JP4882234B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4882234B2
JP4882234B2 JP2005018578A JP2005018578A JP4882234B2 JP 4882234 B2 JP4882234 B2 JP 4882234B2 JP 2005018578 A JP2005018578 A JP 2005018578A JP 2005018578 A JP2005018578 A JP 2005018578A JP 4882234 B2 JP4882234 B2 JP 4882234B2
Authority
JP
Japan
Prior art keywords
solder
semiconductor device
conductive plate
main
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005018578A
Other languages
Japanese (ja)
Other versions
JP2006210519A (en
Inventor
良成 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005018578A priority Critical patent/JP4882234B2/en
Publication of JP2006210519A publication Critical patent/JP2006210519A/en
Application granted granted Critical
Publication of JP4882234B2 publication Critical patent/JP4882234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/77Apparatus for connecting with strap connectors
    • H01L2224/7725Means for applying energy, e.g. heating means
    • H01L2224/77272Oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

この発明は、大容量のIGBT(絶縁ゲートバイポーラトランジスタ)モジュールなどの半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device such as a large capacity IGBT (Insulated Gate Bipolar Transistor) module and a method for manufacturing the same.

近年、大容量のIGBTモジュールなどのパワー半導体素子において、信頼性を向上させるために、素子の接合温度の低減や外部導出配線の電流密度の低減を図っている。この素子の接合温度の低減や外部導出配線の電流密度の低減を図るために、外部導出配線をアルミワイヤ配線に代えて導板を配線として用い、IGBTチップと導板を100μm以上の厚さの半田で接合して放熱効率を高めたIGBTモジュールが開示されている(特許文献1)。このように導板で配線したIGBTモジュールについて説明する。
図8は、導板で配線したIGBTモジュールを示し、同図(a)は要部断面図、同図(b)は同図(a)の導板と半導体チップの平面図、同図(c)は同図(a)のA部の拡大断面図で同図(b)のX−X線で切断した箇所の断面図である。
冷却板57(ヒートシンク)と、絶縁基板69の表面が導電膜70で選択的に被覆された絶縁金属基板53とを図示しない半田で固着し、この絶縁金属基板53と半導体チップ51を半田55で固着し、半導体チップ51上のエミッタ電極のボンディングパッドであるエミッタ電極パッド65と、導板52(導体で形成された板:リードフレームのこと)とをクリーム半田54で固着する。
In recent years, in a power semiconductor element such as a large-capacity IGBT module, in order to improve reliability, the junction temperature of the element is reduced and the current density of the external lead-out wiring is reduced. In order to reduce the junction temperature of this element and the current density of the external lead-out wiring, the lead-out plate is used as the wiring instead of the aluminum lead wiring, and the IGBT chip and the conductive plate have a thickness of 100 μm or more. An IGBT module in which heat dissipation efficiency is improved by joining with solder is disclosed (Patent Document 1). The IGBT module thus wired with the conductive plate will be described.
FIG. 8 shows an IGBT module wired with a conductive plate, where FIG. 8A is a cross-sectional view of the main part, FIG. 8B is a plan view of the conductive plate and the semiconductor chip of FIG. ) Is an enlarged cross-sectional view of a portion A in FIG. 10A, and is a cross-sectional view taken along the line XX in FIG.
The cooling plate 57 (heat sink) and the insulating metal substrate 53 whose surface of the insulating substrate 69 is selectively covered with the conductive film 70 are fixed with solder (not shown), and the insulating metal substrate 53 and the semiconductor chip 51 are fixed with the solder 55. The emitter electrode pad 65 which is a bonding pad of the emitter electrode on the semiconductor chip 51 and the conductive plate 52 (plate formed of a conductor: lead frame) are fixed with cream solder 54.

また、導板52の端部と絶縁金属基板53の第1ボンディングパッド67とを半田56で固着する。この第1ボンディングパッド67と外部導出端子59とをボンディングワイヤ61で接続することで、半導体チップ51のエミッタ電極パッド65と外部導出端子59は電気的に接続する。また、図示しないボンディングワイヤで、ゲート電極パッド66と外部導出端子60は接続する。
外部導出端子59、60が固着する樹脂成形されたケース58と冷却体57とを接着する。半導体チップ51、導板52、絶縁金属基板53、ボンディングワイヤ61などを水分、湿気、塵埃から保護する目的で、ケース58と冷却導体57で囲まれた空間はゲル62(シリコーンゲルなど)で充填されている。
このように、半導体チップ51表面のエミッタ電極パッド65をワイヤボンディングではなく、クリーム半田54(所謂、ソルダペーストともいわれるもの)を印刷し、高熱伝導、大面積の導板52をリフロー半田付けして、電気的配線することで、半導体チップ51で発生した熱を絶縁金属基板53側へだけでなく、導板52側にも放熱することができて、半導体チップ51の接合温度Tj を保証温度の150℃(シリコンの場合)以下に抑えることができる。
Further, the end portion of the conductive plate 52 and the first bonding pad 67 of the insulating metal substrate 53 are fixed by the solder 56. By connecting the first bonding pad 67 and the external lead-out terminal 59 with the bonding wire 61, the emitter electrode pad 65 of the semiconductor chip 51 and the external lead-out terminal 59 are electrically connected. Further, the gate electrode pad 66 and the external lead-out terminal 60 are connected by a bonding wire (not shown).
The resin-molded case 58 to which the external lead-out terminals 59 and 60 are fixed is bonded to the cooling body 57. The space surrounded by the case 58 and the cooling conductor 57 is filled with gel 62 (silicone gel or the like) for the purpose of protecting the semiconductor chip 51, the conductive plate 52, the insulating metal substrate 53, the bonding wire 61, and the like from moisture, moisture, and dust. Has been.
In this way, the solder electrode 54 on the surface of the semiconductor chip 51 is not wire-bonded, but cream solder 54 (so-called solder paste) is printed, and the conductive plate 52 with high thermal conductivity and large area is reflow-soldered. By electrically wiring, the heat generated in the semiconductor chip 51 can be dissipated not only to the insulating metal substrate 53 side but also to the conductive plate 52 side, and the junction temperature Tj of the semiconductor chip 51 can be set to a guaranteed temperature. It can be suppressed to 150 ° C. (in the case of silicon) or lower.

また、図示しないが、半田を用いない圧接構造の平型IGBTにおいて、ゲートライナーで分割された一層目のエミッタ電極を二層目のエミッタ電極で架橋することで、分割された一層目のエミッタ電極が二層目のエミッタ電極で一体化されて、片加圧でIGBTチップ全面が加圧されない場合でも、二層目のエミッタ電極があることによりIGBT全面を均一動作させることができて、IGBTチップの破壊を防止できることが開示されている(特許文献2)。
特開2001−332664号公報 特開2004−221269号公報
In addition, although not shown, in a flat IGBT having a pressure contact structure that does not use solder, the first emitter electrode divided by the gate liner is bridged by the second emitter electrode, so that the divided first emitter electrode is obtained. Is integrated with the emitter electrode of the second layer, and even when the whole surface of the IGBT chip is not pressurized by one-pressing, the whole surface of the IGBT can be operated uniformly by the presence of the second layer of the emitter chip. (Patent Document 2).
JP 2001-332664 A JP 2004-221269 A

図8の構造では、導板52とエミッタ電極パッド65は4箇所の半田54で接続されているため、半導体チップ51で発生した熱はこの4箇所の半田54を介して導板52へ放熱さる。しかしながら、導板52とエミッタ電極との熱的な接続は半田54による接合部分に限られるため、放熱効率は必ずしも良好でない。
これを改善するために、エミッタ電極パッド65全面を半田で導板52に固着しようとしても、図8の構造では、前記の半田54が付いていない箇所のエミッタ電極パッド65上には保護膜が被覆しており半田が固着しない。
また、図9のように、エミッタ電極82がゲートライナー84で分割され、このゲートライナー84がポリイミド膜87などの保護膜で被覆されている構造では、半田の濡れ拡がりがゲートライナー84を被覆しているポリイミド膜87で阻害されて、図9(b)のように、ポリイミド膜87の箇所には広がらず、導板86とポリイミド膜87と半田層89で囲まれた空洞90が生じる。そのため、IGBTチップ81で発生した熱はゲートライナー84の上に空洞90があるので、ゲートライナー84上からは導板86へ放熱されず、熱抵抗が大きくなり放熱効率を大きくすることが困難になる。また、半田層89と導板86との配線接合部の電気抵抗が大きくなる。放熱効率が小さく電気抵抗が大きくなると配線接合部の温度上昇により、配線接合部に割れなどが発生し高信頼性を確保することが困難になる。
In the structure of FIG. 8, since the conductive plate 52 and the emitter electrode pad 65 are connected by the four solders 54, the heat generated in the semiconductor chip 51 is radiated to the conductive plate 52 through the four solders 54. . However, since the thermal connection between the conductive plate 52 and the emitter electrode is limited to the joint portion by the solder 54, the heat dissipation efficiency is not always good.
In order to improve this, even if the entire surface of the emitter electrode pad 65 is fixed to the conductive plate 52 with solder, a protective film is formed on the emitter electrode pad 65 where the solder 54 is not attached in the structure of FIG. Covered and solder does not stick.
Further, as shown in FIG. 9, in the structure in which the emitter electrode 82 is divided by the gate liner 84 and this gate liner 84 is covered with a protective film such as a polyimide film 87, the solder wet spread covers the gate liner 84. 9B, the polyimide film 87 does not spread over the polyimide film 87, and a cavity 90 surrounded by the conductive plate 86, the polyimide film 87, and the solder layer 89 is generated. Therefore, since the heat generated in the IGBT chip 81 has the cavity 90 on the gate liner 84, it is not radiated from the gate liner 84 to the conductive plate 86, so that the thermal resistance increases and it is difficult to increase the heat radiation efficiency. Become. In addition, the electrical resistance of the wiring junction between the solder layer 89 and the conductive plate 86 is increased. If the heat dissipation efficiency is low and the electrical resistance is large, the temperature of the wiring junction will rise, causing cracks in the wiring junction and making it difficult to ensure high reliability.

この発明の目的は、前記の課題を解決して、主電極上全面を一様な半田ベタ膜層で被覆して、半田による配線接合部の熱抵抗を小さくして、放熱効率を向上させ、信頼性が高い半導体装置を提供することである。   The object of the present invention is to solve the above-mentioned problems, cover the entire surface of the main electrode with a uniform solder solid film layer, reduce the thermal resistance of the wiring joint by solder, improve the heat dissipation efficiency, The object is to provide a highly reliable semiconductor device.

前記の目的を達成するために、半導体基板と、該半導体基板の主面上に形成された主電極と、該主電極上を被覆し、複数の開口部を有する絶縁膜と、半田濡れ性のよい金属箔もしくは半田濡れ性のよい格子状の金属箔もしくは金属コア半田ボールであって、該絶縁膜上に配置される導体と、前記複数の主電極と対向する導板と、前記導体を包含するとともに該導板を前記主電極と接合する半田と、を有する構成とする。
また、半導体基板と、該半導体基板の主面上に形成され、制御電極と接続する制御配線で分割された複数の主電極と、前記制御配線上を被覆する絶縁膜と、半田濡れ性のよい金属箔もしくは半田濡れ性のよい格子状の金属箔もしくは金属コア半田ボールであって、該絶縁膜上に配置される導体と、前記複数の主電極と対向する導板と、前記導体を包含するとともに該導板を前記主電極と接合する半田と、を有する構成とする。
また、前記半田が、クリーム半田または板半田であるとよい。
また、前記絶縁膜が、ポリイミド膜もしくは窒化膜であるとよい。
To achieve the above object, a semiconductor substrate, a main electrode formed on the main surface of the semiconductor substrate, an insulating film covering the main electrode and having a plurality of openings, and solder wettability Good metal foil or grid-like metal foil or metal core solder ball with good solder wettability, including a conductor disposed on the insulating film, a conductive plate facing the plurality of main electrodes, and the conductor And a solder that joins the conductive plate to the main electrode.
Also, a semiconductor substrate, a plurality of main electrodes formed on the main surface of the semiconductor substrate and divided by a control wiring connected to the control electrode, an insulating film covering the control wiring, and good solder wettability A metal foil or a grid-like metal foil or metal core solder ball having good solder wettability, including a conductor disposed on the insulating film, a conductive plate facing the plurality of main electrodes, and the conductor And a solder for joining the conductive plate to the main electrode .
The solder may be cream solder or plate solder.
The insulating film may be a polyimide film or a nitride film.

また、前記金属箔の表面層の材質が、Cu,Au,Niのいずれかであるとよい。
また、前記制御配線が、ゲートライナーであるとよい。
また、支持基板と、該支持基板と一方の主面が固着された半導体基板と、該半導体基板の他方の主面上に形成され、制御電極と接続する制御配線で分割された複数の主電極と、前記制御配線上を被覆する絶縁膜と、前記複数の主電極と対向する導板と、前記導体を包含するとともに該導板を前記複数の主電極と接合する半田と、を有する半導体装置の製造方法において、
前記主電極上に予備半田を前記絶縁膜の表面高さより高く形成する工程と、前記絶縁膜上に半田ボールを配置する工程と、前記予備半田および半田ボール上に前記導板を配置し、リフロー炉を通して予備半田および半田ボールを溶融する工程と、加熱して溶融した半田を冷却して固化する工程と、を有する製造方法とする。
The material of the surface layer of the metal foil, Cu, Au, may be either and Ni.
The control wiring is preferably a gate liner.
Also, a support substrate, a semiconductor substrate to which the support substrate and one main surface are fixed, and a plurality of main electrodes formed on the other main surface of the semiconductor substrate and divided by a control wiring connected to the control electrode A semiconductor device comprising: an insulating film that covers the control wiring; a conductive plate that faces the plurality of main electrodes; and a solder that includes the conductor and joins the conductive plate to the plurality of main electrodes. In the manufacturing method of
Forming a preliminary solder on the main electrode higher than the surface height of the insulating film; arranging a solder ball on the insulating film; arranging the conductive plate on the preliminary solder and the solder ball; A manufacturing method includes a step of melting preliminary solder and solder balls through a furnace, and a step of cooling and solidifying the molten solder by heating.

また、前記半田ボールが、半田のみのボールもしくは金属球の周りに半田層を形成した金属コア半田ボールであるとよい。
また、前記金属球の表面層の材質が、Cu,Au,Niのいずれかであるとよい。
The solder ball may be a solder-only ball or a metal core solder ball in which a solder layer is formed around a metal ball.
The material of the surface layer of the metal sphere may be any one of Cu, Au, and Ni.

この発明によれば、半導体素子の表面側の主電極を複数の領域に分割している箇所(ゲートライナー)を半田濡れ性のよい導電膜で被覆することによって、分割箇所で半田接合層が分割されることを防止して、放熱効率を向上させ、半田による配線接合部の電気抵抗を小さくして高信頼性を確保できる半導体装置を提供することができる。   According to the present invention, the solder bonding layer is divided at the divided portion by covering the portion (gate liner) where the main electrode on the surface side of the semiconductor element is divided into a plurality of regions with the conductive film having good solder wettability. Thus, it is possible to provide a semiconductor device that can prevent heat generation, improve heat dissipation efficiency, reduce electrical resistance of a wiring joint portion by solder, and ensure high reliability.

この発明の形態は、エミッタ電極がゲートライナーで分割されているIGBTチップにおいて、分割された複数のエミッタ電極を半田ベタ膜層で架橋し、この半田ベタ膜層に外部導出配線である導板を固着することで、放熱効率を高めて、配線接合部の信頼性を高めた半導体装置を提供することにある。   In the IGBT chip in which the emitter electrode is divided by a gate liner, a plurality of divided emitter electrodes are bridged by a solder solid film layer, and a conductive plate as an external lead-out wiring is formed on the solder solid film layer. An object of the present invention is to provide a semiconductor device in which the heat dissipation efficiency is improved by fixing and the reliability of the wiring joint portion is increased.

図1は、この発明の第1実施例の半導体装置の要部構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図、同図(c)は同図(b)の金属箔の要部斜視図である。ここでは半導体装置として、例えばIGBTモジュールを挙げた。また、図1(a)はIGBTモジュールを構成しているIGBTチップの平面図で、点線は導板の平面図である。図中の5は耐圧構造である。
IGBTチップ1のエミッタ電極2は半田接合を可能にするために、例えば、図示しない無電解Ni(ニッケル)/Au(金)めっき膜(Ni膜が下地でAu膜が上層)が形成されている。エミッタ電極とは反対側の主面に形成されるコレクタ電極は図示を省略している。ここで無電解Ni/Auメッキ膜を採用したのはCVD(Chemical Vapor Deposition)法で形成するより製造コストを低くできるためである。エミッタ電極2は、ゲートパッド3と接続する500μm程度の幅のゲートライナー4によって、例えば3分割されている。ゲートライナー4を保護するため、ゲートライナーの表面にはポリイミド膜7が厚さ20μm程度で成膜されている。ここで、ゲートライナー4を被覆しているポリイミド膜7上に半田濡れ性のよいCu、Auなどで、厚さ100μm程度の金属箔8を覆いかぶせる。その上に、半田(クリーム半田あるいは板半田)を置き、さらに導板6を置き、リフロー炉で半田を溶融し固化させて接合することで、溶融した半田は金属箔7を経由して分割された隣の溶融した半田にまで濡れ広がることが可能になり、溶融した半田はゲートライナーを被覆しているポリイミド膜7で分割されること無く、一様な半田ベタ膜層9を厚さ150μm程度で形成することができる。前記のポリイミド膜7を0.5μmから1μm程度の窒化膜に代えても同様に半田ベタ膜層9を形成することができる。窒化膜はCVD法などで成膜できる。また、ポリイミドに比べて熱伝導率が高いためIGBTチップと導板6との熱的な接合に優れているため、IGBTのエミッタ電極側からの放熱に有利である。
1A and 1B are main part configuration diagrams of a semiconductor device according to a first embodiment of the present invention. FIG. 1A is a plan view of the main part, and FIG. 1B is an XX line of FIG. Sectional drawing which cut | disconnected principal part and the figure (c) are principal part perspective views of the metal foil of the figure (b). Here, for example, an IGBT module is used as the semiconductor device. FIG. 1A is a plan view of an IGBT chip constituting the IGBT module, and a dotted line is a plan view of a conductive plate. Reference numeral 5 in the figure denotes a breakdown voltage structure.
The emitter electrode 2 of the IGBT chip 1 is formed with, for example, an electroless Ni (nickel) / Au (gold) plating film (a Ni film is an underlayer and an Au film is an upper layer) to enable solder bonding. . The collector electrode formed on the main surface opposite to the emitter electrode is not shown. The reason why the electroless Ni / Au plating film is used here is that the manufacturing cost can be reduced as compared with the case where it is formed by the CVD (Chemical Vapor Deposition) method. The emitter electrode 2 is divided into, for example, three parts by a gate liner 4 having a width of about 500 μm connected to the gate pad 3. In order to protect the gate liner 4, a polyimide film 7 is formed on the surface of the gate liner with a thickness of about 20 μm. Here, a metal foil 8 having a thickness of about 100 μm is covered on the polyimide film 7 covering the gate liner 4 with Cu, Au or the like having good solder wettability. On top of that, solder (cream solder or plate solder) is placed, and further a conductive plate 6 is placed. The solder is melted and solidified in a reflow furnace, and the solder is divided through the metal foil 7. It is possible to spread to the adjacent molten solder, and the molten solder is not divided by the polyimide film 7 covering the gate liner, and the uniform solder solid film layer 9 is formed with a thickness of about 150 μm. Can be formed. Even if the polyimide film 7 is replaced with a nitride film of about 0.5 μm to 1 μm, the solid solder film layer 9 can be similarly formed. The nitride film can be formed by a CVD method or the like. Further, since the thermal conductivity is higher than that of polyimide, the thermal bonding between the IGBT chip and the conductive plate 6 is excellent, which is advantageous for heat radiation from the emitter electrode side of the IGBT.

尚、前記の金属箔8は図1(c)のようにコの字型に成形し、ゲートライナー4を被覆するポリイミド膜7に、パターン認識機能付きロボットを用いてはめ込むように置くとよい。また図示しないが枠を形成してゲートライナー4上に配置される箇所以外の箇所を半田濡れ性の悪い膜で被覆し、この枠をゲートライナー4上に配置してもよい。この方法の場合は金属箔でなく、ワイヤで枠を形成してもよい。この場合には、ゲートライナー4上に配置されない部分のワイヤの表面を半田濡れ性の良くないポリイミドなどの絶縁膜で被覆する。
このように、半田ベタ膜層9を形成することで、導板6とエミッタ電極2は半田ベタ膜層9を介して接合し、半田による配線接合部の熱抵抗を低くできて、この配線接合部での温度上昇を抑えることができる。その結果、放熱効率が高く、配線接合部に割れの発生がない高い信頼性を確保できるIGBTモジュールを提供することができる。
The metal foil 8 may be formed in a U shape as shown in FIG. 1C and placed on the polyimide film 7 covering the gate liner 4 by using a robot with a pattern recognition function. Further, although not shown, a frame may be formed and a portion other than the portion disposed on the gate liner 4 may be covered with a film having poor solder wettability, and the frame may be disposed on the gate liner 4. In the case of this method, the frame may be formed of a wire instead of a metal foil. In this case, the surface of the wire not disposed on the gate liner 4 is covered with an insulating film such as polyimide having poor solder wettability.
By forming the solder solid film layer 9 in this way, the conductive plate 6 and the emitter electrode 2 are bonded via the solder solid film layer 9, and the thermal resistance of the wiring bonding portion by solder can be lowered. Temperature rise at the part can be suppressed. As a result, it is possible to provide an IGBT module that has high heat dissipation efficiency and can ensure high reliability with no occurrence of cracks in the wiring joint.

尚、図2のような、エミッタ電極2が分割されていない場合でも、エミッタ電極2上に形成した保護膜としてのポリイミド膜10に複数個の開口部11が形成されている場合にこの実施例は適用できる。つまり、エミッタ電極2の複数箇所をボンディングワイヤで接続して製作される比較的チップサイズの小さなIGBTにおいて、そのIGBTチップ1aはそのままにして、ボンディングワイヤのみを導板に代えて、その導板を一様の半田ベタ膜層でエミッタ電極上全面を固着する場合である。   Even when the emitter electrode 2 is not divided as shown in FIG. 2, this embodiment is used when a plurality of openings 11 are formed in the polyimide film 10 as a protective film formed on the emitter electrode 2. Is applicable. That is, in an IGBT with a relatively small chip size manufactured by connecting a plurality of locations of the emitter electrode 2 with bonding wires, the IGBT chip 1a is left as it is, and only the bonding wire is replaced with a conductive plate. This is a case where the entire surface of the emitter electrode is fixed with a uniform solder solid film layer.

図3は、この発明の第2実施例の半導体装置の要部構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。この図は、前記と同様にIGBTチップの構成図である。
図1のように、ゲートライナー4上に金属箔8を配置するのではなく、開口部が50μm□〜300μm□で線径が100μmφ程度の格子状(網目状)金属箔12をエミッタ電極2上およびゲートライナー4上に置き、その上に半田を置くことで、溶融した半田12は格子状金属箔12を介してエミッタ電極2上およびゲートライナー4上で一様に濡れ広がることが可能になり、リフロー後にエミッタ電極2上の半田がゲートライナー4で分割されることなく半田ベタ膜層9を形成できる。この場合も、図1と同様の効果を得ることができる。
3A and 3B are main part configuration diagrams of a semiconductor device according to a second embodiment of the present invention, in which FIG. 3A is a plan view of the main part, and FIG. 3B is an XX line in FIG. It is the principal part sectional drawing cut | disconnected. This figure is a configuration diagram of an IGBT chip in the same manner as described above.
As shown in FIG. 1, the metal foil 8 is not disposed on the gate liner 4, but a grid (mesh) metal foil 12 having an opening of 50 μm □ to 300 μm □ and a wire diameter of about 100 μmφ is disposed on the emitter electrode 2. By placing the solder on the gate liner 4 and placing the solder on the gate liner 4, the molten solder 12 can be spread evenly on the emitter electrode 2 and the gate liner 4 through the grid-like metal foil 12. The solder solid film layer 9 can be formed without the solder on the emitter electrode 2 being divided by the gate liner 4 after reflow. In this case, the same effect as in FIG. 1 can be obtained.

図4は、この発明の第3実施例の半導体装置の要部断面図である。この図は、図1(b)に相当した断面図である。
これは、ゲートライナー4上に金属コア半田ボール13を配置した実施例である。この実施例では、まず予備半田9aとして、IGBTチップ1のエミッタ電極2に半田のみを置きリフロー炉を通す。ここで半田層の厚さはポリイミド膜7より厚くなるように半田量を制御する。このままでは予備半田9aでは半田がゲートライナーを被覆するポリイミド膜7で濡れ広がりを阻害され、ポリイミド膜7で分割される。ここで、半田が分割されているゲートライナー4を被覆しているポリイミド膜7上に金属コア半田ボール13を配置し再度リフロー炉を通す(実際の工程ではリードフレームなども配置する)。 その結果、ゲートライナーを被覆しているポリイミド膜7で分割されている予備半田9aは金属コア半田ボール13を介して濡れ広がり、溶融した半田はポリイミド膜7で分割されず、エミッタ電極2上とゲートライナー4上で一様な半田ベタ膜層9を形成することができる。この金属コア半田ボール13には導板6を介して熱が伝導するため、導板6と溶融した金属コア半田ボール13が接して、導板6上に濡れ広がり半田ベタ膜層9が形成される。この場合は、ポリイミド膜7上には直接半田が被覆する。この場合も図1と同様の効果を得ることができる。尚、金属コア半田ボール13は、金属球14の周りに半田膜15が被覆したもので、金属球14としては、Cu球やCu球の表面層をNi膜上にAu膜を形成した薄層(Ni/Au膜)で被覆した金属球またはNi球である。
FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the third embodiment of the present invention. This figure is a cross-sectional view corresponding to FIG.
This is an embodiment in which metal core solder balls 13 are arranged on the gate liner 4. In this embodiment, first, only the solder is placed on the emitter electrode 2 of the IGBT chip 1 as the preliminary solder 9a and is passed through a reflow furnace. Here, the amount of solder is controlled so that the thickness of the solder layer becomes thicker than that of the polyimide film 7. In this state, in the preliminary solder 9a, the solder is inhibited from spreading by the polyimide film 7 covering the gate liner, and is divided by the polyimide film 7. Here, the metal core solder balls 13 are disposed on the polyimide film 7 covering the gate liner 4 where the solder is divided, and are passed again through a reflow furnace (a lead frame and the like are also disposed in an actual process). As a result, the preliminary solder 9a divided by the polyimide film 7 covering the gate liner wets and spreads through the metal core solder balls 13, and the melted solder is not divided by the polyimide film 7 but on the emitter electrode 2. A uniform solder solid film layer 9 can be formed on the gate liner 4. Since heat is conducted to the metal core solder ball 13 through the conductive plate 6, the conductive plate 6 and the molten metal core solder ball 13 come into contact with each other, and the solder solid film layer 9 is formed on the conductive plate 6. The In this case, the polyimide film 7 is directly covered with solder. In this case, the same effect as in FIG. 1 can be obtained. The metal core solder ball 13 is formed by coating a solder film 15 around a metal sphere 14, and the metal sphere 14 is a thin layer in which an Au film is formed on a surface of Cu sphere or Cu sphere on a Ni film. Metal spheres or Ni spheres coated with (Ni / Au film).

図5は、この発明の第4実施例の半導体装置の要部断面図である。図4との違いは、金属コア半田ボール13を金属コアがない半田ボール16にした点である。この場合も、図4と同様の効果が得られる。   FIG. 5 is a sectional view showing the principal part of a semiconductor device according to the fourth embodiment of the present invention. The difference from FIG. 4 is that the metal core solder ball 13 is changed to a solder ball 16 having no metal core. In this case, the same effect as in FIG. 4 can be obtained.

図6は、この発明の第5実施例の半導体装置の要部断面図である。この図は、図1に相当した断面図である。
これは、ゲートライナー4を被覆するポリイミド膜7を形成した後で、エミッタ電極2上とゲートライナー4を被覆するポリイミド膜7上にAl(アルミニウム)/Ni(ニッケル)/Au(金)膜17(最下層がAl膜、中層がNi膜、最上層がAu膜)を蒸着法またはCVD法で形成する。つぎに、Al/Ni/Au膜上に半田と導板6を配置し、リフロー炉を通して、半田を溶融・固化させて、導板6とAl/Ni/Au膜17を半田ベタ膜層9で固着する。ゲートライナー4を被覆するポリイミド膜7上にもAl/Ni/Au膜17が形成されているので、溶融した半田はゲートライナー4で分割されることなく一様な半田ベタ膜層9を形成することができる。この場合も、図1と同様の効果を得ることができる。
FIG. 6 is a cross-sectional view of the principal part of the semiconductor device according to the fifth embodiment of the present invention. This figure is a cross-sectional view corresponding to FIG.
This is because an Al (aluminum) / Ni (nickel) / Au (gold) film 17 is formed on the emitter electrode 2 and the polyimide film 7 covering the gate liner 4 after the polyimide film 7 covering the gate liner 4 is formed. (The lowermost layer is an Al film, the middle layer is a Ni film, and the uppermost layer is an Au film) is formed by vapor deposition or CVD. Next, the solder and the conductive plate 6 are arranged on the Al / Ni / Au film, and the solder is melted and solidified through a reflow furnace, so that the conductive plate 6 and the Al / Ni / Au film 17 are formed by the solder solid film layer 9. Stick. Since the Al / Ni / Au film 17 is also formed on the polyimide film 7 covering the gate liner 4, the molten solder forms a uniform solder solid film layer 9 without being divided by the gate liner 4. be able to. In this case, the same effect as in FIG. 1 can be obtained.

尚、ポリイミド膜7上およびエミッタ電極2上にAl膜なしでNi/Au膜を形成してもよいが、ポリイミド膜7との密着性はAl/Ni/Au膜17と比べると良くない。また、Al/Ni/Au膜17はエミッタ電極2上に形成しないでポリイミド膜7上にのみ形成しても勿論構わない。   Although an Ni / Au film may be formed without an Al film on the polyimide film 7 and the emitter electrode 2, the adhesion with the polyimide film 7 is not as good as that of the Al / Ni / Au film 17. Of course, the Al / Ni / Au film 17 may be formed only on the polyimide film 7 without being formed on the emitter electrode 2.

図7は、この発明の第6実施例の半導体装置の製造方法を示す図であり、同図(a)から同図(c)は工程順に示した要部製造工程断面図である。これは図5の半導体装置の製造方法である。
IGBTチップ1のエミッタ電極2に半田のみを置きリフロー炉を通して予備半田9aを行う。この予備半田9aでは半田がゲートライナー4を被覆するポリイミド膜7で濡れ広がりを阻害され、ゲートライナー4を被覆するポリイミド膜7で分割され、分割されたエミッタ電極2上にのみ半田が固着する。ここで半田層の厚さはポリイミド膜7より厚くなるように半田量を制御する(同図(a))。
つぎに、予備半田9aで挟まれた井戸状になった箇所の底部のポリイミド膜7上に半田ボール16を置き、上に導板6を載せる(同図(b))。
FIG. 7 is a view showing a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention, and FIGS. 7A to 7C are cross-sectional views showing main part manufacturing steps shown in the order of steps. This is a method of manufacturing the semiconductor device of FIG.
Only solder is placed on the emitter electrode 2 of the IGBT chip 1 and preliminary solder 9a is performed through a reflow furnace. In the preliminary solder 9 a, the solder is prevented from spreading by the polyimide film 7 that covers the gate liner 4, and is divided by the polyimide film 7 that covers the gate liner 4, and the solder is fixed only on the divided emitter electrode 2. Here, the amount of solder is controlled so that the thickness of the solder layer is thicker than that of the polyimide film 7 (FIG. 1A).
Next, the solder balls 16 are placed on the polyimide film 7 at the bottom of the well-shaped portion sandwiched between the preliminary solders 9a, and the conductive plate 6 is placed thereon ((b) in the figure).

つぎに、250℃程度のリフロー炉を通して予備半田9aと半田ボール16を溶融させ、その後冷却して半田を固化して、導体6とエミッタ電極2を一様な半田ベタ膜層9で固着する。
同図(c)のように、エミッタ電極2上とゲートライナー4上で一様な半田ベタ膜層9を形成できるのは、半田ボール16に導板6を介して熱が伝達され、導板6と接した予備半田9aと半田ボール16が溶融して、半田ベタ膜層9が形成される。この場合は、ポリイミド膜7上には直接半田が被覆するようになる。
尚、半田ボール16を金属コア半田ボール13に代えると、図4の半導体装置の製造方法となる。また、図は模式図であるので、半田ボール16や金属コア半田ボール13は井戸に1個入った状態を描いたが、実際は井戸に対してボールの大きさが小さいため複数個入っている。
Next, the preliminary solder 9a and the solder ball 16 are melted through a reflow furnace at about 250 ° C., and then cooled to solidify the solder, and the conductor 6 and the emitter electrode 2 are fixed by the uniform solder solid film layer 9.
The uniform solder solid film layer 9 can be formed on the emitter electrode 2 and the gate liner 4 as shown in FIG. 6C because heat is transferred to the solder balls 16 via the conductive plate 6. The preliminary solder 9a in contact with the solder 6 and the solder balls 16 are melted to form the solid solder film layer 9. In this case, the polyimide film 7 is directly covered with solder.
If the solder ball 16 is replaced with the metal core solder ball 13, the manufacturing method of the semiconductor device shown in FIG. 4 is obtained. Further, since the figure is a schematic diagram, one solder ball 16 and one metal core solder ball 13 are drawn in the well, but a plurality of balls are actually included because the size of the ball is small with respect to the well.

この発明の第1実施例の半導体装置の要部構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図、(c)は(b)の金属箔の要部斜視図BRIEF DESCRIPTION OF THE DRAWINGS It is a principal part block diagram of the semiconductor device of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a), (c). (B) Perspective view of main part of metal foil of (b) エミッタ電極が分割されていない場合のIGBTチップの図Diagram of IGBT chip when emitter electrode is not divided この発明の第2実施例の半導体装置の要部構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図FIG. 4 is a configuration diagram of a main part of a semiconductor device according to a second embodiment of the present invention, where (a) is a plan view of the main part and (b) is a cross-sectional view of the main part taken along line XX of (a). この発明の第3実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 4th Example of this invention. この発明の第5実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 5th Example of this invention この発明の第6実施例の半導体装置の製造方法を示す図であり、(a)から(c)は工程順に示した要部製造工程断面図It is a figure which shows the manufacturing method of the semiconductor device of 6th Example of this invention, (a)-(c) is principal part manufacturing process sectional drawing shown to process order 導板で配線したIGBTモジュールを示し、(a)は要部断面図、(b)は(a)の導板と半導体チップの平面図、(c)は(a)のA部の拡大断面図で(b)のX−X線で切断した箇所の断面図The IGBT module wired by the conducting plate is shown, (a) is a sectional view of the main part, (b) is a plan view of the conducting plate and the semiconductor chip of (a), and (c) is an enlarged sectional view of the A part of (a). Sectional drawing of the place cut | disconnected by the XX line of (b) エミッタ電極がゲートライナーで分割されたIGBTチップの図Diagram of IGBT chip with emitter electrode divided by gate liner

符号の説明Explanation of symbols

1、1a IGBTチップ
2 エミッタ電極
3 ゲートパッド
4 ゲートライナー
5 耐圧構造
6 導板
7、10 ポリイミド膜
8 金属箔
9 半田ベタ膜層
9a 予備半田
11 開口部
12 格子状金属箔
13 金属コア半田ボール
14 金属球
15 半田膜
16 半田ボール
17 Al/Ni/Au膜
DESCRIPTION OF SYMBOLS 1, 1a IGBT chip | tip 2 Emitter electrode 3 Gate pad 4 Gate liner 5 Pressure | voltage resistant structure 6 Conductor plate 7, 10 Polyimide film 8 Metal foil 9 Solder solid film layer 9a Preliminary solder 11 Opening part 12 Grid-shaped metal foil 13 Metal core solder ball 14 Metal ball 15 Solder film 16 Solder ball 17 Al / Ni / Au film

Claims (9)

半導体基板と、該半導体基板の主面上に形成された主電極と、該主電極上を被覆し、複数の開口部を有する絶縁膜と、半田濡れ性のよい金属箔もしくは半田濡れ性のよい格子状の金属箔もしくは金属コア半田ボールであって、該絶縁膜上に配置される導体と、前記主電極と対向する導板と、前記導体を包含するとともに該導板を前記複数の開口部を介して前記主電極と接合する半田と、を有することを特徴とする半導体装置。 A semiconductor substrate, a main electrode formed on the main surface of the semiconductor substrate, an insulating film covering the main electrode and having a plurality of openings, and a metal foil with good solder wettability or good solder wettability A grid-like metal foil or metal core solder ball, comprising: a conductor disposed on the insulating film; a conductive plate facing the main electrode; and the conductor including the conductor and the plurality of openings. And a solder for joining to the main electrode through the semiconductor device. 半導体基板と、該半導体基板の主面上に形成され、制御電極と接続する制御配線で分割された複数の主電極と、前記制御配線上を被覆する絶縁膜と、半田濡れ性のよい金属箔もしくは半田濡れ性のよい格子状の金属箔もしくは金属コア半田ボールであって、該絶縁膜上に配置される導体と、前記複数の主電極と対向する導板と、前記導体を包含するとともに該導板を前記主電極と接合する半田と、を有することを特徴とする半導体装置。 A semiconductor substrate, a plurality of main electrodes formed on the main surface of the semiconductor substrate and divided by a control wiring connected to the control electrode, an insulating film covering the control wiring, and a metal foil having good solder wettability Alternatively, a grid-like metal foil or metal core solder ball having good solder wettability, including a conductor disposed on the insulating film, a conductive plate facing the plurality of main electrodes, and the conductor A semiconductor device comprising: a solder for joining a conductive plate to the main electrode . 前記半田が、クリーム半田または板半田であることを特徴とする請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1, wherein the solder is cream solder or plate solder. 前記絶縁膜が、ポリイミド膜もしくは窒化膜であることを特徴とする請求項1〜3のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the insulating film is a polyimide film or a nitride film. 前記の金属箔の表面層の材質が、Cu,Au,Niのいずれかであることを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein a material of a surface layer of the metal foil is any one of Cu, Au, and Ni. 前記制御配線が、ゲートライナーであることを特徴とする請求項2に記載の半導体装置。 The semiconductor device according to claim 2 , wherein the control wiring is a gate liner. 支持基板と、該支持基板と一方の主面が固着された半導体基板と、該半導体基板の他方の主面上に形成され、制御電極と接続する制御配線で分割された複数の主電極と、前記制御配線上を被覆する絶縁膜と、前記複数の主電極と対向する導板と、前記導体を包含するとともに該導板を前記複数の主電極と接合する半田と、を有する半導体装置の製造方法において、
前記主電極上に予備半田を前記絶縁膜の表面高さより高く形成する工程と、前記絶縁膜上に半田ボールを配置する工程と、前記予備半田および半田ボール上に前記導板を配置し、リフロー炉を通して予備半田および半田ボールを溶融する工程と、加熱して溶融した半田を冷却して固化する工程と、を有することを特徴とする半導体装置の製造方法。
A support substrate, a semiconductor substrate to which the support substrate and one main surface are fixed, and a plurality of main electrodes formed on the other main surface of the semiconductor substrate and divided by a control wiring connected to the control electrode; Manufacture of a semiconductor device comprising: an insulating film covering the control wiring; a conductive plate facing the plurality of main electrodes; and solder that includes the conductor and joins the conductive plate to the plurality of main electrodes. In the method
Forming a preliminary solder on the main electrode higher than the surface height of the insulating film; arranging a solder ball on the insulating film; arranging the conductive plate on the preliminary solder and the solder ball; A method for manufacturing a semiconductor device, comprising: a step of melting preliminary solder and solder balls through a furnace; and a step of cooling and solidifying the molten solder by heating.
前記半田ボールが、半田のみのボールもしくは金属球の周りに半田層を形成した金属コア半田ボールであることを特徴とする請求項7に記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7, wherein the solder ball is a solder-only ball or a metal core solder ball in which a solder layer is formed around a metal ball. 前記金属球の表面層の材質が、Cu,Au,Niのいずれかであることを特徴とする請求項8に記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 8, wherein a material of the surface layer of the metal sphere is any one of Cu, Au, and Ni.
JP2005018578A 2005-01-26 2005-01-26 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4882234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018578A JP4882234B2 (en) 2005-01-26 2005-01-26 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018578A JP4882234B2 (en) 2005-01-26 2005-01-26 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006210519A JP2006210519A (en) 2006-08-10
JP4882234B2 true JP4882234B2 (en) 2012-02-22

Family

ID=36967039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018578A Expired - Fee Related JP4882234B2 (en) 2005-01-26 2005-01-26 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4882234B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066371A (en) * 2009-08-18 2011-03-31 Denso Corp Semiconductor device and method of manufacturing the same
JP5396436B2 (en) 2011-06-29 2014-01-22 日立オートモティブシステムズ株式会社 Semiconductor device and method for manufacturing semiconductor device
JP5823798B2 (en) * 2011-09-29 2015-11-25 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2014136303A1 (en) * 2013-03-08 2014-09-12 三菱電機株式会社 Semiconductor device and method for producing semiconductor device
JP6699519B2 (en) * 2016-11-15 2020-05-27 トヨタ自動車株式会社 Semiconductor module
JP6805776B2 (en) 2016-12-09 2020-12-23 富士電機株式会社 Semiconductor device
JP6834436B2 (en) * 2016-12-09 2021-02-24 富士電機株式会社 Semiconductor device
JP7247681B2 (en) 2019-03-18 2023-03-29 富士電機株式会社 semiconductor assembly
JP7306248B2 (en) * 2019-12-09 2023-07-11 株式会社デンソー semiconductor module
JP7302715B2 (en) * 2020-12-03 2023-07-04 富士電機株式会社 semiconductor equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170916A (en) * 2000-11-30 2002-06-14 Toshiba Corp Semiconductor device
JP4085639B2 (en) * 2002-01-28 2008-05-14 富士電機デバイステクノロジー株式会社 Semiconductor device and manufacturing method thereof
JP4093765B2 (en) * 2002-02-08 2008-06-04 株式会社豊田中央研究所 Semiconductor device mounting circuit
JP3879647B2 (en) * 2002-10-02 2007-02-14 トヨタ自動車株式会社 Assembly of members with different linear expansion coefficients

Also Published As

Publication number Publication date
JP2006210519A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4882234B2 (en) Semiconductor device and manufacturing method thereof
JP4438489B2 (en) Semiconductor device
JP2755252B2 (en) Semiconductor device package and semiconductor device
US8916958B2 (en) Semiconductor package with multiple chips and substrate in metal cap
CN104641459B (en) Semiconductor device
KR101069499B1 (en) Semiconductor Device And Fabricating Method Thereof
JP5598386B2 (en) Semiconductor device
JP2008060172A (en) Semiconductor device
KR102228945B1 (en) Semiconductor package and method of fabricating the same
KR20030096461A (en) High power Ball Grid Array Package, Heat spreader used in the BGA package and method for manufacturing the same
JP2016163024A (en) Power module
JP5233853B2 (en) Semiconductor device
JP5119139B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3601529B2 (en) Semiconductor device
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP2003289129A (en) Semiconductor device
JP2008198916A (en) Semiconductor device and manufacturing method thereof
JP5095957B2 (en) Circuit device manufacturing method
JP4861200B2 (en) Power module
TW201712840A (en) Semiconductor package structure
JP2000188359A (en) Semiconductor package
KR20040037561A (en) Semiconductor package
JP4277168B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2007027308A (en) Semiconductor device
JP4047572B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4882234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees