 (ko) 2005-10-07 2013-07-24 하마마츠 포토닉스 가부시키가이샤 X선관 및 비파괴 검사 장치
JP5312555B2 (ja) * 2006-03-03 2013-10-09 キヤノン株式会社 マルチx線発生装置
JP4878311B2 (ja) 2006-03-03 2012-02-15 キヤノン株式会社 マルチx線発生装置
KR100766907B1 (ko) * 2006-04-05 2007-10-17 한국전기연구원 마이크로 집속 수준의 전자빔 발생용 탄소나노튜브 기판분리형 방사선관 시스템
DE102009047866B4 (de) * 2009-09-30 2022-10-06 Siemens Healthcare Gmbh Röntgenröhre mit einem Rückstreuelektronenfänger
JP5641916B2 (ja) * 2010-02-23 2014-12-17 キヤノン株式会社 放射線発生装置および放射線撮像システム
JP6326758B2 (ja) 2013-10-16 2018-05-23 株式会社島津製作所 X線発生装置
WO2016190074A1 (ja) * 2015-05-27 2016-12-01 松定プレシジョン株式会社 反射型x線発生装置
JP2019075325A (ja) * 2017-10-18 2019-05-16 浜松ホトニクス株式会社 X線発生装置
JP7302423B2 (ja) * 2019-10-10 2023-07-04 株式会社ニコン X線発生装置、x線装置、構造物の製造方法及び構造物製造システム
CN116705578B (zh) * 2023-08-04 2023-10-31 上海超群检测科技股份有限公司 具有屏蔽耗散电子结构的阳极组件、x射线管及制造方法

Also Published As

Publication number Publication date
JP2004111336A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
EP2649635B1 (en) Radiation generating apparatus and radiation imaging apparatus
US7382862B2 (en) X-ray tube cathode with reduced unintended electrical field emission
US7428298B2 (en) Magnetic head for X-ray source
JP2713860B2 (ja) X線管装置
JP5641916B2 (ja) 放射線発生装置および放射線撮像システム
US6661876B2 (en) Mobile miniature X-ray source
JP4644187B2 (ja) 内部放射線遮蔽部を有するx線管
JP4150237B2 (ja) X線管
KR20140043146A (ko) 방사선 발생장치 및 방사선 촬영장치
US6529579B1 (en) Cooling system for high power x-ray tubes
JP2013051154A (ja) 透過型x線発生装置及びそれを用いたx線撮影装置
TW201145342A (en) X-ray generation device
JP2004134406A (ja) 噴流冷却式x線管透過窓
JP5458472B2 (ja) X線管
JP5486762B2 (ja) 複数焦点x線システムのための方法及びシステム
JP2011233363A (ja) X線管装置及びx線装置
US8054945B2 (en) Evacuated enclosure window cooling
JP2002042705A (ja) 透過放射型x線管およびその製造方法
JP6652197B2 (ja) X線管
JP4982674B2 (ja) X線発生器
JP2015076213A (ja) 放射線管、放射線発生装置及び放射線撮影システム
JP2015076359A (ja) X線管装置
JP2013137987A (ja) X線管装置
CN109671605B (zh) 固定阳极型x射线管
JP2010146992A (ja) 走査型x線管

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees