JP4277168B2 - Resin-sealed semiconductor device and manufacturing method thereof - Google Patents

Resin-sealed semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4277168B2
JP4277168B2 JP2002334311A JP2002334311A JP4277168B2 JP 4277168 B2 JP4277168 B2 JP 4277168B2 JP 2002334311 A JP2002334311 A JP 2002334311A JP 2002334311 A JP2002334311 A JP 2002334311A JP 4277168 B2 JP4277168 B2 JP 4277168B2
Authority
JP
Japan
Prior art keywords
control
power
support plate
lead
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002334311A
Other languages
Japanese (ja)
Other versions
JP2004172239A (en
Inventor
健治 藤本
久夫 冨沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2002334311A priority Critical patent/JP4277168B2/en
Publication of JP2004172239A publication Critical patent/JP2004172239A/en
Application granted granted Critical
Publication of JP4277168B2 publication Critical patent/JP4277168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂封止型半導体装置、特にリードフレームを支持台上に載置してリードのワイヤボンディングを確実に行う樹脂封止型半導体装置及びその製法に関する。
【0002】
【従来の技術】
絶縁層を介して複数の半導体素子が載置されたリードフレームを放熱特性の良好な金属板の上方に配置して、金属板とリードフレームとを樹脂封止体によって一体に樹脂成型した半導体装置は公知である(下記特許文献1参照)。
例えば、図7に示すように、従来の半導体パワーモジュールとしての半導体装置は、放熱性に優れる金属板(3)と、金属板(3)の上方に絶縁膜(4)を介して載置された回路パターン(31)と、金属板(3)と回路パターン(31)とを収納するケース(33)と、金属板(3)の上面を密封する樹脂封止体(12)とを備えている。
【0003】
回路パターン(31)は、絶縁ゲート型バイポーラトランジスタと絶縁ゲート型バイポーラトランジスタに接続されるダイオード素子とを有する電力用半導体素子(5)を搭載する主回路パターン部(31a)と、外部装置からの外部信号を受信する制御ICから成る制御半導体素子(6)を搭載した制御回路パターン部(31b)とから成る銅箔パターンとを備える。また、主回路パターン部(31a)の周囲に配置された複数の電力用リード(7)と、電力用リード(7)とは反対側に制御回路パターン部(31b)の周囲に配置された複数の制御用リード(8)とがケース(33)から導出され、電力用リード(7)は、接続線(9)を介して電力用半導体素子(5)に電気的に接続され、制御用リード(8)は、接続線(10)を介して制御半導体素子(6)に電気的に接続される。
【0004】
電力用半導体素子(5)と制御半導体素子(6)とは回路パターン(31)にも固着された接続線(11)を介して電気的に接続される。また、電力用半導体素子(5)は、電力用半導体素子(5)のゲートに接続される制御半導体素子(6)からの制御信号を受信してオンする。回路パターン(31)の主回路パターン部(31a)と制御回路パターン部(31b)は、金属板(3)上に略平行に並置され、分離帯(32)を介して左右に分離して配置される。なお、電力用リード(7)及び制御用リード(8)の一端(7a,8a)は、主回路パターン部(31a)及び制御回路パターン部(31b)上に半田により接着され、また、電力用リード(7)及び制御用リード(8)の他端(7b,8b)は、ケース(33)を貫通し、外部に露出して外部リード端子を形成する。
【0005】
例えば銅(Cu)等の金属から成る板材を周知のプレス加工により形成されるリードフレームの表面にはニッケル(Ni)メッキが施される。金属板(3)は、リードフレームよりも板厚が厚く且つ銅(Cu)等の良好な熱伝導金属から成る板材により、対向する回路パターン(31)の面積よりも大きい面積で平面四角形状に形成される。リードフレームを構成する回路パターン(31)、電力用半導体素子(5)、制御半導体素子(6)、接続線(9〜11)、電力用リード(7)及び制御用リード(8)の一端(7a,8a)を樹脂封止体(12)により封止するために、上型と下型とから成る金型のキャビティ(空所)内に配置して金型を閉じる。キャビティ内に配置したリードフレームは、例えば周知のトランスファモールド法により、流動化したエポキシ等の熱硬化性樹脂から成る樹脂封止体(12)をキャビティ内に圧入して、樹脂成型される。成型された半導体装置では、大電流が流れる電力用半導体素子(5)及び電力用半導体素子(5)が載置された主回路パターン部(31a)から発生する損失熱は、絶縁膜(4)を介して金属板(3)に良好に伝達されて放熱することができる。
【0006】
【特許文献1】
特開2000−133768号公報(第5頁、図7)
【0007】
【発明が解決しようとする課題】
しかしながら、前記半導体装置では、電力用半導体素子(5)へ入力する制御信号を発生する制御ICにより構成される制御半導体素子(6)には微弱な電流が流れるに過ぎないので、熱を放散する特別の構造が不要となる制御回路パターン部(31b)の下面に金属板(3)を設けることは高コスト化に繋がる。
【0008】
また、制御回路パターン部(31b)に搭載された制御半導体素子(6)の電極と制御用リード(8)の一端(8a)とを接続線(10)によりワイヤボンディング(ボールボンディング)を行うとき、超音波熱圧着による熱的影響が与えられる金属板(3)上の絶縁膜(4)及び電力用半導体素子(5)が劣化することがある。
【0009】
本発明は、樹脂封止型半導体装置、特にリード細線のワイヤボンディングを確実に行う樹脂封止型半導体装置及びその製法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明による樹脂封止型半導体装置は、ヒートシンク(3)と、ヒートシンク(3)上に絶縁膜(4)を介して接着される複数の電力用支持板(1)と、電力用支持板(1)に載置された複数の電力用半導体素子(5)と、電力用支持板(1)から離間して配置された複数の制御用支持板(2)と、制御用支持板(2)に載置された複数の制御用半導体素子(6)と、制御用支持板(2)とは反対側で電力用支持板(1)の周囲に配置された複数の電力用リード端子(7)と、制御用支持板(2)の周囲に配置された複数の制御用リード端子(8)と、電力用半導体素子(5)の電極と電力用リード端子(7)とを電気的に接続する複数の電力用リード細線(9)と、制御用半導体素子(6)の電極と制御用リード端子(8)とを電気的に接続する複数の結線用リード細線(10)と、電力用半導体素子(5)の電極と制御用リード端子(8)とを電気的に接続する制御用リード細線(11)と、電力用支持板(1)、電力用半導体素子(5)、制御用支持板(2)、制御用半導体素子(6)、電力用リード細線(9)、結線用リード細線(10)、制御用リード細線(11)、電力用リード端子(7)の一部及び制御用リード端子(8)の一部を封止する樹脂封止体(12)とを備えている。ヒートシンク(3)から離間して且つヒートシンク(3)の端面(3a)よりヒートシンク(3)の内側に制御用リード端子(8)の内端(8a)を配置し、ヒートシンク(3)の端面(3a)より外側で且つ制御用半導体素子(6)が固着された制御用支持板(2)の底面(2a)の下方に空洞部(13)を形成する。ヒートシンク(3)の上面(3b)と制御用支持板(2)の底面(2a)との間に形成される間隙(12a)及び空洞部(13)は、樹脂封止体(12)を構成する樹脂により充填される。電力用リード細線(9)及び制御用リード細線(11)は、アルミニウム又はその合金から成り、結線用リード細線(10)は、金又はその合金から成る。制御用支持板(2)は、間隙(12a)及び間隙(12a)内に充填される樹脂によって電力用半導体素子(5)及びヒートシンク(3)から電気的に完全に絶縁される。また、制御用支持板(2)の下方には、ヒートシンク(3)が延伸しないので、ヒートシンク(3)を小型化、軽量化し、製造コストを低減できる。
【0011】
本発明による樹脂封止型半導体装置の製法は、電力用リード端子(7)と、制御用リード端子(8)と、電力用支持板(1)と、制御用支持板(2)とを備えたリードフレーム(16)の電力用支持板(1)の下面に絶縁膜(4)を介してヒートシンク(3)を固着する工程と、電力用支持板(1)に電力用半導体素子(5)を接着し、電力用半導体素子(5)上の電極と電力用リード端子(7)とを電力用リード細線(9)により電気的に接続すると共に、電力用半導体素子(5)の電極と制御用リード端子(8)とを制御用リード細線(11)により電気的に接続する工程と、制御用支持板(2)の底面(2a)の下方に形成された空洞部(13)に配置した支持台(14)上に制御用支持板(2)を載置して、制御用支持板(2)上に制御用半導体素子(6)を固着し、制御用支持板(2)を加熱して制御用半導体素子(6)の電極と制御用リード端子(8)とを結線用リード細線(10)により電気的に接続する工程と、リードフレーム(16)を支持台(14)から外して成形型のキャビティ内に配置する工程と、キャビティ内に流動化した樹脂を圧入して、ヒートシンク(3)の上面(3b)と制御用支持板(2)の底面(2a)との間に形成される間隙(12a)及び空洞部(13)内に樹脂封止体(12)を構成する樹脂を充填しながら、電力用支持板(1)、電力用半導体素子(5)、制御用支持板(2)、制御用半導体素子(6)、電力用リード細線(9)、結線用リード細線(10)、制御用リード細線(11)、電力用リード端子(7)の一部及び制御用リード端子(8)の一部を封止する樹脂封止体(12)を形成する工程とを含む。
【0012】
制御用支持板(2)の下方に設けられる空洞部(13)内に支持台(14)を配置して、制御用支持板(2)をヒートシンク(3)より高い位置に確実に支持する状態で、結線用リード細線(10)に超音波熱圧着による押圧力を強く加えて、制御用半導体素子(6)と制御用リード端子(8)とに結線用リード細線(10)を強固に接着し、結線用リード細線(10)のワイヤボンディングを確実に行うことができる。また、金又はその合金から成る結線用リード細線(10)のワイヤボンディングを超音波熱圧着により行うとき、制御用支持板(2)及び制御用リード端子(8)からヒートシンク(3)が離間するため、ヒートシンク(3)上の絶縁膜(4)及び電力用半導体素子(5)が超音波熱圧着の振動による機械的影響及び加熱時に生じる熱的影響を受けず、劣化の危険性を回避することができる。
【0013】
【発明の実施の形態】
本発明の一実施の形態に係る樹脂封止型半導体装置及び樹脂封止型半導体装置の製法を図1〜図6について説明する。図1〜図6では、図7に示す箇所と同一の部分には同一の符号を付し、説明を省略する。
図1に示すように、本発明の樹脂封止型半導体装置では、複数の電力用支持板(1)と制御用支持板(2)とを離間して配置し、電力用支持板(1)の下方のみ絶縁膜(4)を介して金属製のヒートシンク(3)を接着した点に特徴がある。パワーMOSFET等から成る電力用半導体素子(5)が電力用支持板(1)上に搭載され、制御用支持板(2)上に電力用半導体素子(5)に制御信号を付与してオンさせる制御用半導体素子(6)が搭載される。電力用半導体素子(5)は、電力用支持板(1)に隣接して配置された複数の電力用リード端子(7)にアルミニウム又はその合金から成る電力用リード細線(9)を介して電気的に接続され、制御用半導体素子(6)は、制御用支持板(2)に隣接して配置された複数の制御用リード端子(8)に金又はその合金から成る結線用リード細線(10)を介して電気的に接続される。
【0014】
また、電力用半導体素子(5)と制御用半導体素子(6)とを電気的に接続する中継板(15)を制御用支持板(2)の周囲に独立して設け、アルミニウム又はその合金から成る制御用リード細線(11)を電力用半導体素子(5)と中継板(15)とに固着し、制御用リード細線(11)の反対側に設けた結線用リード細線(10)を中継板(15)と制御用半導体素子(6)とに固着して電気的に接続する。これにより、結線用リード細線(10)及び制御用リード細線(11)を介して電力用半導体素子(5)と制御用半導体素子(6)とを容易に電気的に接続することができる。また、中継板(15)を設けずに電力用半導体素子(5)と制御用半導体素子(6)とを直接リードを介して電気的に接続しても差し支えない。制御用リード端子(8)の内端(8a)は、ヒートシンク(3)の端面(3a)からヒートシンク(3)の内側まで延伸し、ヒートシンク(3)の上面(3b)から離間して配置される。
【0015】
次に、図1に示す実施の形態による樹脂封止型半導体装置の製造方法を説明する。まず、図2に示すリードフレーム(16)を用意する。リードフレーム(16)は、銅若しくはアルミニウム又はこれらの合金から成り、その表面にはニッケルメッキが施されている。次に、図3に示すように、厚みが均一なリードフレーム(16)にプレス加工を行い、電力用支持板(1)、電力用リード端子(7)、制御用支持板(2)、制御用リード端子(8)及び中継板(15)を形成する。このとき、図4に示すように、ヒートシンク(3)の端面(3a)とは反対側に、選択された電力用リード端子(7)と電力用支持板(1)との接続部に折曲げ部(7a)が形成される。続いて、絶縁膜(4)を介して電力用支持板(1)の底面にヒートシンク(3)を接着する。制御用支持板(2)は、ヒートシンク(3)及び電力用支持板(1)から離間して且つヒートシンク(3)より上方に配置して、制御用支持板(2)とヒートシンク(3)との間に間隙(12a)が形成される。
【0016】
その後、図4に示すように、ヒートシンク(3)の端面(3a)より外側で制御用支持板(2)の底面(2a)の下方に形成される空洞部(13)内に支持台(14)を配置して、ヒートシンク(3)より高い支持台(14)上に制御用支持板(2)をヒートシンク(3)より高い位置に配置する。この状態で、リードフレーム(16)の電力用支持板(1)上に電力用半導体素子(5)、保護ダイオード素子(18)及び抵抗(19)を固着すると共に、制御用支持板(2)上に制御用半導体素子(6)を固着する。また、電力用半導体素子(5)の電極と電力用リード端子(7)との間及び保護ダイオード素子(18)と電力用半導体素子(5)の電極との間をワイヤボンディング(ウェッジボンディング)により電力用リード細線(9)を介して電気的に接続すると共に、電力用支持板(1)と制御用支持板(2)との間に設けた中継板(15)と電力用半導体素子(5)上の電極とを制御用リード細線(11)を介してワイヤボンディング(ウェッジボンディング)により電気的に接続する。電力用半導体素子(5)は、線径の大きいアルミニウム又はその合金から成る電力用リード細線(9)が接続されるので、大きな電流容量を取ることが可能になる。
【0017】
また、高周波数の超音波エネルギと熱とを結線用リード細線(10)に加える超音波熱圧着ワイヤボンダを使用して、超音波熱圧着により制御用支持板(2)の電極及び制御用リード端子(8)の内端(8a)を加熱し、制御用リード端子(8)と制御用半導体素子(6)の電極との間及び制御用半導体素子(6)の電極と中継板(15)との間を金又はその合金から成る結線用リード細線(10)を介してワイヤボンディング(ボールボンディング)により電気的に接続して、リードフレーム組立体(20)を形成する。電流容量が小さい制御用半導体素子(6)の電極に接続される結線用リード細線(10)は金又はその合金から形成されるので、結線用リード細線(10)の接続方向に制限が無く、設計自由度に優れている。この場合、電力用支持板(1)がヒートシンク(3)上に支持され、制御用支持板(2)、制御用リード端子(8)及び中継板(15)は支持台(14)上に支持されるので、電力用支持板(1)、制御用支持板(2)、制御用リード端子(8)及び中継板(5)をヒートシンク(3)上及び支持台(14)上に保持しながら、電力用半導体素子(5)の電極、電力用リード端子(7)、保護ダイオード素子(18)の電極、制御用半導体素子(6)の電極、制御用リード端子(8)の内端(8a)、中継板(15)に電力用リード細線(9)、結線用リード細線(10)及び制御用リード細線(11)を強固に押圧して接着する。これにより、ワイヤボンディングを確実に行い、機械的強度の高いボンディングを行うことができる。このとき、ヒートシンク(3)は、制御用支持板(2)及び制御用リード端子(8)から離間するので、ヒートシンク(3)上の絶縁膜(4)及び電力用半導体素子(5)が超音波熱圧着の振動や熱による影響を受けず、劣化する危険を回避することができる。
【0018】
続いて、電力用支持板(1)、電力用半導体素子(5)、制御用支持板(2)、制御用半導体素子(6)、電力用リード細線(9)、結線用リード細線(10)、制御用リード細線(11)、電力用リード端子(7)及び制御用リード端子(8)から構成されるリードフレーム組立体(20)を支持台(14)から外して成形型のキャビティ内に配置し、周知のトランスファモールド法により、流動状態のエポキシ等の熱硬化性樹脂をキャビティ内に圧入して樹脂封止体(12)を形成し、電力用支持板(1)、電力用半導体素子(5)、制御用支持板(2)、制御用半導体素子(6)、電力用リード細線(9)、結線用リード細線(10)、制御用リード細線(11)、電力用リード端子(7)の一部、制御用リード端子(8)の一部及びヒートシンク(3)を封止樹脂体(12)により密封して、図5に示すリードフレーム組立体(20)が形成される。熱硬化性樹脂をキャビティ内に圧入する場合に、電力用リード細線(9)、結線用リード細線(10)及び制御用リード細線(11)のワイヤボンディングによる各接合部の機械的強度が高いため、流動状態の樹脂の圧入によって電力用リード細線(9)、結線用リード細線(10)及び制御用リード細線(11)の接合部が破断し又は損傷を受けない。また、制御用支持板(2)の底面(2a)の下方に設けられる空洞部(13)及びヒートシンク(3)と制御用支持板(2)との間に形成される間隙(12a)は、樹脂封止体(12)を構成する樹脂により充填されため、制御用支持板(2)は、間隙(12a)を充填する樹脂によって電力用半導体素子(5)及びヒートシンク(3)から完全に絶縁される。
【0019】
最後に、図5に示すリードフレーム組立体(20)から不要な部分を除去すると、電力用リード端子(7)の導出部、制御用リード端子(8)の導出部及びヒートシンク(3)の底面を除き、樹脂封止体(12)により封止した図1及び図6に示す樹脂封止型半導体装置が形成される。図1は、図6の断面図である。
【0020】
本発明の樹脂封止型半導体装置では、下記の作用効果が得られる。
[1] 制御用支持板(2)及び制御用リード端子(8)の内端(8a)を支持台(14)上に載置して、結線用リード細線(10)及び制御用リード細線(11)を強固に且つ確実に接続することができる。
[2] 制御用支持板(2)及び制御用リード端子(8)は、ヒートシンク(3)及び電力用支持板(1)から離間して配置されるので、制御用支持板(2)及び制御用リード端子(8)を加熱して結線用リード細線(10)のワイヤボンディングを行うとき、ヒートシンク(3)上の絶縁膜(4)及び電力用半導体素子(5)に超音波熱圧着の振動と熱とによる影響が与えられない。
[3] ヒートシンク(3)上の絶縁膜(4)及び電力用半導体素子(5)の超音波熱圧着による材質劣化を回避することができる。
[4] 制御用支持板(2)とヒートシンク(3)との間の間隙(12a)及び間隙(12a)内に充填される樹脂により、ヒートシンク(3)及び電力用半導体素子(5)が制御用支持板(2)から十分に電気的に絶縁される。
[5] 短縮された結線用リード細線(10)及び制御用リード細線(11)により中継板(15)を介して電力用半導体素子(5)と制御用半導体素子(6)とを容易に電気的に接続することができる。
[6] 制御用支持板(2)の下方には、ヒートシンク(3)が延伸しないので、アルミニウム製のヒートシンク(3)を小型化、軽量化し、製造コストを低減できる。
[7] ヒートシンク(3)を使用するので、動作時に発熱量の大きな電力用半導体素子(5)を使用することができる。
【0021】
【発明の効果】
前記のように、本発明では、リード細線を強固に且つ確実に接続して、大電力用途に使用しても電気絶縁性に優れた信頼性の高い樹脂封止型半導体装置を歩留まり良く製造することが可能となる。
【図面の簡単な説明】
【図1】 本発明による樹脂封止型半導体装置の断面図
【図2】 図1に示す樹脂封止型半導体装置の製造に使用するリードフレームの平面図
【図3】 図2に示すリードフレームにパターンを形成した状態を示す平面図
【図4】 支持板上に支持台を載置してワイヤボンディングを行う状態を示す断面図
【図5】 リードフレーム組立体を樹脂封止体により封止した状態を示す平面図
【図6】 図1に示す樹脂封止型半導体装置の平面図
【図7】 従来の半導体装置の断面図
【符号の説明】
(1)・・電力用支持板、 (2)・・制御用支持板、 (2a)・・底面、 (3)・・ヒートシンク、 (3a)・・端面、 (3b)・・上面、 (4)・・絶縁膜、 (5)・・電力用半導体素子、 (6)・・制御用半導体素子、 (7)・・電力用リード端子、 (8)・・制御用リード端子、 (8a)・・内端、 (9)・・電力用リード端子、 (10)・・結線用リード細線、 (11)・・制御用リード細線、 (12)・・樹脂封止体、 (12a)・・間隙、 (13)・・空洞部、 (15)・・中継板、 (16)・・リードフレーム、 (20)・・リードフレーム組立体、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-encapsulated semiconductor device, and more particularly to a resin-encapsulated semiconductor device in which a lead frame is placed on a support base and wire bonding of leads is reliably performed, and a method for manufacturing the same.
[0002]
[Prior art]
A semiconductor device in which a lead frame on which a plurality of semiconductor elements are placed via an insulating layer is disposed above a metal plate having good heat dissipation characteristics, and the metal plate and the lead frame are integrally molded with a resin sealing body. Is known (see Patent Document 1 below).
For example, as shown in FIG. 7, a semiconductor device as a conventional semiconductor power module is placed via a metal plate (3) excellent in heat dissipation and an insulating film (4) above the metal plate (3). A circuit pattern (31), a case (33) for storing the metal plate (3) and the circuit pattern (31), and a resin sealing body (12) for sealing the upper surface of the metal plate (3). Yes.
[0003]
The circuit pattern (31) includes a main circuit pattern portion (31a) including a power semiconductor element (5) having an insulated gate bipolar transistor and a diode element connected to the insulated gate bipolar transistor, and an external device. A copper foil pattern including a control circuit pattern portion (31b) on which a control semiconductor element (6) including a control IC that receives an external signal is mounted. Also, a plurality of power leads (7) disposed around the main circuit pattern portion (31a) and a plurality of power leads (7b) disposed around the control circuit pattern portion (31b) on the opposite side of the power leads (7). The control lead (8) is led out from the case (33), and the power lead (7) is electrically connected to the power semiconductor element (5) via the connection line (9). (8) is electrically connected to the control semiconductor element (6) via the connection line (10).
[0004]
The power semiconductor element (5) and the control semiconductor element (6) are electrically connected through a connection line (11) fixed to the circuit pattern (31). In addition, the power semiconductor element (5) receives a control signal from the control semiconductor element (6) connected to the gate of the power semiconductor element (5) and turns on. The main circuit pattern part (31a) and the control circuit pattern part (31b) of the circuit pattern (31) are juxtaposed substantially in parallel on the metal plate (3), and are arranged separately on the left and right via the separation band (32). Is done. Note that one end (7a, 8a) of the power lead (7) and the control lead (8) is bonded to the main circuit pattern part (31a) and the control circuit pattern part (31b) with solder, and the power lead (7a, 8a) The other end (7b, 8b) of the lead (7) and the control lead (8) penetrates the case (33) and is exposed to the outside to form an external lead terminal.
[0005]
For example, nickel (Ni) plating is applied to the surface of a lead frame formed of a plate material made of metal such as copper (Cu) by a known press working. The metal plate (3) is thicker than the lead frame and made of a good heat conductive metal such as copper (Cu), so that the metal plate (3) has a planar rectangular shape with an area larger than the area of the opposing circuit pattern (31). It is formed. One end of the circuit pattern (31), the power semiconductor element (5), the control semiconductor element (6), the connection lines (9 to 11), the power lead (7), and the control lead (8) constituting the lead frame ( In order to seal 7a, 8a) with the resin sealing body (12), the mold is closed by being placed in a cavity (vacant space) of a mold composed of an upper mold and a lower mold. The lead frame disposed in the cavity is resin-molded by press-fitting a resin sealing body (12) made of a fluidized thermosetting resin such as epoxy into the cavity by, for example, a well-known transfer molding method. In the molded semiconductor device, the heat loss generated from the power semiconductor element (5) through which a large current flows and the main circuit pattern part (31a) on which the power semiconductor element (5) is mounted is generated by the insulating film (4). The heat can be transmitted to the metal plate (3) through the heat to dissipate heat.
[0006]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-133768 (5th page, FIG. 7)
[0007]
[Problems to be solved by the invention]
However, in the semiconductor device, only a weak current flows through the control semiconductor element (6) configured by the control IC that generates a control signal to be input to the power semiconductor element (5), so heat is dissipated. Providing the metal plate (3) on the lower surface of the control circuit pattern portion (31b) that does not require a special structure leads to an increase in cost.
[0008]
Also, when wire bonding (ball bonding) is performed between the electrode of the control semiconductor element (6) mounted on the control circuit pattern part (31b) and one end (8a) of the control lead (8) by the connection line (10). In addition, the insulating film (4) and the power semiconductor element (5) on the metal plate (3), which are thermally affected by ultrasonic thermocompression bonding, may deteriorate.
[0009]
It is an object of the present invention to provide a resin-encapsulated semiconductor device, in particular, a resin-encapsulated semiconductor device that reliably performs wire bonding of lead thin wires and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The resin-encapsulated semiconductor device according to the present invention includes a heat sink (3), a plurality of power support plates (1) bonded via an insulating film (4) on the heat sink (3), and a power support plate ( A plurality of power semiconductor elements (5) placed on 1), a plurality of control support plates (2) disposed away from the power support plate (1), and a control support plate (2) A plurality of control semiconductor elements (6) placed on the power support plate (1) on the opposite side of the control support plate (2) and a plurality of power lead terminals (7) A plurality of control lead terminals (8) arranged around the control support plate (2), and the power semiconductor element (5) electrode and the power lead terminal (7) are electrically connected. A plurality of power lead wires (9), a plurality of connection lead wires (10) for electrically connecting the electrodes of the control semiconductor element (6) and the control lead terminals (8), and a power semiconductor element (5) electrode and control lead terminal (8) Control lead wire (11), power support plate (1), power semiconductor element (5), control support plate (2), control semiconductor element (6), power lead Resin encapsulant that seals fine wire (9), connection lead fine wire (10), control lead thin wire (11), part of power lead terminal (7) and part of control lead terminal (8) (12). The inner end (8a) of the control lead terminal (8) is arranged away from the heat sink (3) and inside the heat sink (3) from the end surface (3a) of the heat sink (3), and the end surface of the heat sink (3) ( A cavity portion (13) is formed outside the bottom surface (2a) of the control support plate (2) to which the control semiconductor element (6) is fixed outside 3a). The gap (12a) and the cavity (13) formed between the upper surface (3b) of the heat sink (3) and the bottom surface (2a) of the control support plate (2) constitute a resin sealing body (12). Filled with resin. The power lead wire (9) and the control lead wire (11) are made of aluminum or an alloy thereof, and the connection lead wire (10) is made of gold or an alloy thereof. The control support plate (2) is electrically completely insulated from the power semiconductor element (5) and the heat sink (3) by the gap (12a) and the resin filled in the gap (12a). Further, since the heat sink (3) does not extend below the control support plate (2), the heat sink (3) can be reduced in size and weight, and the manufacturing cost can be reduced.
[0011]
A method for producing a resin-encapsulated semiconductor device according to the present invention includes a power lead terminal (7), a control lead terminal (8), a power support plate (1), and a control support plate (2). Fixing the heat sink (3) to the lower surface of the power support plate (1) of the lead frame (16) via the insulating film (4), and the power semiconductor element (5) to the power support plate (1). And electrically connect the electrode on the power semiconductor element (5) and the power lead terminal (7) with the power lead thin wire (9) and control the electrode of the power semiconductor element (5). The lead terminal (8) is electrically connected to the control lead thin wire (11) and disposed in the cavity (13) formed below the bottom surface (2a) of the control support plate (2). The control support plate (2) is placed on the support base (14), the control semiconductor element (6) is fixed on the control support plate (2), and the control support plate (2) is heated. Control semiconductor element (6) electrodes and control lead terminals (8 ) Are electrically connected by the lead wire for connection (10), the lead frame (16) is removed from the support base (14) and placed in the mold cavity, and fluidized in the cavity. Resin is injected into the gap (12a) and the cavity (13) formed between the upper surface (3b) of the heat sink (3) and the bottom surface (2a) of the control support plate (2). While filling the resin constituting the body (12), the power support plate (1), the power semiconductor element (5), the control support plate (2), the control semiconductor element (6), the power lead wire ( 9), lead wire for connection (10), fine wire for control (11), part of power lead terminal (7) and resin encapsulant that seals part of control lead terminal (8) (12 ).
[0012]
A state in which the support base (14) is disposed in the cavity (13) provided below the control support plate (2) to securely support the control support plate (2) at a position higher than the heat sink (3). Apply strong pressure by ultrasonic thermocompression bonding to the fine lead wire for connection (10), and firmly adhere the fine lead wire for connection (10) to the control semiconductor element (6) and the lead terminal for control (8). In addition, wire bonding of the connecting lead fine wire (10) can be performed reliably. Further, when wire bonding of the connecting lead thin wire (10) made of gold or its alloy is performed by ultrasonic thermocompression bonding, the heat sink (3) is separated from the control support plate (2) and the control lead terminal (8). Therefore, the insulating film (4) and the power semiconductor element (5) on the heat sink (3) are not affected by the mechanical effects caused by the vibration of ultrasonic thermocompression bonding and the thermal effects generated during heating, thereby avoiding the risk of deterioration. be able to.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A method for manufacturing a resin-encapsulated semiconductor device and a resin-encapsulated semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6, the same parts as those shown in FIG. 7 are denoted by the same reference numerals and description thereof is omitted.
As shown in FIG. 1, in the resin-encapsulated semiconductor device of the present invention, a plurality of power support plates (1) and a control support plate (2) are arranged apart from each other to provide a power support plate (1). It is characterized in that a metal heat sink (3) is bonded only through the insulating film (4). A power semiconductor element (5) composed of a power MOSFET or the like is mounted on the power support plate (1), and a control signal is applied to the power semiconductor element (5) on the control support plate (2) to turn it on. A control semiconductor element (6) is mounted. The power semiconductor element (5) is electrically connected to a plurality of power lead terminals (7) disposed adjacent to the power support plate (1) through power lead thin wires (9) made of aluminum or an alloy thereof. The control semiconductor element (6) is connected to a plurality of control lead terminals (8) arranged adjacent to the control support plate (2), and the connection lead wire (10) made of gold or an alloy thereof. ) To be electrically connected.
[0014]
Further, a relay plate (15) for electrically connecting the power semiconductor element (5) and the control semiconductor element (6) is provided independently around the control support plate (2), and is made of aluminum or an alloy thereof. The control lead wire (11) is fixed to the power semiconductor element (5) and the relay plate (15), and the connection lead wire (10) provided on the opposite side of the control lead wire (11) is connected to the relay plate. (15) and the control semiconductor element (6) are fixed and electrically connected. As a result, the power semiconductor element (5) and the control semiconductor element (6) can be easily electrically connected via the connection lead thin wire (10) and the control lead thin wire (11). Further, the power semiconductor element (5) and the control semiconductor element (6) may be electrically connected via a direct lead without providing the relay plate (15). The inner end (8a) of the control lead terminal (8) extends from the end surface (3a) of the heat sink (3) to the inside of the heat sink (3) and is spaced apart from the upper surface (3b) of the heat sink (3). The
[0015]
Next, a method for manufacturing the resin-encapsulated semiconductor device according to the embodiment shown in FIG. 1 will be described. First, the lead frame (16) shown in FIG. 2 is prepared. The lead frame (16) is made of copper, aluminum, or an alloy thereof, and the surface thereof is plated with nickel. Next, as shown in FIG. 3, the lead frame (16) having a uniform thickness is pressed, and the power support plate (1), the power lead terminal (7), the control support plate (2), and the control A lead terminal (8) for use and a relay plate (15) are formed. At this time, as shown in FIG. 4, it is bent at the connection portion between the selected power lead terminal (7) and the power support plate (1) on the side opposite to the end face (3a) of the heat sink (3). A part (7a) is formed. Subsequently, the heat sink (3) is bonded to the bottom surface of the power support plate (1) through the insulating film (4). The control support plate (2) is disposed apart from the heat sink (3) and the power support plate (1) and above the heat sink (3), and the control support plate (2) and the heat sink (3) A gap (12a) is formed between the two.
[0016]
After that, as shown in FIG. 4, the support base (14) is placed in a cavity (13) formed below the bottom surface (2a) of the control support plate (2) outside the end face (3a) of the heat sink (3). ), And the control support plate (2) is positioned higher than the heat sink (3) on the support base (14) higher than the heat sink (3). In this state, the power semiconductor element (5), the protective diode element (18) and the resistor (19) are fixed on the power support plate (1) of the lead frame (16), and the control support plate (2). The control semiconductor element (6) is fixed on the top. Also, wire bonding (wedge bonding) is used between the electrode of the power semiconductor element (5) and the power lead terminal (7) and between the protective diode element (18) and the electrode of the power semiconductor element (5). Electrically connected via the power lead wire (9), and the relay plate (15) provided between the power support plate (1) and the control support plate (2) and the power semiconductor element (5 The electrode is electrically connected to the upper electrode by wire bonding (wedge bonding) through the control lead thin wire (11). Since the power semiconductor element (5) is connected to the power lead thin wire (9) made of aluminum having a large wire diameter or an alloy thereof, a large current capacity can be obtained.
[0017]
Also, by using an ultrasonic thermocompression wire bonder that applies high-frequency ultrasonic energy and heat to the connecting lead thin wire (10), the electrode of the control support plate (2) and the control lead terminal by ultrasonic thermocompression bonding The inner end (8a) of (8) is heated, between the control lead terminal (8) and the electrode of the control semiconductor element (6) and between the electrode of the control semiconductor element (6) and the relay plate (15). The lead frame assembly (20) is formed by electrically connecting the two via wire bonding (ball bonding) via a wire lead wire (10) made of gold or an alloy thereof. Since the connection lead thin wire (10) connected to the electrode of the control semiconductor element (6) having a small current capacity is formed of gold or an alloy thereof, there is no restriction in the connection direction of the connection lead thin wire (10), Excellent design freedom. In this case, the power support plate (1) is supported on the heat sink (3), and the control support plate (2), the control lead terminal (8) and the relay plate (15) are supported on the support base (14). Therefore, while holding the power support plate (1), the control support plate (2), the control lead terminal (8) and the relay plate (5) on the heat sink (3) and the support base (14) Electrode of power semiconductor element (5), power lead terminal (7), electrode of protective diode element (18), electrode of control semiconductor element (6), inner end of control lead terminal (8) (8a ), The power lead wire (9), the connection lead wire (10), and the control lead wire (11) are firmly pressed and bonded to the relay plate (15). Thereby, wire bonding can be performed reliably and bonding with high mechanical strength can be performed. At this time, since the heat sink (3) is separated from the control support plate (2) and the control lead terminal (8), the insulating film (4) and the power semiconductor element (5) on the heat sink (3) are superfluous. The risk of deterioration can be avoided without being affected by the vibration and heat of sonic thermocompression bonding.
[0018]
Subsequently, power support plate (1), power semiconductor element (5), control support plate (2), control semiconductor element (6), power lead thin wire (9), wiring lead thin wire (10) The lead frame assembly (20) composed of the control lead wire (11), the power lead terminal (7) and the control lead terminal (8) is removed from the support base (14) and placed in the mold cavity. The resin sealing body (12) is formed by press-fitting a thermosetting resin such as epoxy in a fluid state into the cavity by a well-known transfer mold method, and a power support plate (1), a power semiconductor element (5), control support plate (2), control semiconductor element (6), power lead wire (9), connection lead wire (10), control lead wire (11), power lead terminal (7 ), A part of the control lead terminal (8), and the heat sink (3) are sealed with a sealing resin body (12) to form a lead frame assembly (20) shown in FIG. When thermosetting resin is pressed into the cavity, the mechanical strength of each joint is high due to the wire bonding of the lead wire for power (9), lead wire for connection (10), and control lead wire (11). The joined portions of the power lead fine wire (9), the connecting lead fine wire (10), and the control lead fine wire (11) are not broken or damaged by the press-fitting of the resin in the fluidized state. Further, the cavity (13) provided below the bottom surface (2a) of the control support plate (2) and the gap (12a) formed between the heat sink (3) and the control support plate (2) are: Since the resin sealing body (12) is filled with the resin, the control support plate (2) is completely insulated from the power semiconductor element (5) and the heat sink (3) by the resin filling the gap (12a). Is done.
[0019]
Finally, when unnecessary portions are removed from the lead frame assembly (20) shown in FIG. 5, the lead portion of the power lead terminal (7), the lead portion of the control lead terminal (8), and the bottom surface of the heat sink (3) The resin-encapsulated semiconductor device shown in FIGS. 1 and 6 sealed with a resin encapsulant 12 is formed. FIG. 1 is a cross-sectional view of FIG.
[0020]
In the resin-encapsulated semiconductor device of the present invention, the following effects can be obtained.
[1] Place the control support plate (2) and the inner end (8a) of the control lead terminal (8) on the support base (14), and connect the lead wire for connection (10) and the control lead wire ( 11) can be firmly and securely connected.
[2] Since the control support plate (2) and the control lead terminal (8) are spaced apart from the heat sink (3) and the power support plate (1), the control support plate (2) and the control When the lead terminal (8) for heating is heated and wire bonding of the fine lead wire (10) is performed, vibration of ultrasonic thermocompression bonding is applied to the insulating film (4) and power semiconductor element (5) on the heat sink (3). And is not affected by heat.
[3] Material deterioration due to ultrasonic thermocompression bonding of the insulating film (4) on the heat sink (3) and the power semiconductor element (5) can be avoided.
[4] The heat sink (3) and the power semiconductor element (5) are controlled by the gap (12a) between the control support plate (2) and the heat sink (3) and the resin filled in the gap (12a). It is sufficiently electrically insulated from the supporting plate (2).
[5] The power semiconductor element (5) and the control semiconductor element (6) can be easily electrically connected via the relay plate (15) by the shortened connection lead wire (10) and the control lead wire (11). Can be connected.
[6] Since the heat sink (3) does not extend below the control support plate (2), the aluminum heat sink (3) can be reduced in size and weight, and the manufacturing cost can be reduced.
[7] Since the heat sink (3) is used, the power semiconductor element (5) that generates a large amount of heat during operation can be used.
[0021]
【The invention's effect】
As described above, in the present invention, the lead thin wires are firmly and securely connected, and a highly reliable resin-encapsulated semiconductor device having excellent electrical insulation even when used for high power applications is manufactured with high yield. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a resin-encapsulated semiconductor device according to the present invention. FIG. 2 is a plan view of a lead frame used for manufacturing the resin-encapsulated semiconductor device shown in FIG. FIG. 4 is a cross-sectional view showing a state in which a support is placed on a support plate and wire bonding is performed. FIG. 5 is a view of sealing a lead frame assembly with a resin sealing body. FIG. 6 is a plan view of the resin-encapsulated semiconductor device shown in FIG. 1. FIG. 7 is a cross-sectional view of a conventional semiconductor device.
(1) ・ ・ Power support plate, (2) ・ Control support plate, (2a) ・ ・ Bottom surface, (3) ・ ・ Heat sink, (3a) ・ ・ End face, (3b) ・ ・ Top surface, (4 ) ・ ・ Insulating film, (5) ・ ・ Power semiconductor device, (6) ・ ・ Control semiconductor device, (7) ・ ・ Power lead terminal, (8) ・ ・ Control lead terminal, (8a) ・・ Inner end, (9) ・ ・ Power lead terminal, (10) ・ ・ Lead wire for connection, (11) ・ ・ Lead wire for control, (12) ・ ・ Resin encapsulant, (12a) ・ ・ Gap・ (13) ・ ・ Cavity, (15) ・ ・ Relay plate, (16) ・ ・ Lead frame, (20) ・ ・ Lead frame assembly,

Claims (3)

ヒートシンクと、絶縁膜を介して前記ヒートシンク上に接着される複数の電力用支持板と、該電力用支持板に載置された複数の電力用半導体素子と、前記電力用支持板から離間して配置された複数の制御用支持板と、該制御用支持板に載置された複数の制御用半導体素子と、前記制御用支持板とは反対側で前記電力用支持板の周囲に配置された複数の電力用リード端子と、前記制御用支持板の周囲に配置された複数の制御用リード端子と、前記電力用半導体素子の電極と前記電力用リード端子とを電気的に接続する複数の電力用リード細線と、前記制御用半導体素子の電極と前記制御用リード端子とを電気的に接続する複数の結線用リード細線と、前記電力用半導体素子の電極と前記制御用リード端子とを電気的に接続する制御用リード細線と、前記電力用支持板、電力用半導体素子、制御用支持板、制御用半導体素子、電力用リード細線、結線用リード細線、制御用リード細線、電力用リード端子の一部及び制御用リード端子の一部を封止する樹脂封止体とを備えた樹脂封止型半導体装置において、
前記ヒートシンクから離間して且つ前記ヒートシンクの端面より前記ヒートシンクの内側に前記制御用リード端子の内端を配置し、
前記ヒートシンクの端面より外側で且つ前記制御用半導体素子が固着された前記制御用支持板の底面の下方に空洞部を形成し、
前記樹脂封止体を構成する樹脂により前記ヒートシンクの上面と前記制御用支持板の底面との間に形成される間隙及び前記空洞部を充填し、
前記電力用リード細線及び前記制御用リード細線は、アルミニウム又はその合金から成り、
前記結線用リード細線は、金又はその合金から成ることを特徴とする樹脂封止型半導体装置。
A heat sink, a plurality of power support plates bonded to the heat sink via an insulating film, a plurality of power semiconductor elements mounted on the power support plate, and spaced apart from the power support plate A plurality of control support plates arranged, a plurality of control semiconductor elements mounted on the control support plate, and arranged around the power support plate on the opposite side of the control support plate A plurality of power lead terminals, a plurality of control lead terminals arranged around the control support plate, and a plurality of powers for electrically connecting the power semiconductor element electrodes and the power lead terminals. A plurality of lead thin wires for electrically connecting the electrodes of the control semiconductor element and the control lead terminals, and an electrode of the power semiconductor element and the control lead terminals. Control lead thin wire connected to The power support plate, the power semiconductor element, the control support plate, the control semiconductor element, the power lead thin wire, the connection lead thin wire, the control lead thin wire, a part of the power lead terminal and the control lead terminal. In a resin-encapsulated semiconductor device including a resin encapsulant that partially seals,
The inner end of the control lead terminal is arranged inside the heat sink away from the heat sink and from the end surface of the heat sink,
Forming a hollow portion outside the end surface of the heat sink and below the bottom surface of the control support plate to which the control semiconductor element is fixed;
Filling the gap and the cavity formed between the upper surface of the heat sink and the bottom surface of the control support plate by the resin constituting the resin sealing body,
The power lead fine wire and the control lead fine wire are made of aluminum or an alloy thereof,
The lead thin wire for connection is made of gold or an alloy thereof, and is a resin-encapsulated semiconductor device.
前記制御用リード細線は、前記制御用支持板の周囲に独立して設けられる中継板と、前記電力用半導体素子との間を電気的に接続し、
前記結線用リード細線は、前記中継板と前記制御用半導体素子との間を電気的に接続する請求項1に記載の樹脂封止型半導体装置。
The control lead thin wire electrically connects between the relay plate provided independently around the control support plate and the power semiconductor element,
The resin-encapsulated semiconductor device according to claim 1, wherein the connection lead thin wire electrically connects the relay plate and the control semiconductor element.
電力用リード端子と、制御用リード端子と、電力用支持板と、制御用支持板とを備えるリードフレームの前記電力用支持板の下面に絶縁膜を介してヒートシンクを固着する工程と、
前記電力用支持板に電力用半導体素子を接着し、該電力用半導体素子上の電極と前記電力用リード端子とを電力用リード細線により電気的に接続すると共に、前記電力用半導体素子の電極と前記制御用リード端子とを制御用リード細線により電気的に接続する工程と、
前記制御用支持板の底面の下方に形成された空洞部内に配置した支持台上に前記制御用支持板を載置して、前記制御用支持板上に制御用半導体素子を固着し、前記制御用支持板を加熱して前記制御用半導体素子の電極と前記制御用リード端子とを結線用リード細線により電気的に接続する工程と、
前記リードフレームを前記支持台から外して成形型のキャビティ内に配置する工程と、
前記キャビティ内に流動化した樹脂を圧入して、前記ヒートシンクの上面と前記制御用支持板の底面との間に形成される間隙及び前記空洞部内に前記樹脂封止体を構成する樹脂を充填しながら、前記電力用支持板、電力用半導体素子、制御用支持板、制御用半導体素子、電力用リード細線、結線用リード細線、制御用リード細線、電力用リード端子の一部及び制御用リード端子の一部を封止する樹脂封止体を形成する工程とを含むことを特徴とする樹脂封止型半導体装置の製法。
Fixing a heat sink via an insulating film to the lower surface of the power support plate of a lead frame comprising a power lead terminal, a control lead terminal, a power support plate, and a control support plate;
A power semiconductor element is bonded to the power support plate, the electrode on the power semiconductor element and the power lead terminal are electrically connected by a power lead thin wire, and the electrode of the power semiconductor element Electrically connecting the control lead terminal with a control lead thin wire;
The control support plate is placed on a support base disposed in a cavity formed below the bottom surface of the control support plate, the control semiconductor element is fixed on the control support plate, and the control Heating the support plate for electrical connection between the electrode of the control semiconductor element and the control lead terminal by a lead wire for connection;
Removing the lead frame from the support and placing it in the cavity of the mold;
The fluidized resin is press-fitted into the cavity, and the gap forming between the upper surface of the heat sink and the bottom surface of the control support plate and the resin constituting the resin sealing body are filled in the cavity. However, the power support plate, power semiconductor element, control support plate, control semiconductor element, power lead thin wire, connection lead thin wire, control lead thin wire, part of the power lead terminal and control lead terminal And a step of forming a resin sealing body for sealing a part of the resin sealing semiconductor device.
JP2002334311A 2002-11-18 2002-11-18 Resin-sealed semiconductor device and manufacturing method thereof Expired - Fee Related JP4277168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334311A JP4277168B2 (en) 2002-11-18 2002-11-18 Resin-sealed semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334311A JP4277168B2 (en) 2002-11-18 2002-11-18 Resin-sealed semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004172239A JP2004172239A (en) 2004-06-17
JP4277168B2 true JP4277168B2 (en) 2009-06-10

Family

ID=32698790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334311A Expired - Fee Related JP4277168B2 (en) 2002-11-18 2002-11-18 Resin-sealed semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4277168B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243839A (en) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp Power semiconductor device
JP2014107519A (en) 2012-11-30 2014-06-09 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
KR101915873B1 (en) 2014-05-12 2018-11-06 미쓰비시덴키 가부시키가이샤 Power semiconductor device and method for manufacturing same
DE112014007140B4 (en) 2014-11-07 2024-05-02 Mitsubishi Electric Corporation Power semiconductor device and method for producing the same

Also Published As

Publication number Publication date
JP2004172239A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
KR100342589B1 (en) Semiconductor power modules and methods for manufacturing the same
JP5442368B2 (en) IC chip package with direct lead wire
JP5339800B2 (en) Manufacturing method of semiconductor device
JP4260263B2 (en) Semiconductor device
JP5656907B2 (en) Power module
US8916958B2 (en) Semiconductor package with multiple chips and substrate in metal cap
JP4254527B2 (en) Semiconductor device
JP4262453B2 (en) Power semiconductor device
CN102420217A (en) Multi-chip semiconductor packages and assembly thereof
TW200522328A (en) Semiconductor device and manufacturing method thereof
JP4075204B2 (en) Multilayer semiconductor device
KR20010107556A (en) A Semiconductor Device and A Method of Manufacturing the Same
CN111244041A (en) Package comprising chip contact elements of two different conductive materials
JP2002270736A (en) Semiconductor device
CN110914975A (en) Power semiconductor module
JP4886104B2 (en) Power semiconductor packaging package with ball grid array
JP4277168B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2002110867A (en) Semiconductor device and its manufacturing method
JP2012238737A (en) Semiconductor module and manufacturing method therefor
CN115443531A (en) Power module, manufacturing method thereof, converter and electronic equipment
JP3314574B2 (en) Method for manufacturing semiconductor device
JP2015037151A (en) Semiconductor device
JP4055700B2 (en) Semiconductor device
JP4676252B2 (en) Circuit device manufacturing method
JP7334655B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees