JP4078034B2 - ヒートポンプ給湯器 - Google Patents

ヒートポンプ給湯器 Download PDF

Info

Publication number
JP4078034B2
JP4078034B2 JP2001029383A JP2001029383A JP4078034B2 JP 4078034 B2 JP4078034 B2 JP 4078034B2 JP 2001029383 A JP2001029383 A JP 2001029383A JP 2001029383 A JP2001029383 A JP 2001029383A JP 4078034 B2 JP4078034 B2 JP 4078034B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
pump
hot water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001029383A
Other languages
English (en)
Other versions
JP2002228258A (ja
Inventor
勇司 松本
永治 桑原
靖二 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001029383A priority Critical patent/JP4078034B2/ja
Publication of JP2002228258A publication Critical patent/JP2002228258A/ja
Application granted granted Critical
Publication of JP4078034B2 publication Critical patent/JP4078034B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式冷凍サイクルにより水を加熱して高温水の給湯が可能なヒートポンプ給湯器に係り、特にヒートポンプ式冷凍サイクルの室外空気熱交換器の除霜方法を主に改良したヒートポンプ給湯器に関する。
【0002】
【従来の技術】
従来、この種のヒートポンプ給湯器の一例としては、例えば図7に示すように冷媒を循環させるヒートポンプ式冷凍サイクル1と、この冷凍サイクル1により加熱される水を給湯タンクに供給する水回路10と、を具備したものがある。
【0003】
冷凍サイクル1は、圧縮機2、四方弁3、水熱交換器4の一次側熱交換管4a、流量調整弁(膨張弁)5、室外空気熱交換器6を冷媒配管7によりこの順に順次接続して冷媒を循環させる閉じたループを構成している。
【0004】
一方、水回路10は、上記水熱交換器4の一次側熱交換管4aと熱交換自在の二次側熱交換管4b、給湯タンク11、流量可変ポンプ12をこの順に順次水配管13により接続して、水(または温水)を循環させる閉じたループを構成している。
【0005】
そして、四方弁3の切換操作により冷凍サイクル1を貯湯運転すると、冷媒が図7中矢印で示す方向に循環して水熱交換器4が凝縮器として作用する一方、室外空気熱交換器6が蒸発器として作用する。このために、水熱交換器4の一次側熱交換管4a内を通る高温高圧のガス状冷媒の凝縮時に凝縮熱が同二次側熱交換管4bを通水する水に与熱されて加熱され、この温水が流量可変ポンプ12の送水により水回路10を繰り返し循環することにより漸次加熱されて目標温度の温水に加熱され、給湯タンク11内に貯湯される。
【0006】
しかし、この貯湯運転を長時間行なうと、蒸発器として作用する室外空気熱交換器6に着霜が発生する場合がある。この場合は四方弁3を除霜運転に切り換えて冷凍サイクル1の冷媒の循環方向を図7中破線矢印方向へ逆転させる。すると、今度は室外空気熱交換器6が凝縮器として作用するので、その冷媒凝縮熱により着霜を加熱溶融させて除霜することができる。
【0007】
また、このヒートポンプ給湯器の起動時や、除霜運転から貯湯運転への復帰時等、急激な負荷変動の際には流量可変ポンプ12の回転速度を減速させて水回路10を循環する水量を減少させることにより目標温度の温水を貯湯タンク11へ供給していた。
【0008】
【発明が解決しようとする課題】
しかしながら、このような従来のヒートポンプ給湯器では、冷凍サイクル1の除霜運転時、水熱交換器4がその一次側熱交換管4a内を通る液冷媒を蒸発させる蒸発器として作用し、2次側熱交換管4bの通水を冷却してしまうので、温水が冷却されて貯湯タンク11内に流入し、貯湯温度を降温させてしまうという不具合がある。
【0009】
そこで、このような低温水の貯湯タンク11内への流入を阻止するために流量可変ポンプ12の運転を停止すると、今度は水熱交換器4内の二次側熱交換管4b内の通水がその管内で停止して凍結し、この二次側熱交換管4bを破損してしまうという不具合がある。
【0010】
このために、このような二次側熱交換管4b内の水の凍結を防止するために、この二次側熱交換管4b内の通水流量を所定量確保するためには大容量のポンプを必要としていた。
【0011】
さらに、このヒートポンプ給湯器の急激な負荷変動時では、冷凍サイクル1の追従や制御の遅れにより、目標とされる温水温度よりも低い温度の温水が貯湯タンク11へ供給されてしまうという課題がある。
【0012】
本発明はこのような事情を考慮してなされたもので、その目的は、室外空気熱交換器の着霜を短時間で除霜できるうえに、その除霜時の水熱交換器の凍結ないしその凍結による破損を防止することができ、給湯タンク内の温水温度を高温に保つことができるヒートポンプ給湯器を提供することにある。
【0013】
【課題を解決するための手段】
請求項1の発明は、圧縮機、四方弁、水熱交換器の第1の熱交換管、流量調整弁、室外空気熱交換器を順次接続して冷媒を循環させる冷凍サイクルと、上記水熱交換器の第1の熱交換管と熱交換自在の第2の熱交換管、キャッチタンク、給湯タンク、流量可変ポンプを順次接続して水を循環させる主回路および上記キャッチタンクの水出口側と上記流量可変ポンプの水入口側とを連通するバイパス路の途中に介在された開閉弁を備えた水回路と、上記冷凍サイクルの除霜運転時上記開閉弁を開弁させる制御器と、を具備していることを特徴とするヒートポンプ給湯器である。
【0014】
この発明によれば、除霜運転時、制御器によりバイパス路の開閉弁が開弁されると、水熱交換器により加熱されてキャッチタンク内に一旦貯湯された高温の温水の一部が開弁中の開閉弁とバイパス路を通って水熱交換器の第2(二次側)の熱交換管内を通水し、その通水の際にこの水熱交換器の第1(一次側)の熱交換管内を流れる冷媒を加熱して昇温させる。このために、この高温ガス冷媒が圧縮機で圧縮されてさらに昇温して室外空気熱交換器内を通ることにより、この室外空気熱交換器の着霜を短時間で除霜することができる。しかも、キャッチタンク内に一旦貯湯された温水は、水を加熱する水熱交換器の直ぐ下流側にあるので、温度が高いうえに、さらに、この温水が給湯タンクを経ずに、バイパス路を経て再び水熱交換器の二次側熱交換管へ流入し、その一次側熱交換管内を通る冷媒を加熱するので、その加熱量を増大させることができる。このように室外空気熱交換器を流れる冷媒の温度が高いために除霜時間を短縮することができる。
【0015】
また、冷凍サイクルの除霜運転時、水熱交換器は蒸発器として作用するが、その二次側熱交換管内には上述した高温度の温水が通水して、その一次側熱交換管の冷媒を加熱するので、二次側熱交換管内を通水する通水量が少量でも水熱交換器の凍結を防止することができる。したがって、水熱交換器の凍結による破損を防止することができる。
【0016】
さらに、冷凍サイクルの除霜運転から貯湯運転に復帰した後には、バイパス路の開閉弁を開弁させることにより、給湯タンクの前後を連通してショートさせることにより温水を給湯タンクに供給しないショートサイクルを構成するので、キャッチタンク内の温水温度を目標温度まで昇温させた後に、再びバイパス路の開閉弁を閉じて温水を貯湯タンクへ供給することにより高温度の温水を給湯タンクに供給することができる。
【0017】
さらにまた、起動時や、除霜運転から貯湯運転への復帰時等の急激な負荷変動時、圧縮機の運転周波数を上昇させたり、バイパス路の開閉弁を開弁させることにより水回路をショートサイクルに構成する等により水熱交換器の出口水温を目標値以上に上昇させることにより、急激な負荷変動により水温が低下したキャッチタンク内の温水温度を上昇させ、給湯タンクに供給することができる。これにより、急激な負荷変動時、冷凍サイクル制御の急激な変動を回避でき、安定した運転制御を容易に行なうことができる。
【0018】
請求項2の発明は、上記制御器は、負荷変動時、上記流量可変ポンプをその吐出流量を減少させるように制御するポンプ制御手段と、負荷変動時、上記圧縮機の運転周波数を制御する圧縮機制御手段と、を具備していることを特徴とする請求項1記載のヒートポンプ給湯器である。
【0019】
この発明によれば、起動や、除霜復帰時等の急激な負荷変動時に、水熱交換器の出口水温が低下したときには、制御器のポンプ制御手段により流量可変ポンプの運転を、その吐出流量が減少するように制御して水回路の循環水量を減少させ、または制御器の圧縮機制御手段により圧縮機の運転周波数を上昇させることにより、温水温度を昇温させることができる。
【0020】
請求項3の発明は、圧縮機、四方弁、水熱交換器の第1の熱交換管、流量調整弁、室外空気熱交換器を順次接続して冷媒を循環させる冷凍サイクルと、上記水熱交換器の第1の熱交換管と熱交換自在の第2の熱交換管、給湯タンク、流量可変ポンプを順次接続して水を循環させる主回路および三方の出入口を、上記流量可変ポンプの水出口と上記水熱交換器の第2の熱交換管の水入口と排水側とにそれぞれ接続し、この第2の熱交換管の入口を上記流量可変ポンプの水出口と排水側とに選択的に連通させるように切換自在の三方弁を備えた水回路と、上記冷凍サイクルの除霜運転時、上記流量可変ポンプの運転を停止させる一方、上記三方弁を上記室外熱交換器の水入口が上記開放側に連通するように切り換える制御器と、を具備していることを特徴とするヒートポンプ給湯器である。
【0021】
この発明によれば、冷凍サイクルの除霜運転時、制御器により流量可変ポンプの運転が停止されて水回路の水循環が停止する一方、三方弁が切換制御されて水熱交換器の二次側熱交換器の水入口が開放側の例えばドレン排水部に連通する。
【0022】
このために、給湯タンクの内圧により給湯タンク内の高温温水が逆流して水熱交換器の二次側熱交換管内で逆流し、その際に一次側熱交換管内を通る冷媒を加温する。このために、温水により加熱された分だけ昇温した高温冷媒が室外空気熱交換器内を通ることにより、この室外空気熱交換器の除霜時間を短縮することができるうえに、水熱交換器の凍結による破損を防止することができる。また、水熱交換器の二次側熱交換管内を通水することにより降温した温水が開放側のドレン排水部へ排水されるので、この降温した温水を給湯タンク内へ戻して、その貯湯温度が低下するのを防止することができる。
【0023】
請求項4の発明は、給湯タンクは水熱交換器の第2の熱交換管に対して水頭差を有することを特徴とする請求項3記載のヒートポンプ給湯器である。
【0024】
この発明によれば、給湯タンクは水熱交換器の第2(二次側)の熱交換管に対して水頭差を有するので、流量可変ポンプの運転停止により水回路の水循環が停止すると、給湯タンクの内圧によりこの水熱交換器の二次側熱交換管の水出口側の高温度の温水がその水入口側に逆流し、三方弁を経て開放側のドレン排出部へ排水させることができる。
【0025】
請求項5の発明は、三方弁の排水側に排水される温水の温度を検出する温水温度センサを有し、上記制御器は、上記冷凍サイクルの除霜運転時、上記温水温度センサにより検出された検出温度が所定値以上であるときに、上記三方弁を、上記水熱交換器の第2の熱交換管の水入口が流量可変ポンプの水出口に連通するように切り換える三方弁切換手段を備えていることを特徴とする請求項3または4記載のヒートポンプ給湯器である。
【0026】
この発明によれば、除霜運転時、三方弁の開放側のドレン排水部へ排水される温水の温度が所定値以上であると温水温度センサを介して制御器の三方弁切換手段により検出したときは、この切換手段により三方弁を、水熱交換器の二次側熱交換管の水入口が流量可変ポンプの水出口に連通するように切り換えられ、貯湯運転に復帰される。
【0027】
これにより、高温の温水が排水されるのを防止することができるので、その排水による排熱を最小限に抑制することができる。
【0040】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図6に基づいて説明する。これらの図中、同一または相当部分には同一符号を付している。
【0041】
図1は本発明の第1の実施形態に係るヒートポンプ給湯器の全体構成を示すブロック図である。このヒートポンプ給湯器21は水を図中矢印方向に循環させる水回路31と、この水回路31の水を加熱する冷媒を図中矢印方向に循環させるヒートポンプ式冷凍サイクル41とを備えている。
【0042】
冷凍サイクル41は、図示しないインバータにより運転周波数を制御することにより単位時間当りの回転数(回転速度)が制御自在の圧縮機42、四方弁43、水熱交換器44の第1(一次側)の熱交換管44a、流量調整弁45、室外設置の室外空気熱交換器46を冷媒配管47によりこの順に順次接続して冷媒を循環させる閉じたループを構成している。
【0043】
また、水熱交換器44と室外空気熱交換器46には水と空気との熱交換を促進させるための図示しないファンをそれぞれ設ける一方、室外空気熱交換器46に、その冷媒入口温度を検出する室外熱交温度センサ48を設け、圧縮機42の吸込側温度を検出する吸込側温度センサ49を設けている。
【0044】
そして、これら吸込側温度センサ49、室外熱交温度センサ48、流量調整弁45および四方弁43を図中一点鎖線で示す信号線を介して制御器50に電気的に接続している。
【0045】
一方、水回路31は上記水熱交換器44の冷媒を通す一次側熱交換管44aと熱交換自在の水を通す二次側熱交換管44b、キャッチタンク32、給湯タンク33、流量可変ポンプ34を水配管35によりこの順に順次接続して水を図中矢印方向に循環させる閉じたループの主回路を構成している。
【0046】
そして、上記キャッチタンク32の水出口側と流量可変ポンプ34の水入口側とを連通させるバイパス路36を設け、このバイパス路36の途中には電磁弁等よりなる開閉弁であるバイパス弁37を介在させている。この開閉弁37と流量可変ポンプ34には図中一点鎖線で示す信号線を介して上記制御器50を電気的に接続している。
【0047】
制御器50は例えばマイクロプロセッサ等よりなり、着霜検出手段、除霜完了検出手段、流量調整弁開度制御手段、バイパス弁37の開閉を制御する開閉弁制御手段および流量可変ポンプ34の回転速度(単位時間当りの回転数)を制御する圧縮機制御手段を備えている。
【0048】
上記着霜検出手段は、ヒートポンプ給湯器21の起動5分後から室外空気熱交換器46の入口温度最低値を室外熱交温度センサ48により5分間検知し、起動30分後から入口温度の低下量を計算し、この温度低下量が3℃以上になった状態が90秒以上継続することと、圧縮機42の運転周波数が上限に達していて、目標水温まで、水温を上昇できない場合、室外空気熱交換器46の着霜による能力低下が発生しているものと判断して着霜を検出するようになっている。
【0049】
また、この着霜検出手段により室外空気熱交換器46に着霜が発生していると判断したときには、図2に示すように、四方弁43を切換制御して冷凍サイクル41の冷媒の循環方向を貯湯運転時とは逆方向に逆転させる一方、バイパス弁37を開弁させてキャッチタンク32の水出口側と流量可変ポンプ34の水入口側とをショートさせてショートサイクルを水回路31に構成するようになっている。
【0050】
一方、上記除霜完了検出手段は吸込側温度センサ49により検出した圧縮機42の吸込側温度の検知温度が、2.5℃以上で80秒継続するか、または、その検知温度が5℃以上になるか、または、除霜運転が10分以上継続した場合に、除霜運転が完了したものと判断し、その判断後、四方弁43を図1に示すように再び切り換えて除霜運転から再び給湯運転へ復帰させるように構成されている。
【0051】
また、ポンプ制御手段は、起動時や除霜復帰時等の負荷変動時、流量可変ポンプ34の回転数(単位時間当りの回転数)を減少(減速)させて水回路31の循環水量を減少させることにより水熱交換器44の出口水温を例えば目標水温以上に昇温させることができるものである。
【0052】
同様に、圧縮機制御手段は、図示しないインバータを制御して圧縮機42の運転周波数を上昇させることにより、回転速度を加速し、冷凍サイクル41を循環する冷媒の循環流量を増大させることにより水熱交換器44の一次側熱交換管44aの凝縮熱(放熱)量を増大させ、その二次側熱交換管44bの通水への与熱量を増大させることにより、この水熱交換器44の水出口温を上昇させるようになっている。
【0053】
次に、このように構成されたヒートポンプ給湯器21の作用を説明する。
【0054】
まず、図1に示すように冷凍サイクル41を貯湯運転すると、圧縮機42により圧縮された高温高圧のガス状冷媒が水熱交換器44の一次側熱交換管44a内を通ることにより凝縮液化して放熱し、この凝縮熱(放熱)により水熱交換器44の二次側熱交換管44b内を通水する水が加熱される。
【0055】
一方、この水熱交換器44で凝縮して液化した液冷媒は所定開度の流量調整弁45を通る際に減圧されると共に流量が適宜流量に制御されて室外空気熱交換器46内に流入し、ここで蒸発して外気から吸熱してガス状冷媒の状態で再び圧縮機42へ、その吸込側から戻され、再び圧縮機42で圧縮されて水熱交換器44内へ流入して凝縮し、以下これの繰返しにより水熱交換器44の二次側熱交換管44bの通水が漸次高温水に加熱される。
【0056】
この水熱交換器44で加熱された温水は、その水出口からキャッチタンク32内へ流入し、ここで一旦貯蔵されてから給湯タンク33へ、その上部の水入口33aから供給され貯蔵される。
【0057】
さらに、この給湯タンク33内の貯湯は、水入口33aよりも低い下部の水出口33bから流量可変ポンプ34内へ吸込口から吸い込まれ、ここで昇圧されてから再び水熱交換器44の二次側熱交換管44b内へ流入し、ここで再び一次側熱交換管44a内を通る高温高圧のガス状冷媒の凝縮熱により加熱されて温水温度をさらに高めてキャッチタンク32内へ流入し、一旦貯蔵される。以下、これの繰返しにより貯湯タンク33内の貯湯温度が目標温度まで昇温され、図示しない給湯ラインを介して給湯される。
【0058】
そして、このような貯湯運転では室外空気熱交換器46が蒸発器(冷却器)として作用するので、この室外空気熱交換器46に着霜が発生する場合がある。この着霜は制御器50の着霜発生検出手段により検出される。
【0059】
すなわち、この着霜検出手段は、貯湯運転起動5分後から室外空気熱交換器46の入口温度最低値を室外熱交温度センサ48により5分間検知し、起動30分後からこの入口温度の低下量を計算し、この温度低下量が3℃以上になった状態が90秒以上継続することと、圧縮機42の運転周波数が上限に達していて、目標水温まで、水温を上昇できない場合は、室外空気熱交換器46の着霜による能力低下が発生しているとみなし、室外空気熱交換器46に着霜が発生しているものと判断する。
【0060】
また、着霜検出手段はこのように室外空気熱交換器46の着霜を検出すると、図2に示すように、四方弁43を切り換えて貯湯運転から除霜運転に切り換える一方、バイパス弁37を開弁させる。
【0061】
すると、図2に示すように、冷凍サイクル41を冷媒が貯湯運転時とは逆方向に循環して室外空気熱交換器46で凝縮液化する一方、水熱交換器44で蒸発気化する。したがって、圧縮機42からの高温高圧のガス状冷媒が室外空気熱交換器46内に流入して凝縮液化して放熱するので、その放熱により室外空気熱交換器46の着霜を加熱して融霜することにより除霜することができる。
【0062】
さらに、この室外空気熱交換器46で凝縮液化した液冷媒は、流量制御弁45で減圧されてから水熱交換器44の一次側熱交換管44a内へ流入して蒸発気化し、二次側熱交換管44b内の通水から吸熱して冷却し、ガス冷媒の状態で四方弁43を経て圧縮機42へその吸込側から戻され、以下繰り返す。
【0063】
したがって、水熱交換器44の二次側熱交換管44b内の通水は冷媒の蒸発作用により冷却されるが、このとき、水回路31ではバイパス弁37が開弁されているので、貯湯運転時に水熱交換器44により加熱されたばかりでキャッチタンク32内に一時貯蔵されていた比較的高温の温水が開弁中のバイパス弁37に案内されてバイパス路36と流量可変ポンプ34を経て水熱交換器44の二次側熱交換管44b内へ送水され、一次側熱交換管44a内の冷媒を加熱するので、より高温のガス冷媒により室外空気熱交換器46を加熱して除霜することができる。これにより、除霜運転時間を短縮することができるので、その分、貯湯運転時間を長くして貯湯タンク33内の温水温度を高くすることができる。
【0064】
また、水熱交換器44に高温度の温水を供給することにより、その供給量が少ない流量でも水熱交換器44の二次側熱交換管44b内の通水が凍結温度まで低下するのを防止することができるので、その凍結による水熱交換器44の破損を防止することができる。
【0065】
そして、起動時や除霜運転復帰時等の急激な負荷変動時には、制御器50のポンプ制御手段により流量可変ポンプ34の回転数を減少させることにより水回路31を循環する水流量を減少させ、または圧縮機制御手段により圧縮機42の運転周波数を上昇させ、あるいは開閉弁制御手段によりバイパス弁37を開くことにより給湯タンク33をバイパスさせることにより、水熱交換器44の出口水温を目標水温以上に上昇させることにより、急激な負荷変動によって水温が低下したキャッチタンク32内の温水温度を上昇させ、給湯タンクに供給することができる。
【0066】
図3は本発明の第2の実施形態に係るヒートポンプ給湯器21Aの全体構成を示すブロック図である。このヒートポンプ給湯器21Aは上記第1の実施形態に係るヒートポンプ給湯器21Aのキャッチタンク32.バイパス路36、制御器50のバイパス弁開閉制御手段およびバイパス弁37を削除する一方、流量可変ポンプ34と水熱交換器44とを接続する水配管35の途中に、電磁弁や電動弁等よりなる三方弁51を介在させ、この三方弁51を制御器50Aに信号線を介して電気的に接続し、除霜運転時に三方弁51を切換制御すると共に、流量可変ポンプ34の運転を停止させるように制御器50を構成した点と、水熱交換器44の貯湯運転時の水入口側に温水温度センサ53を設けた点に主な特徴があり、これ以外は上記ヒートポンプ給湯器21とほぼ同様に構成されている。
【0067】
三方弁51は、その3つの水出入口51a,51b,51cを貯湯運転時の水熱交換器44の二次側熱交換管44bの水入口と、流量可変ポンプ34の水出口と、開放側のドレン排水部52とにそれぞれ接続しており、制御器50Aにより二次側熱交換管44bの水入口側を流量可変ポンプ34の水出口、またはドレン排水部52側に選択的に切り換えるように構成されている。
【0068】
すなわち、このヒートポンプ給湯器21Aの貯湯運転時には図3に示すように三方弁51が水熱交換器44の二次側熱交換管44aの水入口を流量可変ポンプ34の水出口側に連通するように制御器50Aの三方弁切換制御手段により切換制御される。
【0069】
すると、上記したように貯湯運転される冷凍サイクル41の水熱交換器44の一次側熱交換管44aの凝縮する冷媒の凝縮熱により二次側熱交換管44aの通水が加熱されて給湯タンク33に供給される。
【0070】
さらに、この給湯タンク33内の下部の低温度の温水が水出口33bから水配管35を通って流量可変ポンプ34により昇圧されてから三方弁51の2つの水出入口51b,51aを通って再び水熱交換器44の二次側熱交換管44bの水入口に戻り、以下これの繰返しにより給湯タンク33内に貯湯される温水の温度が目標値まで昇温される。
【0071】
図4はこのヒートポンプ給湯器21Aの除霜運転時の冷凍サイクル41の冷媒の循環方向と水回路31の水の循環方向を示しており、この除霜運転は制御器50Aの上記着霜検出手段により室外空気熱交換器46の着霜を検出したときに行なわれる。
【0072】
すなわち、上述したように制御器50Aの着霜検出手段により室外空気熱交換器46の着霜を検出すると、図4に示すように三方弁51を切り換えて水熱交換器44の二次側熱交換管44bの水入口をドレン排水部52に連通させると共に、流量可変ポンプ34の運転を停止させる。
【0073】
すると、給湯タンク33の内圧が水配管35を介して水熱交換器44の二次側熱交換管44bに加圧されるので、水回路31の水が貯湯運転時とは逆方向に逆流して給湯タンク33の上部の比較的高温の温水が水熱交換器44の二次側熱交換管44b内を通水し、その際に一次側熱交換管44a内を通る液冷媒を加熱して気化させ、高温のガス状冷媒として圧縮機42へ戻す。
【0074】
このために、圧縮機42から吐き出される高温高圧のガス冷媒がさらに高温に昇温して室外空気熱交換器46内へ流入し、ここで凝縮液化する凝縮熱により室外空気熱交換器46の着霜を加熱融霜して除霜するので、その除霜時間を短縮することができる。
【0075】
また、この除霜運転時に温水温度センサ53により検出された水熱交換器44の二次側熱交換管44bの水出口からドレン排水部52へ排水される温水の温度が所定値以上の高温度であることを検出したときには三方弁51をドレン排水部52から可変流量可変ポンプ34側へ切り換えて水流を止めて流量調整することにより排熱を最小限に抑制することができる。
【0076】
図5は本発明の第3の実施形態に係るヒートポンプ給湯器21Bの全体構成を示すブロック図である。このヒートポンプ給湯器21Bは上記第2の実施形態に係るヒートポンプ給湯器21Aの三方弁51、ドレン排水部52、温水温度センサ53、制御器50Aの三方弁切換制御手段および四方弁43を削減して冷凍サイクル41の除霜サイクルを削除する一方、水回路31の給湯タンク33の入口33a側に連通する入口側水配管35aの途中に、連通管60を介して温水散水器61を連結し、この連通管60の途中には除霜開閉弁62を介装し、この除霜開閉弁62には図5中一点鎖線で示す信号線を介して制御器50Bを電気的に接続し、この制御器50Bに除霜開閉弁制御手段を設けている点に特徴がある。
【0077】
すなわち、上記制御器50Bは上記各制御器50,50Aとほぼ同様の着霜検出手段と除霜完了検出手段とを具備しており、この着霜検出手段により室外空気熱交換器46の着霜を検出したときに除霜開閉弁61を開弁させる除霜開閉制御手段を設けている点に特徴がある。
【0078】
この着霜検出手段は、貯湯運転起動5分後から室外空気熱交換器46の入口温度Teの最低値を室外熱交温度センサ48により5分間検知し、起動30分後からこの入口温度の低下量を計算し、この温度低下量が3℃以上になった状態が90秒以上継続したときに、室外空気熱交換器46が着霜していることを判断し、除霜開閉弁62を開弁して除霜するようになっている。
【0079】
次に、このヒートポンプ給湯器1Bの作用を説明する。
【0080】
貯湯運転時、冷凍サイクル41は上記各実施形態のヒートポンプ給湯器21,21Aと同様に、圧縮機42から吐き出された高温高圧のガス冷媒が水熱交換器44の一次側熱交換管44aを通る際に凝縮液化し、その凝縮熱により二次側熱交換管44bの通水が加熱される。この後、液冷媒は流量制御弁45で所定の流量に絞られると共に減圧されてから室外空気熱交換器46へ流入し、ここで液冷媒が蒸発気化して外気から吸熱して圧縮機42へ吸込側から戻され、以下の繰返しにより水回路31を循環する水が水熱交換器44により温水に加熱される。
【0081】
この温水は水配管35を介して給湯タンク33内にその上部の水入口33aから供給されて一旦貯蔵される一方、この給湯タンク33の水入口33aよりも低い位置にあって温度の低い温水を流量可変ポンプ34により汲み上げて再び水熱交換器44に送水し、温水を給湯タンク33に供給する。
【0082】
この貯湯運転中に制御器50Bの着霜検出手段により室外空気熱交換器46に着霜が発生していると判断すると、この制御器50Bにより除霜開閉弁62が開弁される。
【0083】
このために、水熱交換器44により加熱された直後の高温の温水の一部が連通管60を介して温水散水器61に供給され、この温水散水器61から室外空気熱交換器46に散水される。このために、室外空気熱交換器46の着霜が融霜されて除霜される。
【0084】
この除霜運転時、制御器50Bは吸込側温度センサ49の検出温度が上昇しない状態を検出したときは、圧縮機制御手段により圧縮機42の運転周波数を上昇させて圧縮機42の回転速度を加速させることにより冷凍サイクル41の冷媒循環流量を増大させて水熱交換器44の熱交換量を増大させて温水温度を上昇させる。このために、温水散水器61から室外空気熱交換器46に散水される温水の温度も上昇するので、除霜運転時間を短縮できる。
【0085】
さらに、制御器50Bのポンプ制御手段により流量可変ポンプ34の回転速度を制御することにより水回路31を循環する温水の循環流量を制御することにより、または除霜開閉弁62の開度を制御することにより温水散水器61から室外空気熱交換器46に散水される温水散水量を増加ないし減少させることができる。
【0086】
一方、この除霜運転時、制御器50Bの除霜完了検出手段は、圧縮機42の吸込口に吸い込まれる吸込ガス冷媒の温度Tsを吸込側温度センサ49により検出し、その検知温度が、例えば2.5℃以上が80秒継続したとき、または、5℃以上に昇温したとき、または、除霜運転が10分以上継続したときに、除霜が完了したものと判断して除霜用開閉弁62を閉弁し、除霜運転から貯湯運転へ復帰させる。
【0087】
図6はこのヒートポンプ給湯器21Bの貯湯運転の起動から除霜運転への切換を経て、その除霜運転の終了までの時間における吸込側温度センサ49により検出された温度Tsと、室外熱交温度センサ48により検出された温度Teと、給湯温度との相対関係を示している。この図6でも示すようにこのヒートポンプ給湯器1Bでは貯湯運転を除霜運転により中断することなく連続して行なうので、給湯タンク33の給湯温度の低下を防止できる。すなわち、貯湯運転により室外空気熱交換器46に着霜が発生しても、この貯湯運転を中断して除霜運転に切り換える必要がなく、貯湯運転中に室外空気熱交換器46の着霜を除霜することができ、連続して貯湯運転することができるので、給湯温度の低下を抑制することができる。
【0088】
また、冷凍サイクル41は除霜サイクルを削除しているので、省エネルギを図ることができるうえに、水熱交換器44を常に凝縮器として運転し、蒸発器(冷却器)としては運転することがないので、水熱交換器44の二次側熱交換管44二次側熱交換管44aの液冷媒の蒸発潜熱によりb内の通水を冷却しないので、その通水の凍結とその凍結による水熱交換器44の破損を未然に防止することができる。
【0089】
【発明の効果】
以上説明したように本発明は、除霜運転時、制御器によりバイパス路の開閉弁が開弁されると、水熱交換器により加熱されてキャッチタンク内に一旦貯湯された高温の温水の一部が開弁中の開閉弁とバイパス路を通って水熱交換器の第2(二次側)の熱交換管内を通水し、その通水の際にこの水熱交換器の第1(一次側)の熱交換管内を流れる冷媒を加熱して昇温させる。このために、この高温ガス冷媒が圧縮機で圧縮されてさらに昇温して室外空気熱交換器内を通ることにより、この室外空気熱交換器の着霜を短時間で除霜することができる。しかも、キャッチタンク内に貯湯された温水は、水を加熱する水熱交換器の直ぐ下流側にあるので、温度が高いうえに、さらに、この温水が給湯タンクを経ずに、バイパス路を経て再び水熱交換器の二次側熱交換管へ流入し、その一次側熱交換管内を通る冷媒を加熱するので、その加熱量を増大させることができる。このように室外空気熱交換器を流れる冷媒の温度が高いために除霜時間を短縮することができる。
【0090】
また、冷凍サイクルの除霜運転時、水熱交換器は蒸発器として作用するが、その二次側熱交換管内には上述した高温度の温水が通水して、その一次側熱交換管の冷媒を加熱するので、二次側熱交換管内を通水する通水量が少量でも水熱交換器の凍結を防止することができる。したがって、水熱交換器の凍結による破損を防止することができる。
【0091】
さらに、冷凍サイクルの除霜運転から貯湯運転に復帰した後には、バイパス路の開閉弁を開弁させることにより、給湯タンクの前後を連通してショートさせることにより温水を給湯タンクに供給しないショートサイクルを構成するので、キャッチタンク内の温水温度を目標温度まで昇温させた後に、再びバイパス路の開閉弁を閉じて温水を貯湯タンクへ供給することにより高温度の温水を給湯タンクに供給することができる。
【0092】
さらにまた、起動時や、除霜運転から貯湯運転への復帰時等の急激な負荷変動時、圧縮機の運転周波数を上昇させたり、バイパス路の開閉弁を開弁させることにより水回路をショートサイクルに構成する等により水熱交換器の出口水温を目標値以上に上昇させることにより、急激な負荷変動により水温が低下したキャッチタンク内の温水温度を上昇させ、給湯タンクに供給することができる。これにより、急激な負荷変動時、冷凍サイクル制御の急激な変動を回避でき、安定した運転制御を容易に行なうことができる。
【0093】
請求項3の発明によれば、冷凍サイクルの除霜運転時、制御器により流量可変ポンプの運転が停止されて水回路の水循環が停止する一方、三方弁が切換制御されて水熱交換器の二次側熱交換器の水入口が開放側の例えばドレン排水部に連通する。
【0094】
このために、給湯タンクの内圧により給湯タンク内の高温温水が逆流して水熱交換器の二次側熱交換管内で逆流し、その際に一次側熱交換管内を通る冷媒を加温する。このために、温水により加熱された分だけ昇温した高温冷媒が室外空気熱交換器内を通ることにより、この室外空気熱交換器の除霜時間を短縮することができるうえに、水熱交換管の凍結による破損を防止することができる。また、水熱交換器の二次側熱交換器内を通水することにより降温した温水が開放側のドレン排水部へ排水されるので、この降温した温水を給湯タンク内へ戻して、その貯湯温度が低下するのを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るヒートポンプ給湯器の貯湯運転時のブロック図。
【図2】図1で示すヒートポンプ給湯器の除霜運転時のブロック図。
【図3】本発明の第2の実施形態に係るヒートポンプ給湯器の貯湯運転時のブロック図。
【図4】図3で示すヒートポンプ給湯器の除霜運転時のブロック図。
【図5】本発明の第3の実施形態に係るヒートポンプ給湯器の全体構成を示すブロック図。
【図6】図5で示すヒートポンプ給湯器の起動から除霜完了までの時間における給湯温度と室外熱交温度センサの検出値Teと吸込側温度センサの検出値Tsとの相対関係を示すグラフ。
【図7】従来のヒートポンプ給湯器の全体構成を示すブロック図。
【符号の説明】
21,21A,21B ヒートポンプ給湯器
31 水回路
34 流量可変ポンプ
35 水配管
41 冷凍サイクル
42 圧縮機
43 四方弁
44 水熱交換器
44a 一次側熱交換管
44b 二次側熱交換管
47 冷媒配管
48 室外熱交温度センサ
49 吸込側熱交温度センサ
50,50A,50B 制御器
51 三方弁
51a,51b,51c 出入口
52 ドレン排水部
53 温水温度センサ
60 連通管
61 温水散水器
62 除霜開閉弁

Claims (5)

  1. 圧縮機、四方弁、水熱交換器の第1の熱交換管、流量調整弁、室外空気熱交換器を順次接続して冷媒を循環させる冷凍サイクルと、上記水熱交換器の第1の熱交換管と熱交換自在の第2の熱交換管、キャッチタンク、給湯タンク、流量可変ポンプを順次接続して水を循環させる主回路および上記キャッチタンクの水出口側と上記流量可変ポンプの水入口側とを連通するバイパス路の途中に介在された開閉弁を備えた水回路と、上記冷凍サイクルの除霜運転時上記開閉弁を開弁させる制御器と、を具備していることを特徴とするヒートポンプ給湯器。
  2. 上記制御器は、負荷変動時、上記流量可変ポンプをその吐出流量を減少させるように制御するポンプ制御手段と、負荷変動時、上記圧縮機の運転周波数を制御する圧縮機制御手段と、を具備していることを特徴とする請求項1記載のヒートポンプ給湯器。
  3. 圧縮機、四方弁、水熱交換器の第1の熱交換管、流量調整弁、室外空気熱交換器を順次接続して冷媒を循環させる冷凍サイクルと、上記水熱交換器の第1の熱交換管と熱交換自在の第2の熱交換管、給湯タンク、流量可変ポンプを順次接続して水を循環させる主回路および三方の出入口を、上記流量可変ポンプの水出口と上記水熱交換器の第2の熱交換管の水入口と排水側とにそれぞれ接続し、この第2の熱交換管の入口を上記流量可変ポンプの水出口と排水側とに選択的に連通させるように切換自在の三方弁を備えた水回路と、上記冷凍サイクルの除霜運転時、上記流量可変ポンプの運転を停止させる一方、上記三方弁を上記室外熱交換器の水入口が上記開放側に連通するように切り換える制御器と、を具備していることを特徴とするヒートポンプ給湯器。
  4. 給湯タンクは水熱交換器の第2の熱交換管に対して水頭差を有することを特徴とする請求項3記載のヒートポンプ給湯器。
  5. 三方弁の排水側に排水される温水の温度を検出する温水温度センサを有し、上記制御器は、上記冷凍サイクルの除霜運転時、上記温水温度センサにより検出された検出温度が所定値以上であるときに、上記三方弁を、上記水熱交換器の第2の熱交換管の水入口が流量可変ポンプの水出口に連通するように切り換える三方弁切換手段を備えていることを特徴とする請求項3または4記載のヒートポンプ給湯器。
JP2001029383A 2001-02-06 2001-02-06 ヒートポンプ給湯器 Expired - Fee Related JP4078034B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029383A JP4078034B2 (ja) 2001-02-06 2001-02-06 ヒートポンプ給湯器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029383A JP4078034B2 (ja) 2001-02-06 2001-02-06 ヒートポンプ給湯器

Publications (2)

Publication Number Publication Date
JP2002228258A JP2002228258A (ja) 2002-08-14
JP4078034B2 true JP4078034B2 (ja) 2008-04-23

Family

ID=18893739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029383A Expired - Fee Related JP4078034B2 (ja) 2001-02-06 2001-02-06 ヒートポンプ給湯器

Country Status (1)

Country Link
JP (1) JP4078034B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313334A (zh) * 2011-06-30 2012-01-11 宁波奥克斯空调有限公司 直流变频带热水器空调器的除霜控制方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525969D0 (en) * 2005-12-21 2006-02-01 Hook Martin A heating module and controller that increases the efficiency of heat pumps for domestic hot water and under floor heating
JP4856489B2 (ja) * 2006-07-31 2012-01-18 サンデン株式会社 給湯装置
JP5113447B2 (ja) * 2007-08-09 2013-01-09 東芝キヤリア株式会社 ヒートポンプ給湯装置の制御方法
JP5082865B2 (ja) * 2008-01-11 2012-11-28 株式会社デンソー ヒートポンプ装置及びそれを備えた給湯装置並びにその制御装置
JP2010144938A (ja) 2008-12-16 2010-07-01 Mitsubishi Electric Corp ヒートポンプ給湯装置およびその運転方法
JP5713536B2 (ja) * 2009-01-05 2015-05-07 三菱電機株式会社 ヒートポンプ式給湯器
EP3361189B1 (en) * 2009-11-25 2019-10-23 Mitsubishi Electric Corporation Auxiliary heater control device, heated fluid utilization system, and auxiliary heater control method
JP5651902B2 (ja) * 2010-09-06 2015-01-14 オリオン機械株式会社 貯湯式温水器および貯湯式温水器の制御方法
JP2012132572A (ja) * 2010-12-17 2012-07-12 Panasonic Corp 給湯システム
CN102607149B (zh) * 2011-01-21 2014-10-22 冯大江 空调热泵饮水机
JPWO2012121382A1 (ja) 2011-03-10 2014-07-17 ダイキン工業株式会社 ヒートポンプ式給湯機
JP5333507B2 (ja) * 2011-04-20 2013-11-06 三菱電機株式会社 ヒートポンプ給湯装置
CN103017331B (zh) * 2011-09-23 2016-04-13 陕西隆科来福节能设备有限责任公司 一种分体式空气源热泵热水器
JP5264973B2 (ja) * 2011-09-30 2013-08-14 三菱電機株式会社 ヒートポンプ給湯装置およびその運転方法
CN102840714B (zh) * 2012-08-27 2014-11-19 特灵空调系统(中国)有限公司 带热水功能的热泵系统及其控制方法
CN103196262A (zh) * 2013-04-19 2013-07-10 洛阳中懋环保设备有限公司 一种空气源热泵热水器热气旁通除霜装置
CN105135747B (zh) * 2015-08-17 2017-06-16 Tcl空调器(中山)有限公司 热泵型空调热水器
CN106524577B (zh) * 2016-11-25 2018-05-01 重庆美的通用制冷设备有限公司 热泵机组
CN107490283B (zh) * 2017-08-09 2019-09-03 江苏科技大学 可快速升温的热回收型调温热泵干燥装置及其运行方法
CN107883576A (zh) * 2017-12-13 2018-04-06 鞍山巨鼎科技有限公司 夏季制冷热回收冬季供暖热泵热水系统
CN108931084B (zh) * 2018-07-04 2019-10-18 珠海格力电器股份有限公司 热泵机组的防冻控制装置、热泵机组及其防冻控制方法
CN113785162B (zh) * 2019-05-10 2023-02-17 三菱电机株式会社 蓄热系统
WO2021002003A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 給湯システム
CN110332716B (zh) * 2019-07-16 2021-01-15 珠海格力电器股份有限公司 热泵热水器除霜控制方法、装置及热泵热水器
JP6919696B2 (ja) * 2019-11-05 2021-08-18 ダイキン工業株式会社 給湯装置
KR102109350B1 (ko) * 2020-02-27 2020-05-12 이복주 냉각 온도 시간 및 냉동기의 흡입 가스 배관 온도를 이용한 자동 제상 감지 시스템 및 이를 이용한 작동 방법
CN111503889A (zh) * 2020-04-09 2020-08-07 青岛海尔空调电子有限公司 循环式空气源热泵热水机及其控制方法
CN113854825B (zh) * 2020-06-30 2023-08-04 芜湖美的厨卫电器制造有限公司 水处理装置的控制方法、控制装置和水处理装置
CN114440450B (zh) * 2022-03-01 2023-04-18 温岭煌格科技咨询有限公司 一种空气能热水器的使用方法
CN115962575A (zh) * 2022-12-22 2023-04-14 珠海格力电器股份有限公司 一种多功能热水机防冻控制方法、装置及相关设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313334A (zh) * 2011-06-30 2012-01-11 宁波奥克斯空调有限公司 直流变频带热水器空调器的除霜控制方法

Also Published As

Publication number Publication date
JP2002228258A (ja) 2002-08-14

Similar Documents

Publication Publication Date Title
JP4078034B2 (ja) ヒートポンプ給湯器
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
JP4974714B2 (ja) 給湯器
WO2006120922A1 (ja) 冷凍サイクル装置
JP2011127792A (ja) 空気熱源ヒートポンプ給湯・空調装置
JP4760974B2 (ja) 冷凍装置
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP3659197B2 (ja) ヒートポンプ給湯機
JP4178646B2 (ja) 冷蔵庫
JP4253957B2 (ja) 冷蔵庫
KR20190055967A (ko) 공기조화기 및 그 제어방법
JP3567168B2 (ja) 寒冷地用蓄熱式ヒートポンプ空気調和機
JP3418891B2 (ja) 冷凍装置
WO2022038869A1 (ja) 電池温調システム
KR20190055961A (ko) 공기조화기 및 그 제어방법
JP2745828B2 (ja) 冷凍装置の運転制御装置
CN114341569B (zh) 热源机组及制冷装置
JP6797262B2 (ja) 冷凍サイクル装置
JP2004347272A (ja) 冷凍装置
JP4120471B2 (ja) 冷凍装置
JP6588645B2 (ja) 冷凍サイクル装置
JP3289373B2 (ja) ヒートポンプ給湯機
JP6146428B2 (ja) 冷凍装置
JP6029569B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP6787465B1 (ja) 熱源ユニット及び冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees