JP4087851B2 - 処理装置 - Google Patents
処理装置 Download PDFInfo
- Publication number
- JP4087851B2 JP4087851B2 JP2004567191A JP2004567191A JP4087851B2 JP 4087851 B2 JP4087851 B2 JP 4087851B2 JP 2004567191 A JP2004567191 A JP 2004567191A JP 2004567191 A JP2004567191 A JP 2004567191A JP 4087851 B2 JP4087851 B2 JP 4087851B2
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet light
- processing apparatus
- atmosphere
- laser light
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012545 processing Methods 0.000 title claims description 49
- 238000000034 method Methods 0.000 claims description 41
- 230000003287 optical effect Effects 0.000 claims description 31
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000001228 spectrum Methods 0.000 claims description 10
- 238000000295 emission spectrum Methods 0.000 claims description 4
- 238000009529 body temperature measurement Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 57
- 238000004364 calculation method Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 16
- 238000009826 distribution Methods 0.000 description 15
- 229910004014 SiF4 Inorganic materials 0.000 description 14
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 9
- 239000010409 thin film Substances 0.000 description 8
- 238000001739 density measurement Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000004847 absorption spectroscopy Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910004016 SiF2 Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- MGNHOGAVECORPT-UHFFFAOYSA-N difluorosilicon Chemical compound F[Si]F MGNHOGAVECORPT-UHFFFAOYSA-N 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 229910003910 SiCl4 Inorganic materials 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910007258 Si2H4 Inorganic materials 0.000 description 1
- 229910004469 SiHx Inorganic materials 0.000 description 1
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- SCABQASLNUQUKD-UHFFFAOYSA-N silylium Chemical compound [SiH3+] SCABQASLNUQUKD-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- ATVLVRVBCRICNU-UHFFFAOYSA-N trifluorosilicon Chemical compound F[Si](F)F ATVLVRVBCRICNU-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Electrodes Of Semiconductors (AREA)
- Plasma Technology (AREA)
Description
本発明は、Siを含む雰囲気中でプロセスを行う処理装置に関する。
半導体装置やフラットパネルディスプレイ、有機EL(electro luminescent panel)ディスプレイの製造において、酸化膜等の絶縁膜の形成や半導体層の結晶成長、エッチング、またアッシングなどの処理を行うために、プラズマ処理装置が広く用いられている。プラズマ処理装置の従来例として高周波プラズマCVD装置について説明する。図6は、従来の高周波プラズマCVD(Chemical Vaper Deposition)装置の要部構成を示す図である。
図6に示すCVD装置は、プロセスチャンバ101と、高周波によりプラズマPを生成するプラズマ源とから構成されている。チャンバ101の内部には、基板Wを載置するサセプタ102が収容されている。サセプタ102には、基板Wを所定の温度に加熱するヒータ103が内蔵されている。チャンバ101の下部には排気口104が設けられており、排気口104に連通する真空ポンプ(図示せず)により真空引きされる。
プラズマ源は、チャンバ101内に高周波を供給するアンテナ121と、原料ガスを導入するガス導入ノズル111とから構成されている。アンテナ121は、チャンバ101の上部空間にサセプタ102に対向して配置され、高周波導波管124を介して高周波電源(図示せず)に接続されている。
基板W上にSi(シリコン)薄膜を形成する場合には、チャンバ101内を真空引きし、ヒータ102により基板Wを400℃程度に加熱した状態で、ノズル111から原料ガスとしてSiH4とSiF4を導入する。アンテナ121から高周波を供給すると、SiH4とSiF4が解離してSiHxとSiFx(x=1,2,3)のラジカルとなり、これらのラジカルが基板Wの表面で反応してSi薄膜が形成される(以上は、例えば「第62回応用物理学会学術講演会予稿集 14a−ZF−3」,2001年9月,p.736に記載されている)。
このように、プラズマを用いた薄膜形成にはラジカルが直接的に関与している。これはエッチングやアッシングの処理を行う場合も同様である。
しかしながら、同一のプラズマ処理装置を使用して同一条件下でプロセスを行っても、その都度プラズマの状態が変化するため、プロセスの再現性がよくなかった。また、別々の装置を使用して同一条件下でプロセスを行っても、各装置間でプラズマの状態が異なり、プロセスを再現性よく行うことが困難であった。この結果、個々の基板Wに対し均一な処理を施すことができないという問題があった。
発明の概要
本発明はこのような課題を解決するためになされたものであり、その目的は、プロセスの再現性を向上させることにある。
本発明の発明者は、Siを含む雰囲気の中でプロセスを行う場合には、Siをモニタリングすることが再現性のよいプロセスを実現するために有効であることを見いだした。特に、Siは紫外領域に吸収スペクトルを有しており、簡易な方法で感度よく計測できるという特徴を有する。このような知見に基づいて本発明は考え出された。
すなわち、本発明に係る処理装置の特徴は、被処理体を収容する容器と、この容器内のラジカルを含む雰囲気に向けて紫外光または真空紫外光を出力する紫外光発生手段と、雰囲気中を通過してきた紫外光または真空紫外光を受光する紫外光受光手段と、この紫外光受光手段の出力信号に基づき雰囲気中におけるラジカルの密度を求め、プロセスのパラメータを制御する解析制御手段とを備えたことにある。
ここで、解析制御手段は、紫外光受光手段の出力信号に基づき雰囲気中を通過してきた紫外光または真空紫外光の減衰量を求め、この減衰量から雰囲気中におけるラジカルの密度を求めるものであってもよい。
また、上述した処理装置は、紫外光または真空紫外光を間欠的に雰囲気に向けて出力するとともに、紫外光または真空紫外光の有無を示す紫外光有無信号を出力する手段と、紫外光有無信号に基づき、紫外光または真空紫外光があるときの紫外光受光手段の受光量から紫外光または真空紫外光が無いときの紫外光受光手段の受光量を差し引いた値を求め、この値から雰囲気中におけるラジカルの密度を求める手段とを更に備えていてもよい。
また、上述した処理装置は、紫外光発生手段から出力された紫外光または真空紫外光を複数の光路を通過させて紫外光受光手段に受光させる手段を有していてもよい。ここで、光路のそれぞれに、相互に変調周波数が異なる変調器を配置してもよい。
また、上述した処理装置において、容器は、紫外光が透過する窓を有し、この窓が、加熱されるようにしてもよい。または、この窓が、筒状の構造を有するようにしてもよい。
また、上述した処理装置は、雰囲気中の分子状または原子状ラジカルの温度を計測する温度計測手段を更に備え、解析制御手段が、紫外光受光手段の出力信号および温度計測手段の計測結果に基づきプロセスのパラメータを制御するようにしてもよい。
ここで、温度計測手段は、雰囲気に向けてレーザ光を出力するレーザ光発生手段と、雰囲気中を通過してきたレーザ光を受光するレーザ光受光手段と、このレーザ光受光手段の出力信号に基づき雰囲気中を通過してきたレーザ光の減衰量スペクトルを求め、この減衰量スペクトルのパターンから雰囲気中の分子状または原子状ラジカルの温度を求める解析手段とを備える構成としてもよい。また、レーザ光を間欠的に雰囲気に向けて出力するとともに、レーザ光の有無を示すレーザ光有無信号を出力する手段と、レーザ光有無信号に基づき、レーザ光があるときのレーザ光受光手段の受光量からレーザ紫外光が無いときのレーザ光受光手段の受光量を差し引いた値のスペクトルを求め、このスペクトルのパターンから雰囲気中の分子状または原子状ラジカルの温度を求める手段とを更に備える構成としてもよい。
または、温度計測手段は、雰囲気中の分子状または原子状ラジカルの発光スペクトルを計測し、そのスペクトルパターンから雰囲気中の分子状または原子状ラジカルの温度を求めるものであってもよい。
また、上述した処理装置は、レーザ発生手段から出力されたレーザ光を複数の光路を通過させてレーザ光手段に受光させる手段を有していてもよい。ここで、光路のそれぞれ、相互に変調周波数が異なる変調器を配置してもよい。
また、上述した処理装置において、容器は、レーザ光が透過する窓を有し、この窓が、加熱されるようにしてもよい。または、この窓が、筒状の構造を有していてもよい。
また、上述した処理装置においえ、ラジカルは、原子状ラジカルであってもよい。例えば、Si,N,O,F,H,Cのいずれかを含んでいてもよい。
図2は、本発明の第2の実施例に係る高周波プラズマCVD装置の構成を示す図である。
図3は、本発明の第3の実施例に係る高周波プラズマCVD装置の一例を説明するための図である。
図4は、本発明の第3の実施例に係る高周波プラズマCVD装置の他の例を説明するための図である。
図5A〜図5Cは、二次元的なパラメータ制御の一例を説明するための図である。
図6は、従来の高周波プラズマCVD装置の要部構成を示す図である。
実施例の詳細な説明
以下、本発明の実施例について、図面を参照して詳細に説明する。ここでは、Si薄膜を形成する高周波プラズマCVD装置に本発明を適用した形態について説明する。
第1の実施例
図1は、本発明の第1の実施例に係る高周波プラズマCVD装置の構成を示す図である。処理容器としてのプロセスチャンバ1の内部には、被処理体であるガラス基板Wを載置するサセプタ2が収容されている。サセプタ2には、ガラス基板Wをサセプタ2に密着させるための静電チャックまたはメカニカルチャック(図示せず)が用意されている。サセプタ2にはまた、ガラス基板Wを所定の温度に加熱するヒータ3が内蔵されている。ヒータ3の温度は、後述する制御部44から出力される制御信号S5にしたがって変更される。チャンバ1の下部には排気口4が設けられており、排気口4には真空ポンプ4Aが接続されている。真空ポンプ4Aは、制御部44から出力される制御信号S6にしたがって、チャンバ1内の圧力を調整する。
チャンバ1の上部には、ガス導入ノズル11が設けられている。ノズル11にはバルブ12を介してガス導入管13が接続されている。ガス導入管13には、バルブ14A,14B,14Cおよびマスフローコントローラ(MFC)15A,15B,15Cを介して、ガス供給源16A,16B,16Cがそれぞれ接続されている。ガス供給源16A〜16Cは原料ガスとしてそれぞれSiH4,H2,SiF4を供給する。MFC15A〜15Cは、制御部44から出力される制御信号S1〜S3にそれぞれしたがって、原料ガスの流量調整を行う。
チャンバ1内の上部空間には、サセプタ2に対向するようにディスクアンテナ21が配置されている。ディスクアンテナ21の上には石英板22を挟んで円形の地板23が配置されている。ディスクアンテナ21および地板23にはそれぞれ同軸導波管24の内導体および外導体が接続されている。同軸導波管24には矩形導波管25を介して高周波電源26が接続されている。高周波電源26の出力電力は、制御部44から出力される制御信号S4にしたがって変更される。なお、矩形導波管25または同軸導波管24には負荷整合器27が設けられている。
このCVD装置には更に、吸収分光法によるラジカル密度計測手段が設けられている。吸収分光法とは、原子または分子の準位により光の吸収波長が異なることを利用し、プラズマ中を通過してきた光の減衰量を基に、プラズマに含まれる所定準位の原子または分子の絶対密度を計測する方法である。この方法を用いることにより、Siラジカルの密度を簡易にかつ高感度で計測することができる。
本実施例におけるラジカル密度計測手段は、チャンバ1の外部に配置されたホローカソードランプ(HCL:Hollow Cathorde Lamp)41と、ホローカソードランプ41とチャンバ1とを接続する入力側導光管41Aと、入力側導光管41Aに設けられたチョッパ(変調器)45と、チャンバ1の外部に配置された紫外光受光部42と、紫外光受光部42とチャンバとを接続する出力側導光管42Aと、紫外光受光部42の出力側に電気的に接続されたラジカル密度算出部43とから構成されている。
ここで、入力側導光管41Aと出力側導光管42Aは、チャンバ1の中心軸線と交差する同一直線上に配置されている。これらの高さは、ディスクアンテナ21とサセプタ2との間に生成されるプラズマPの高さに合わせてある。
ホローカソードランプ41は、Siラジカルの吸収波長288.2nmおよび251.6nmの紫外光UVを出力する紫外光発生部として作用する。なお、プラズマ中では両波長を利用できるが、プラズマで生成されたSiラジカルを引き出して行うプロセスでは251.6nmしか利用できない。前者の場合でも251.6nmの方が感度がよい。ホローカソードランプ41に代えて、リング色素レーザの発振器を用いてもよい。
チョッパ45は、ホローカソードランプ41から出力された紫外光UVに対しパルス変調を行う。チョッパ45からは、パルス変調された紫外光UVのON/OFFに同期したトリガ信号(紫外光有無信号)S10が、紫外光受光部42に出力される。
紫外光受光部42は、チャンバ1内部から出力される紫外光UVを受光する。また、チョッパ45から入力されるトリガ信号S10に基づき、紫外光UVがあるとき(ON時)の受光と無いとき(OFF時)の受光とを判別し、紫外光UVがあるときの受光量から無いときの受光量を差し引いた値を求め、この値をラジカル密度算出部43に出力する。なお、プロセスガスが導入されておらず、またプラズマPが発生していない状態で、前記紫外光UVの受光量を予め計測し、この受光量の値を紫外光UVの発光量として、プロセスに先立ってラジカル密度算出部43にしておく。
ラジカル密度算出部43は、予め入力された紫外光UVの発光量と紫外光受光部42の出力信号とに基づき、プラズマ中を通過してきた紫外光UVの減衰量を求め、この減衰量からプラズマPに含まれるSiラジカルの密度を算出し、制御部44に出力する。
制御部44は、ラジカル密度算出部43により算出されたラジカル密度が設定値に近づくように、プラズマ生成のパラメータを制御する。具体的には、真空ポンプ4Aに制御信号S6を出力し、チャンバ1内のガス圧を制御する。また、MFC15A〜15Cのそれぞれに制御信号S1〜S3を出力し、MFC15A〜15Cの流量調整を制御する。また、高周波電源26に制御信号S4を出力し、出力電力を制御する。その一方で、ヒータ3の電源に制御信号5を出力してヒータ3の温度を制御し、サセプタ2の温度を調整する。
ラジカル密度算出部43と制御部44とから解析制御手段が構成される。解析制御手段は、コンピュータにより構成され、演算処理部と、記憶部と、操作部と、入出力インタフェース部とを有している。記憶部には、計測データと、ラジカル密度を算出する際に必要なデータと、制御プログラムが記憶されている。演算処理部は、制御プログラムにしたがって、ラジカル密度の算出を行うとともに、後述するように装置全体の動作の制御を行う。操作部からはデータの入力が可能である。また、入出力インタフェース部を他の管理システム等に接続することにより、それらと通信を行うことも可能である。
また、制御の基準値は、装置の外部から設定してもよいし、装置自身で獲得するようにしてもよい。装置の外部から設定する場合には、例えばオペレータにより操作部から、または中央制御装置から入出力インタフェース部を介して設定される。一方、装置自身で獲得する場合には、例えばプロセスを開始してから特定時間経過後の値を基準値とする。前プロセスがあれば、そのプロセスでの値を基準値とする。
また、導光管41A,42Aの先端部、すなわち導光管41A,42A内とチャンバ1内との境界部には、それぞれ石英で形成された紫外光透過窓5A,5Bが設けられている。透過窓5A,5Bに紫外光UVを吸収する汚染物質が付着すると、ラジカル密度の計測結果に誤差が生じする。これを防止するために、透過窓5A,5Bを200℃〜400℃程度の高温に加熱し、汚染物質を付着しにくくしてもよい。または、透過窓5A,5Bを、アスペクト比3以上の筒状の構造を有するキャピラリープレートで構成してもよい。なお、キャピラリープレートは有底であってもよい。
次に、本実施例に係るプラズマ処理装置の動作について説明する。
サセプタ2上にガラス基板Wを配置し、静電チャック等でガラス基板Wをサセプタ2に密着させ、ヒータ3により基板温度を400℃にする。真空ポンプ4Aによりチャンバ1内を真空引するとともに、ノズル11からチャンバ1内に原料ガスをSiH4/H2/SiF4=5/200/30sccm(standard cubic centimeter/minute)の流量で導入し、チャンバ1内の圧力を1.5Paに保持する。この状態で、電力が800Wの高周波をチャンバ1内に供給する。これにより、SiH4とSiF4が解離してSiHxとSiFx(x=1,2,3)のラジカルとなり、これらのラジカルが基板Wの表面で反応してSiが堆積していく。
このプロセスの際に、プラズマ(雰囲気)Pに含まれるSiラジカルの密度を計測する。まず、ホローカソードランプ41から波長288.2nm,251.6nmの紫外光UVを出力すると、チョッパ45により紫外光UVをパルス変調し、チャンバ1内のプラズマPに向けて間欠的に出力する。紫外光UVはチャンバ1の直径方向を水平に通過していく。波長288.2nm,251.6nmの紫外光UVは、プラズマP中を通過する際、プラズマPに含まれるSiラジカルに一部吸収され、紫外光受光部42に到達する。
紫外光受光部42では、チョッパ45から入力される紫外光UVのON/OFFに基づくトリガ信号S10から、紫外光UVがあるとき(ON時)の受光と無いとき(OFF時)の受光とを判別し、紫外光UVがあるときの受光量から無いときの受光量を差し引いた値を求める。これにより、プラズマP自体が発する光など、紫外光UVとは無関係の背景光が除去され、紫外光UVの受光量が得られる。
ラジカル密度算出部43では、予め入力された紫外光UVの発光量と紫外光受光部42の出力信号とに基づき、紫外光UVの減衰量を求め、この減衰量からSiラジカルの密度を算出する。そして、得られたラジカル密度が設定値に近づくように、制御部44でプラズマ生成のパラメータを制御する。
なお、トリガ信号S10をラジカル密度算出部43に与え、ラジカル密度算出部43での演算処理により、紫外光UVに対する背景光の影響を除去してもよい。
このCVD装置では、ガス圧、ガスの混合比率、ガス全体の流量、高周波の電力およびサセプタ2の温度を調整することにより、プラズマ生成を制御する。
ガス圧を調整する場合には、真空ポンプ4Aに出力される制御信号S6を制御する。ラジカル密度が高い場合には、ガス圧を上げ、逆にラジカル密度が低い場合には、ガス圧を下げる。
ガスの混合比率、ガス全体の流量を調整する場合には、MFC15A〜15Cに出力される制御信号S1〜S3を制御して、SiH4,H2,SiF4の流量調整を行う。ラジカル密度が高い場合には、SiH4,SiF4の混合比を下げる、または全体の流量を下げる。逆にラジカル密度が低い場合には、SiH4,SiF4の混合比を上げる、または全体の流量を上げる。
高周波の電力を調整する場合には、高周波電源26に出力される制御信号S4を制御する。ラジカル密度が高い場合には、供給電力を小さくしてプラズマ生成を抑制し、逆にラジカル密度が低い場合には、供給電力を大きくしてプラズマ生成を促進させる。
サセプタ2の温度を調整するには、ヒータ3の電源に出力される制御信号S5を制御する。ラジカル密度が高い場合には、サセプタ2の温度を高くしガス温度を上昇させてSiの堆積を抑制し、逆にラジカル密度が低い場合には、サセプタ2の温度を低くしガス温度を下降させてSiの堆積を促進させる。
これらの制御は、比例制御、微分制御、積分制御を組み合わせて行われる。
このようにしてラジカル密度を一定に保つことにより、プロセスの再現性を向上させ、個々のガラス基板W上に均一なSi薄膜を形成することができる。
本実施例では、ラジカル密度の計測に紫外光UVを用いる例を示したが、真空紫外光VUVを用いることもできる。後述する他の実施例でも同様である。真空紫外光VUVを用いる場合には、ホローカソードランプ41とチャンバ1との間に接続された導光管41Aおよび紫外光受光部42とチャンバ1との間に接続された導光管42Aの内部を真空にすることにより、真空紫外光VUVの減衰を抑制できる。
また、本実施例では、原子状のSiラジカルの密度計測を行ったが、分子状のSiHx,SiFx(x=1,2,3)ラジカルの密度計測を行い、プラズマ生成のパラメータを制御するようにしてもよい。また、これらすべての密度計測を行い、プラズマ生成のパラメータを制御するようにしてもよい。
第2の実施例
チャンバ1の体積は一定であるから、圧力一定の下では、プラズマPに含まれるラジカルの密度は、分子状または原子状ラジカルを含むガスの温度に反比例する。例えば、ガスの温度が高くなるほど、ラジカルの密度は小さくなる。一方、ガスの温度が高くなるほど、ラジカルの速度が大きくなる。このため、吸収分光法でラジカルの密度を計測する場合には、ガスの温度が高くなると紫外光UVの光路上に現れるラジカルの数が増え、プラズマP中を通過してきた紫外光UVの減衰量が大きくなり、ラジカルの密度が実際より大きく計測される。したがって、プラズマの密度に基づくパラメータ制御をより正確に行うには、ガスの温度を考慮する必要がある。以下、このような機能を有する高周波プラズマCVD装置について説明する。
図2は、本発明の第2の実施例に係る高周波プラズマCVD装置の構成を示す図である。この図には、チャンバ1の中心軸線に垂直な断面を示し、図1に示した構成要素と同じ構成要素には同一符号を付している。
本実施例に係るCVD装置は、ラジカル密度計測手段に加えて、ガス温度計測手段を備えている。このガス温度計測手段では、温度により分子の準位が変わり、また準位により光の吸収波長が異なることを利用し、プラズマ中を通過してきた光の減衰量を基に、プラズマに含まれるガスの温度を計測する。具体的には、ガス温度計測手段は、チャンバ1の外部に配置されたレーザ光出力部51と、レーザ光受光部52と、ガス温度算出部(解析手段)53とから構成されている。
ここで、レーザ光出力部51は、出力するレーザ光Lの波長を251.6nmを中心として掃引する。レーザ光出力部51にはリング色素レーザの発振器などが用いられる。レーザ光出力部51から出力されたレーザ光Lは、チャンバ1の側壁に設けられたレーザ光透過窓6Aを介して、チャンバ1に入力される。
レーザ光受光部52は、チャンバ1の側壁に設けられたレーザ光透過窓6Bを介してチャンバ1から出力されるレーザ光Lを受光し、その受光量をガス温度算出部53に出力する。なお、プロセスガスが導入されておらず、またプラズマPが発生していない状態で、前記レーザ光Lの受光量を予め計測し、この受光量の値をレーザ光Lの発光量として、プロセスに先立ってガス温度算出部53にしておく。
なお、透過窓6A,6Bは石英で形成され、チャンバ1の中心軸線を挟んだ対向位置に配置し、レーザ光Lの光路をラジカル密度計測に用いられるレーザ光Lの光路と同じ高さにする。透過窓6A,6Bは、汚染物質が付着しないように、第1の実施例で説明した紫外光透過窓5A,5Bと同様の構成にする。すなわち、200℃〜400℃程度の高温に加熱するか、またはアスペクト比3以上の筒状の構造を有するキャピラリープレートで構成する。キャピラリープレートは有底であってもよい。
ガス温度算出部53は、予め入力されたレーザLの発光量とレーザ光受光部52の出力信号とに基づき、プラズマ中を通過してきたレーザ光Lの減衰量スペクトルを求め、この減衰量スペクトルのパターンから波長に対するラジカル吸収プロファイルを求め、プラズマPに含まれるガスの温度を算出し、制御部44Aに出力する。なお、ラジカル密度計測の場合と同様に、レーザ光出力部51とチャンバ1との間の光路にチョッパを配置し、レーザ光受光部52においてレーザ光Lがあるときの受光量から無いときの受光量を差し引くことにより、背景光の影響が除去され正確な温度が算出される。
制御部44Aは、ラジカル密度算出部43およびガス温度算出部53のそれぞれの出力信号に基づき、吸収分光法により計測されたラジカル密度の温度誤差を考慮して、プラズマ生成のパラメータを制御する。
このようにして、パラメータ制御の温度補正を行うことにより、プロセスの再現性を更に向上させることができる。
なお、本実施例では、ガス温度算出部53の算出結果を制御部44Aに出力する例を示したが、その算出結果をラジカル密度算出部に出力してラジカル密度の温度補正を行い、補正後のラジカル密度を制御部44に出力し、第1の実施例と同様にしてパラメータ制御を行なうようにしてもよい。
第3の実施例
図3は、本発明の第3の実施例に係る高周波プラズマCVD装置の一例を説明するための図である。この図には、チャンバ1の中心軸線に垂直な断面を示し、図1に示した構成要素と同じ構成要素には同一符号を付している。また、説明の便宜のため、チャンバ1の中心を原点とするXY座標を示している。
本実施例では、ラジカル密度計測に用いる紫外光UVの光路を、サセプタ2の載置面に平行な面上に複数設定する。例えば図3に示すように、それぞれの光路をX軸に平行にする場合には、それぞれの光路のY座標の絶対値が相互に異なるようにする。
それぞれの光路に紫外光UVを通過させるために、ホローカソードランプ41から出力されたUVを反射してそれぞれの光路に導く入力側ミラー61A,61B,61C,61D,61E,61F,61Gと、それぞれの光路を通過してきた紫外光UVを反射して紫外光受光部42に導く出力側ミラー62A,62B,62C,62D,62E,62F,62Gと、それぞれの光路上に配置された紫外光透過窓5とが設けられている。入力側ミラー61A〜61Gおよび出力側ミラー62A〜62Gの反射面を順次回転させることにより、それぞれの光路に紫外光が順次通過する。これにより、複数の光路を時間分割により設定することができる。
それぞれの光路を通過してきた紫外光UVから算出されたラジカル密度は、その光路上におけるラジカル密度の積分値を表している。したがって、ラジカルがチャンバ1の中心軸線の周りに同心円状に分布していると仮定すれば、複数の光路を通過してきた紫外光UVのそれぞれからラジカル密度を求め、アベール変換を行うことにより、二次元的なラジカル密度分布を得ることができる。なお、アベール変換は円筒の形状に適用できるので、この場合にはチャンバ1の形状は円筒形であることが望ましい。また、ラジカル密度分布の解像度と同じ量以上の光路数が必要となる。
そして、得られたラジカル密度分布に基づいてプラズマ生成のパラメータ制御を二次元的に行うことにより、プロセスの再現性を更に向上させることができる。プラズマ生成のパラメータ制御を二次元的に行うには、例えば原料ガスをチャンバ1内に導入するガス導入口をチャンバ1の径方向に複数設け、それぞれのガス導入口に対してガス流量を個別に制御できるようにする。また、サセプタ2に内蔵されるヒータを同心円状に複数設け、それぞれのヒータの温度を個別に制御できるようにする。
例えば、アベール変換した結果、図5Aに示すようにチャンバ1の中心部で高密度のラジカル密度分布が得られたとする。この場合、図5Bに示すように、チャンバ1の中心部へのガス流量を小さくし、周辺部へ行くほどガス流量を大きくする制御を行う。これにより、図5Cに示すように、ラジカル密度分布が均一になる。
また、複数の光路を周波数分割により設定することもできる。この場合には、それぞれの光路上に、紫外光UVに対しCW変調(Carrier Wave modulation)を行うチョッパ(変調器)63A,63B,63C,63D,63E,63F,63Gを配置する。チョッパ63A〜63Gの変調周波数はそれぞれ異なっている。また、入力側ミラー61A〜61Gとして、紫外光の一部を反射し、残りを透過させるものを用いる。それぞれの光路を通過してきた紫外光UVは搬送波の周波数が異なるので、紫外光受光部42において紫外光UVを搬送波の周波数で分離し、分離された紫外光UVのそれぞれからラジカル密度を求め、アベール変換を行うことにより、二次元的なラジカル密度分布を得ることができる。
さらに、ラジカル密度計測用の紫外光透過窓をチャンバ1の軸線方向(Z方向)に複数設け、Z方向のラジカル密度分布を計測することにより、三次元的なラジカル密度分布を得ることができる。このラジカル密度分布に基づいてプラズマ生成のパラメータ制御を行うことにより、プロセスの再現性を更に向上させることができる。
また、上述した二次元的なラジカル密度分布を計測した場合と同様に、ガス温度計測に用いるレーザ光Lの光路をサセプタ2の載置面に平行な面上に時間分割または周波数分割により複数設定し、それぞれの光路を通過してきたレーザ光Lから二次元的なガス温度分布を求め、二次元的なラジカル密度分布の温度誤差を考慮してプラズマ生成のパラメータを制御するようにしてもよい。それぞれの光路にレーザ光Lを通過させるためには、ラジカル密度計測の場合と同様に、ミラーまたはそれに加えてチョッパを用いればよい。
さらに、三次元的なガス温度分布を求め、上述した三次元的なラジカル密度分布の温度誤差を考慮してプラズマ生成のパラメータを制御するようにしてもよい。
第4の実施例
本発明の第4の実施例では、第1の実施例で計測されたラジカル密度からプラズマPの電子温度を推定し、推定された電子温度が設定値に近づくようにプラズマ生成のパラメータを制御する。
例えば、SiH4およびSiF4は、以下の反応式にしたがって分解する。なお、括弧内は解離エネルギーである。
(1)SiH4→SiH3+ H (8.75eV)
SiH4→SiH2+2H (9.47eV)
SiH4→SiH+3H (9.47eV)
SiH4→Si +4H(10.33eV)
(2)SiF4→SiF3+ F (7.25eV)
SiF4→SiF2+2F (4.6eV)
SiF4→SiF +3F (6.8eV)
SiF4→Si +4F (6.0eV)
以上の反応式から分かるように、SiH4,SiF4からSiまで分解するには、高いエネルギーの電子が必要になる。したがって、Siラジカルの挙動(密度の大小)を計測することにより、電子のエネルギーすなわち電子温度を推定することができる。上述したように、電子温度は解離を決定する上で非常に重要なパラメータである。
第5の実施例
本発明の第5の実施例では、第1の実施例で計測されたSiラジカルの密度が小さくなるように、プラズマ生成のパラメータを制御する。
Siは反応定数が高いので、
Si+SiH4→Si2H4
Si+SiF4→Si2F4
のように反応し、次々と高次の分子ラジカルを生成する。したがって、Siラジカルの密度を計測することにより、高次のラジカルの挙動についての情報を得ることができる。高次のラジカルはゴミやパーティクルを発生する。このため、Siラジカルの密度が小さくなるように制御することにより、高次のラジカルの生成を抑制し、ゴミ等の発生を防止することができる。
第6の実施例
本発明は高周波プラズマエッチング装置にも適用できる。その形態を第6の実施例として説明する。
Si薄膜またはSiO2薄膜のエッチングには、エッチングガスとしてそれぞれCl2またはCxFy(例えば、CF4,C4F8,C5F7)が用いられる。ことのき、薄膜上では次のような反応が起こっている。
Si+Cl2→SiCl2 または Si+4Cl→SiCl4
SiO2+CF2→SiF2+CO2
これらの反応において生成される副生成物は、SiCl2やSiCl4、SiF2、SiF4である。これらの副生成物はエッチングプロセス中にプラズマ中で分解され、Siラジカルが発生する。したがって、エッチングプロセスにおいて、Siラジカルの密度計測を行い、プラズマ生成のパラメータを制御することにより、プロセスの再現性やエッチングの特性を確保し、制御することができる。
以上の実施例では、高周波プラズマ装置の例を示したが、容量結合形プラズマ装置、誘導結合形プラズマ装置、ECRプラズマ装置など、いずれのプラズマ装置にも適用できる。ただし、少なくともSiを含有するガスを用いたプラズマ、または、固体表面から少なくともSiを含有する副生成物が生成されるプラズマが対象になる。
しかし、プラズマを用いたプロセスでなくてもよく、雰囲気中でガスが解離してSiが発生するプロセスにも適用できる。例えば、CatCVDや触媒利用などのCVDにも適用できる。さらに、ガスを用いたプロセスでなくてもよく、例えばスパッタにも適用できる。
また、N2ガスを含むSi基板(層)またはSiO2膜の窒化プロセスや、O2ガスを含むSi基板(層)の酸化プロセスにも適用できる。窒化プロセスや酸化プロセスでは、直接反応に関与するNラジカルやOラジカルの密度の現在値を計測し、その密度が一定になるように制御できるので、十分な効果が得られる。Nラジカルの密度計測には、波長がおよそ120nmの真空紫外光が使用され、Oラジカルの密度計測には、波長がおよそ130nmの真空紫外光が使用される。なお、N系ガスについては、例えばNラジカルの発光スペクトルを計測することにより、その発光スペクトルの包絡線の強度分布から、回転温度がわかる。平衡状態においては回転温度は並進温度と一致する。よって、得られたガス温度によりNラジカル密度を温度補正することができる。
FラジカルまたはHラジカルの密度計測には、それぞれ波長がおよそ96nmまたは121.6nmの紫外光を使用し、それぞれの密度が一定になるように制御することもできる。Cラジカルについても同様に、密度計測の結果に基づく制御が可能である。
Claims (16)
- 被処理体を収容する容器と、
この容器内のラジカルを含む雰囲気に向けて紫外光または真空紫外光を出力する紫外光発生手段と、
前記雰囲気中を通過してきた紫外光または真空紫外光を受光する紫外光受光手段と、
前記雰囲気中の分子状または原子状ラジカルの温度を計測する温度計測手段と、
前記紫外光受光手段の出力信号に基づき前記雰囲気中における前記容器内のラジカルの密度を求めてプロセスのパラメータを制御する解析制御手段と
を備え、
前記解析制御手段は、前記温度計測手段の温度計測結果により補正された前記容器内のラジカル密度に基づき前記プロセスのパラメータを制御する
ことを特徴とする処理装置。 - 請求項1記載の処理装置において、
前記紫外光発生手段から出力された前記紫外光または前記真空紫外光を複数の光路を通過させて前記紫外光受光手段に受光させる手段を有することを特徴とする処理装置。 - 請求項2記載の処理装置において、
前記光路のそれぞれに配置され、相互に変調周波数が異なる変調器を備えることを特徴とする処理装置。 - 請求項1〜3のいずれか1項に記載の処理装置において、
前記温度計測手段は、
前記雰囲気に向けてレーザ光を出力するレーザ光発生手段と、
前記雰囲気中を通過してきたレーザ光を受光するレーザ光受光手段と、
このレーザ光受光手段の出力信号に基づき前記雰囲気中を通過してきた前記レーザ光の減衰量スペクトルを求め、この減衰量スペクトルのパターンから前記雰囲気中の分子状または原子状ラジカルの温度を求める解析手段と
を含むことを特徴とする処理装置。 - 請求項4記載の処理装置において、
前記レーザ光を間欠的に前記雰囲気に向けて出力するとともに、前記レーザ光の有無を示すレーザ光有無信号を出力する手段と、
前記レーザ光有無信号に基づき、前記レーザ光があるときの前記レーザ光受光手段の受光量から前記レーザ光が無いときの前記レーザ光受光手段の受光量を差し引いた値のスペクトルを求め、このスペクトルのパターンから前記雰囲気中の分子状または原子状ラジカルの温度を求める手段と
を備えることを特徴とする処理装置。 - 請求項4または5記載の処理装置において、
前記レーザ光発生手段から出力された前記レーザ光を複数の光路を通過させて前記レーザ光手段に受光させる手段を有することを特徴とする処理装置。 - 請求項6記載の処理装置において、
前記光路のそれぞれに配置され、相互に変調周波数が異なる変調器を備えることを特徴とする処理装置。 - 請求項4〜7のいずれか1項に記載の処理装置において、
前記容器は、前記レーザ光が透過する窓を有し、
この窓は、加熱されることを特徴とする処理装置。 - 請求項4〜7のいずれか1項に記載の処理装置において、
前記容器は、前記レーザ光が透過する窓を有し、
この窓は、筒状の構造を有することを特徴とする処理装置。 - 請求項1または2記載の処理装置において、
前記温度計測手段は、前記雰囲気中の前記分子状または原子状ラジカルの発光スペクトルを計測し、そのスペクトルパターンから前記雰囲気中の前記分子状または原子状ラジカルの温度を求めることを特徴とする処理装置。 - 請求項1〜10のいずれか1項に記載の処理装置において、
前記解析制御手段は、前記紫外光受光手段の出力信号に基づき前記雰囲気中を通過してきた前記紫外光または前記真空紫外光の減衰量を求め、この減衰量から前記雰囲気中における前記ラジカルの密度を求めることを特徴とする処理装置。 - 請求項1〜10のいずれか1項に記載の処理装置において、
前記紫外光または前記真空紫外光を間欠的に前記雰囲気に向けて出力するとともに、前記紫外光または前記真空紫外光の有無を示す紫外光有無信号を出力する手段と、
前記紫外光有無信号に基づき、前記紫外光または前記真空紫外光があるときの前記紫外光受光手段の受光量から前記紫外光または前記真空紫外光が無いときの前記紫外光受光手段の受光量を差し引いた値を求め、この値から前記雰囲気中における前記ラジカルの密度を求める手段と
を備えることを特徴とする処理装置。 - 請求項1〜12のいずれか1項に記載の処理装置において、
前記容器は、前記紫外光が透過する窓を有し、
この窓は、加熱されることを特徴とする処理装置。 - 請求項1〜12のいずれか1項に記載の処理装置において、
前記容器は、前記紫外光が透過する窓を有し、
この窓は、筒状の構造を有することを特徴とする処理装置。 - 請求項1〜14のいずれか1項に記載の処理装置において、
前記ラジカルは、原子状ラジカルであることを特徴とする処理装置。 - 請求項15記載の処理装置において、
前記原子状ラジカルは、Si,N,O,F,H,Cのいずれかを含むことを特徴とする処理装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/003714 WO2004085704A1 (ja) | 2003-03-26 | 2003-03-26 | 処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2004085704A1 JPWO2004085704A1 (ja) | 2006-06-29 |
JP4087851B2 true JP4087851B2 (ja) | 2008-05-21 |
Family
ID=33045140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004567191A Expired - Fee Related JP4087851B2 (ja) | 2003-03-26 | 2003-03-26 | 処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050087296A1 (ja) |
JP (1) | JP4087851B2 (ja) |
AU (1) | AU2003227209A1 (ja) |
WO (1) | WO2004085704A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101405846B (zh) * | 2006-08-28 | 2010-09-29 | 国立大学法人名古屋大学 | 等离子体氧化处理方法及装置 |
US20080113108A1 (en) * | 2006-11-09 | 2008-05-15 | Stowell Michael W | System and method for control of electromagnetic radiation in pecvd discharge processes |
JP5161469B2 (ja) * | 2007-03-16 | 2013-03-13 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
JP2008251866A (ja) * | 2007-03-30 | 2008-10-16 | Hitachi High-Technologies Corp | プラズマ処理装置 |
JP2009283838A (ja) * | 2008-05-26 | 2009-12-03 | Oki Semiconductor Co Ltd | 紫外光モニタリングシステム |
US9299541B2 (en) * | 2012-03-30 | 2016-03-29 | Lam Research Corporation | Methods and apparatuses for effectively reducing gas residence time in a plasma processing chamber |
JP7088732B2 (ja) * | 2018-04-27 | 2022-06-21 | 株式会社堀場エステック | 基板処理装置及び基板処理装置用プログラム |
JP6913060B2 (ja) * | 2018-07-24 | 2021-08-04 | 株式会社日立ハイテク | プラズマ処理装置及びプラズマ処理方法 |
JP7540958B2 (ja) | 2021-01-06 | 2024-08-27 | 株式会社堀場エステック | 濃度制御システム、濃度制御プログラム、及び濃度制御方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3734620A (en) * | 1971-04-01 | 1973-05-22 | Ibm | Multiple band atomic absorption apparatus for simultaneously measuring different physical parameters of a material |
JPS61257476A (ja) * | 1985-05-10 | 1986-11-14 | Agency Of Ind Science & Technol | 薄膜の形成方法 |
JPH06293960A (ja) * | 1993-04-07 | 1994-10-21 | Matsushita Electric Ind Co Ltd | レーザアブレーション装置 |
US5749830A (en) * | 1993-12-03 | 1998-05-12 | Olympus Optical Co., Ltd. | Fluorescent endoscope apparatus |
US5683538A (en) * | 1994-12-23 | 1997-11-04 | International Business Machines Corporation | Control of etch selectivity |
JP3162623B2 (ja) * | 1996-01-26 | 2001-05-08 | 東京エレクトロン株式会社 | パーティクル検出装置 |
US5936716A (en) * | 1996-05-31 | 1999-08-10 | Pinsukanjana; Paul Ruengrit | Method of controlling multi-species epitaxial deposition |
JPH1083893A (ja) * | 1996-09-05 | 1998-03-31 | Sony Corp | プラズマ制御方法及びその装置、並びにプラズマ測定方法及びその装置 |
US6527730B2 (en) * | 2000-12-21 | 2003-03-04 | Eastman Kodak Company | Reducing noise in a technique for diagnosing attention deficit hyperactivity disorder |
US6859596B2 (en) * | 2002-07-23 | 2005-02-22 | Fitel Usa Corp. | Systems and methods for forming ultra-low PMD optical fiber using amplitude and frequency keyed fiber spin functions |
JP4081132B2 (ja) * | 2007-05-31 | 2008-04-23 | 辰巳電子工業株式会社 | 映像プリント装置及び映像プリント方法 |
-
2003
- 2003-03-26 US US10/509,656 patent/US20050087296A1/en not_active Abandoned
- 2003-03-26 AU AU2003227209A patent/AU2003227209A1/en not_active Abandoned
- 2003-03-26 JP JP2004567191A patent/JP4087851B2/ja not_active Expired - Fee Related
- 2003-03-26 WO PCT/JP2003/003714 patent/WO2004085704A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2004085704A1 (ja) | 2006-06-29 |
US20050087296A1 (en) | 2005-04-28 |
WO2004085704A1 (ja) | 2004-10-07 |
AU2003227209A1 (en) | 2004-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5663658B2 (ja) | プラズマ評価方法、プラズマ処理方法及びプラズマ処理装置 | |
US7989364B2 (en) | Plasma oxidation processing method | |
US7604010B2 (en) | Film formation apparatus and method of using the same | |
US4664747A (en) | Surface processing apparatus utilizing local thermal equilibrium plasma and method of using same | |
KR20010095208A (ko) | 챔버로부터의 배출물을 모니터링하는 방법 및 장치와, 챔버 클리닝 장치 | |
JP4087851B2 (ja) | 処理装置 | |
KR102485715B1 (ko) | 플라즈마 처리 장치 및 플라즈마 처리 방법 | |
JP2005072347A (ja) | 処理装置 | |
JP3951003B2 (ja) | プラズマ処理装置および方法 | |
US20100190098A1 (en) | Infrared endpoint detection for photoresist strip processes | |
US20210005435A1 (en) | Methods, apparatus, and systems for processing a substrate | |
JP2006339253A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
US11295960B1 (en) | Etching method | |
CN111211044A (zh) | 处理衬底的设备和方法、和使用其制造半导体装置的方法 | |
TWI791524B (zh) | 用於製造電子裝置的設備、用於製造半導體裝置的設備以及估計在半導體處理腔室中的氣體濃度之方法 | |
Ma et al. | Recombination coefficients for Cl on plasma-conditioned yttrium oxide chamber wall surfaces | |
Takeda et al. | Wide range applications of process plasma diagnostics using vacuum ultraviolet absorption spectroscopy | |
JP4127435B2 (ja) | 原子状ラジカル測定方法及び装置 | |
JP3199306B2 (ja) | プラズマ処理装置および方法 | |
TWI243631B (en) | Processing device | |
RU2828437C1 (ru) | Способ плазмохимического травления кремния | |
JPS59104120A (ja) | プラズマ処理方法 | |
JP3092559B2 (ja) | プラズマ処理装置及びこの装置のガスの導入方法 | |
JPS646536B2 (ja) | ||
JP2000124199A (ja) | プラズマ処理装置における炭素原子ラジカル測定用炭素原子光発生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |