JP2016163024A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2016163024A
JP2016163024A JP2015043728A JP2015043728A JP2016163024A JP 2016163024 A JP2016163024 A JP 2016163024A JP 2015043728 A JP2015043728 A JP 2015043728A JP 2015043728 A JP2015043728 A JP 2015043728A JP 2016163024 A JP2016163024 A JP 2016163024A
Authority
JP
Japan
Prior art keywords
heat capacity
power module
main surface
capacity body
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015043728A
Other languages
Japanese (ja)
Inventor
晃久 福本
Akihisa Fukumoto
晃久 福本
陽 田中
Yo Tanaka
陽 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015043728A priority Critical patent/JP2016163024A/en
Publication of JP2016163024A publication Critical patent/JP2016163024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a power module in which the short-circuit capacity of a power semiconductor element is improved compared with a conventional semiconductor device (especially, a power module), while reducing the manufacturing cost.SOLUTION: A power module includes a power semiconductor element 1 having a first principal surface 1a and a second principal surface 1b located on the opposite side of the first principal surface 1a, an electrode 2 formed on the first principal surface 1a and having a third principal surface 2a, a third conductor 8 as a conductive member connected electrically with the power semiconductor element 1, a wire 10 as a wiring part connecting the power semiconductor element 1 and third conductor 8 electrically, and a heat capacity body 11 formed on the third principal surface 2a of the electrode 2. The wire 10 is partially bonded to the electrode 2 on the third principal surface 2a, and the heat capacity body 11 is formed on the surface region of the third principal surface 2a including the junction of the electrode 2 and wire 10.SELECTED DRAWING: Figure 1

Description

本発明は、パワーモジュールに関し、特にパワーモジュールの短絡耐量改善技術に関する。   The present invention relates to a power module, and more particularly to a technique for improving a short-circuit resistance of a power module.

パワー半導体素子は回路基板などとともに絶縁封止されてパワーモジュールを構成するが、パワーモジュールにおいてパワー半導体素子と回路基板とは、一般に金属ワイヤが超音波接合(ワイヤボンディング)されることにより電気的に接続されている。   A power semiconductor element is insulated and sealed together with a circuit board or the like to constitute a power module. In the power module, the power semiconductor element and the circuit board are generally electrically connected by ultrasonic bonding (wire bonding) of a metal wire. It is connected.

一方、金属ワイヤに代えて、パワー半導体素子の電極にはんだ接合された板状の配線材料によりパワー半導体素子と回路基板とを接続する技術も知られている(たとえば、特開2006−210519号公報または特開2001−332664号公報)。   On the other hand, a technique for connecting a power semiconductor element and a circuit board by a plate-like wiring material soldered to an electrode of the power semiconductor element instead of a metal wire is also known (for example, JP-A-2006-210519). Or JP 2001-332664 A).

パワー半導体素子(例えばダイオード、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等)が事故により電源に短絡すると、該素子に大電流が流れて急激に発熱し、数マイクロ秒から10マイクロ秒のオーダーという短い間に素子破壊に至る。短絡から素子破壊までの時間のことは慣用的に短絡耐量と呼ばれている。   When a power semiconductor element (for example, a diode, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), etc.) is short-circuited to a power source due to an accident, a large current flows through the element and heat is rapidly generated for several microseconds. Device destruction in a short period of 10 to 10 microseconds. The time from short circuit to element destruction is conventionally called short circuit tolerance.

電源短絡による素子破壊を防ぐためには、保護回路が短絡を検知してから動作するまでの時間よりも短絡耐量の方が長くなるように設計する必要がある。   In order to prevent element destruction due to a power supply short circuit, it is necessary to design such that the short circuit withstand capability is longer than the time from when the protection circuit detects the short circuit until it operates.

しかし、世の中の傾向として、コスト低減のためにパワー半導体素子の小径化(チップシュリンク)が行われ、オン抵抗低減のためにパワー半導体素子の薄板化が行われている。いずれの場合にもパワー半導体素子が電源に短絡した際に生じるエネルギー密度が増加するため、短絡耐量は短くなる。以上の観点から、パワー半導体素子の短絡耐量を改善するための技術開発が求められている。   However, as a trend of the world, the diameter of the power semiconductor element (chip shrink) is reduced to reduce the cost, and the power semiconductor element is thinned to reduce the on-resistance. In either case, since the energy density generated when the power semiconductor element is short-circuited to the power source increases, the short-circuit tolerance is shortened. From the above viewpoint, there is a demand for technical development for improving the short-circuit tolerance of power semiconductor elements.

一般に、パワー半導体素子の短絡耐量の改善は、パワー半導体素子自体の構造を作りこむことにより図られているが、パワー半導体素子の外部構造の作りこみも行われている。   In general, improvement of the short-circuit withstand capability of the power semiconductor element is achieved by creating a structure of the power semiconductor element itself, but an external structure of the power semiconductor element is also created.

特開2006−319213号公報には、負荷短絡耐量を改善するために、半導体素子部の表側の面に50μm以上の厚さの金属電極が接触し、かつ金属電極と板状の配線とが面接触した半導体装置が記載されている。   In Japanese Patent Laid-Open No. 2006-319213, in order to improve load short-circuit withstand capability, a metal electrode having a thickness of 50 μm or more is in contact with the surface on the front side of the semiconductor element portion, and the metal electrode and the plate-like wiring are provided on the surface. A contacted semiconductor device is described.

特開2006−210519号公報JP 2006-210519 A 特開2001−332664号公報JP 2001-332664 A 特開2006−319213号公報JP 2006-319213 A

しかしながら、上記のような従来の半導体装置では、配線が板状であるため、回路配置の異なる半導体装置の品種ごとに専用の板状配線を設計・製造する必要が生じ、製造コストが高くなる。(一方、当該配線を汎用する場合には回路設計の自由度が低くなる。)
また、電極の厚膜化は、技術的障壁が高くかつ製造コストが高くなる。
However, in the conventional semiconductor device as described above, since the wiring is plate-shaped, it is necessary to design and manufacture a dedicated plate-shaped wiring for each type of semiconductor device having a different circuit arrangement, which increases the manufacturing cost. (On the other hand, when the wiring is used for general purposes, the degree of freedom in circuit design is low.)
Further, increasing the thickness of the electrode has high technical barriers and high manufacturing costs.

本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、上述した従来の半導体装置(特にパワーモジュール)と比べ、パワー半導体素子の短絡耐量が改善されており、かつ、製造コストが低減されたパワーモジュールを提供することにある。   The present invention has been made to solve the above-described problems. The main object of the present invention is to provide a power module in which the short-circuit withstand capability of the power semiconductor element is improved and the manufacturing cost is reduced as compared with the above-described conventional semiconductor device (particularly, the power module).

本発明に係るパワーモジュールは、第1の主面と前記第1の主面の反対側に位置する第2の主面とを有するパワー半導体素子と、前記第1の主面上に形成されており、第3の主面を有する電極と、前記パワー半導体素子と電気的に接続されている導電部材と、前記パワー半導体素子と前記導電部材とを電気的に接続している配線部と、前記電極の前記第3の主面上に形成されている熱容量体とを備える。前記配線部は、一部分が前記第3の主面上において前記電極と接合されており、前記熱容量体は、前記電極と前記配線部との接合部を含む前記第3の主面の表面領域上に形成されている。   A power module according to the present invention is formed on a power semiconductor element having a first main surface and a second main surface located on the opposite side of the first main surface, and on the first main surface. An electrode having a third main surface, a conductive member electrically connected to the power semiconductor element, a wiring portion electrically connecting the power semiconductor element and the conductive member, And a heat capacity body formed on the third main surface of the electrode. A part of the wiring portion is bonded to the electrode on the third main surface, and the heat capacity body is on a surface region of the third main surface including a bonding portion between the electrode and the wiring portion. Is formed.

本発明に依れば、熱容量体が、電極と配線部との接合部および接合部に隣接する電極の表面を覆っているため、パワー半導体素子の短絡時に生じる急激な素子発熱を熱容量体に放熱させることができ、パワー半導体素子が短絡から破壊に至るまでの時間、すなわち短絡耐量を長くすることができる。また、上記素子発熱を配線部により放熱させる必要が無いため、配線部を板状にする必要がなく、たとえば金属ワイヤなどとすることができる。その結果、短絡耐量が改善されており、かつ、製造コストが低減されたパワーモジュールを提供することができる。   According to the present invention, since the heat capacity body covers the joint between the electrode and the wiring section and the surface of the electrode adjacent to the joint, the rapid element heat generated when the power semiconductor element is short-circuited is dissipated to the heat capacity body. Thus, the time from the short circuit to the breakdown of the power semiconductor element, that is, the short circuit tolerance can be increased. In addition, since it is not necessary to dissipate the element heat generated by the wiring portion, the wiring portion does not need to be plate-shaped, and can be a metal wire, for example. As a result, it is possible to provide a power module that has improved short-circuit tolerance and reduced manufacturing costs.

実施の形態1に係るパワーモジュールを説明するための断面図である。3 is a cross-sectional view for explaining the power module according to Embodiment 1. FIG. 図1における線分II−IIから見た部分断面図である。It is the fragmentary sectional view seen from the line segment II-II in FIG. 実施の形態1に係るパワーモジュールを説明するための部分斜視図である。3 is a partial perspective view for explaining the power module according to Embodiment 1. FIG. 実施の形態1に係るパワーモジュールの製造方法のフローチャートである。3 is a flowchart of a method for manufacturing the power module according to the first embodiment. 実施の形態2に係るパワーモジュールを説明するための断面図である。FIG. 6 is a cross-sectional view for explaining a power module according to a second embodiment. 図5における線分VI−VIから見た部分断面図である。It is the fragmentary sectional view seen from line segment VI-VI in FIG. 実施の形態3に係るパワーモジュールを説明するための部分斜視図である。FIG. 6 is a partial perspective view for explaining a power module according to a third embodiment. 実施の形態4に係るパワーモジュールを説明するための部分斜視図である。FIG. 6 is a partial perspective view for explaining a power module according to a fourth embodiment. 実施の形態5に係るパワーモジュールを説明するための部分斜視図である。FIG. 10 is a partial perspective view for explaining a power module according to a fifth embodiment.

以下、図面を参照して、本発明に従った実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1〜図3を参照して、実施の形態1に係るパワーモジュール100について説明する。図1は、実施の形態1に係るパワーモジュール100の断面図である。図2は、図1中の線分II−IIから見た部分断面図である。図3は、実施の形態1に係るパワーモジュール100を説明するための部分斜視図であり、パワーモジュール100におけるパワー半導体素子1、電極2、ワイヤ10、および熱容量体11のみを示している。図1に示されるように、パワーモジュール100は、パワー半導体素子1と、電極2と、導電部材としての第3導体8と、配線部としてのワイヤ10と、熱容量体11とを備える。
(Embodiment 1)
A power module 100 according to Embodiment 1 will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a power module 100 according to the first embodiment. FIG. 2 is a partial cross-sectional view taken along line II-II in FIG. FIG. 3 is a partial perspective view for explaining the power module 100 according to the first embodiment, and shows only the power semiconductor element 1, the electrode 2, the wire 10, and the heat capacity body 11 in the power module 100. As shown in FIG. 1, the power module 100 includes a power semiconductor element 1, an electrode 2, a third conductor 8 as a conductive member, a wire 10 as a wiring part, and a heat capacity body 11.

パワー半導体素子1は、たとえばIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などである。パワー半導体素子1は、第1の主面1aと、第1の主面1aの反対側に位置する第2の主面1bとを有している。第1の主面1a上には、電極2が形成されている。   The power semiconductor element 1 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The power semiconductor element 1 has a first main surface 1a and a second main surface 1b located on the opposite side of the first main surface 1a. An electrode 2 is formed on the first main surface 1a.

電極2を構成する材料は、任意の導電性材料であればよいが、たとえばアルミニウム(Al)である。電極2の膜厚は、50μm未満とすることができ、たとえば1μm以上10μm以下であればよい。電極2は、パワー半導体素子1の第1の主面1aと接合されている面と、当該面の反対側に位置する第3の主面2aとを有している。第3の主面2aを平面視したときの電極2の平面形状は、任意の形状とすることができるがたとえば正方形状である。   Although the material which comprises the electrode 2 should just be arbitrary electroconductive materials, it is aluminum (Al), for example. The film thickness of the electrode 2 can be less than 50 μm, and may be, for example, 1 μm or more and 10 μm or less. The electrode 2 has a surface joined to the first main surface 1a of the power semiconductor element 1 and a third main surface 2a located on the opposite side of the surface. The planar shape of the electrode 2 when the third main surface 2a is viewed in plan can be an arbitrary shape, for example, a square shape.

パワー半導体素子1の第2の主面1bは、回路基板3と接合部材4を介して接合されている。回路基板3は、第1導体5、絶縁基板6、および第2導体7または第3導体8が積層して構成されている。第1導体5と第2導体7とは、絶縁基板6を挟むように構成されており、絶縁基板6により電気的に絶縁されている。第1導体5と第3導体8とは、絶縁基板6を挟むように構成されており、絶縁基板6により電気的に絶縁されている。第2導体7と第3導体8とは、絶縁基板6上において間隔を隔てて配置されている。パワー半導体素子1の第2の主面1bは、接合部材4を介して第2導体7と接合されている。   The second main surface 1 b of the power semiconductor element 1 is bonded to the circuit board 3 via the bonding member 4. The circuit board 3 is configured by laminating a first conductor 5, an insulating substrate 6, and a second conductor 7 or a third conductor 8. The first conductor 5 and the second conductor 7 are configured to sandwich the insulating substrate 6, and are electrically insulated by the insulating substrate 6. The first conductor 5 and the third conductor 8 are configured to sandwich the insulating substrate 6, and are electrically insulated by the insulating substrate 6. The second conductor 7 and the third conductor 8 are arranged on the insulating substrate 6 with a space therebetween. The second main surface 1 b of the power semiconductor element 1 is joined to the second conductor 7 via the joining member 4.

接合部材4は、たとえば銀ナノ粒子を用いた低温焼結材、銅(Cu)−スズ(Sn)合金などを用いた液相拡散接合材、またははんだなどである。   The bonding member 4 is, for example, a low-temperature sintered material using silver nanoparticles, a liquid phase diffusion bonding material using a copper (Cu) -tin (Sn) alloy, or solder.

第1導体5、第2導体7および第3導体8を構成する材料は、高い熱伝導性を有する任意の材料とすることができるが、たとえば銅(Cu)およびアルミニウム(Al)の少なくともいずれか一方を含む材料である。絶縁基板6を構成する材料は、電気的絶縁性を有し、かつ高い熱伝導性を有する任意の材料であればよいが、たとえば窒化珪素(SiN)、窒化アルミニウム(AlN)、およびアルミナ(Al)の少なくともいずれか一つを含むセラミックス材料またはエポキシ樹脂などの樹脂材料である。 Although the material which comprises the 1st conductor 5, the 2nd conductor 7, and the 3rd conductor 8 can be made into the arbitrary materials which have high heat conductivity, for example, at least any one of copper (Cu) and aluminum (Al) It is a material containing one. The material constituting the insulating substrate 6 may be any material having electrical insulation and high thermal conductivity. For example, silicon nitride (SiN), aluminum nitride (AlN), and alumina (Al 2 O 3 ) or a resin material such as an epoxy resin.

電極2と第3導体8とは、複数のワイヤ10(配線部)を介して電気的に接続されている。複数のワイヤ10は、一部分(第1接合部分10A)が第3の主面2a上において電極2と接合されており、他の一部分(第2接合部分10B)が第3導体8と接合されている。言い換えると、複数のワイヤ10は、それぞれ電極2との接合部を含む第1接合部分10Aと、第3導体8との接合部を含む第2接合部分10Bとを有している。第1接合部分10Aはワイヤ10の一方の端部側に形成されており、第2接合部分10Bは、ワイヤ10の他方の端部側に形成されている。複数のワイヤ10の各第1接合部分10Aは、たとえば第3の主面2a上において互いに間隔を空けてかつ平行に延びるように形成されている。ワイヤ10を構成する材料は、導電性を有し、ボンディングワイヤとして形成可能な任意の材料とすることができ、たとえばCu、Alなどである。ワイヤ10の延在方向に垂直な断面形状は、任意の形状とすればよいが、たとえば円形状である。ワイヤ10の線径は、たとえば100μm以上500μm以下である。   The electrode 2 and the third conductor 8 are electrically connected via a plurality of wires 10 (wiring portions). The plurality of wires 10 are partially bonded to the electrode 2 on the third main surface 2a (first bonding portion 10A), and the other portion (second bonding portion 10B) is bonded to the third conductor 8. Yes. In other words, each of the plurality of wires 10 includes a first joint portion 10 </ b> A including a joint portion with the electrode 2 and a second joint portion 10 </ b> B including a joint portion with the third conductor 8. The first joint portion 10 </ b> A is formed on one end side of the wire 10, and the second joint portion 10 </ b> B is formed on the other end side of the wire 10. Each first joint portion 10A of the plurality of wires 10 is formed, for example, on the third main surface 2a so as to extend in parallel with a space therebetween. The material constituting the wire 10 can be any material that is conductive and can be formed as a bonding wire, such as Cu or Al. The cross-sectional shape perpendicular to the extending direction of the wire 10 may be an arbitrary shape, for example, a circular shape. The wire diameter of the wire 10 is, for example, not less than 100 μm and not more than 500 μm.

第2導体7は、パワー半導体素子1と接合されている領域以外の領域において、外部端子9Aと接合されている。これにより、パワー半導体素子1と外部端子9Aとは、第2導体7を介して電気的に接続されている。第3導体8は、ワイヤ10と接合されている領域以外の領域において、外部端子9Bと接合されている。これにより、パワー半導体素子1と外部端子9Bとは、第3導体8を介して電気的に接続されている。   The second conductor 7 is joined to the external terminal 9 </ b> A in a region other than the region joined to the power semiconductor element 1. Thereby, the power semiconductor element 1 and the external terminal 9 </ b> A are electrically connected via the second conductor 7. The third conductor 8 is joined to the external terminal 9 </ b> B in a region other than the region joined to the wire 10. Thereby, the power semiconductor element 1 and the external terminal 9 </ b> B are electrically connected via the third conductor 8.

電極2の第3の主面2aの全面上には、熱容量体11が形成されている。言い換えると、熱容量体11は、電極2とワイヤ10との接合部を含む第3の主面2aの表面領域上に形成されている。第3の主面2aにおいて熱容量体11に覆われている当該表面領域は、第3の主面2aの全面に拡がっている。つまり、熱容量体11は、第3の主面2aの全面上に形成されている。第3の主面2aを平面視したときに、電極2と熱容量体11とは重なるように形成されている。第3の主面2aを平面視したときの電極2の上記平面形状が正方形状である場合には、上記平面視したときの熱容量体11の平面形状は正方形状である。第3の主面2aを平面視したときの電極2の上記平面形状が円形状である場合には、上記平面視したときの熱容量体11の平面形状は円形状である。   A heat capacity body 11 is formed on the entire surface of the third main surface 2 a of the electrode 2. In other words, the heat capacity body 11 is formed on the surface region of the third main surface 2 a including the joint portion between the electrode 2 and the wire 10. The surface region covered with the heat capacity body 11 on the third main surface 2a extends over the entire surface of the third main surface 2a. That is, the heat capacity body 11 is formed on the entire surface of the third main surface 2a. The electrode 2 and the heat capacity body 11 are formed so as to overlap when the third main surface 2a is viewed in plan. When the planar shape of the electrode 2 when the third main surface 2a is viewed in plan is a square shape, the planar shape of the heat capacity body 11 when viewed in plan is the square shape. When the planar shape of the electrode 2 when the third main surface 2a is viewed in plan is a circular shape, the planar shape of the heat capacity body 11 when viewed in plan is a circular shape.

熱容量体11を構成する材料は、実装時(たとえば塗布または滴下時)に液状であって、実装完了後に熱処理などにより固化可能な材料が好ましい。また、熱容量体11を構成する材料は、少なくとも後述する封止体12を構成する材料よりも熱伝導率が高い材料であるが、より高い熱伝導率を有する材料であるのが好ましい。熱容量体11を構成する材料は、たとえばはんだ、銀(Ag)ペースト(樹脂にAg粒子が分散しており、熱処理により樹脂が硬化するもの)、焼結Agペースト(溶媒中にAg粒子が分散しており、熱処理により溶媒が揮発してAg粒子が焼結するもの)、高熱伝導樹脂(樹脂に高熱伝導率の材料からなるフィラーが分散しているもの)などである。熱容量体11の熱伝導率は、たとえば5W/(m・K)以上であるのが好ましく、より好ましくは50W/(m・K)以上である。   The material constituting the heat capacity body 11 is preferably a material that is liquid at the time of mounting (for example, at the time of application or dripping) and can be solidified by heat treatment after the completion of mounting. Moreover, although the material which comprises the heat capacity body 11 is a material whose heat conductivity is higher than the material which comprises the sealing body 12 mentioned later at least, it is preferable that it is a material which has higher heat conductivity. Materials constituting the heat capacity body 11 are, for example, solder, silver (Ag) paste (in which Ag particles are dispersed in a resin, and the resin is cured by heat treatment), sintered Ag paste (in which Ag particles are dispersed in a solvent). Such as those in which the solvent is volatilized by the heat treatment and the Ag particles are sintered), high heat conductive resins (fillers made of a material having high heat conductivity are dispersed in the resin), and the like. The thermal conductivity of the heat capacity body 11 is preferably, for example, 5 W / (m · K) or more, and more preferably 50 W / (m · K) or more.

複数のワイヤ10の各第1接合部分10Aは、熱容量体11に埋設されている。言い換えると、ワイヤ10の第1接合部分10Aの表面において、第3の主面2aに接している領域以外の他の領域は熱容量体11と接している。電極2の第3の主面2a上において、ワイヤ10の第1接合部分10Aと接している領域以外の他の領域は熱容量体11と接している。熱容量体11は、たとえば複数のワイヤ10における各第1接合部分10A、および電極2の第3の主面2aを一様に覆っている。このとき、熱容量体11の膜厚は、ワイヤ10の第1接合部分10Aの第3の主面3aに垂直な方向における厚みよりも厚く、たとえばワイヤ10の線径よりも厚い。   Each first joint portion 10 </ b> A of the plurality of wires 10 is embedded in the heat capacity body 11. In other words, in the surface of the first joint portion 10 </ b> A of the wire 10, a region other than the region in contact with the third main surface 2 a is in contact with the heat capacity body 11. On the third main surface 2 a of the electrode 2, a region other than the region in contact with the first joint portion 10 </ b> A of the wire 10 is in contact with the heat capacity body 11. The heat capacity body 11 uniformly covers, for example, the first joint portions 10 </ b> A of the plurality of wires 10 and the third main surface 2 a of the electrode 2. At this time, the film thickness of the heat capacity body 11 is thicker than the thickness in the direction perpendicular to the third main surface 3 a of the first joint portion 10 </ b> A of the wire 10, for example, thicker than the wire diameter of the wire 10.

熱容量体11の膜厚は、短絡耐量改善の観点においては100μm以下であれば十分であり、熱容量体11を構成する材料の熱伝導率に応じて決定することができる。これは以下の理由による。   The film thickness of the heat capacity body 11 is sufficient if it is 100 μm or less from the viewpoint of improving the short-circuit resistance, and can be determined according to the thermal conductivity of the material constituting the heat capacity body 11. This is due to the following reason.

パワー半導体素子1の短絡から素子破壊までの時間は数μs〜10μs程度と非常に短く、この時間内にパワー半導体素子1に生じた熱が熱容量体11の内部を伝わる距離は熱容量体11の熱伝導率に依存する。そのため、熱容量体11による短絡耐量改善の効果は、熱容量体11の膜厚を当該距離と同等としたときに最大となり、熱容量体11の膜厚を当該距離より厚くしても頭打ちになる。   The time from the short-circuiting of the power semiconductor element 1 to the element destruction is as short as several μs to 10 μs, and the distance that heat generated in the power semiconductor element 1 is transmitted through the heat capacity body 11 within this time is the heat of the heat capacity body 11. Depends on conductivity. Therefore, the effect of improving the short-circuit withstand capability by the heat capacity body 11 becomes maximum when the film thickness of the heat capacity body 11 is made equal to the distance, and reaches the peak even if the film thickness of the heat capacity body 11 is made larger than the distance.

本発明者らは電極2の第3の主面2a全面上に熱容量体11が形成されている解析モデルによる過渡伝熱解析を実施し、熱容量体11の膜厚が1mm程度である場合には、熱容量体11を構成する材料に依らず熱容量体11の上面の温度は発熱開始から10μs後もほぼ初期温度のままであることを確認した。たとえば、熱容量体11を構成する材料を熱伝導率が400W/(m・K)である銅(Cu)としたときにも、発熱開始から10μs後の熱容量体11の上面はほぼ初期温度のままであった。本発明者らによる過渡伝熱解析の結果から、たとえば熱容量体11を構成する材料が無機フィラーを含むエポキシ樹脂(熱伝導率5W/(m・K))であるときには熱容量体11の膜厚が約10μmのときに短絡耐量改善効果は最大となり、それより厚膜化しても当該効果は頭打ちになった。また、熱容量体11を構成する材料がはんだ(熱伝導率70W/(m・K))であるときには熱容量体11の膜厚が約50μm、焼結Agペースト(熱伝導率200W/(m・K))であるときには熱容量体11の膜厚が約80μmのときに短絡耐量改善効果は最大となり、それより厚膜化しても当該効果は頭打ちになることが確認された。   The present inventors conducted a transient heat transfer analysis using an analytical model in which the heat capacity body 11 is formed on the entire third main surface 2a of the electrode 2, and when the film thickness of the heat capacity body 11 is about 1 mm. It was confirmed that the temperature of the upper surface of the heat capacity body 11 remained almost at the initial temperature even after 10 μs from the start of heat generation, regardless of the material constituting the heat capacity body 11. For example, even when the material constituting the heat capacity body 11 is copper (Cu) having a thermal conductivity of 400 W / (m · K), the upper surface of the heat capacity body 11 after 10 μs from the start of heat generation remains substantially at the initial temperature. Met. From the result of the transient heat transfer analysis by the present inventors, for example, when the material constituting the heat capacity body 11 is an epoxy resin (thermal conductivity 5 W / (m · K)) containing an inorganic filler, the film thickness of the heat capacity body 11 is When the thickness was about 10 μm, the effect of improving the short-circuit resistance was maximized. When the material constituting the heat capacity body 11 is solder (thermal conductivity 70 W / (m · K)), the thickness of the heat capacity body 11 is about 50 μm and the sintered Ag paste (heat conductivity 200 W / (m · K). )), The effect of improving the short-circuit resistance is maximized when the film thickness of the heat capacity body 11 is about 80 μm, and it has been confirmed that the effect reaches a peak even when the film thickness is increased.

なお、熱容量体11の膜厚が第3の主面2aに平行な面内において分布を有している場合には、熱容量体11による短絡耐量改善の効果は熱容量体11の膜厚の最小値が上記距離よりと同等としたときに最大となるため、当該最小値が熱容量体11の構成材料の熱伝導率に応じて決定されるのが好ましい。   In addition, when the film thickness of the heat capacity body 11 has a distribution in a plane parallel to the third main surface 2a, the effect of improving the short-circuit resistance by the heat capacity body 11 is the minimum value of the film thickness of the heat capacity body 11. Therefore, the minimum value is preferably determined according to the thermal conductivity of the constituent material of the heat capacity body 11.

封止体12は、第1導体5において絶縁基板6と接合されている面の反対側に位置する面(下面)および外部端子9A,9Bの一部を除いたパワー半導体素子1、回路基板3、外部端子9、ワイヤ10、熱容量体11を覆うように設けられている。   The sealing body 12 includes the power semiconductor element 1 and the circuit board 3 excluding a surface (lower surface) located on the opposite side of the surface bonded to the insulating substrate 6 in the first conductor 5 and a part of the external terminals 9A and 9B. The external terminal 9, the wire 10, and the heat capacity body 11 are provided.

次に、図4を参照して、実施の形態1に係るパワーモジュール100の製造方法について説明する。   Next, with reference to FIG. 4, the manufacturing method of the power module 100 which concerns on Embodiment 1 is demonstrated.

まず、回路基板3上に搭載されたパワー半導体素子1を準備する(S10)。パワー半導体素子1は、第1の主面1a上に電極2が形成されており、第2の主面1bが回路基板3の第2導体7と接合部材4を介して接合されている。回路基板3は、第1導体5と絶縁基板6とが接合されており、かつ絶縁基板6と第2導体7または第3導体8とが接合されている。   First, the power semiconductor element 1 mounted on the circuit board 3 is prepared (S10). In the power semiconductor element 1, the electrode 2 is formed on the first main surface 1 a, and the second main surface 1 b is bonded to the second conductor 7 of the circuit board 3 via the bonding member 4. In the circuit board 3, the first conductor 5 and the insulating substrate 6 are joined, and the insulating substrate 6 and the second conductor 7 or the third conductor 8 are joined.

次に、電極2と第3導体8とを電気的に接続するためのワイヤ10を形成する(S20)。ワイヤ10は、超音波接合法などにより電極2と第3導体8とにそれぞれ接合される。これにより、第1接合部分10Aを有するワイヤ10が形成される。   Next, the wire 10 for electrically connecting the electrode 2 and the third conductor 8 is formed (S20). The wire 10 is bonded to the electrode 2 and the third conductor 8 by an ultrasonic bonding method or the like. Thereby, the wire 10 having the first joint portion 10A is formed.

次に、電極2の第3の主面2a上に熱容量体11を形成する(S30)。熱容量体11を形成する方法は、熱容量体11の構成する材料に応じて任意に決めればよい。   Next, the heat capacity body 11 is formed on the third main surface 2a of the electrode 2 (S30). The method for forming the heat capacity body 11 may be arbitrarily determined according to the material constituting the heat capacity body 11.

熱容量体11を構成する材料がはんだである場合には、たとえば超音波はんだこてを用いたはんだ付けにより、はんだを電極2およびワイヤ10に濡れ広がらせることができ、冷却することで熱容量体11を形成することができる。   When the material constituting the heat capacity body 11 is solder, the solder can be wetted and spread on the electrode 2 and the wire 10 by, for example, soldering using an ultrasonic soldering iron, and the heat capacity body 11 can be cooled. Can be formed.

また、熱容量体11を構成する材料がAgペーストである場合には、たとえばAgペースト材料を電極2の第3の主面2a上に滴下した後、高温に保持して樹脂を熱硬化(キュア)させることにより熱容量体11を形成することができる。   When the material constituting the heat capacity body 11 is an Ag paste, for example, the Ag paste material is dropped on the third main surface 2a of the electrode 2 and then held at a high temperature to cure the resin (curing). Thus, the heat capacity body 11 can be formed.

また、熱容量体11を構成する材料が焼結Agペーストである場合には、たとえば焼結Agペーストを電極2の第3の主面2a上に滴下した後、高温に保持して焼結Agペースト中の溶媒を揮発させてAg粒子を焼結させることにより熱容量体11を形成することができる。   When the material constituting the heat capacity body 11 is a sintered Ag paste, for example, the sintered Ag paste is dropped on the third main surface 2a of the electrode 2 and then held at a high temperature to be sintered Ag paste. The heat capacity body 11 can be formed by volatilizing the solvent therein and sintering the Ag particles.

いずれの場合も、電極2とワイヤ10との接合部を含む第3の主面2aの上記表面領域上に熱容量体11となるべき液状材料を供給した後、これを固化させることにより熱容量体11を形成する。熱容量体11の形成に際し、ワイヤ10は熱容量体11となるべき液状材料の接触を受けるが、該接触相手を液状材料としているためにワイヤ10が該接触により物理的なダメージを受けることを抑制することができる。なお、熱容量体11は、熱容量体11となるべき液状材料の塗布または滴下量、および塗布または滴下方法を制御することにより、第3の主面2aの全面上に容易に形成され得る。   In any case, after supplying the liquid material to be the heat capacity body 11 on the surface region of the third main surface 2a including the joint portion between the electrode 2 and the wire 10, the heat capacity body 11 is solidified by supplying it. Form. When the heat capacity body 11 is formed, the wire 10 receives contact with the liquid material to be the heat capacity body 11, but the contact partner is made of a liquid material, so that the wire 10 is prevented from being physically damaged by the contact. be able to. The heat capacity body 11 can be easily formed on the entire surface of the third main surface 2a by controlling the amount of application or dropping of the liquid material to be the heat capacity body 11 and the application or dropping method.

次に、封止体12を形成する(S40)。具体的には、熱容量体11が形成された封止対象材(パワー半導体素子1、電極2、回路基板3、外部端子9の一部、ワイヤ10、および熱容量体11を含む)を封止体12によって封止する。封止体12の形成は、たとえばトランスファモールド法により行われる。このようにして、実施の形態1に係るパワーモジュール100を得ることができる。   Next, the sealing body 12 is formed (S40). Specifically, the sealing target material (including the power semiconductor element 1, the electrode 2, the circuit board 3, a part of the external terminal 9, the wire 10, and the heat capacity body 11) on which the heat capacity body 11 is formed is sealed. 12 to seal. The sealing body 12 is formed by, for example, a transfer mold method. In this way, the power module 100 according to Embodiment 1 can be obtained.

次に、実施の形態1に係るパワーモジュール100の作用効果について説明する。実施の形態1に係るパワーモジュール100は、第1の主面1aと第1の主面1aの反対側に位置する第2の主面1bとを有するパワー半導体素子1と、第1の主面1a上に形成されており、第3の主面2aを有する電極2と、パワー半導体素子1と電気的に接続されている導電部材としての第3導体8と、パワー半導体素子1と第3導体8とを電気的に接続している配線部としてのワイヤ10と、電極2の第3の主面2a上に形成されている熱容量体11とを備える。ワイヤ10は、一部分が第3の主面2a上において電極2と接合されており、熱容量体11は、電極2とワイヤ10との接合部を含む第3の主面2aの表面領域上に形成されている。   Next, functions and effects of the power module 100 according to Embodiment 1 will be described. The power module 100 according to Embodiment 1 includes a power semiconductor element 1 having a first main surface 1a and a second main surface 1b located on the opposite side of the first main surface 1a, and a first main surface An electrode 2 having a third main surface 2a, a third conductor 8 as a conductive member electrically connected to the power semiconductor element 1, and the power semiconductor element 1 and the third conductor. 8 and a heat capacity body 11 formed on the third main surface 2 a of the electrode 2. A part of the wire 10 is bonded to the electrode 2 on the third main surface 2 a, and the heat capacity body 11 is formed on the surface region of the third main surface 2 a including the bonding portion between the electrode 2 and the wire 10. Has been.

このようにすれば、パワー半導体素子1の短絡時に生じる熱は電極2を介して熱容量体11に放熱され得る。このとき、電極2は厚膜化されて大きな熱容量を有している必要はない。つまり、パワーモジュール100は、従来の半導体装置(特にパワーモジュール)と比べ、パワー半導体素子1の短絡耐量が改善されており、かつ、製造コストが低減されている。   In this way, heat generated when the power semiconductor element 1 is short-circuited can be radiated to the heat capacity body 11 via the electrode 2. At this time, the electrode 2 need not be thick and have a large heat capacity. That is, in the power module 100, the short circuit withstand capability of the power semiconductor element 1 is improved and the manufacturing cost is reduced as compared with the conventional semiconductor device (particularly, the power module).

また、実施の形態1に係るパワーモジュール100において、ワイヤ10の第1接合部分10Aは熱容量体11に埋設されている。このようにすれば、当該第1接合部分10Aにおいて電極2との接合部以外の他の領域すべてが熱容量体11と接触しているため、当該第1接合部分10Aの熱を熱容量体11に効果的に放熱させることができる。   In the power module 100 according to the first embodiment, the first joint portion 10 </ b> A of the wire 10 is embedded in the heat capacity body 11. In this way, all the regions other than the joint with the electrode 2 in the first joint portion 10A are in contact with the heat capacity body 11, so that the heat of the first joint portion 10A is effective on the heat capacity body 11. Heat can be released.

パワーモジュールにおいてワイヤと電極との接合部には、連続通電時に電流が集中することによってジュール熱が発生し、ホットスポットが形成される。これは、当該接合部の信頼性が損なわれる原因となる。これに対し、パワーモジュール100は、熱容量体11により当該第1接合部分10Aに生じた熱を効果的に面内方向に広げることで、ホットスポットを緩和し、電極2とワイヤ10との接合部の信頼性を向上させることができる。   In the power module, Joule heat is generated at the junction between the wire and the electrode due to current concentration during continuous energization, and a hot spot is formed. This causes the reliability of the joint portion to be impaired. On the other hand, the power module 100 relaxes the hot spot by effectively spreading the heat generated in the first joint portion 10A by the heat capacity body 11 in the in-plane direction, and the joint portion between the electrode 2 and the wire 10. Reliability can be improved.

また、実施の形態1に係るパワーモジュール100において、熱容量体11は電極2とワイヤ10との接合部を含む第3の主面2aの全面上に形成されている。つまり、熱容量体11は第3の主面2aの全面を覆っている。このようにすれば、電極2の第3の主面2aを介したパワー半導体素子1から熱容量体11への放熱効果を最大化することができ、パワー半導体素子1の短絡耐量をより効果的に改善することができる。   In the power module 100 according to the first embodiment, the heat capacity body 11 is formed on the entire third main surface 2 a including the joint portion between the electrode 2 and the wire 10. That is, the heat capacity body 11 covers the entire surface of the third main surface 2a. In this way, the heat radiation effect from the power semiconductor element 1 to the heat capacity body 11 via the third main surface 2a of the electrode 2 can be maximized, and the short-circuit tolerance of the power semiconductor element 1 can be more effectively improved. Can be improved.

また、実施の形態1に係るパワーモジュール100において、ワイヤ10はボンディングワイヤである。このようにすれば、ワイヤ10は、パワーモジュール100において回路配置が異なり、電極2と第3導体8との相対的な位置関係が異なる複数種のパワーモジュール100に対しても、容易に形成され得る。そのため、このようなワイヤ10を備えるパワーモジュール100は、パワー半導体素子1の短絡耐量を改善するためにその回路配置に応じた専用の配線部をそれぞれ準備する必要がなく、汎用のワイヤ10および同一材料からなる熱容量体11によって該短絡耐量が改善されている。つまり、上記パワーモジュール100は、短絡耐量が改善されているとともに回路設計の自由度が高くかつ製造コストが低い。   In the power module 100 according to the first embodiment, the wire 10 is a bonding wire. In this way, the wire 10 is easily formed even for a plurality of types of power modules 100 in which the circuit arrangement is different in the power module 100 and the relative positional relationship between the electrode 2 and the third conductor 8 is different. obtain. Therefore, the power module 100 including such a wire 10 does not need to prepare a dedicated wiring portion corresponding to the circuit arrangement in order to improve the short-circuit tolerance of the power semiconductor element 1, and is identical to the general-purpose wire 10. The short-circuit resistance is improved by the heat capacity body 11 made of a material. That is, the power module 100 has improved short-circuit tolerance, high degree of freedom in circuit design, and low manufacturing cost.

また、実施の形態1に係るパワーモジュール100の製造方法において、熱容量体11はワイヤ10が接合されている電極2の第3の主面2a上に液状材料として供給され、その後該液状材料が固化されることにより形成される。そのため、ワイヤ10として汎用のボンディングワイヤを用いても、熱容量体11を形成する際にワイヤ10が物理的なダメージを受けることが防止されている。その結果、電極2とワイヤ10との接合部の信頼性を損なうことなく、パワー半導体素子1の短絡耐量が改善されたパワーモジュール100を低コストで製造することができる。   In the method for manufacturing the power module 100 according to the first embodiment, the heat capacity body 11 is supplied as a liquid material onto the third main surface 2a of the electrode 2 to which the wire 10 is bonded, and then the liquid material is solidified. Is formed. Therefore, even if a general-purpose bonding wire is used as the wire 10, the wire 10 is prevented from being physically damaged when the heat capacity body 11 is formed. As a result, the power module 100 in which the short-circuit withstand capability of the power semiconductor element 1 is improved can be manufactured at low cost without impairing the reliability of the joint between the electrode 2 and the wire 10.

(実施の形態2)
次に、図5および図6を参照して、実施の形態2に係るパワーモジュール100について説明する。図5は、実施の形態2に係るパワーモジュール100の断面図である。図6は、図5中の線分VI−VIから見た部分断面図である。実施の形態2に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と基本的に同様の構成を備えるが、ワイヤ10の一部分(第1接合部分10A)の表面の一部が熱容量体11から露出している点で異なる。
(Embodiment 2)
Next, the power module 100 according to Embodiment 2 will be described with reference to FIGS. FIG. 5 is a cross-sectional view of power module 100 according to the second embodiment. 6 is a partial cross-sectional view taken along line VI-VI in FIG. The power module 100 according to the second embodiment has basically the same configuration as that of the power module 100 according to the first embodiment, but a part of the surface of a part of the wire 10 (first joint portion 10A) is a heat capacity body. 11 is different in that it is exposed.

ワイヤ10の第1接合部分10Aの表面において、第3の主面2aに接している領域以外の他の領域のうちの一部が熱容量体11から露出しており、その他は熱容量体11と接している。言い換えると、熱容量体11の膜厚(第3の主面2a上において膜厚分布があるときにはその最小値)は、ワイヤ10の第1接合部分10Aの第3の主面3aに垂直な方向における厚みよりも薄く、たとえばワイヤ10の線径よりも薄い。   On the surface of the first joint portion 10A of the wire 10, a part of the region other than the region in contact with the third main surface 2a is exposed from the heat capacity body 11, and the other is in contact with the heat capacity body 11. ing. In other words, the film thickness of the heat capacity body 11 (the minimum value when there is a film thickness distribution on the third main surface 2a) is in a direction perpendicular to the third main surface 3a of the first joint portion 10A of the wire 10. It is thinner than the thickness, for example, thinner than the wire diameter of the wire 10.

このようにしても、電極2の第3の主面2a上において、ワイヤ10の第1接合部分10Aと接している領域以外の他の領域は熱容量体11と接しているため、電極2を介してパワー半導体素子1の短絡時に生じる熱を熱容量体11に放熱することができる。その結果、実施の形態2に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と同様の効果を奏することができる。   Even in this case, on the third main surface 2 a of the electrode 2, the region other than the region in contact with the first joint portion 10 </ b> A of the wire 10 is in contact with the heat capacity body 11. Thus, the heat generated when the power semiconductor element 1 is short-circuited can be radiated to the heat capacity body 11. As a result, the power module 100 according to the second embodiment can achieve the same effects as the power module 100 according to the first embodiment.

(実施の形態3)
次に、図7を参照して、実施の形態3に係るパワーモジュール100について説明する。図7は、実施の形態3に係るパワーモジュール100を説明するための部分斜視図であり、パワーモジュール100におけるパワー半導体素子1、電極2、ワイヤ10、および熱容量体11のみを示している。実施の形態3に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と基本的に同様の構成を備えるが、熱容量体11が電極2とワイヤ10との接合部を含む第3の主面2aの一部上に形成されている点で異なる。言い換えると、第3の主面2a上において電極2とワイヤ10との接合部が形成されていない領域の一部が熱容量体11から露出している点で異なる。
(Embodiment 3)
Next, a power module 100 according to Embodiment 3 will be described with reference to FIG. FIG. 7 is a partial perspective view for explaining the power module 100 according to the third embodiment, and shows only the power semiconductor element 1, the electrode 2, the wire 10, and the heat capacity body 11 in the power module 100. The power module 100 according to the third embodiment has basically the same configuration as that of the power module 100 according to the first embodiment. However, the heat capacity body 11 includes a joint portion between the electrode 2 and the wire 10. It differs in that it is formed on a part of the surface 2a. In other words, the third main surface 2 a is different in that a part of the region where the joint portion between the electrode 2 and the wire 10 is not formed is exposed from the heat capacity body 11.

熱容量体11は電極2の第3の主面2aを部分的に覆っている。第3の主面2a上において熱容量体11から露出している部分は、電極2の平面形状において外周部に形成されている。つまり、第3の主面2a上において熱容量体11から露出している部分は、第3の主面2a上において電極2とワイヤ10との接合部から最も離れた部分に位置している。   The heat capacity body 11 partially covers the third main surface 2 a of the electrode 2. The portion exposed from the heat capacity body 11 on the third main surface 2 a is formed in the outer peripheral portion in the planar shape of the electrode 2. That is, the portion exposed from the heat capacity body 11 on the third main surface 2 a is located on the third main surface 2 a in the portion farthest from the bonding portion between the electrode 2 and the wire 10.

第3の主面2aを平面視したときに、熱容量体11は電極2の一部と重なるように形成されている。第3の主面2aを平面視したときの熱容量体11の平面形状は、たとえば円形状である。上記平面視したときの電極2の平面形状は、たとえば正方形状である。   The heat capacity body 11 is formed so as to overlap a part of the electrode 2 when the third main surface 2 a is viewed in plan. The planar shape of the heat capacity body 11 when the third main surface 2a is viewed in plan is, for example, a circular shape. The planar shape of the electrode 2 when viewed in plan is, for example, a square shape.

このようにしても、実施の形態3に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と基本的に同様の構成を備えるため、実施の形態1に係るパワーモジュール100と同様の効果を奏することができる。   Even in this case, since the power module 100 according to the third embodiment has basically the same configuration as the power module 100 according to the first embodiment, the same effect as the power module 100 according to the first embodiment. Can be played.

実施の形態3における熱容量体11は、実施の形態1における熱容量体11と同様に任意の方法により形成され得るが、たとえばシリンジなどにより熱容量体11となるべき液状材料を電極2の中央位置から滴下することにより第3の主面2a上に供給し、その後該液状材料を固化することにより容易に形成され得る。つまり、実施の形態3に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と比べて同等またはそれ以上に容易に製造され得る。   The heat capacity body 11 in the third embodiment can be formed by an arbitrary method in the same manner as the heat capacity body 11 in the first embodiment. For example, a liquid material to be the heat capacity body 11 is dropped from the center position of the electrode 2 by a syringe or the like. By doing so, it can be easily formed by supplying onto the third main surface 2a and then solidifying the liquid material. That is, the power module 100 according to the third embodiment can be easily manufactured equivalently or more easily than the power module 100 according to the first embodiment.

このように、実施の形態3に係るパワーモジュール100は、パワー半導体素子1の短絡耐量が改善されているとともに、容易に製造され得る。なお、実施の形態3に係るパワーモジュール100は第3の主面2aの上記表面領域であって熱容量体11に覆われている領域の面積が実施の形態1に係るパワーモジュール100の上記表面領域の面積と比べて小さいため、熱容量体11による短絡耐量改善効果の大きさは実施の形態1に係るパワーモジュール100には及ばない。   As described above, the power module 100 according to the third embodiment can be easily manufactured while the short-circuit tolerance of the power semiconductor element 1 is improved. In the power module 100 according to the third embodiment, the area of the surface region of the third main surface 2a that is covered with the heat capacity body 11 is the surface region of the power module 100 according to the first embodiment. Therefore, the magnitude of the effect of improving the short-circuit resistance by the heat capacity body 11 is not as large as that of the power module 100 according to the first embodiment.

なお、実施の形態3に係るパワーモジュール100において、ワイヤ10の一部分(第1接合部分10A)の表面の一部は熱容量体11から露出していてもよい。このようにすれば、実施の形態2に係るパワーモジュール100と基本的に同様の構成を備えるため、実施の形態2に係るパワーモジュール100と同様の効果を奏することができる。   In the power module 100 according to the third embodiment, a part of the surface of a part of the wire 10 (first joint portion 10A) may be exposed from the heat capacity body 11. In this way, since the power module 100 according to the second embodiment has basically the same configuration, the same effects as the power module 100 according to the second embodiment can be obtained.

(実施の形態4)
次に、図8を参照して、実施の形態4に係るパワーモジュール100について説明する。図8は、実施の形態4に係るパワーモジュール100を説明するための部分斜視図であり、パワーモジュール100におけるパワー半導体素子1、電極2、ワイヤ10、および熱容量体11のみを示している。実施の形態4に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と基本的に同様の構成を備えるが、配線部がリボンワイヤ13である点で異なる。
(Embodiment 4)
Next, the power module 100 according to Embodiment 4 will be described with reference to FIG. FIG. 8 is a partial perspective view for explaining the power module 100 according to the fourth embodiment, and shows only the power semiconductor element 1, the electrode 2, the wire 10, and the heat capacity body 11 in the power module 100. The power module 100 according to the fourth embodiment has basically the same configuration as the power module 100 according to the first embodiment, but differs in that the wiring portion is a ribbon wire 13.

このようにしても、熱容量体11は、電極2とリボンワイヤ13との接合部を含む第3の主面2aの表面領域上に形成されており、第3の主面2a上において電極2と接合されているリボンワイヤ13の一部分(第1接合部分13A)が熱容量体11に埋設されている。そのため、実施の形態4に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と同様の効果を奏することができる。   Even in this case, the heat capacity body 11 is formed on the surface region of the third main surface 2a including the joint portion between the electrode 2 and the ribbon wire 13, and the electrode 2 and the heat capacity body 11 are formed on the third main surface 2a. A part of the ribbon wire 13 that is joined (first joining portion 13 </ b> A) is embedded in the heat capacity body 11. Therefore, the power module 100 according to the fourth embodiment can achieve the same effects as the power module 100 according to the first embodiment.

なお、リボンワイヤ13の第1接合部分13Aの表面の一部は、熱容量体11から露出していてもよい。このようにすれば、実施の形態2に係るパワーモジュール100と同様の効果を奏することができる。   A part of the surface of the first joint portion 13 </ b> A of the ribbon wire 13 may be exposed from the heat capacity body 11. If it does in this way, there can exist an effect similar to power module 100 concerning Embodiment 2.

(実施の形態5)
次に、図9を参照して、実施の形態5に係るパワーモジュール100について説明する。図9は、実施の形態5に係るパワーモジュール100を説明するための部分斜視図であり、パワーモジュール100におけるパワー半導体素子1、電極2、ワイヤ10、および熱容量体11のみを示している。実施の形態5に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と基本的に同様の構成を備えるが、配線部が導線性材料からなり、熱容量体11から突出した部分を含む突出部材14である点で異なる。
(Embodiment 5)
Next, with reference to FIG. 9, the power module 100 which concerns on Embodiment 5 is demonstrated. FIG. 9 is a partial perspective view for explaining the power module 100 according to the fifth embodiment, and shows only the power semiconductor element 1, the electrode 2, the wire 10, and the heat capacity body 11 in the power module 100. The power module 100 according to the fifth embodiment has basically the same configuration as the power module 100 according to the first embodiment, but the wiring portion is made of a conductive material and includes a portion that protrudes from the heat capacity body 11. It differs in that it is a member 14.

熱容量体11は、電極2と突出部材14との接合部を含む第3の主面2aの表面領域上に形成されており、第3の主面2a上において電極2と接合されている突出部材14の一部分(第1接合部分14A)が熱容量体11に埋設されている。そのため、実施の形態5に係るパワーモジュール100は、実施の形態1に係るパワーモジュール100と同様の効果を奏することができる。   The heat capacity body 11 is formed on the surface region of the third main surface 2a including the joint portion between the electrode 2 and the protruding member 14, and the protruding member is bonded to the electrode 2 on the third main surface 2a. A part of 14 (first joining portion 14 </ b> A) is embedded in the heat capacity body 11. Therefore, the power module 100 according to the fifth embodiment can achieve the same effects as the power module 100 according to the first embodiment.

以上のように本発明の実施形態について説明を行なったが、上述の各実施形態の構成を適宜組み合わせることも当初から予定している。   Although the embodiments of the present invention have been described above, it is also planned from the beginning to combine the configurations of the above-described embodiments as appropriate.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、短絡時に大電流が流れることにより急激に発熱するパワー半導体素子を備えるパワーモジュールに特に有利に適用される。   The present invention is particularly advantageously applied to a power module including a power semiconductor element that rapidly generates heat when a large current flows during a short circuit.

1 パワー半導体素子、1a 第1の主面、1b 第2の主面、2 電極、2a 第3の主面、3 回路基板、4 接合部材、5 第1導体、6 絶縁基板、7 第2導体、8 第3導体、9,9A,9B 外部端子、10 ワイヤ、10A,13A,14A 第1接合部分、10B 第2接合部分、11 熱容量体、12 封止体、13 リボンワイヤ、14 突出部材、100 パワーモジュール。   DESCRIPTION OF SYMBOLS 1 Power semiconductor element, 1a 1st main surface, 1b 2nd main surface, 2 electrode, 2a 3rd main surface, 3 Circuit board, 4 joining member, 5 1st conductor, 6 Insulating substrate, 7 2nd conductor , 8 Third conductor, 9, 9A, 9B External terminal, 10 wire, 10A, 13A, 14A First joint portion, 10B Second joint portion, 11 Heat capacity body, 12 Sealed body, 13 Ribbon wire, 14 Projecting member, 100 Power module.

Claims (8)

第1の主面と前記第1の主面の反対側に位置する第2の主面とを有するパワー半導体素子と、
前記第1の主面上に形成されており、第3の主面を有する電極と、
前記パワー半導体素子と電気的に接続されている導電部材と、
前記パワー半導体素子と前記導電部材とを電気的に接続している配線部と、
前記電極の前記第3の主面上に形成されている熱容量体とを備え、
前記配線部は、一部分が前記第3の主面上において前記電極と接合されており、
前記熱容量体は、前記電極と前記配線部との接合部を含む前記第3の主面の表面領域上に形成されている、パワーモジュール。
A power semiconductor element having a first main surface and a second main surface located opposite to the first main surface;
An electrode formed on the first main surface and having a third main surface;
A conductive member electrically connected to the power semiconductor element;
A wiring portion that electrically connects the power semiconductor element and the conductive member;
A heat capacity body formed on the third main surface of the electrode,
The wiring portion is partly joined to the electrode on the third main surface,
The heat capacity body is a power module formed on a surface region of the third main surface including a joint portion between the electrode and the wiring portion.
前記配線部の前記一部分の表面の一部は、前記熱容量体から露出している、請求項1に記載のパワーモジュール。   The power module according to claim 1, wherein a part of the surface of the part of the wiring portion is exposed from the heat capacity body. 前記配線部の前記一部分は、前記熱容量体に埋設されている、請求項1に記載のパワーモジュール。   The power module according to claim 1, wherein the part of the wiring portion is embedded in the heat capacity body. 前記熱容量体が前記第3の主面の全面上に形成されている、請求項1〜請求項3のいずれか1項に記載のパワーモジュール。   The power module according to any one of claims 1 to 3, wherein the heat capacity body is formed on an entire surface of the third main surface. 前記熱容量体が前記第3の主面の一部上に形成されている、請求項1〜請求項3のいずれか1項に記載のパワーモジュール。   The power module according to any one of claims 1 to 3, wherein the heat capacity body is formed on a part of the third main surface. 前記配線部は、ボンディングワイヤである、請求項1〜請求項5のいずれか1項に記載のパワーモジュール。   The power module according to claim 1, wherein the wiring part is a bonding wire. 前記配線部は、ボンディングリボンである、請求項1〜請求項5のいずれか1項に記載のパワーモジュール。   The power module according to claim 1, wherein the wiring part is a bonding ribbon. 前記配線部は、導線性材料からなり、前記熱容量体から突出した部分を含む突出部材である、請求項1〜請求項5のいずれか1項に記載のパワーモジュール。   The power module according to any one of claims 1 to 5, wherein the wiring portion is a protruding member made of a conductive material and including a portion protruding from the heat capacity body.
JP2015043728A 2015-03-05 2015-03-05 Power module Pending JP2016163024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043728A JP2016163024A (en) 2015-03-05 2015-03-05 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043728A JP2016163024A (en) 2015-03-05 2015-03-05 Power module

Publications (1)

Publication Number Publication Date
JP2016163024A true JP2016163024A (en) 2016-09-05

Family

ID=56847587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043728A Pending JP2016163024A (en) 2015-03-05 2015-03-05 Power module

Country Status (1)

Country Link
JP (1) JP2016163024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410998B1 (en) * 2017-04-12 2018-10-24 三菱電機株式会社 Semiconductor module, semiconductor module manufacturing method, and power conversion device
JP2021077661A (en) * 2019-11-05 2021-05-20 三菱電機株式会社 Semiconductor power module
WO2022220009A1 (en) * 2021-04-12 2022-10-20 ローム株式会社 Semiconductor device
WO2022219995A1 (en) * 2021-04-12 2022-10-20 ローム株式会社 Semiconductor device
JP7334655B2 (en) 2020-03-06 2023-08-29 三菱電機株式会社 semiconductor equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410998B1 (en) * 2017-04-12 2018-10-24 三菱電機株式会社 Semiconductor module, semiconductor module manufacturing method, and power conversion device
JP2021077661A (en) * 2019-11-05 2021-05-20 三菱電機株式会社 Semiconductor power module
JP7334655B2 (en) 2020-03-06 2023-08-29 三菱電機株式会社 semiconductor equipment
WO2022220009A1 (en) * 2021-04-12 2022-10-20 ローム株式会社 Semiconductor device
WO2022219995A1 (en) * 2021-04-12 2022-10-20 ローム株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5975180B2 (en) Semiconductor module
US7816784B2 (en) Power quad flat no-lead semiconductor die packages with isolated heat sink for high-voltage, high-power applications, systems using the same, and methods of making the same
US8884426B2 (en) Semiconductor device including cooler
CN104641459B (en) Semiconductor device
JP6083109B2 (en) Semiconductor device
JP6686691B2 (en) Electronic device
JP6835238B2 (en) Semiconductor devices and their manufacturing methods
KR20170086828A (en) Clip -bonded semiconductor chip package using metal bump and the manufacturing method thereof
JP2016163024A (en) Power module
JP6790372B2 (en) Semiconductor device
JP4491244B2 (en) Power semiconductor device
KR101988064B1 (en) Power semiconductor module and method for manufacturing a power semiconductor module
US20150262917A1 (en) Semiconductor device and method of manufacturing the same
JP6244272B2 (en) Semiconductor device
CN108292642B (en) Power semiconductor device
US10304751B2 (en) Electronic sub-module including a leadframe and a semiconductor chip disposed on the leadframe
JP5869285B2 (en) Semiconductor device
JP2006190728A (en) Electric power semiconductor device
JP2003289129A (en) Semiconductor device
JP2013008748A (en) Semiconductor device
US11552065B2 (en) Semiconductor device
JP5682511B2 (en) Semiconductor module
JP2017050441A (en) Semiconductor device
JP4861200B2 (en) Power module
US11587879B2 (en) Electronic apparatus and manufacturing method thereof