JP5334925B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP5334925B2
JP5334925B2 JP2010167356A JP2010167356A JP5334925B2 JP 5334925 B2 JP5334925 B2 JP 5334925B2 JP 2010167356 A JP2010167356 A JP 2010167356A JP 2010167356 A JP2010167356 A JP 2010167356A JP 5334925 B2 JP5334925 B2 JP 5334925B2
Authority
JP
Japan
Prior art keywords
light
layer
light emitting
refractive index
convex structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010167356A
Other languages
English (en)
Other versions
JP2010267994A (ja
Inventor
里織 安倍
俊行 岡
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010167356A priority Critical patent/JP5334925B2/ja
Publication of JP2010267994A publication Critical patent/JP2010267994A/ja
Application granted granted Critical
Publication of JP5334925B2 publication Critical patent/JP5334925B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、光取り出し効率の向上した発光素子及びその製造方法に係り、特に、そのような発光素子の基板表面構造に関する。
近年、半導体発光素子、中でも発光ダイオード(LED)は、ディスプレイ用バックライト、車載用、照明用などに幅広く用いられている。これらの用途において、半導体発光素子は、発光効率の高いものが要求されている。半導体発光素子の発光効率を高めるための有力な手段として、素子からの光取出し効率を上げることが考えられ、これに関し、これまで多くの研究が重ねられている。
例えば、屈折率の高い基板を用いた発光素子では、外部との大きな屈折率差による基板表面及び界面での反射があることと、外部への出射角が全反射の臨界角以上であるため外部へ取り出せない光成分があることにより、光取り出しの損失の問題が存在している。
このような光取り出しの損失を回避する方法として、反射防止効果や回折効果を得るために、基板表面に高屈折率樹脂層を形成したり、ナノ凹凸表面加工などを施す技術が知られている。
しかし、発光素子内部で発生した光を外部に効率よく取り出すために従来検討されているナノ凹凸表面加工の方法(例えば、特許文献1及び特許文献2参照)では、凹凸形状を実際に形成するためにエッチングなどの複雑な工程が必要となり、理論上の最適形状を最適位置で形成することが困難であった。
特開2003−258296号公報 特開2007−184313号公報
本発明は、以上のような事情の下になされ、高屈折率基板の光取り出し面から効率良く光を取り出すことの可能な発光素子を提供することを目的とする。
上記課題を解決するため、本発明の第1の態様は、発光層を備える支持基板、及び前記支持基板の光取り出し面上に形成された光透過層を具備し、前記光透過層は、前記支持基板よりも屈折率の低い材料複数の凸状構造体、及び前記凸状構造体を覆う、前記凸状構造体よりも屈折率の低い材料の被覆層を含み、前記凸状構造体はZnO柱状体であり、面内方向周期的屈折率分布構造を有することを特徴とする発光素子を提供する。
このような発光素子において、前記光透過層は、前記凸状構造体を覆う、前記凸状構造体よりも屈折率の低い材料からなる被覆層を含むことができる。また、前記凸状構造体は無機材料からなり、前記被覆層は樹脂材料からなるものとすることができる。また、前記凸状構造体は、蛍光体により構成することができる。
あるいはまた、前記凸状構造体及び被覆層は樹脂材料からなるものとし、前記凸状構造体を、エネルギービームの照射による樹脂の相転移により形成することができる。
前記支持基板の光取り出し面は、水平面とその周囲の傾斜面とからなるものとすることができる。また、前記凸状構造体は、ナノメーターないしサブミクロンオーダーのサイズを有するものとすることができる。更に、前記凸状構造体の上、又は隣接する凸状構造体間の空隙内に、蛍光体粒子を配置することができる。
本発明の第2の態様は、発光層を備える支持基板上に、エネルギービームの照射により相転移し、屈折率が変化する樹脂層を形成する工程、及びこの樹脂層にエネルギービームを照射し、樹脂を相転移せしめ、前記樹脂層に周期的屈折率分布構造を形成する工程を具備することを特徴とする発光素子の製造方法を提供する。
このような発光素子の製造方法において、前記エネルギービームとしてレーザビームを用い、前記樹脂層として、光記録用樹脂材料、ホログラム記録用樹脂材料、又は回折格子光学部品用樹脂材料を用いることができる。
本発明によると、光透過層が面内方向及び厚さ方向に周期的屈折率分布構造を有しているため、高屈折率基板の光取り出し面から効率良く光を取り出すことが可能な発光素子が提供される。
本発明の第1の実施形態に係る発光素子を示す模式図。 本発明の第1の実施形態に係る発光素子の光取り出しのメカニズムを説明する図。 本発明の第2の実施形態に係る発光素子を示す模式図。 本発明の第3の実施形態に係る発光素子を示す模式図。 本発明の第4の実施形態に係る発光素子を示す模式図。 本発明の第5の実施形態に係る発光素子を示す模式図。 本発明の第6の実施形態に係る発光素子を示す模式図。 実施例1に係る発光素子を示す模式図。 実施例1に係る発光素子における六角柱状のZnO結晶を示す図。 実施例1に係る発光素子の光取出し面を示す模式図。 実施例1に係る発光素子を示す模式図。 実施例2に係る発光素子の光取出し面を示す模式図。
以下、発明を実施するための最良の形態について説明する。
図1は、本発明の第1の実施形態に係る発光素子の光取り出し面を示す図である。図1において、LED構造(図示せず)を有するLED基板1の光出射面には、光透過層2が形成され、この光透過層2は、高屈折率部分として、無機物質からなる凸状構造体3と、低屈折率部分として、凸状構造体3を覆う樹脂層4とから構成されている。なお、無機物質からなる凸状構造体3が周期的屈折率分布構造を有していればよく、低屈折率部分としての樹脂層4は必ずしも必要ではなく、空気層であってもよい。
LED基板1としては、例えば、炭素化ケイ素(SiC)、窒化ガリウム(GaN)、サファイア(Al23)、などの半導体基板を用いることができる。
また、無機物質からなる凸状構造体3としては、GaNやZnO材料を主成分とする無機物質を用いることができる。これらの無機物質からなる凸状構造体3は、ナノロッド、マイクロロッド、ナノコラム、ナノウィスカなどとよばれる形状のものを形成することができる。
凸状構造体3のサイズ、即ち、高さ及び径は、ナノメートルないしサブミクロンオーダーであることが好ましい。このようなサイズの凸状構造体3は、溶液から析出させることにより、基板面から垂直方向に成長させることができる。
低屈折率部分としての樹脂層には、シリコーン樹脂、アクリル樹脂、エポキシ樹脂などの種々のポリマー材料が挙げられる。
以上の光透過層2を構成する材料は、発光波長に対して光透過率が高い材料であることが望ましい。
図1に示すように、LED基板1の光取り出し面上に光透過層2を形成することで、反射防止効果が得られ、また光透過層2内に凸状構造体3からなる周期的屈折率分布構造を形成することで、回折効果と合わせて、高屈折率基板1からの光取り出し効率を向上させることができる。
このような本実施形態の効果について、図2を参照して説明する。
図2において、基板1の屈折率をn、凸状構造体3の屈折率をn、樹脂層4の屈折率をnとすると、n>n>nである。即ち、発光層(図示せず)からの光は、様々な経路を経て、例えば、高屈折率nを有する基板1から、屈折率nより低い屈折率nを有する凸状構造体3を通って、屈折率nより低い屈折率nを有する樹脂層4へ、段階的に順次減少する屈折率の媒質を経て、空気中に至る。
図2に示すように、基板1の光取り出し面から垂直方向に出た光Aは、そのまま進路を変えることなく凸状構造体3及び樹脂層4を透過する。基板1の光取り出し面から垂直方向に樹脂層4に直接入った光Bもまたそのまま樹脂層4を透過する。
次に、基板1の光取り出し面から臨界角より小さい角度で凸状構造体3に入射し、凸状構造体3と樹脂層4の間の臨界角より大きい角度で凸状構造体3と樹脂層4の界面に入射した光Cは、全反射を繰り返して、凸状構造体3の頂部から樹脂層4に出る。
また、基板1の光取り出し面から基板1と樹脂層4の間の臨界角より大きい角度で樹脂層4に直接入った光Dは、全反射して基板1内に戻る。また、基板1の光取り出し面から臨界角より小さい角度で凸状構造体3に入射し、凸状構造体3と樹脂層4の間の臨界角より小さい角度で凸状構造体3と樹脂層4の界面に入射した光Eは、樹脂層4に入り、最終的に外部に出る。
このように、本実施形態においては、光出射面上に凸状構造体3を形成することにより、光出射面における屈折率の差を小さくすることができるため、光出射面で光が全反射する臨界角度を、空気中へ出射される場合よりも大きくすることができる。このため、光の取り出し効率を向上させることができる。
例えば、基板1としてn型GaNを用い、その光取り出し面上に凸状構造体3としてZnO柱を形成した場合、光が全反射する臨界角度は48.4°となり、空気中へ出射される場合の臨界角度23.2°よりはるかに大きくすることができる。このため、光の取り出し効率を約4倍にすることができる。
なお、LEDとして青色LEDを用い、凸状構造体3を黄色蛍光体により構成することにより、白色光を取り出すことができる。
図3は、本発明の第2の実施形態に係る発光素子の光取り出し面を示す図である。図3において、LED構造(図示せず)を有するLED基板1の光出射面は、水平面とその周囲に傾斜面を有している。これら水平面及び傾斜面上には、凸状構造体3及び樹脂層4からなる光透過層2が形成されている。
このように、光取り出し面が傾斜面を有する場合でも、凸状構造体3は傾斜面に垂直方向に形成することが可能である。従来のエッチングにより凹凸面を形成する光取り出し面構造では、凹凸面は傾斜面に垂直に形成することは出来ず、水平面に垂直方向に形成されてしまうため、凸状構造体3同士が光出射を阻害してしまい、光取り出し効率が劣化してしまう。本実施形態のように、光出射面に対し垂直方向に凸状構造体3を形成することにより、光取り出し効率を大幅に増加させることが可能である。
傾斜面の傾斜角は、特に限定されないが、25ないし50°であるのが好ましい。
図4は、本発明の第3の実施形態に係る発光素子の光取り出し面を示す図である。図4において、LED構造(図示せず)を有するLED基板1の光出射面上には、高屈折率部6及び低屈折率部7からなる光透過層5が形成されている。
高屈折率部6及び低屈折率部7は、いずれも樹脂材料からなり、有機材料層にエネルギービームを照射することにより相転移を生ぜしめ、高屈折率部6と低屈折率部7からなる周期的屈折率分布構造を形成するものである。
有機材料層としては、例えば、光記録用樹脂材料、ホログラム記録用樹脂材料、回折格子光学部品用樹脂材料などを用いることができる。これら樹脂層を形成位置に塗布した後、光強度分布をもつエネルギービームの照射により相転移を生ぜしめ、屈折率分布を形成することができる。材料によってはその後熱硬化によって固定化することができる。
エネルギービームとしては、レーザビーム、電子線ビームを用いることができる。
本実施形態に係る例は、光強度分布に応じて層内の屈折率分布を形成するものであるため、分布間隔や位置などの制御性に優れている。
図5は、本発明の第4の実施形態に係る発光素子の光取り出し面を示す図である。図5において、LED構造(図示せず)を有するLED基板1の光出射面上には、凸状構造体3及び樹脂層4からなる光透過層2が形成されていることは、図1に示す実施形態と同様である。本実施形態では、凸状構造体3上に、その間隙を塞ぐように蛍光体粒子8が配置されている。この場合の蛍光体粒子8の粒径は、25ないし70nm程度であるのが好ましい。
図6は、本発明の第5の実施形態に係る発光素子の光取り出し面を示す図である。図6において、LED構造(図示せず)を有するLED基板1の光出射面上には、凸状構造体3及び樹脂層4からなる光透過層2が形成され、凸状構造体3上に、その間隙を塞ぐように蛍光体粒子8が配置されていることは、図5に示す実施形態と同様である。本実施形態では、凸状構造体3の間隙内に小粒径の蛍光体粒子9が収容されている。この場合の蛍光体粒子9の粒径は、10ないし25nm程度であるのが好ましい。
図7は、本発明の第6の実施形態に係る発光素子の光取り出し面を示す図である。図6において、LED構造(図示せず)を有するLED基板1の光出射面上には、凸状構造体3及び樹脂層4からなる光透過層2が形成されていることは、図1に示す実施形態と同様である。
本実施形態では、凸状構造体3上に、非球状蛍光体10が配置されている。
以上の第5〜7の実施形態において、LEDとして青色LEDを用い、蛍光体粒子8,9,10として黄色蛍光体を用いることにより、白色光を取り出すことができる。
以下に実施例を挙げて本発明について説明する。
実施例1
図8に示す発光ダイオードは、GaN、SiC又はサファイアよりなる基板11上に、n型GaN層12、活性層13、p型GaAlN層(電子オーバーフロー防止層)14、p型GaNからなる第1のコンタクト層15、及びp型GaNからなる第2のコンタクト層16を順次形成し、更にp型GaNからなる第2のコンタクト層16上にp型電極層17を、n型GaN層12上にn型電極層18を形成することにより構成される。
以上のように構成される図8に示す発光ダイオードは、次のように製造される。
まず、基板11上に、n型不純物がドープされたn型GaN層12を結晶成長する。結晶成長には、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を用いることができる。有機金属気相成長法以外に、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)により結晶成長を行っても良い。n型不純物としては、SiやGeなど種々の元素を用いることが可能であるが、本実施例ではSiを用いている。Siのドーピング量としては、2×1018cm−3程度にすれば良い。
次いで、n型GaN層12の上に、膜厚3.5nm程度のアンドープのIn0.2Ga0.8Nからなる量子井戸層と、この量子井戸をはさんでその両側に膜厚7nm程度のSiドープのIn0.01Ga0.99Nからなるバリア層を交互に積層した多重量子井戸(MQW:Multiple Quantum Well)構造の活性層13を形成する。この場合の成長温度は700〜800℃である。
次に、活性層13の上に、p型不純物がドープされた膜厚10nm程度のGa0.8Al0.2Nを電子オーバーフロー防止層14として成長させる。p型不純物としては、MgやZnなど種々の元素を用いることが可能であるが、ここではMgを用いるものとする。Mgのドーピング量としては4×1018cm−3程度であれば良い。
その後、電子オーバーフロー防止層14の上に、Mgが1×1019cm−3程度ドープされた第1のp型コンタクト層15を成長する。第1のp型コンタクト層15の膜厚は50nm程度あれば良い。
最後に、p型コンタクト層15の上に、Mgが1×1020cm−3程度ドープされた、膜厚20nm程度の第2のp型コンタクト層16を成長する。電子オーバーフロー防止層14と、第1及び第2のp型コンタクト層15,16の成長温度は1000〜1100℃程度である。
以上のように結晶成長を行ったウェハに対して、以下のデバイスプロセスを行うことにより、最終的に発光ダイオードが作製される。
即ち、第2のp型GaNコンタクト層16上にレジストを塗布し、フォトリソグラフィーもしくは電子線リソグラフィーなどを用いて、エッチングマスクを形成する。次いで、ドライエッチングにより、第2のp型GaNコンタクト層16の一部を、n型GaN層12が露出するまでエッチング除去する。
次に、第2のp型GaNコンタクト層16上にレジストを塗布し、フォトリソグラフィーもしくは電子線リソグラフィーなどを用いて、電極形成用の開口パターンのレジストマスクを形成する。そして、銀あるいは銀を含む合金の電極よりなるp型電極層7を形成する。更に、レジストを塗布し、フォトリソグラフィーもしくは電子線リソグラフィーにより、n型電極18形成用の開口パターンを形成し、例えば、チタン−白金−金(Ti/Pt/Au)の複合膜からなるn型電極層18を形成する。n型電極層18は、例えば、膜厚0.05μm程度のTi膜、膜厚0.05μm程度のPt膜、および膜厚1.0μm程度のAu膜である。
その後、基板11の裏面側から研磨し、ウェハの厚さを薄くする。この時、ウエハ全体の厚さは、100μm〜350μmの間に調整する。次いで、ダイシングを用いて、LEDチップ側面の傾斜面に相当するV溝を格子状に形成する。傾斜面の傾斜角は45〜90度とする。ここで、傾斜面の傾斜角は、ダイシング装置のカッターの刃先の角度で制御することができる。
このように加工したウエハーを、0.02モル/Lの硝酸亜鉛(Zn(NO・6H)と0.02モル/Lのヘキサメチレンテトラミン(C12(HMT))とからなる水溶液中に浸漬し、溶液温度約80℃で1時間保持する。
これにより、図9に示すような六角柱状のZnOの結晶を基板面に垂直方向に、即ち、傾斜面に対しても垂直方向に成長させることができた。
その後、ウエハをブレーキングにより分離し、チップ化する。一個のチップの大きさは、一辺の長さが200μm〜1000μmの断面正方形あるいは長方形とする。これにより、図10に示すように、光出射面に垂直方向に六角柱状のZnO結晶が形成されたデバイス構造を作製することができる。
このようにして作製された発光素子では、ZnO柱のない場合と比較して、光の取り出し効率を約4にすることができる。
実施例2
本実施例は、図11に示すような基板を挟んで上下に電極を設け、上下に電流を流す構造の発光ダイオードに適用した例である。
図11に示す発光ダイオードは、n型GaN基板21上に、n型GaN層22、活性層23、p型GaAlN層(電子オーバーフロー防止層)24と、p型GaNからなる第1のコンタクト層25、及びp型GaNからなる第2のコンタクト層26を順次形成し、更にp型GaNからなる第2のコンタクト層26上にp型電極層27を、n型GaN基板21上にn型電極層28を形成することにより構成される。
以上のように構成される図11に示す発光ダイオードは、次のように製造される。
まず、n型GaN基板21上に、n型不純物がドープされたn型GaN層22を結晶成長する。結晶成長には、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を用いることができる。有機金属気相成長法以外に、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)により結晶成長を行っても良い。n型不純物としては、SiやGeなど種々の元素を用いることが可能であるが、本実施例ではSiを用いている。Siのドーピング量としては、2×1018cm−3程度にすれば良い。
次いで、n型GaN層22の上に、膜厚3.5nm程度のアンドープのIn0.2Ga0.8Nからなる量子井戸層と、この量子井戸をはさんでその両側に膜厚7nm程度のSiドープのIn0.01Ga0.99Nからなるバリア層を交互に積層した多重量子井戸(MQW:Multiple Quantum Well)構造の活性層23を形成する。この場合の成長温度は700〜800℃である。
次に、活性層23の上に、p型不純物がドープされた膜厚10nm程度のGa0.8Al0.2Nを電子オーバーフロー防止層24として成長させる。p型不純物としては、MgやZnなど種々の元素を用いることが可能であるが、ここではMgを用いるものとする。Mgのドーピング量としては4×1018cm−3程度であれば良い。
その後、電子オーバーフロー防止層24の上に、Mgが1×1019cm−3程度ドープされた第1のp型コンタクト層25を成長する。第1のp型コンタクト層25の膜厚は50nm程度あれば良い。
最後に、p型コンタクト層25の上に、Mgが1×1020cm−3程度ドープされた、膜厚60nm程度の第2のp型コンタクト層26を成長する。電子オーバーフロー防止層24と、第1及び第2のp型コンタクト層25,26の成長温度は1000〜1100℃程度である。
以上のように結晶成長を行ったウェハに対して、以下のデバイスプロセスを行うことにより、最終的に発光ダイオードが作製される。
即ち、第2のp型GaNコンタクト層26上にレジストを塗布し、フォトリソグラフィーもしくは電子線リソグラフィーなどを用いて、エッチングマスクを形成する。次いで、ドライエッチングにより、第2のp型GaNコンタクト層26の一部を、n型GaN層12が露出するまでエッチング除去する。
次に、第2のp型GaNコンタクト層16上にレジストを塗布し、フォトリソグラフィーもしくは電子線リソグラフィーなどを用いて、電極形成用の開口パターンのレジストマスクを形成する。そして、銀あるいは銀を含む合金の電極よりなるp型電極層27を形成する。
その後、基板21の裏面側から研磨し、ウェハの厚さを薄くする。この時、ウエハ全体の厚さは、100μm〜350μmの間に調整する。
更に、レジストを塗布し、フォトリソグラフィーもしくは電子線リソグラフィーにより、n型電極28形成用の開口パターンを形成し、例えば、チタン−白金−金(Ti/Pt/Au)の複合膜からなるn型電極層18を形成する。n型電極層18は、例えば、膜厚0.05μm程度のTi膜、膜厚0.05μm程度のPt膜、および膜厚1.0μm程度のAu膜である。
次いで、ダイシングを用いて、LEDチップ側面の傾斜面に相当するV溝を格子状に形成する。傾斜面の傾斜角は45〜90度とする。ここで、傾斜面の傾斜角は、ダイシング装置のカッターの刃先の角度で制御することができる。
このように加工したウエハーを、0.02モル/Lの硝酸亜鉛(Zn(NO・6H)と0.02モル/Lのヘキサメチレンテトラミン(C12(HMT))とからなる水溶液中に浸漬し、溶液温度約80℃で1時間保持する。
これにより、図12に示すような六角柱状のZnOの結晶を基板面に垂直方向に、即ち、傾斜面に対しても垂直方向に成長させることができた。
その後、ウエハをブレーキングにより分離し、チップ化する。一個のチップの大きさは、一辺の長さが200μm〜1000μmの断面正方形あるいは長方形とする。これにより、図12に示すように、光出射面に垂直方向に六角柱状のZnO結晶が形成されたデバイス構造を作製することができる。
このようにして作製された発光素子では、ZnO柱のない場合と比較して、光の取り出し効率を約4にすることができる。
1,11,21…基板、2,5…光透過層、3…凸状構造体、4…樹脂層、6…高屈折率部、7…低屈折率部、8,9,10…蛍光体粒子、12,22…n型GaN層12、13,23…活性層、14,24…p型GaAlN層、15,25…第1のコンタクト層、16,26…第2のコンタクト層、17,27…p型電極層、18,28…n型電極層。

Claims (7)

  1. 発光層を備える支持基板、及び前記支持基板の光取り出し面上に形成された光透過層を具備し、前記光透過層は、前記支持基板よりも屈折率の低い材料の複数の凸状構造体、及び前記凸状構造体を覆う、前記凸状構造体よりも屈折率の低い材料の被覆層を含み、前記凸状構造体はZnO柱状体であり、面内方向に周期的屈折率分布構造を有することを特徴とする発光素子。
  2. 前記凸状構造体は無機材料であり、前記被覆層は樹脂材料であることを特徴とする請求項1に記載の発光素子。
  3. 前記支持基板の光取り出し面は、水平面とその周囲の傾斜面とからなることを特徴とする請求項1または2に記載の発光素子。
  4. 前記凸状構造体は、ナノメーターないしサブミクロンオーダーのサイズを有することを特徴とする請求項1〜3のいずれかに記載の発光素子。
  5. 前記凸状構造体の上、又は隣接する凸状構造体間の空隙内に蛍光体粒子が配置されていることを特徴とする請求項1〜4のいずれかに記載の発光素子。
  6. 前記基板はGaNであることを特徴とする請求項1〜5のいずれかに記載の発光素子。
  7. 前記ZnO柱状体は、液相から抽出したことを特徴とする請求項1〜6のいずれかに記載の発光素子。
JP2010167356A 2010-07-26 2010-07-26 発光素子 Expired - Fee Related JP5334925B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010167356A JP5334925B2 (ja) 2010-07-26 2010-07-26 発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010167356A JP5334925B2 (ja) 2010-07-26 2010-07-26 発光素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007216034A Division JP4829190B2 (ja) 2007-08-22 2007-08-22 発光素子

Publications (2)

Publication Number Publication Date
JP2010267994A JP2010267994A (ja) 2010-11-25
JP5334925B2 true JP5334925B2 (ja) 2013-11-06

Family

ID=43364659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010167356A Expired - Fee Related JP5334925B2 (ja) 2010-07-26 2010-07-26 発光素子

Country Status (1)

Country Link
JP (1) JP5334925B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097663B2 (ja) 2017-07-27 2022-07-08 Nittoku株式会社 電線溶着装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399460B1 (ko) 2012-10-23 2014-05-28 한국기계연구원 이종 재료 나노패턴이 내장된 기판 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4204163B2 (ja) * 2000-02-03 2009-01-07 株式会社リコー 半導体基板の製造方法
JP4672839B2 (ja) * 2000-09-06 2011-04-20 キヤノン株式会社 発光体、構造体及びその製造方法
JP4107814B2 (ja) * 2001-07-06 2008-06-25 豊田合成株式会社 発光素子
JP2005191219A (ja) * 2003-12-25 2005-07-14 Sanken Electric Co Ltd 半導体発光素子およびその製造方法
JP2006222288A (ja) * 2005-02-10 2006-08-24 Toshiba Corp 白色led及びその製造方法
KR100638819B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 광추출효율이 개선된 수직구조 질화물 반도체 발광소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097663B2 (ja) 2017-07-27 2022-07-08 Nittoku株式会社 電線溶着装置

Also Published As

Publication number Publication date
JP2010267994A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
JP4829190B2 (ja) 発光素子
US10263149B2 (en) Nanostructured LED array with collimating reflectors
US8461568B2 (en) Re-emitting semiconductor construction with enhanced extraction efficiency
TWI427825B (zh) 發光裝置
TWI419352B (zh) 半導體發光裝置中成長的光子晶體
US7358537B2 (en) Light emitting diode and fabrication method thereof
TWI476951B (zh) 半導體結構
JP2013009004A (ja) 発光素子
KR101259483B1 (ko) 반도체 발광 소자 및 그 제조 방법
JP2007214576A (ja) 窒化物半導体発光素子およびその製造方法
KR101524319B1 (ko) 시준 리플렉터를 갖는 나노구조 led 어레이
US8618564B2 (en) High efficiency light emitting diodes
JP5726640B2 (ja) 窒化物半導体素子及び窒化物半導体層成長用基板
KR101317632B1 (ko) 질화물계 발광 소자 및 그 제조방법
KR20080093558A (ko) 질화물계 발광 소자
JP2010092957A (ja) 発光ダイオード及びその製造方法
JP5334925B2 (ja) 発光素子
US11557698B2 (en) Conversion element and radiation-emitting semiconductor device comprising a conversion element of said type
CN103907210A (zh) 光电子半导体芯片和用于制造光电子半导体芯片的方法
JP4998701B2 (ja) Iii−v族化合物半導体発光ダイオード
KR20120085027A (ko) 반도체 발광소자 및 그 제조방법
Chang et al. Light output improvement of InGaN-based light-emitting diodes by microchannel structure
Lee et al. Effect of residual stress and sidewall emission of InGaN-based LED by varying sapphire substrate thickness
KR20110068028A (ko) 반도체 발광소자 제조방법
CN114300503A (zh) 包覆式多量子阱nled阵列结构及其制作方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

LAPS Cancellation because of no payment of annual fees