JP4085639B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4085639B2
JP4085639B2 JP2002017955A JP2002017955A JP4085639B2 JP 4085639 B2 JP4085639 B2 JP 4085639B2 JP 2002017955 A JP2002017955 A JP 2002017955A JP 2002017955 A JP2002017955 A JP 2002017955A JP 4085639 B2 JP4085639 B2 JP 4085639B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor device
insulating film
control electrode
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002017955A
Other languages
Japanese (ja)
Other versions
JP2003218306A (en
Inventor
卓 梅垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002017955A priority Critical patent/JP4085639B2/en
Publication of JP2003218306A publication Critical patent/JP2003218306A/en
Application granted granted Critical
Publication of JP4085639B2 publication Critical patent/JP4085639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、IGBT(絶縁ゲート型バイポーラトランジスタ)モジュールなどモジュールの構造をした半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
IGBTモジュールなどのパワー半導体デバイス(半導体装置)は、図8に示すように、通常、配線基板66に形成した銅配線65上に、図7に示すIGBTチップなどの半導体チップ51(以下、チップと称す)の裏面電極を全面ハンダ付けして固着し、チップ51の表面電極である主電極54とゲート電極55は、1本ないし複数のアルミワイヤ73、74をボンディングすることによりエミッタ端子68やゲート端子69である外部導出端子とそれぞれ接続されている。通常、チップ51はパッケージに複数個収納されている。
【0003】
【発明が解決しようとする課題】
前記のアルミワイヤボンディングには次のような問題点がある。
1)チップ容量が大きくなると必要な電流容量を確保するために必要なワイヤ本数が増加し、ボンディング工数やワイヤボンダーの設備投資が増え、結果として高コストとなる。
2)ワイヤ73や配線基板上の銅配線パターンの断面積を十分に確保することが構造上難しく、その結果、配線抵抗や配線インダクタンスの増加により、素子の発熱や、応答特性に問題が生じることがある。
3)ワイヤ73の本数を低減するために使用するワイヤ73の直径を太くしようとしても、太線をボンディングする接合条件が厳しくなり、チップを破損する恐れがあるので、太線化にも限界がある。
【0004】
これらの問題を解決するために、ワイヤボンディングという方法でなく、図9に示すような、チップ51の主電極54や制御電極55に銅のリードフレーム68、69を直接接合する構造などが開示されている。
しかしながら、図9のように、チップの主電極にリードフレーム68、69を接続する場合は、リードフレーム68、69によるチップ51に発生する応力を緩和するために、リードフレーム68、69は円74に示すように複雑な構造にする必要があり、製造コストが高くなる。この複雑な構造とするのは、リードフレーム68、69にフリキシビリティを持たせるためである。
【0005】
また、配線回路基板に形成した銅配線をチップ表面の主電極や制御電極に直接、半田などで接合すると、半田の横方向への広がりや、チップ表面と配線回路基板との距離が極めて短くなることで、チップ表面に形成された主電極と制御電極との間の電気的絶縁性、主電極、制御電極と接続する銅配線と耐圧構造(ガードリングなど)との電気的絶縁性が低下する。
【0006】
この発明の目的は、前記の課題を解決して、低コストで、主電極と制御電極との間、主電極、制御電極と接続する銅配線と耐圧構造との間の電気的絶縁性が良好な半導体装置およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
前記の目的を達成するために、半導体チップの同一平面上に形成した主電極と制御電極と、前記半導体チップに形成した耐圧構造と、前記主電極と接続する第1外部導出導体と、前記制御電極と接続する第2外部導出導体とを具備するモジュール構造の半導体装置において、
半導体チップ上全面に形成され、主電極と制御電極の箇所を開口した絶縁膜と、該絶縁膜の開口部で、固着材を介して、前記主電極と固着し、前記絶縁膜上に形成される第1外部導出導体と、前記制御電極と固着し、前記絶縁膜上に形成される第2外部導出導体とを有する構成とする。
【0008】
また、前記絶縁膜が、有機絶縁膜であるとよい。
また、前記絶縁膜の厚さが50〜100μmであるとよい。
また、前記、第1および第2外部導出導体が、リードフレームもしくは配線回路基板の配線であるとよい。
また、前記固着材が、ハンダもしくはハンダペーストであるとよい。
【0009】
また、半導体チップの同一平面上に形成した主電極と制御電極と、前記半導体チップに形成した耐圧構造と、前記主電極と接続する第1外部導出導体と、前記制御電極と接続する第2外部導出導体とを具備するモジュール構造の半導体装置の製造方法において、
耐圧構造と活性領域を形成した半導体ウエハ上に主電極と制御電極とを形成する工程と、半導体ウエハ上全面に、主電極と制御電極の箇所を開口した絶縁膜を形成する工程と、該半導体ウエハを切断してチップ化する工程と、該チップ化された半導体チップに形成された主電極と制御電極とを、第1外部導出導体、第2外部導出導体に固着材でそぞれ固着する工程とを含む製造方法とする。
【0010】
【発明の実施の形態】
図1から図3は、この発明の第1実施例の半導体装置であり、図1は半導体チップの平面図、図2は絶縁シートの平面図、図3は半導体装置の要部断面図である。
図1から図3において、図1で示すIGBTチップ1上に、図2で示す、エミッタ電極4上とゲート電極5上に位置する箇所に開口部7、8を設けた絶縁シート6を貼着する。この絶縁シートの開口部7、8に位置するエミッタ電極4上、ゲート電極5上に、固着材である半田9、10(ハンダペーストなど)を、絶縁シートの厚さより多少高めに付着させ、配線基板13の表面に形成された銅配線11、12(第1、第2外部導出導体に相当する)とエミッタ電極4、ゲート電極5とを半田9、10を介して固着する。IGBTチップの裏面を半田17を介して配線基板16の表面に形成した銅配線15とを固着する。この配線基板16と銅ベース21(冷却導体)とを半田17で固着する。銅配線11、12、15とエミッタ端子18、ゲート端子19、コレクタ端子18を固着し、プラスチックケース22を銅ベース21に固着する。尚、配線基板13と銅配線11、12で配線回路基板(Direct Bonding Copper基板など)を構成する。
【0011】
前記絶縁ート6の主な目的は、外部導出体である銅配線11、12とIGBTチップ外周部に設けられたガードリング3との間の電気的絶縁を確保するためであるので、その間に加わる電界に長期間劣化せずに耐えるものでなければならない。通常この間の電圧は数十V〜数kVであるので、素子の定格に応じた絶縁厚さを選択すればよい。有機絶縁膜としてポリイミド樹脂フィルムを用いる場合、その耐電圧は通常100kV/mm程度などで、50μm程度の厚さがあればよい。
【0012】
しかし、実際の絶縁膜の厚さとしては、フィルムの入手性や加工性などを考慮して決められるべきであり、実用上は50〜100μm程度が好ましい。100μmを超えるものはフィルム材としては、加工性も悪く、高コストとなるし、塗布法により100μmを超える膜厚を得ようとするのも困難である。また、50μm未満の場合は、電気的絶縁の信頼性が十分に得られない可能性がある。
【0013】
従って、絶縁シート6の材としては、50μm〜100μmのポリイミド樹脂シートが望ましいが、厚さはこれに限定するものではない。また樹脂材質もポリイミド樹脂に限らず、要求される耐熱温度や絶縁耐力に応じて、ポリエチレンテレフタレート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリサルフォン樹脂などのエンジニアリングプラスチック樹脂シートなどの有機絶縁材が使用可能である。
【0014】
また、貼着の方法は、工程上、熱融着可能な接着剤を用いるか、シート自体の熱融着性を利用することが望ましいが、熱硬化性の接着剤でも良い。
この絶縁シート6があることにより、エミッタ電極である主電極とゲート電極である制御電極の間での絶縁性が確保される。
また、絶縁シート6は、ガードリング部直上に接着された構造になっているため、エミッタ電極4に固着された銅配線11と耐圧構造であるガードリング3は、この絶縁シート6により絶縁されている。
【0015】
上述のように、開口部7、8を設けた絶縁シート6をIGBTチップ1表面に貼着することにより、半田9、10の横方向への広がりが防止できて、エミッタ電極4である主電極とゲート電極5である制御電極の間の電気的絶縁性が確実に確保できる。また、絶縁シート6によって、エミッタ電極4、ゲート電極5にそれぞれ接続する銅配線11、12と耐圧構造であるガードリング3の間の電気的絶縁性が確実に確保できる。
【0016】
この開口部7、8の寸法としては、主電極および制御電極をそれぞれ外部導出導体と接合するためのものであるので、主電極および制御電極の面積に相当する開口部面積であればよい。実用上は、主電極および制御電極面積の30〜100%の開口部面積でると好ましい。主電極が複数個のセルに分割されているような場合においては、主電極要の開口部は、それぞれのセルに対応した複数個の開口部であってもよい。
【0017】
また、外部導出導体である銅配線11、12の構造を単純な平板状とすることができる(従来は図9の円72に示すように複雑な屈曲構造となっている)。
このように、外部導出導体である銅配線11、12の形状を単純化することで、製造コストを低減することができる。
図4は、この発明の第2実施例の半導体装置の要部断面図である。第1実施例と異なる点は、絶縁シート6のような絶縁物を貼着する構造ではなく、厚膜の絶縁層23をエミッタ電極4やゲート電極5を除いて、その他の箇所に形成する点である。絶縁層23の材質としては、IGBTチップ1表面にパターン形成できる硬化性樹脂(有機絶縁材)ならどのようなものでも良いが、望ましくは、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂などの耐熱性熱硬化性樹脂が良い。
【0018】
このパターンの形成は、スクリーン印刷やスピンコーティング、真空印刷などを用いることができる。
また、エミッタ電極4の開口部7を、単一ではなく、1つのエミッタ電極4に対して、複数個の開口部を作り込むと、半田9との接合部に加わる熱応力などのストレスを緩和することができる。
【0019】
また、絶縁層23形成に当たって、液状の絶縁材料を用いると複数個の開口部を設けた場合には、開口部の平面パターンの自由度が向上する。勿論、ゲート電極5の開口部8も複数個形成しても構わない。
この発明により、第1実施例と同様に、低コストで、エミッタ電極4とゲート電極5の間の絶縁性およびエミッタ電極4、ゲート電極5と接続する銅配線11、12とガードリング3の間の絶縁性を確実に確保できる。
【0020】
図5は、この発明の第3実施例の半導体装置の製造方法であり、同図(a)から同図(d)は工程順に示した工程断面図である。これは図4の半導体装置の製造方法である。
p型拡散領域、n型拡散領域を形成したIGBTユニットが多数集積したウェハ100のエミッタ電極側の表面にエミッタ電極、ゲート電極が露出した絶縁層23を形成する(同図(a))。
【0021】
つぎに、IGBTチップとするために切断線24で、ウェハ100を切断する(同図(b))。
つぎに、開口部に半田9、10を充填する(同図(c))。
つぎに、図示しないエミッタ電極、ゲート電極と、配線基板13に形成した銅配線11、12とを半田9、10を介して固着する。一方、IGBTチップ1の裏面も、図示しない半田を介して、配線基板16に形成した銅配線15と固着する(同図(d))。
【0022】
つぎに、図4のように、銅ベース21、エミッタ端子18、ゲート端子19、コレクタ端子20を固着し、プラスチックケース22を被せて半導体装置とする。
このように、絶縁層23の形成をチップ切断前のウェハ状態で一括して行うことで、絶縁層23の形成のコストを大幅に低減できる。また、この絶縁層23は図4で説明した方法で形成する。さらに、絶縁層23の代わりに、図3で示した絶縁シート13を貼着する方法もある。
【0023】
図6は、この発明の第4実施例の半導体装置の要部断面図である。前記の実施例との違いは、配線基板に形成した銅配線の代わりに、リードフレームのような導体を用いた点である。図6は図3に相当する要部断面図である。この場合は、絶縁シート6の上にリードフレーム24、25(第1、第2外部導出導体に相当する)を配置するために、リードフレーム24、25の厚さは極めて薄くできる。そのために、図9のような屈曲した複雑な構造でなく平面的なリードフレームでよく、低コスト化を図ることができる。また、主電極と制御電極の絶縁性と、主電極、制御電極と耐圧構造の絶縁性を確実に確保できる。
【0024】
【発明の効果】
この発明によれば、主電極および制御電極と外部導出導体の電気的接続を、半導体チップ上に形成した絶縁膜の開口部を介して行ない、この外部導出導体を絶縁膜上に形成することで、主電極と制御電極間の絶縁性および主電極、制御電極と接続する外部導出導体と耐圧構造間の絶縁性の確保が容易にできる。
【0025】
また、絶縁膜上に薄い外部導出導体を形成するために、外部導出導体の形状を単純化できて、低コストを図ることができる。
【図面の簡単な説明】
【図1】この発明の第1実施例の半導体装置の半導体チップの平面図
【図2】この発明の第1実施例の半導体装置の絶縁シートの平面図
【図3】この発明の第1実施例の半導体装置の要部断面図
【図4】この発明の第2実施例の半導体装置の要部断面図
【図5】この発明の第3実施例の半導体装置の製造方法であり、(a)から(d)は工程順に示した工程断面図
【図6】この発明の第4実施例の半導体装置の要部断面図
【図7】IGBTチップの平面図
【図8】従来の半導体装置の要部断面図
【図9】従来の別の半導体装置の要部断面図
【符号の説明】
1 IGBTチップ
2 活性領域
3 ガードリング
4 エミッタ電極
5 ゲート電極
6 絶縁シート
7、8 開口部
9、10、14、17 半田
11、12、15 銅配線
13、16 配線基板
18 エミッタ端子
19 ゲート端子
20 コレクタ端子
21 銅ベース
22 プラスチックケース
23 絶縁層
24、25 リードフレーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device having a module structure such as an IGBT (insulated gate bipolar transistor) module and a method for manufacturing the same.
[0002]
[Prior art]
As shown in FIG. 8, a power semiconductor device (semiconductor device) such as an IGBT module is usually provided on a copper wiring 65 formed on a wiring substrate 66 on a semiconductor chip 51 (hereinafter referred to as a chip) such as an IGBT chip shown in FIG. The main electrode 54 and the gate electrode 55, which are the front electrodes of the chip 51, are bonded to each other by bonding one or a plurality of aluminum wires 73 and 74 to the emitter terminal 68 and the gate. Each is connected to an external lead-out terminal which is a terminal 69. Usually, a plurality of chips 51 are housed in a package.
[0003]
[Problems to be solved by the invention]
The aluminum wire bonding has the following problems.
1) As the chip capacity increases, the number of wires required to secure the necessary current capacity increases, and the man-hours for bonding and wire bonder increase, resulting in higher costs.
2) It is structurally difficult to ensure a sufficient cross-sectional area of the copper wiring pattern on the wire 73 and the wiring board, and as a result, problems arise in heat generation of the element and response characteristics due to an increase in wiring resistance and wiring inductance. There is.
3) Even if an attempt is made to increase the diameter of the wire 73 used to reduce the number of wires 73, the bonding condition for bonding the thick wire becomes strict and the chip may be damaged, so there is a limit to increasing the thickness.
[0004]
In order to solve these problems, a structure in which copper lead frames 68 and 69 are directly bonded to the main electrode 54 and the control electrode 55 of the chip 51 as shown in FIG. ing.
However, when the lead frames 68 and 69 are connected to the main electrode of the chip as shown in FIG. 9, the lead frames 68 and 69 have a circle 74 in order to relieve the stress generated in the chip 51 by the lead frames 68 and 69. As shown in the figure, it is necessary to have a complicated structure, which increases the manufacturing cost. The reason for this complicated structure is that the lead frames 68 and 69 have flexibility.
[0005]
Also, if the copper wiring formed on the printed circuit board is joined directly to the main electrode or control electrode on the chip surface with solder or the like, the solder spreads in the lateral direction and the distance between the chip surface and the printed circuit board becomes extremely short. As a result, the electrical insulation between the main electrode formed on the chip surface and the control electrode, and the electrical insulation between the copper wiring connected to the main electrode and the control electrode and the withstand voltage structure (such as a guard ring) are reduced. .
[0006]
The object of the present invention is to solve the above-mentioned problems, at low cost, and to have good electrical insulation between the main electrode and the control electrode, and between the main electrode and the copper wiring connected to the control electrode and the pressure-resistant structure. And a method of manufacturing the same semiconductor device.
[0007]
[Means for Solving the Problems]
To achieve the above object, a main electrode and a control electrode formed on the same plane of a semiconductor chip, a breakdown voltage structure formed on the semiconductor chip, a first external lead conductor connected to the main electrode, and the control In a module-structured semiconductor device comprising a second external lead conductor connected to an electrode,
An insulating film is formed on the entire surface of the semiconductor chip and is opened on the main electrode and the control electrode, and is formed on the insulating film by being fixed to the main electrode through a fixing material at the opening of the insulating film. A first external lead conductor, and a second external lead conductor fixed to the control electrode and formed on the insulating film.
[0008]
The insulating film may be an organic insulating film.
The insulating film may have a thickness of 50 to 100 μm.
The first and second external lead conductors may be leads of a lead frame or a printed circuit board.
The fixing material may be solder or solder paste.
[0009]
In addition, a main electrode and a control electrode formed on the same plane of the semiconductor chip, a breakdown voltage structure formed in the semiconductor chip, a first external lead conductor connected to the main electrode, and a second external connected to the control electrode In a manufacturing method of a semiconductor device having a module structure comprising a lead-out conductor,
Forming a main electrode and a control electrode on a semiconductor wafer having a breakdown voltage structure and an active region; forming an insulating film having openings on the entire surface of the semiconductor wafer; a step of chips by cutting the wafer, and a main electrode and a control electrode formed on said chip semiconductor chip, a first outer lead conductor,, respectively Re its at fixing material to the second external lead conductors secured The manufacturing method including the process to do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show a semiconductor device according to a first embodiment of the present invention. FIG. 1 is a plan view of a semiconductor chip, FIG. 2 is a plan view of an insulating sheet, and FIG. .
1 to 3, an insulating sheet 6 provided with openings 7 and 8 at positions located on the emitter electrode 4 and the gate electrode 5 shown in FIG. 2 is pasted on the IGBT chip 1 shown in FIG. 1. To do. Solder 9, 10 (solder paste, etc.), which is a fixing material, is attached on the emitter electrode 4 and the gate electrode 5 located in the openings 7 and 8 of the insulating sheet so as to be slightly higher than the thickness of the insulating sheet. Copper wirings 11 and 12 (corresponding to first and second external lead-out conductors) formed on the surface of the substrate 13 are fixed to the emitter electrode 4 and the gate electrode 5 via solders 9 and 10. The back surface of the IGBT chip is fixed to the copper wiring 15 formed on the surface of the wiring substrate 16 via the solder 17. The wiring board 16 and the copper base 21 (cooling conductor) are fixed with solder 17. The copper wirings 11, 12 and 15 are fixed to the emitter terminal 18, the gate terminal 19 and the collector terminal 18, and the plastic case 22 is fixed to the copper base 21. The wiring board 13 and the copper wirings 11 and 12 constitute a wiring circuit board (such as a Direct Bonding Copper board).
[0011]
The main purpose of the insulating sheet over DOO 6, since it is to ensure the electrical insulation between the guard ring 3 provided on the copper wiring 11, 12 and the IGBT chip peripheral portion is externally drawn body, while It must be able to withstand the electric field applied to the battery without long-term deterioration. Usually, the voltage during this period is several tens of volts to several kV, and therefore an insulation thickness corresponding to the rating of the element may be selected. When a polyimide resin film is used as the organic insulating film, the withstand voltage is usually about 100 kV / mm or the like, and only needs to have a thickness of about 50 μm.
[0012]
However, the actual thickness of the insulating film should be determined in consideration of the availability and workability of the film, and is practically about 50 to 100 μm. When the thickness exceeds 100 μm, the film material has poor processability and is expensive, and it is difficult to obtain a film thickness exceeding 100 μm by a coating method. Moreover, when it is less than 50 μm, there is a possibility that sufficient electrical insulation reliability cannot be obtained.
[0013]
Accordingly, the material of the insulating sheet 6 is preferably a polyimide resin sheet having a thickness of 50 μm to 100 μm, but the thickness is not limited to this. Also, the resin material is not limited to polyimide resin, and organic insulating materials such as engineering plastic resin sheets such as polyethylene terephthalate resin, polyether ether ketone resin, polyether imide resin, polysulfone resin, etc., depending on the required heat resistance temperature and dielectric strength Can be used.
[0014]
In addition, it is desirable to use an adhesive that can be heat-sealable in the process or use the heat-sealability of the sheet itself. However, a thermosetting adhesive may also be used.
The presence of the insulating sheet 6 ensures insulation between the main electrode that is the emitter electrode and the control electrode that is the gate electrode.
Further, since the insulating sheet 6 has a structure bonded directly above the guard ring portion, the copper wiring 11 fixed to the emitter electrode 4 and the guard ring 3 which is a withstand voltage structure are insulated by the insulating sheet 6. Yes.
[0015]
As described above, by sticking the insulating sheet 6 provided with the openings 7 and 8 to the surface of the IGBT chip 1, it is possible to prevent the solder 9 and 10 from spreading in the lateral direction, and the main electrode which is the emitter electrode 4. And the electrical insulation between the control electrode which is the gate electrode 5 can be ensured reliably. In addition, the insulating sheet 6 can ensure electrical insulation between the copper wirings 11 and 12 connected to the emitter electrode 4 and the gate electrode 5 and the guard ring 3 which is a withstand voltage structure.
[0016]
The dimensions of the openings 7 and 8 are for joining the main electrode and the control electrode to the external lead-out conductor, respectively, and may be any opening area corresponding to the area of the main electrode and the control electrode. Practically, the opening area is preferably 30 to 100% of the main electrode and control electrode area. In the case where the main electrode is divided into a plurality of cells, the main electrode opening may be a plurality of openings corresponding to each cell.
[0017]
In addition, the structure of the copper wirings 11 and 12 that are the external lead-out conductors can be a simple flat plate (conventionally has a complicated bent structure as shown by a circle 72 in FIG. 9).
Thus, the manufacturing cost can be reduced by simplifying the shapes of the copper wirings 11 and 12 which are the external lead-out conductors.
FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the second embodiment of the present invention. The difference from the first embodiment is not a structure in which an insulator such as an insulating sheet 6 is adhered, but a thick insulating layer 23 is formed in other portions except the emitter electrode 4 and the gate electrode 5. It is. The material of the insulating layer 23 may be any curable resin (organic insulating material) that can be patterned on the surface of the IGBT chip 1, but preferably heat resistant heat such as epoxy resin, polyimide resin, bismaleimide resin, etc. Curable resin is good.
[0018]
This pattern can be formed by screen printing, spin coating, vacuum printing, or the like.
Also, if the openings 7 of the emitter electrode 4 are not single but a plurality of openings are made for one emitter electrode 4, stress such as thermal stress applied to the joint portion with the solder 9 is relieved. can do.
[0019]
In addition, when a liquid insulating material is used in forming the insulating layer 23, when a plurality of openings are provided, the degree of freedom of the planar pattern of the openings is improved. Of course, a plurality of openings 8 of the gate electrode 5 may be formed.
According to the present invention, as in the first embodiment, the insulation between the emitter electrode 4 and the gate electrode 5 and the distance between the copper wirings 11 and 12 connected to the emitter electrode 4 and the gate electrode 5 and the guard ring 3 are low. It is possible to reliably ensure the insulation.
[0020]
FIG. 5 shows a method of manufacturing a semiconductor device according to a third embodiment of the present invention. FIGS. 5A to 5D are process cross-sectional views shown in the order of processes. This is a method of manufacturing the semiconductor device of FIG.
An insulating layer 23 in which the emitter electrode and the gate electrode are exposed is formed on the surface on the emitter electrode side of the wafer 100 on which a large number of IGBT units in which the p-type diffusion region and the n-type diffusion region are formed are integrated (FIG. 1A).
[0021]
Next, in order to obtain an IGBT chip, the wafer 100 is cut along the cutting line 24 ((b) in the figure).
Next, the openings 9 and 10 are filled with solder 9 and 10 (FIG. 3C).
Next, an emitter electrode and a gate electrode (not shown) and the copper wirings 11 and 12 formed on the wiring board 13 are fixed through solders 9 and 10. On the other hand, the back surface of the IGBT chip 1 is also fixed to the copper wiring 15 formed on the wiring board 16 via solder (not shown) ((d) in the figure).
[0022]
Next, as shown in FIG. 4, the copper base 21, the emitter terminal 18, the gate terminal 19, and the collector terminal 20 are fixed, and a plastic case 22 is covered to obtain a semiconductor device.
Thus, by forming the insulating layer 23 in a lump in the wafer state before cutting the chip, the cost for forming the insulating layer 23 can be greatly reduced. The insulating layer 23 is formed by the method described with reference to FIG. Furthermore, there is also a method in which the insulating sheet 13 shown in FIG.
[0023]
FIG. 6 is a cross-sectional view of the main part of the semiconductor device according to the fourth embodiment of the present invention. The difference from the above embodiment is that a conductor such as a lead frame is used instead of the copper wiring formed on the wiring board. FIG. 6 is a cross-sectional view of the main part corresponding to FIG. In this case, since the lead frames 24 and 25 (corresponding to the first and second outer lead-out conductors) are arranged on the insulating sheet 6, the thickness of the lead frames 24 and 25 can be made extremely thin. Therefore, a flat lead frame may be used instead of the bent complicated structure as shown in FIG. 9, and the cost can be reduced. In addition, the insulation between the main electrode and the control electrode and the insulation between the main electrode, the control electrode and the pressure-resistant structure can be ensured.
[0024]
【The invention's effect】
According to this invention, the main electrode and the control electrode are electrically connected to the external lead-out conductor through the opening of the insulating film formed on the semiconductor chip, and the external lead-out conductor is formed on the insulating film. The insulation between the main electrode and the control electrode and the insulation between the external lead conductor connected to the main electrode and the control electrode and the pressure resistant structure can be easily ensured.
[0025]
In addition, since the thin outer lead conductor is formed on the insulating film, the shape of the outer lead conductor can be simplified, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a semiconductor chip of a semiconductor device according to a first embodiment of the present invention. FIG. 2 is a plan view of an insulating sheet of the semiconductor device according to the first embodiment of the present invention. FIG. 4 is a fragmentary cross-sectional view of a semiconductor device according to a second embodiment of the present invention. FIG. 5 is a method of manufacturing a semiconductor device according to a third embodiment of the present invention. ) To (d) are cross-sectional views of the steps shown in the order of the steps. FIG. 6 is a cross-sectional view of the main part of the semiconductor device according to the fourth embodiment of the present invention. Cross-sectional view of relevant parts [FIG. 9] Cross-sectional view of relevant parts of another conventional semiconductor device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 IGBT chip | tip 2 Active region 3 Guard ring 4 Emitter electrode 5 Gate electrode 6 Insulation sheet 7, 8 Opening 9, 10, 14, 17 Solder 11, 12, 15 Copper wiring 13, 16 Wiring board 18 Emitter terminal 19 Gate terminal 20 Collector terminal 21 Copper base 22 Plastic case 23 Insulating layers 24 and 25 Lead frame

Claims (6)

半導体チップの同一平面上に形成した主電極と制御電極と、前記半導体チップに形成した耐圧構造と、前記主電極と接続する第1外部導出導体と、前記制御電極と接続する第2外部導出導体とを具備するモジュール構造の半導体装置において、
半導体チップ上の前記耐圧構造直上部を覆い主電極と制御電極がある箇所がそれぞれ開口され、厚さが50μm〜100μmである有機絶縁膜と、前記主電極と制御電極の面積に相当する面積を有する前記有機絶縁膜の開口部前記開口部で、該有機絶縁膜の膜厚より高く付着させた固着材を介して、前記主電極と固着し、前記有機絶縁膜上に形成される第1外部導出導体と、前記制御電極と固着し、前記絶縁膜上に形成される第2外部導出導体とを有することを特徴とする半導体装置。
A main electrode and a control electrode formed on the same plane of the semiconductor chip, a breakdown voltage structure formed on the semiconductor chip, a first external lead conductor connected to the main electrode, and a second external lead conductor connected to the control electrode In a module-structured semiconductor device comprising:
Is the pressure-resistant structure directly above the cover there is a main electrode and a control electrode portions each opening on a semiconductor chip, and the organic insulating film is a thickness of 50 .mu.m to 100 .mu.m, the area corresponding to the area of the main electrode and the control electrode The organic insulating film has an opening, and the opening is formed on the organic insulating film by being fixed to the main electrode through a fixing material attached to the opening higher than the thickness of the organic insulating film. 1. A semiconductor device comprising: an outer lead conductor; and a second outer lead conductor fixed to the control electrode and formed on the insulating film.
前記有機絶縁膜は、あらかじめ前記開口が形成された樹脂シートであることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the organic insulating film is a resin sheet in which the opening is formed in advance. 前記有機絶縁膜は、前記開口をパターン形成できる硬化性樹脂であることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the organic insulating film is a curable resin capable of patterning the opening. 前記、第1および第2外部導出導体が、リードフレームもしくは配線回路基板の配線であることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the first and second outer lead-out conductors are leads of a lead frame or a printed circuit board. 前記固着材が、ハンダもしくはハンダペーストであることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the fixing material is solder or solder paste. 半導体チップの同一平面上に形成した主電極と制御電極と、前記半導体チップに形成した耐圧構造と、前記主電極と接続する第1外部導出導体と、前記制御電極と接続する第2外部導出導体とを具備するモジュール構造の半導体装置の製造方法において、
耐圧構造と活性領域を形成した半導体ウエハ上に主電極と制御電極とを形成する工程と、半導体ウエハ上の前記耐圧構造直上部を覆い主電極と制御電極がある箇所がそれぞれ前記主電極と制御電極の面積に相当する面積で開口され、厚さが50μm〜100μmである有機絶縁膜を形成する工程と、該半導体ウエハを切断してチップ化する工程と、該チップ化された半導体チップに形成された主電極と制御電極上の前記開口に、前記有機絶縁膜の膜厚より高く固着剤を付着させ、第1外部導出導体、第2外部導出導体に固着材でそれぞれ固着する工程とを含むことを特徴とする半導体装置の製造方法。
A main electrode and a control electrode formed on the same plane of the semiconductor chip, a breakdown voltage structure formed on the semiconductor chip, a first external lead conductor connected to the main electrode, and a second external lead conductor connected to the control electrode In a manufacturing method of a semiconductor device having a module structure comprising:
A step of forming a main electrode and a control electrode on a semiconductor wafer on which a breakdown voltage structure and an active region are formed, and a portion where the main electrode and the control electrode are located on the semiconductor wafer and directly cover the breakdown voltage structure; Forming an organic insulating film having an area corresponding to the area of the electrode and having a thickness of 50 μm to 100 μm; cutting the semiconductor wafer into chips; and forming the chip on the semiconductor chip And a step of adhering a fixing agent to the opening on the main electrode and the control electrode which is higher than the thickness of the organic insulating film and fixing the first outer lead conductor and the second outer lead conductor with a fixing material. A method for manufacturing a semiconductor device.
JP2002017955A 2002-01-28 2002-01-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4085639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017955A JP4085639B2 (en) 2002-01-28 2002-01-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017955A JP4085639B2 (en) 2002-01-28 2002-01-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003218306A JP2003218306A (en) 2003-07-31
JP4085639B2 true JP4085639B2 (en) 2008-05-14

Family

ID=27653470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017955A Expired - Fee Related JP4085639B2 (en) 2002-01-28 2002-01-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4085639B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882234B2 (en) * 2005-01-26 2012-02-22 富士電機株式会社 Semiconductor device and manufacturing method thereof
GB2452594B (en) * 2007-08-20 2012-04-25 Champion Aerospace Inc Switching assembly for an aircraft ignition system
JP2010103381A (en) * 2008-10-27 2010-05-06 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device
JP5182008B2 (en) * 2008-10-27 2013-04-10 富士電機株式会社 Manufacturing method of semiconductor device
JP5398429B2 (en) * 2009-09-02 2014-01-29 三菱電機株式会社 Semiconductor device
JP6083109B2 (en) * 2012-01-18 2017-02-22 富士電機株式会社 Semiconductor device
WO2017104500A1 (en) * 2015-12-16 2017-06-22 三菱電機株式会社 Semiconductor device and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118514B2 (en) * 1989-04-24 1995-12-18 株式会社東芝 Solder bump type semiconductor device
JP2993286B2 (en) * 1991-09-13 1999-12-20 富士電機株式会社 Semiconductor device
JP2940328B2 (en) * 1993-02-05 1999-08-25 富士電機株式会社 Power semiconductor device
JPH07235661A (en) * 1994-02-22 1995-09-05 Toshiba Corp Semiconductor element for electric power
JP3356566B2 (en) * 1994-11-15 2002-12-16 新日本製鐵株式会社 Semiconductor package and mounting method thereof
JP4023032B2 (en) * 1999-06-02 2007-12-19 株式会社デンソー Mounting structure and mounting method of semiconductor device
JP2001007275A (en) * 1999-06-25 2001-01-12 Toshiba Corp Semiconductor device and test method thereof
JP3685659B2 (en) * 1999-09-10 2005-08-24 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP3525832B2 (en) * 1999-11-24 2004-05-10 株式会社デンソー Semiconductor device

Also Published As

Publication number Publication date
JP2003218306A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US6770964B2 (en) Semiconductor device including intermediate wiring element
US9722509B2 (en) Hybrid circuit device
US9496205B2 (en) Power semiconductor package
US7291869B2 (en) Electronic module with stacked semiconductors
US8629467B2 (en) Semiconductor device
US7863725B2 (en) Power device packages and methods of fabricating the same
US6569764B1 (en) Method of manufacturing a semiconductor package by attaching a lead frame to a semiconductor chip via projecting electrodes and an insulating sheet of resin material
WO2007026944A1 (en) Circuit device and method for manufacturing same
JP2006109576A (en) Inverter and vehicle drive unit employing it
CN103996667B (en) Semiconductor device with bypass functionality and method thereof
US7667326B2 (en) Power semiconductor component, power semiconductor device as well as methods for their production
JP3022178B2 (en) Power device chip mounting structure
JP4085639B2 (en) Semiconductor device and manufacturing method thereof
JP5081951B2 (en) Inverter device
JP2000058820A (en) Power semiconductor element and power module
JP4706551B2 (en) Power semiconductor element and power module
JP5098630B2 (en) Semiconductor device and manufacturing method thereof
CN214848619U (en) Intelligent power module
US20120199989A1 (en) Circuit arrangement and manufacturing method thereof
JP2022113492A (en) Semiconductor device, power module, and method for manufacturing semiconductor device
JP2004031649A (en) Semiconductor device and its manufacturing method
JP2003243608A (en) Module for electric power
JPH1022336A (en) Manufacture of semiconductor device
JP2000114525A (en) Semiconductor device and manufacture thereof
JP2000077559A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees