JP4107814B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP4107814B2
JP4107814B2 JP2001206357A JP2001206357A JP4107814B2 JP 4107814 B2 JP4107814 B2 JP 4107814B2 JP 2001206357 A JP2001206357 A JP 2001206357A JP 2001206357 A JP2001206357 A JP 2001206357A JP 4107814 B2 JP4107814 B2 JP 4107814B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
emitting layer
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001206357A
Other languages
English (en)
Other versions
JP2003023176A (ja
Inventor
好伸 末広
正好 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2001206357A priority Critical patent/JP4107814B2/ja
Priority to US10/156,502 priority patent/US6946788B2/en
Priority to EP02011635A priority patent/EP1263058B1/en
Priority to EP05017307.9A priority patent/EP1596443B1/en
Publication of JP2003023176A publication Critical patent/JP2003023176A/ja
Application granted granted Critical
Publication of JP4107814B2 publication Critical patent/JP4107814B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に発光層を形成して電圧を印加することによって発光層から発光するLEDチップ(以下、「発光素子」という。)に関するものである。
【0002】
【従来の技術】
窒化ガリウム(GaN)系の発光素子は、青色発光素子や緑色発光素子として需要が大きいものである。このGaN系の発光素子について、図6を参照して説明する。図6は、従来のGaN系の発光素子の構成を示す縦断面図である。図6に示されるように、従来のGaN系の発光素子61は、Al23 基板62(屈折率n=1.7)上にGaN系の結晶層63(n=2.4)をエピタキシャル成長させて、発光層64を形成している。発光層64側を底面として、底面にアノードとカソードの電極65,66を設けて電圧を印加することによって、発光層64内の各発光点から光が発せられて発光面62aから光が放射されるものである。
【0003】
【発明が解決しようとする課題】
しかし、発光素子61の発光層64を含むGaN結晶層63は屈折率(n=2.4)が、Al23 基板62(n=1.7)及び封止樹脂である透明エポキシ樹脂(n=1.5)に比較して高く、発光した光の吸収率も高いため、発光素子61からの光の取り出し効率が低いという問題点があった。即ち、発光層64における各発光点で光が発生し放射されるが、基板62の界面との臨界角以内で放射される光だけが基板62内へ入ることができて効率良く外部放射される。ところが発光層64の屈折率がn=2.4と高いため、この臨界角は非常に小さくなり、一部の光しか外部放射されず、それ以外の多くの光は吸収率の高い結晶層63中で吸収されて、大部分が熱に変換されてしまう。このため、外部量子効率が低いものであった。また、発熱率が高くなることにより、投入許容電流が制限されたり、寿命特性への影響があるという問題点があった。
【0004】
そこで、本発明は、屈折率の近い基板上に結晶層を形成することによって、発光層からの光の取り出し効率が大きく、発熱率が小さく、さらには発光素子で発する熱の放熱性が高い発光素子を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
請求項1の発明にかかる発光素子は、発光層と光取り出し部とを有する発光素子において、前記光取り出し部は複数の略凸面形状であり、前記発光層と前記光取り出し部との間が略同等の屈折率であるものである。
このように、発光層と光取り出し部との間が略同等の屈折率であることから、発光層から光取り出し部の間での屈折や界面反射は生じない。そして、光取り出し部が略凸面形状であることから光取り出し部を構成する各光取り出し面が発光層から発する光に対して垂直に近くなって外部に光が放射されるための臨界角内に入る割合が大きくなる。このため、光取り出し部界面での界面反射の影響を大幅に減ずることにより、発光層で発せられた光が有効に光取り出し部から外部放射される。このようにして、発光層からの光の取り出し効率が大きい発光素子となる。
また、前記発光層が前記発光素子の底面側に位置するようにマウントされるものであるから、発光層の各発光点から上方へ発せられた光は結晶層と基板との界面の臨界角以下で放射された光のみがこの界面を通過して基板中に入ることができ、そのまま基板を通過して効率良く外部放射される。ここで、発光層と光取り出し部との間が略同等の屈折率であることから、結晶層は基板と屈折率がほぼ等しくなり、これらの界面での屈折や界面反射は生ぜず、ほぼ全ての光が界面を通過して基板から効率良く外部放射される。このように光の取り出し効率が向上することによって、外部量子効率の高効率化がなされる。さらに、発光素子は熱伝導率の高い金属にマウントされるが、発光層が発光素子の底面側に位置していることから、発光層で発せられた熱の放熱性が向上する。また、外部量子効率の高効率化に伴って発熱率が低下するので放熱性の向上も加わって投入許容電力が増して、高効率化と相俟って高出力化を図ることができる。故に、発光層が発光素子の底面側に位置するようにマウントすることによって、発光層からの光の取り出し効率が大きく、放熱性が向上するとともに発熱率が小さくなり、高出力化を図ることのできる発光素子となる。
そして、両極の電極が前記底面側に形成されているから、光取り出し部の形成を容易にできる。また、基板側即ち発光面側に電極を設ける必要がなくなるため、基板を通過した光が電極に遮られることなく効率良く外部放射される。故に、発光層からの光の取り出し効率が大きく、発熱率が小さく、さらには発光素子で発する熱の放熱性が高い発光素子となる。
更に、前記略凸面形状の光取り出し部は5面以上の光取り出し面から構成され、前記各光取り出し面に略垂直な方向に前記発光層が存在するものであるから、略凸面形状の光取り出し部を構成する光取り出し面を5面有しており、各光取り出し面に略垂直な方向に発光層が存在しているため、発光層から発せられた光はほぼ全てがいずれかの光取り出し面から外部放射されることになり、外部量子効率の高効率化がなされる。故に、発光層からの光の取り出し効率が非常に大きい発光素子となる。
【0006】
前記略凸面形状の光取り出し部を複数備えることによって、臨界角内に入る発光層からの光の割合が大きくなって、1次光の外部放射効率を大きくすることができる。さらに、光の取り出し面積を大きくできるので2次光以降の外部放射効率も大きくなり、光の取り出し効率が大きくなる。この結果、発光素子全体の大きさに対して基板の厚さが薄い場合でも光の取り出し効率が大きくなる効果を同様に得ることができるので、大チップ化の際の光の取り出し効率の低減を防ぐことができる。また、母材に対する発光素子の取り率を向上させることができる。即ち、略凸面形状の光取り出し部が1つの発光素子の相似形で大チップ化を行うには、ウェハー厚を厚くする必要があり、材料からの取り率が低下するが、略凸面形状の光取り出し部を複数備えていればウェハー厚を同一とし、ダイシングサイズを大きくした発光素子による同様の効率を期待できるとともに、材料からの取り率が高く、有効に利用できる。
このようにして、発光素子全体の大きさに対して基板の厚さが薄い場合でも光の取り出し効率が大きくなる効果を同様に得ることができ、材料からの発光素子の取り率が高く有効利用でき、大チップ化の際の光の取り出し効率の低減を防ぐことができる発光素子となる。
【0007】
更に、前記光取り出し部に対して略垂直な前記発光素子の結晶層の部分にのみ前記発光層が形成されているものである。
これによって、発光層が各区画の中央部分にのみ形成されて点光源化されるので、チップサイズを発光層を結晶層の全面に形成した発光素子と同程度にした場合には発光層で発した光の1次光の外部放射効率がさらに増加して、光取り出し効率が向上する。さらに、内部発熱の減少によって、光取り出し効率の増大だけでなく発熱による出力低下も軽減することができ、より一層の効率向上を図ることができる。また、チップサイズを大きくして中央部分にのみ形成された発光層の発光エリアを結晶層の全面に発光層を形成した場合と同じにすれば、通電電流を大きく設定できることによって大出力化を図ることができる。現在、LED光源においては、モバイル機器用光源としては省エネ高効率が求められており、白熱電球代替光源としては高出力が求められることが多いが、本発明にかかる発光素子はそのいずれの要求にも答えることができる。
このようにして、発光層が点光源化されることによって、より一層の効率向上と高出力化が可能な発光素子となる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態及び実施の形態を説明する参考事例について、図面を参照しながら説明する。なお、以下の各実施の形態及び実施の形態を説明する参考事例においては、発光素子の光を取り出す部分全体を「光取り出し部」と呼び、光取り出し部を構成する各面をそれぞれ「光取り出し面」と呼ぶこととし、全体と部分とを区別する。
【0009】
参考事例1
まず、本発明の実施の形態を説明する参考事例1について、図1を参照して説明する。図1(a)は本発明の実施の形態を説明する参考事例1にかかる発光素子の構成を示す平面図、(b)は縦断面図、(c)は底面図である。
【0010】
図1(b)に示されるように、本実施の形態を説明する参考事例1の発光素子1においては、SiC基板2(屈折率n=2.5)上にGaN(n=2.4)の結晶層3をエピタキシャル成長させて、発光層4を形成している(電極5の上部を除く)。そして、基板2側を上面、結晶層3側を底面として、図1(c)に示されるように、結晶層3の底面に両方の電極5,6を設けている。さらに、図1(a)に示されるように、SiC基板2の上面の四辺を斜めに削り取り正四角錐台形とし、これら5面(2a,2b,2c,2d,2e)を光取り出し面としてある。斜め部分の角度は約45度であり、発光素子1全体として半球形に近い形状になっている。
【0011】
発光素子1はこのような構成を有することから、GaN結晶層3の発光層4からの光は、基板2との界面では屈折率がほぼ同じであるため光の閉じ込めがなく殆どの光がそのまま通過し、基板2と空気との界面においては基板2の上面の四辺が斜めに削り取られているために臨界角内に入る光の割合が多くなる。この結果、1次光の外部放射効率が増大し、2次光以降の外部放射効率も増して、光の取り出し効率が向上することによって、外部量子効率を大幅に向上させることができる。また、発光素子1は熱伝導率の高い金属にマウントされるが、発光層が底面側にあることにより、発光層で発熱した熱の外部への放熱性を高くすることができる。さらに、この高効率化に伴って発熱率が低下し、かつ発光素子の放熱性を高めることができるので投入許容電力が増して、高効率化と相俟って高出力化を図ることができる。
【0012】
なお、光取り出し面形成のための加工は基板を格子状に加工していくだけであり、光取り出し面となるSiC基板2のカット面(2b,2c,2d,2e)については、ダイヤモンドカッターの回転数、カット速度の調整で、カット面を鏡面状態とすることが可能である。このため容易に製造することができ、量産性に優れる。
【0013】
このようにして、本実施の形態を説明する参考事例1の発光素子1においては、互いに屈折率の近い炭化珪素基板上に窒化ガリウム結晶層を形成することによって、発光層からの光の取り出し効率が大きく、発熱率が小さくて、光出力の高い発光素子となる。
【0014】
参考事例2
次に、本発明の実施の形態を説明する参考事例2について、図2を参照して説明する。図2は本発明の実施の形態を説明する参考事例2にかかる発光素子の構成を示す縦断面図である。なお、実施の形態を説明する参考事例1と同一の部分については同一の符号を付して説明を一部省略する。
【0015】
本実施の形態を説明する参考事例2の発光素子11が実施の形態を説明する参考事例1の発光素子1と異なるのは、窒化ガリウム結晶層3内の発光層7が中央部分のみに形成されており、電極5の上以外の結晶層3内の全面に亘って発光層4が形成されていた発光素子1と比較して、光取り出し面に対する発光部が点光源に近く、かつ光取り出し面の中央部付近に位置していることである。これによって、発光層7から発せられた光の光取り出し面への入射角度は、実施の形態を説明する参考事例1と比較して総じて深い角度となるので、1次光の外部放射効率がさらに増加して、光取り出し効率を高くすることができる。これにより、チップサイズが発光素子1と同程度の場合には、発光層で発した光の外部への取り出し効率の向上により、従来素子に対し少ない電力で同じ発光出力を得ることのできる省エネ素子とすることができる。また、チップサイズを大きくして、発光素子11の発光層7の発光エリアが発光素子1の発光層4と同程度になるように大きくすれば、従来素子と同じ電力でより大出力を得ること、さらには、発熱の低減、放熱性の向上により、従来素子より大きな電力を投入できることによる大出力化を図ることができる。
【0016】
現在、LED光源は、モバイル機器用光源としては省エネ高効率化が求められ、白熱電球代替光源としては高出力化が求められることが多いが、本実施の形態を説明する参考事例2の発光素子11の構成によれば、上述の如く、そのいずれの要求にも答えることができる。
このようにして、本実施の形態を説明する参考事例2の発光素子11においては、発光層が点光源化されることによって、より一層の効率向上と高出力化が可能な発光素子となる。
【0017】
参考事例3
次に、本発明の実施の形態を説明する参考事例3について、図3を参照して説明する。図3(a)は本発明の実施の形態を説明する参考事例3にかかる発光素子の構成を示す平面図、(b)は縦断面図である。
【0018】
図3(a)に示されるように、本実施の形態を説明する参考事例3の発光素子31においては、SiC基板32に縦横それぞれ4本ずつのV形45°の溝33が切られて、SiC基板32が25個の格子状の光取り出し部としての正四角錐台形に区分されている。このように、出射面となるSiC基板32が25個の正四角錐台形に区分されて格子状に並んでいることによって、図(b)に示されるように、発光素子31の幅に対してSiC基板32の高さが低い場合においても、GaN結晶層35内の発光層34から発せられた光が各正四角錐台形から効率的に取り出されて、高い外部放射効率を得ることができる。これによって、発光素子の大チップ化を行う場合でも実施の形態を説明する参考事例1と同様の効率を期待できるとともに、母材に対する発光素子の取り率を向上させることができる。即ち、図1に示される実施の形態を説明する参考事例1の発光素子1の相似形で大チップ化を行うには、ウェハー厚を厚くする必要があり、材料からの取り率が低下するが、これによればウェハー厚を同一とし、ダイシングサイズを大きくした発光素子による実施の形態を説明する参考事例1同様の効率を期待できるとともに、材料からの取り率が高く、有効に利用できる。さらに、格子状の複数の正四角錐台形とすることによって製造が容易になるという利点もある。
【0019】
このようにして、本実施の形態を説明する参考事例3の発光素子31においては、出射面となるSiC基板32を格子状の25個の正四角錐台形に区分したことによって、発光素子を大チップ化した場合でも高い外部量子効率を得ることができるとともに母材に対する発光素子の取り率を向上させることができる。また、格子状としたことによって製造が容易になる。
なお、本実施の形態を説明する参考事例3の発光素子31においては25個の光取り出し部としての正四角錐台形を格子状が並んだ場合について説明したが、これに限らず、光取り出し部をどのようにも複数個並べることによって、発光素子を大チップ化した場合でも高い外部量子効率を得ることができるとともに母材に対する発光素子の取り率を向上させることができる。
【0020】
実施の形態
次に、本発明の実施の形態について、図4を参照して説明する。図4(a)は本発明の実施の形態にかかる発光素子の構成を示す平面図、(b)は縦断面図である。
【0021】
図4(a)に示されるように、本実施の形態の発光素子41においても、SiC基板42に縦横それぞれ4本ずつのV形の溝43が切られて、SiC基板42が25個の正四角錐台形に区分されている。さらに、GaN結晶層45内の発光層44が、各正四角錐台形の平面の部分に相当する部分にのみ形成されて点光源化されている。これによって、光取り出し効率がさらに向上するとともに、このように出射面となるSiC基板42を25個の正四角錐台形に区分したことによって、実施の形態を説明する参考事例3と同様に、発光素子を大チップ化した場合でも外部量子効率の低下を防ぐことができる。さらに、発光層44が分断されていることによって、発光層44における熱の局在化を防ぐことができ、熱による発光効率の低下を大幅に低減することができる。
【0022】
このようにして、本実施の形態の発光素子41においては、発光層44が点光源化されていることによって光取り出し効率がさらに向上するとともに、発光層44が分断されていることによって熱の局在化による発光効率の低下を大幅に低減することができる。
【0023】
参考事例4
次に、本発明の実施の形態を説明する参考事例4について、図5を参照して説明する。図5(a)は本発明の実施の形態を説明する参考事例4にかかる発光素子の構成を示す平面図、(b)は縦断面図である。
【0024】
図5(a)に示されるように、本実施の形態を説明する参考事例4の発光素子51においては、SiC基板52に縦方向のみに4本のV形の溝53が切られて、SiC基板42が5本の棒状台形に区分されている。そして、これらの棒状台形の平面の部分に相当するGaN結晶層55の部分(電極56の上部を除く)にのみ発光層54が形成されている。したがって、発光層54は図5(b)の紙面に垂直な方向に伸びた棒状光源となっている。これによって、図5(b)に示されるように、発光素子51の幅に対してSiC基板52の高さが低い場合においても、GaN結晶層55内の発光層54から発せられた光が各棒状台形から効率的に取り出されて、高い外部放射効率を得ることができる。これによって、発光素子を大チップ化した場合でも外部量子効率の低下を防ぐことができる。
【0025】
なお、この際には、実施の形態ほどの光取り出し効率の向上は期待できないが、加工を簡略化でき、かつ従来技術に対して光の取り出し効率の向上を図ることができる。
【0026】
このようにして、本実施の形態を説明する参考事例4の発光素子51においては、SiC基板42を5本の棒状台形に区分した状態においてもGaN結晶層55内の発光層54から発せられた光が各棒状台形から効率的に取り出されて、高い外部放射効率を得ることができる。これによって、発光素子を大チップ化した場合でも外部量子効率の低下を防ぐことができる。
【0027】
上記各実施の形態及び実施の形態を説明する参考事例においては、炭化珪素(SiC)基板の上に窒化ガリウム(GaN)の結晶層をエピタキシャル成長させた発光素子について説明したが、これに限らず、砒素化ガリウム(GaAs)の上に砒素化ガリウム系の結晶層をエピタキシャル成長させた発光素子等の他の材料からなる発光素子でも良い。また、結晶成長に用いた基板を除去し、発光素子が発した光に対する透光性の高い基板や、発光層と同等の屈折率の基板を貼り合わせたものを用いても良い。この際には、貼り合わせた後に光取り出し面の加工を行っても良いし、光取り出し面の加工を行った基板を貼り合わせても良い。それ以外に他の基板を貼り合わせたものでも良い(屈折率、透光性の自由度を高めることができる)。
発光素子のその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、上記各実施の形態及び実施の形態を説明する参考事例に限定されるものではない。
【0028】
【発明の効果】
以上説明したように、請求項1の発明にかかる発光素子は、発光層と光取り出し部とを有する発光素子において、前記光取り出し部は略凸面形状を複数配設したものであり、前記発光層と前記光取り出し部との間が略同等の屈折率であるものである。
このように、発光層と光取り出し部との間が略同等の屈折率であることから、発光層から光取り出し部の間での屈折や界面反射は生じない。そして、光取り出し部が略凸面形状であることから光取り出し部を構成する各光取り出し面が発光層から発する光に対して垂直に近くなって外部に光が放射されるための臨界角内に入る割合が大きくなる。このため、光取り出し部界面での界面反射の影響を大幅に減ずることにより、発光層で発せられた光が有効に光取り出し部から外部放射される。このようにして、発光層からの光の取り出し効率が大きい発光素子となる。
また、前記発光層が前記発光素子の底面側に位置するようにマウントされるから、発光層の各発光点から上方へ発せられた光は結晶層と基板との界面の臨界角以下で放射された光のみがこの界面を通過して基板中に入ることができ、そのまま基板を通過して効率良く外部放射される。ここで、発光層と光取り出し部との間が略同等の屈折率であることから、結晶層は基板と屈折率がほぼ等しくなり、これらの界面での屈折や界面反射は生ぜず、ほぼ全ての光が界面を通過して基板から効率良く外部放射される。このように光の取り出し効率が向上することによって、外部量子効率の高効率化がなされる。さらに、発光素子は熱伝導率の高い金属にマウントされるが、発光層が発光素子の底面側に位置していることから、発光層で発せられた熱の放熱性が向上する。また、外部量子効率の高効率化に伴って発熱率が低下するので放熱性の向上も加わって投入許容電力が増して、高効率化と相俟って高出力化を図ることができる。故に、発光層が発光素子の底面側に位置するようにマウントすることによって、発光層からの光の取り出し効率が大きく、放熱性が向上するとともに発熱率が小さくなり、高出力化を図ることのできる発光素子となる。
そして、両極の電極が前記底面側に形成されているから、光取り出し部の形成を容易にできる。また、基板側即ち発光面側に電極を設ける必要がなくなるため、基板を通過した光が電極に遮られることなく効率良く外部放射される。故に、発光層からの光の取り出し効率が大きく、発熱率が小さく、さらには発光素子で発する熱の放熱性が高い発光素子となる。
更に、前記略凸面形状の光取り出し部は5面以上の光取り出し面から構成され、前記各光取り出し面に略垂直な方向に前記発光層が存在するものであるから、略凸面形状の光取り出し部を構成する光取り出し面を5面以上有しており、各光取り出し面に略垂直な方向に発光層が存在しているため、発光層から発せられた光はほぼ全てがいずれかの光取り出し面から外部放射されることになり、外部量子効率の高効率化がなされる。故に、発光層からの光の取り出し効率が非常に大きい発光素子となる。
【0029】
前記略凸面形状の光取り出し部を複数備えているものであるから、臨界角内に入る発光層からの光の割合が大きくなって、1次光の外部放射効率を大きくすることができる。さらに、光の取り出し面積を大きくできるので2次光以降の外部放射効率も大きくなり、光の取り出し効率が大きくなる。この結果、発光素子全体の大きさに対して基板の厚さが薄い場合でも光の取り出し効率が大きくなる効果を同様に得ることができるので、大チップ化の際の光の取り出し効率の低減を防ぐことができる。また、母材に対する発光素子の取り率を向上させることができる。即ち、略凸面形状の光取り出し部が1つの発光素子の相似形で大チップ化を行うには、ウェハー厚を厚くする必要があり、材料からの取り率が低下するが、略凸面形状の光取り出し部を複数備えていればウェハー厚を同一とし、ダイシングサイズを大きくした発光素子による同様の効率を期待できるとともに、材料からの取り率が高く、有効に利用できる。
このようにして、発光素子全体の大きさに対して基板の厚さが薄い場合でも光の取り出し効率が大きくなる効果を同様に得ることができ、材料からの発光素子の取り率が高く有効利用でき、大チップ化の際の光の取り出し効率の低減を防ぐことができる発光素子となる。
【0030】
加えて、前記光取り出し部に対して略垂直な前記発光素子の結晶層の部分にのみ前記発光層が形成されているから、発光層が各区画の中央部分にのみ形成されて点光源化されるので、チップサイズを発光層を結晶層の全面に形成した発光素子と同程度にした場合には発光層で発した光の1次光の外部放射効率がさらに増加して、光取り出し効率が向上する。
【0031】
また、内部発熱の減少によって、光取り出し効率の増大だけでなく発熱による出力低下も軽減することができ、より一層の効率向上を図ることができる。また、チップサイズを大きくして中央部分にのみ形成された発光層の発光エリアを結晶層の全面に発光層を形成した場合と同じにすれば、通電電流を大きく設定できることによって大出力化を図ることができる。現在、LED光源においては、モバイル機器用光源としては省エネ高効率が求められており、白熱電球代替光源としては高出力が求められることが多いが、本発明にかかる発光素子はそのいずれの要求にも答えることができる。
このようにして、発光層が点光源化されることによって、より一層の効率向上と高出力化が可能な発光素子となる。
【図面の簡単な説明】
【図1】 図1(a)は本発明の実施の形態を説明する参考事例1にかかる発光素子の構成を示す平面図、(b)は縦断面図、(c)は底面図である。
【図2】 図2は本発明の実施の形態を説明する参考事例2にかかる発光素子の構成を示す縦断面図である。
【図3】 図3(a)は本発明の実施の形態を説明する参考事例3にかかる発光素子の構成を示す平面図、(b)は縦断面図である。
【図4】 図4(a)は本発明の実施の形態にかかる発光素子の構成を示す平面図、(b)は縦断面図である。
【図5】 図5(a)は本発明の実施の形態を説明する参考事例4にかかる発光素子の構成を示す平面図、(b)は縦断面図である。
【図6】 図6は、従来のGaN系の発光素子の構成を示す縦断面図である。
【符号の説明】
1,11,31,41,51 発光素子
2,32,42,52 基板
2a,2b,2c,2d,2e 光取り出し面
3,35,45,55 結晶層
4,7,34,44,54 発光層
5,6,36,37,46,47,56,57 両極の電極
33,43,53 複数の溝

Claims (1)

  1. 基板に結晶層を成長させて形成した発光層と、該発光層からの光を取り出す前記基板に形成した光取り出し部とを有する発光素子において、
    前記光取り出し部は、縦横それぞれV形溝が切られて形成された複数の四角錐台形に区分されており、
    前記発光層は、前記各四角錐台形の前記各面に略垂直な方向にあり、かつ、前記各四角錐台形の上面に相当する部分のみに存在し、
    しかも、前記発光層が前記発光素子の底面側に位置するようにマウントされ、両極の電極が前記底面に形成されていることを特徴とする発光素子。
JP2001206357A 2001-05-29 2001-07-06 発光素子 Expired - Fee Related JP4107814B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001206357A JP4107814B2 (ja) 2001-07-06 2001-07-06 発光素子
US10/156,502 US6946788B2 (en) 2001-05-29 2002-05-29 Light-emitting element
EP02011635A EP1263058B1 (en) 2001-05-29 2002-05-29 Light-emitting element
EP05017307.9A EP1596443B1 (en) 2001-05-29 2002-05-29 Light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206357A JP4107814B2 (ja) 2001-07-06 2001-07-06 発光素子

Publications (2)

Publication Number Publication Date
JP2003023176A JP2003023176A (ja) 2003-01-24
JP4107814B2 true JP4107814B2 (ja) 2008-06-25

Family

ID=19042507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206357A Expired - Fee Related JP4107814B2 (ja) 2001-05-29 2001-07-06 発光素子

Country Status (1)

Country Link
JP (1) JP4107814B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635503B2 (en) * 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
JP4317697B2 (ja) 2003-01-30 2009-08-19 パナソニック株式会社 光半導体ベアチップ、プリント配線板、照明ユニットおよび照明装置
JP2005228924A (ja) * 2004-02-13 2005-08-25 Toshiba Corp 半導体発光素子
JP2006100787A (ja) * 2004-08-31 2006-04-13 Toyoda Gosei Co Ltd 発光装置および発光素子
JP2006179511A (ja) * 2004-12-20 2006-07-06 Sumitomo Electric Ind Ltd 発光装置
KR100716646B1 (ko) * 2005-11-04 2007-05-09 서울옵토디바이스주식회사 경사진 광 방출면을 갖는 발광소자 및 그것을 제조하는방법
KR100785451B1 (ko) * 2006-03-30 2007-12-13 서울옵토디바이스주식회사 패터닝된 투명전극층을 갖는 발광 소자 및 그것을 제조하는방법
JP5044992B2 (ja) * 2006-05-26 2012-10-10 セイコーエプソン株式会社 発光素子及びプロジェクタ
KR101262386B1 (ko) 2006-09-25 2013-05-08 엘지이노텍 주식회사 질화물 반도체 발광소자의 제조 방법
US20080258130A1 (en) * 2007-04-23 2008-10-23 Bergmann Michael J Beveled LED Chip with Transparent Substrate
JP4829190B2 (ja) * 2007-08-22 2011-12-07 株式会社東芝 発光素子
JP5334925B2 (ja) * 2010-07-26 2013-11-06 株式会社東芝 発光素子
CN104241262B (zh) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 发光装置以及显示装置

Also Published As

Publication number Publication date
JP2003023176A (ja) 2003-01-24

Similar Documents

Publication Publication Date Title
KR100731673B1 (ko) 광 적출을 향상시킨 마이크로-발광 다이오드 어레이
US9941328B2 (en) Optical device having mesas for light extraction enhancement
US8410506B2 (en) High efficiency light emitting diode
KR102323686B1 (ko) 발광 소자 및 그 제조 방법
KR100969100B1 (ko) 발광소자, 발광소자의 제조방법 및 발광소자 패키지
US6323063B2 (en) Forming LED having angled sides for increased side light extraction
CN1292493C (zh) 藉由内部及外部光学组件之使用而加强发光二极管中的光放出
JP4107814B2 (ja) 発光素子
JP2004521494A (ja) 光抽出用の改良を含む発光ダイオード及びその製造方法
KR20130102341A (ko) 개선된 광 추출 효율을 갖는 발광 다이오드 및 그것을 제조하는 방법
WO2015184774A1 (zh) 一种倒装发光二极管结构及其制作方法
US20180047883A1 (en) Light emitting element with light transmissive substrate having recess in cross-sectional plane
JP3767420B2 (ja) 発光素子
TWI614916B (zh) 光電元件及其製造方法
CN108878598A (zh) 一种垂直结构发光二极管芯片的制作方法
JP5204352B1 (ja) 窒化物系半導体発光素子
WO1999031738A2 (en) Aiii-nitride channeled led
KR101272708B1 (ko) 개선된 발광 효율을 갖는 발광다이오드 및 제조방법
KR101171326B1 (ko) 발광 소자 및 이의 제조 방법
CN102456783B (zh) 垂直结构的紫外光发光二极管芯片及其制造方法
US20070096120A1 (en) Lateral current GaN flip chip LED with shaped transparent substrate
KR102268107B1 (ko) 발광 소자
CN218333833U (zh) 一种复合衬底、led外延片和垂直led芯片
KR101435512B1 (ko) 혼성 구조를 갖는 발광다이오드
JP2004519098A (ja) 窒化ガリウム系発光ダイオードの光抽出効率性の向上

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060529

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees