JP4111076B2 - 波長変換レーザ装置 - Google Patents

波長変換レーザ装置 Download PDF

Info

Publication number
JP4111076B2
JP4111076B2 JP2003178835A JP2003178835A JP4111076B2 JP 4111076 B2 JP4111076 B2 JP 4111076B2 JP 2003178835 A JP2003178835 A JP 2003178835A JP 2003178835 A JP2003178835 A JP 2003178835A JP 4111076 B2 JP4111076 B2 JP 4111076B2
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
temperature
conversion element
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178835A
Other languages
English (en)
Other versions
JP2005017410A (ja
Inventor
公資 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003178835A priority Critical patent/JP4111076B2/ja
Priority to US10/848,432 priority patent/US7103075B2/en
Publication of JP2005017410A publication Critical patent/JP2005017410A/ja
Application granted granted Critical
Publication of JP4111076B2 publication Critical patent/JP4111076B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、波長変換レーザ装置に関し、さらに詳しくは、所望の出力光である直線偏波光の強度を適正に制御できなくなる状態が生じるのを防止した波長変換レーザ装置に関する。
【0002】
【従来の技術】
従来、レーザダイオードと、グレーティング部を内部に形成した光ファイバとを組み合わせ、波長を安定化した半導体レーザモジュールが公知である(例えば、特許文献1参照。)。
また、グレーティング部で波長を固定したレーザ光を波長変換素子で高調波光へと波長変換する技術が公知である(例えば、特許文献2参照。)。
さらに、波長変換素子から出力された高調波光の一部をビームスプリッタで分岐し、分岐した光の強度を検出器で測定し、測定結果に基づき半導体レーザの駆動電流を調整して、レーザ光の出力を制御する技術が公知である(例えば、特許文献3参照。)。
【0003】
【特許文献1】
特許第3120828号公報
【特許文献2】
特許第3223648号公報
【特許文献3】
特開2000−138405号公報
【0004】
【発明が解決しようとする課題】
本願発明者は、半導体レーザで赤色から近赤外域のレーザ光を発振し、グレーティング部を内部に形成した光ファイバを用いて波長を安定化させ、光ファイバから出たレーザ光を基本波として非線形光学結晶に周期的分極反転構造を形成した波長変換素子で第2高調波を発生させ、近紫外域または可視域のレーザ光を得る波長変換レーザ装置を開発してきた。そして、バイオエンジニアリング分野や計測分野では直線偏波が求められることが多いため、異常光の基本波に対して異常光の第2高調波を発生させるように波長変換素子の結晶軸と偏波の方向を配置して、直線偏光の第2高調波を発生させていた。また、波長変換素子から出力された高調波光の一部をビームスプリッタで分岐し、分岐した光の強度を検出器で測定し、測定結果に基づき半導体レーザの駆動電流を調整して、出力光の強度を制御していた。
しかし、基本波の波長によっては、所望の出力光である直線偏波光の強度を適正に制御できなくなる状態が生じる問題点があった。
そこで、本発明の目的は、所望の出力光である直線偏波光の強度を適正に制御できなくなる状態が生じるのを防止した波長変換レーザ装置を提供することにある。
【0005】
【課題を解決するための手段】
第1の観点では、本発明は、半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出射する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記高調波光の異常光成分のみを透過する偏光子と、該偏光子を透過した前記異常光成分の一部を分岐させる光分岐手段と、分岐した前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき分岐した前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置を提供する。
【0006】
本願発明者が鋭意研究したところ、非線形光学結晶に周期的分極反転構造を形成した波長変換素子で異常光の第2高調波と同時に常光の第2高調波も発生しうることが判った。それを次に説明する。
周期的分極反転構造は、結晶の自発分極を疑似位相整合条件を満たすように周期的に反転させた構造である(例えば、“J. A. Armstrong et. al, Phys. Rev., 127, p1918, 1962年”、“栗村, 固体物理29, No. 1, p75, 1994年”等参照。)。
疑似位相整合条件は、分極反転周期Λが、次式を満たすことである。
Λ=2m×λ/4{n(2ω)−n(ω)} …(1)
ここで、m=1,2,3,…、、n(ω)は基本波の屈折率、n(2ω)は第2高調波の屈折率である。
【0007】
通常、変換効率が(1/m)に比例することから、m=1が用いられる。また、例えばTEモードで伝播する異常光の基本波TE(ω)をTEモードで伝播する異常光の第2高調波TE(2ω)に波長変換する場合、屈折率n(ω),n(2ω)として、異常光の屈折率ne(ω),ne(2ω)が用いられる。
図4の(a)に、この場合の基本波TE(ω)の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示す。なお、波長変換素子として、周期的分極反転構造を有するMgO:LiNbOを用いている。
【0008】
次に、m=1で、例えばTEモードで伝播する異常光の基本波TE(ω)をTMモードで伝播する常光の第2高調波TM(2ω)に波長変換する場合、(1)式で、m=1、屈折率n(ω),n(2ω)としてそれぞれ異常光の屈折率ne(ω),常光の第2高調波の屈折率no(2ω)を用いればよい。
図4の(b)に、この場合の基本波TE(ω)の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示す。
【0009】
次に、m=2で、例えばTEモードで伝播する異常光の基本波TE(ω)をTMモードで伝播する常光の第2高調波TM(2ω)に波長変換する場合、(1)式で、m=2、屈折率n(ω),n(2ω)として異常光の屈折率ne(ω),常光の第2高調波の屈折率no(2ω)を用いればよい。
図4の(c)に、この場合の基本波TE(ω)の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示す。
【0010】
図4から判るように、波長変換素子の分極反転周期Λが5.3[μm]付近であって且つ基本波TE(ω)の波長λが980[nm]付近に、(a)と(c)とが交差するポイントPがある。このことは、TEモードで伝播する異常光の基本波TE(ω)が、m=1で異常光の第2高調波TE(2ω)に波長変換されるのと同時に、m=2で常光の第2高調波TM(2ω)に波長変換されることを意味している。
なお、m=2の疑似位相整合時には、分極反転周期中の分極反転部と非反転部との光軸方向の長さの比(デューティ比)が1のときは、第2高調波は生じない(前出、”栗村,固体物理”参照。)のであるが、実際にはデューティ比を厳密に1にして分極反転構造を作成することは困難であるため、上に述べたようなことが生じるのである。
また、ポイントPは、波長変換素子の屈折率の微妙なばらつきや、分極反転周期や導波路構造の不均一性によって、ある程度の幅を持ったものとなる。また、波長変換素子の温度変化によっても変動する。
【0011】
また、本願発明者が鋭意研究したところ、波長変換素子の温度変化に対して、出力光に含まれる異常光成分の変化と常光成分の変化とが異なることを確認した。それを次に説明する。
すなわち、図5に示すように、980[nm]の基本波を波長変換した場合490[nm]の出力光に含まれる異常光成分P(2ωe)は、24℃付近に最大ピークをもつ曲線で変化した。他方、出力光に含まれる常光成分P(2ωo)は、温度が上がるほど小さくなった。
つまり、波長変換素子の温度変動によって、異常光成分と常光成分の強度が変動するだけでなく、偏光比すなわち異常光成分と常光成分の比も変動することが判った。
しかし、一般にビームスプリッタは偏光性を有するため、偏光比が変動すると、ビームスプリッタにおける反射光と透過光の強度比が変動する。従って、反射光を基に出力光の制御を行っても、適正な制御はできなくなる。
【0012】
かくして、出力光の一部をビームスプリッタなどの光分岐素子で分岐し、分岐した光の強度を検出器で測定し、測定結果に基づき半導体レーザの駆動電流を調整して、レーザ光の出力を制御した場合、上記の図4,図5の例では、波長変換素子の分極反転周期Λが5.3[μm]付近であって且つ基本波の波長が980[nm]付近になると、異常光成分と常光成分とが出力光に含まれることになり、常光成分の影響を受けて、所望の出力光である異常光の強度を一定に制御できなくなる状態が生じる。
そこで、上記第1の観点による波長変換レーザ装置では、波長変換素子から出射した高調波の異常光成分のみを偏光子によって透過し出力すると共に、異常光成分の一部を分岐し強度を測定して出力を制御するようにした。これにより、波長変換素子から異常光成分と常光成分とが出力されても、所望の出力光である異常光の強度を一定に制御できなくなる状態が生じるのを防止できる。
【0013】
第2の観点では、本発明は、上記構成の波長変換レーザ装置において、前記波長変換素子から出射された前記高調波光のビーム形状を整形するビーム整形プリズムを含み、前記偏光子と該ビーム整形プリズムとは一体に構成されていることを特徴とする波長変換レーザ装置を提供する。
上記第2の観点による波長変換レーザ装置では、例えばビーム整形プリズムの傾斜面に偏光膜を施すことにより、偏光子とビーム整形プリズムとを一体に構成する。これにより、偏光子とビーム整形プリズムとを別体に構成するよりも、構成を単純化できる。
【0014】
第3の観点では、本発明は、半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出力する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記高調波光の一部を分岐させる光分岐手段と、分岐した前記高調波光の異常光成分のみを透過する偏光子と、前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置を提供する。
上記第3の観点による波長変換レーザ装置では、波長変換素子から出射した高調波の異常光成分のみを偏光子によって透過し、その強度を測定して出力を制御するようにした。これにより、波長変換素子から異常光成分と常光成分とが出力されても、所望の出力光である異常光の強度を一定に制御できなくなる状態が生じるのを防止できる。
【0015】
【発明の実施の形態】
以下、図に示す実施形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
【0016】
−第1の実施形態−
図1は、第1の実施形態にかかる波長変換レーザ装置100を示す構成説明図である。
この波長変換レーザ装置100は、光反射面1aと光出射面1bとこれらの面で挟まれた領域に電流を注入することによりレーザ光を発生する半導体光増幅素子1と、半導体光増幅素子1が載置される載置板33と、載置板33を介して半導体光増幅素子1を温度制御するためのペルチエ素子34と、半導体光増幅素子1で発生したレーザ光を集光するレンズ2と、内部にグレーティング部6を形成した光ファイバ3と、光ファイバ3から出射した光を集光するレンズ4と、波長変換素子5を含みレンズ4を介して入射された光の第2高調波光を出力する波長変換部50と、グレーティング部6を挟む2カ所で光ファイバ3を保持する第1固定部14及び第2固定部15を有するグレーティング部伸張機構20と、これらを格納する筐体10と、グレーティング部6の温度Tiを検知するための感温素子31と、波長変換部50内の温度Tcを検知するための感温素子32と、波長変換部50に入射する光の波長帯域に波長変換部50の変換可能波長帯域が適合するように温度Tiに応じて温度Tcを制御する温度制御部40と、レーザ制御部60とを備えている。
【0017】
半導体光増幅素子1は、例えば波長が975[nm]〜1015[nm]の範囲の光を発生し増幅する。光反射面1aには発生した光に対して高反射率となるコーティングが施され、光出射面1bには発生した光に対して低反射率となるコーティングが施されている。
【0018】
光ファイバ3の入射側の端面3aは、半導体光増幅素子1から出射した光がより多く入射するように、テーパ状またはくさび状に加工されていることが好ましい。この場合、レンズ2はなくてもよい。
【0019】
グレーティング部6は、光ファイバ3の一部に屈折率が周期的に変動するような加工を施して形成されている。例えば、エキシマレーザ等の紫外レーザをビームスプリッタで2光束に分け、異なる光路を通した後、光ファイバ上に重ね合わせて照射し、干渉縞を発生させ、紫外線強度に応じて生じる光ファイバのフォトリフラクティブ効果により、干渉縞と同じ間隔で周期的に屈折率を変動させることにより形成されている。グレーティング部6の周期,長さを適宜設定することにより、帯域幅や中心波長および反射率を自由に設定できる。
【0020】
グレーティング部6は、ある波長帯域の光のみ反射する。例えば、975[nm]〜1015[nm]の間に中心波長λiを持ち、約0.5[nm]の帯域幅を持つ光のみを反射する。帯域幅は、グレーティング部6の長さで決まり、中心波長λiは、屈折率が変動する周期をグレーティング部伸張機構20で調節することで調整できる。
【0021】
グレーティング部伸張機構20は、ベース21と、そのベース21上をスライドしうる移動ナット22と、その移動ナット22に螺合しているネジ棒23と、そのネジ棒23を手動または工具を用いて回転させうる操作部24とを具備している。そして、第1固定部14はベース21に設けてあり、第2固定部15は移動ナット22に設けてある。第1固定部14および第2固定部15は、接着剤または半田付けなどにより、光ファイバ3を固定的に保持している。
【0022】
操作部24を回してネジ棒23を回すと、移動ナット22がベース21上をスライドし、第1固定部14と第2固定部15の間隔が変わる。これにより、グレーティング部6が伸縮し、屈折率が変動する周期が変わる。これにより、光ファイバ3から波長変換素子5へと出射する光を、波長変換素子5の波長変換可能帯域に合わせることが出来る。
【0023】
半導体光増幅素子1とグレーティング部6とで光共振器が構成される。すなわち、半導体光増幅素子1を出射した光は、レンズ2で集光され、光ファイバ3の入射側端面3aに入射される。光ファイバ3に入射した光は、グレーティング部6で決定される波長帯域の光が反射され、半導体光増幅素子1へ戻り、半導体光増幅素子1で増幅され、再び半導体光増幅素子1を出射し、光ファイバ3に入射する。これが繰り返されることにより、グレーティング部6で決定される波長帯域の光が光ファイバ3の出射側端面3bから出射される。端面3bは、反射戻り光を抑止するため、例えば8°に傾斜して研磨されている。また、端面3bは、反射防止膜を施すことが好ましい。
【0024】
光ファイバ3の出射側端面3bから出射された光は、レンズ4で波長変換部50内の波長変換素子5の端面5aに集光される。レンズ4には、反射防止膜が施されている。
【0025】
波長変換素子5は、例えば、LiNbO,MgO:LiNbO,LiTaO,MgO:LiTaO,KNbO,KTiOPO、あるいはこれらに分極反転処理を施したものに、光導波路を形成したものである。波長変換素子5は、例えば波長が975[nm]〜1015[nm]の光が入射することにより、その第2高調波である波長が487.5[nm]〜507.5[nm]の光を発生する。
【0026】
感温素子31で検知した温度は、筐体10内のグレーティング部6の近傍の温度であるが、グレーティング部6の温度Tiとみなす。
感温素子32で検知した温度は、波長変換部50の内部空間の温度であるが、波長変換素子5の温度Tcとみなす。
感温素子31および32は、例えばサーミスタである。
【0027】
温度制御部40は、ペルチエ素子41と、グレーティング部6の温度Tiを電圧Viに変換する変換回路42と、波長変換素子5の温度Tcを電圧Vcに変換する変換回路43と、電圧Viに基準電圧Voを加算した電圧Vsを出力する加算回路44と、電圧Vsと電圧Vcの差に基づいてペルチエ素子41の駆動電流Ipを出力する駆動回路45とを有している。
そこで、次の関係がある。
Vi=A1・Ti …(2)
Vc=A2・Tc …(3)
Vs=Vi+Vo …(4)
Ip=A3・(Vs−Vc) …(5)
なお、A1,A2,A3は、変換係数である。
【0028】
また、グレーティング部6の温度Tiおよび波長変換素子5の温度Tcが共に基準温度Toの時に、光ファイバ3から波長変換素子5に入射する基本波の波長帯域の中心波長λioと波長変換素子5で波長変換可能な波長帯域の中心波長λcoとが一致するなら、(1)〜(4)式で、Ti=Tc=To,Ip=0となるから、整理すれば、次の関係がある。
0=A3・(A1・To+Vo−A2・To) …(6)
【0029】
図2は、温度制御部40の制御ループを示すブロック図である。
ブロックB1は、変換回路42,変換回路43,加算回路44,駆動回路45の変換関数を表している。この変換関数は、(2)〜(6)式より導くことが出来る。
ブロックB2は、ペルチエ素子41における電流−温度変換関数を表している。この電流−温度変換関数は、A4を変換係数として、次式で表されるものとする。
Tc=A4・Ip …(7)
【0030】
(2)〜(7)式より、次式が導かれる。
ΔTc=k・ΔTi …(8)
ただし、
ΔTc=Tc−To …(9)
ΔTi=Ti−To …(10)
k=A1・A3・A4/(1+A2・A3・A4) …(11)
とする。
【0031】
ここで、光ファイバ3から波長変換素子5に入射する基本波の波長帯域の温度係数がδλi[nm/℃]であり、波長変換素子5の変換可能波長帯域の温度係数がδλc[nm/℃]であるとき、
k=δλi/δλc
又は、
k≒δλi/δλc
が成立するように、変換係数A1〜A4を定める。
例えば、δλi=0.01[nm/℃],δλc=0.06[nm/℃]であれば、
k=1/6
又は、
k=0.1〜0.2
が成立するように、変換係数A1〜A4を定める。
【0032】
このように温度Tiに応じて温度Tcが制御されているため、温度Tiにおけるグレーティング部6の反射波長帯域に、温度Tcにおける波長変換素子5の変換可能波長帯域が常に適合している。
【0033】
図1に戻り、波長変換部50は、入射光(基本波)の第2高調波光を出力する波長変換素子5と、出力された第2高調波光をコリメートするレンズ51と、レンズ51から出射した第2高調波から異常光成分のみを透過させる偏光子52と、偏光子52から出射した光のビーム形状を楕円形から円形に整形するプリズム53および54と、第2高調波成分のみを透過し基本波成分を吸収または反射するフィルタ55と、フィルタ55から出射した光の一部を分岐し他を透過するビームスプリッタ56と、分岐した光の強度を表す測光信号Sdを出力する測光素子57と、これらを格納した筐体11と、筐体11内(特に、波長変換素子5)を温度制御するためのペルチエ素子41とを具備している。
【0034】
波長変換素子5の入射側端面5aおよび出射側端面5bは、反射戻り光を抑制する観点から、例えば10°に傾斜して研磨されている。端面5aおよび5bは、反射防止膜が施されていることが好ましい。
【0035】
プリズム53および54は、20°〜45°の頂角を有するくさび形のプリズムのペアである。プリズム53および54の取り付け角度を独立に調整することにより、波長変換素子5の導波路の個体差による楕円率のばらつきを補正し、出射光のビーム形状を円形に出来る。
【0036】
構造を単純にする観点から、偏光子52を、プリズム53または54と一体に構成してもよい。例えば、偏光子52を備える代わりに、プリズム53または54の少なくとも1つの面に偏光膜を形成する。偏光膜は、プリズム53,54の傾斜面が若干の偏光性を有することから、レーザ光が浅い角度で入射する面、例えばプリズム53の第1面に施すのが効果的である。
【0037】
測光素子57は、例えば、GaAsP系のフォトダイオードである。
【0038】
レーザ制御部60は、測光素子57からの測光信号Sdに基づき、測光素子57に入射する光の強度が所定値になるように駆動電流Idを出力して、半導体光増幅素子1を駆動する。こうして、波長変換レーザ装置100から出力される第2高調波の異常光成分の強度が適正に制御される。
【0039】
第1の実施形態にかかる波長変換レーザ装置100によれば、バイオエンジニアリング分野や計測分野で求められる異常光成分のみの直線偏光を出力することが出来る。また、常光成分に影響されずに、出力を適正に制御することが出来る。
【0040】
−第2の実施形態−
図4は、第2の実施形態にかかる波長変換レーザ装置200を示す構成説明図である。
この波長変換レーザ装置200は、レンズ51とプリズム53の間に偏光子が挿入されておらず、その代わりに、ビームスプリッタ56と測光素子57の間に偏光子58が挿入されている他は、第1の実施形態にかかる波長変換レーザ装置100と同様の構成である。
【0041】
この波長変換レーザ装置200では、ビームスプリッタ56で分岐された光の異常光成分のみが、偏光子58を透過して、測光素子57に到達する。このため、異常光成分のみによって出力が制御される。
【0042】
第2の実施形態にかかる波長変換レーザ装置200によれば、出力光には異常光成分と常光成分とが含まれるが、バイオエンジニアリング分野や計測分野で求められる異常光成分の出力強度は適正に制御できる。また、偏光子による出力ロスや収差を生じない利点がある。
【0043】
【発明の効果】
本発明の波長変換レーザ装置によれば、波長変換素子から異常光成分と常光成分とを含む高調波光が出射されても、バイオエンジニアリング分野や計測分野で求められる異常光成分の出力強度を適正に制御できる。
【図面の簡単な説明】
【図1】第1の実施形態にかかる波長変換レーザ装置100を示す構成説明図である。
【図2】第1の実施形態にかかる温度制御部の制御ループを示すブロック図である。
【図3】第2の実施形態にかかる波長変換レーザ装置200を示す構成説明図である。
【図4】基本波の波長λと疑似位相整合条件を満たす分極反転周期Λの関係を示すグラフである。
【図5】第2高調波出力に含まれる異常光成分および常光成分の温度変化を示したグラフである。
【符号の説明】
1 半導体光増幅素子
2,4,51 レンズ
3 光ファイバ
5 波長変換素子
6 グレーティング部
10,11 筐体
20 グレーティング部伸張機構
31,32 感温素子
34,41 ペルチエ素子
40 温度制御部
50 波長変換部
52,58 偏光子
53,54 プリズム
55 フィルタ
56 ビームスプリッタ
57 測光素子
60 レーザ制御部
100,200 波長変換レーザ装置

Claims (4)

  1. 半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出射する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記グレーティング部の温度を検知する感温素子と、前記波長変換素子への入射光の波長帯域に前記波長変換素子の変換可能帯域が適合するように前記感温素子で検知された前記グレーティング部の温度に応じて前記波長変換素子の温度を制御する温度制御部と、前記高調波光の異常光成分のみを透過する偏光子と、該偏光子を透過した前記異常光成分の一部を分岐させ且つ偏光性を有する光分岐手段と、分岐した前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき分岐した前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置。
  2. 請求項1に記載の波長変換レーザ装置において、前記波長変換素子から出射された前記高調波光のビーム形状を整形するビーム整形プリズムを含み、前記偏光子と該ビーム整形プリズムとは一体に構成されていることを特徴とする波長変換レーザ装置。
  3. 半導体光増幅素子と、グレーティング部を内部に形成した光ファイバと、前記半導体光増幅素子と前記光ファイバとで構成される光共振器から出射した光を入射光としその入射光の高調波光を出力する非線形光学結晶に周期的分極反転構造を形成した波長変換素子と、前記グレーティング部の温度を検知する感温素子と、前記波長変換素子への入射光の波長帯域に前記波長変換素子の変換可能帯域が適合するように前記感温素子で検知された前記グレーティング部の温度に応じて前記波長変換素子の温度を制御する温度制御部と、前記高調波光の一部を分岐させ且つ偏光性を有する光分岐手段と、分岐した前記高調波光の異常光成分のみを透過する偏光子と、前記異常光成分の強度を測定する測光手段と、前記測光手段の測定結果に基づき前記異常光成分の強度が所定値になるように前記半導体光増幅素子を駆動する制御手段とを具備したことを特徴とする波長変換レーザ装置。
  4. 請求項1から請求項3のいずれかに記載の波長変換レーザ装置において、前記波長変換素子は、MgOをドープしたLiNbO3結晶に周期的分極反転構造を形成したものであることを特徴する波長変換レーザ装置。
JP2003178835A 2003-06-18 2003-06-24 波長変換レーザ装置 Expired - Fee Related JP4111076B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003178835A JP4111076B2 (ja) 2003-06-24 2003-06-24 波長変換レーザ装置
US10/848,432 US7103075B2 (en) 2003-06-18 2004-05-18 Solid laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178835A JP4111076B2 (ja) 2003-06-24 2003-06-24 波長変換レーザ装置

Publications (2)

Publication Number Publication Date
JP2005017410A JP2005017410A (ja) 2005-01-20
JP4111076B2 true JP4111076B2 (ja) 2008-07-02

Family

ID=34180302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178835A Expired - Fee Related JP4111076B2 (ja) 2003-06-18 2003-06-24 波長変換レーザ装置

Country Status (1)

Country Link
JP (1) JP4111076B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733588B (zh) * 2020-09-11 2021-07-11 財團法人工業技術研究院 雷射加工系統

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634625A1 (en) * 2007-04-18 2013-09-04 Nikon Corporation Wavelength conversion element, wavelength conversion method, phase matching method, and light source device
JP2009058716A (ja) * 2007-08-31 2009-03-19 Seiko Epson Corp 照明装置、モニタ装置及び画像表示装置
EP2415131B1 (en) * 2009-04-03 2020-10-28 Exalos AG Light source, and optical coherence tomography module
JP5018848B2 (ja) * 2009-09-18 2012-09-05 株式会社島津製作所 波長変換レーザ装置
EP3799231B1 (en) 2019-09-27 2024-02-21 ams International AG Optical device, photonic detector, and method of manufacturing an optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733588B (zh) * 2020-09-11 2021-07-11 財團法人工業技術研究院 雷射加工系統
US11914269B2 (en) 2020-09-11 2024-02-27 Industrial Technology Research Institute Laser processing system

Also Published As

Publication number Publication date
JP2005017410A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3385898B2 (ja) 可変波長半導体レーザ光源
US7796324B2 (en) Wavelength converting apparatus and image displaying apparatus
US7826500B2 (en) Fiber laser and optical device
US7518786B2 (en) Power stabilization of semiconductor laser harmonic frequency conversion modules
KR20080055974A (ko) 파이버 레이저
US7103075B2 (en) Solid laser apparatus
US7386021B2 (en) Light source
JP4111076B2 (ja) 波長変換レーザ装置
JP5324332B2 (ja) 光周波数コム安定化光源
JP3683360B2 (ja) 偏光制御素子および固体レーザー
JP2002303904A (ja) 光波長変換装置およびその調整方法
Henriksson et al. Tandem PPKTP and ZGP OPO for mid-infrared generation
JP4470480B2 (ja) 波長変換レーザ装置
JP4111075B2 (ja) 波長変換レーザ装置
JP4748511B2 (ja) 光デバイス
JP3390493B2 (ja) 安定化高調波発生装置
RU2811388C1 (ru) Способ стабилизации узкополосных источников неклассических состояний света, получаемых внутрирезонаторной генерацией спонтанного параметрического рассеяния света, и устройство для его осуществления
JP2000114633A (ja) 波長変換固体レーザ装置
JPH05188421A (ja) 光波長変換装置
JPH11274643A (ja) 可変波長半導体レーザ光源
JP2013258248A (ja) レーザ光調整方法、及びレーザ光源装置
JPH07106682A (ja) 短波長光源
CN116526279A (zh) 一种超窄线宽激光系统
JP2007123635A (ja) レーザ装置
JPH0745896A (ja) 光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4111076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees