WO2021002003A1 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
WO2021002003A1
WO2021002003A1 PCT/JP2019/026670 JP2019026670W WO2021002003A1 WO 2021002003 A1 WO2021002003 A1 WO 2021002003A1 JP 2019026670 W JP2019026670 W JP 2019026670W WO 2021002003 A1 WO2021002003 A1 WO 2021002003A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
hot water
temperature
refrigerant
pump
Prior art date
Application number
PCT/JP2019/026670
Other languages
English (en)
French (fr)
Inventor
啓輔 ▲高▼山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021529665A priority Critical patent/JP7211512B2/ja
Priority to EP19936001.7A priority patent/EP3995752B1/en
Priority to PCT/JP2019/026670 priority patent/WO2021002003A1/ja
Publication of WO2021002003A1 publication Critical patent/WO2021002003A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/136Defrosting or de-icing; Preventing freezing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a hot water supply system.
  • the hot water supply system disclosed in Patent Document 1 below includes a heat pump water heater, a heat exchanger, a hot water storage tank for storing hot water supplied from the outlet of the secondary side flow path of the heat exchanger, and a primary side of the heat exchanger. It is equipped with a temperature sensor that detects the water temperature at the inlet and the water temperature at the secondary outlet of the heat exchanger, a circulation pump that supplies cold water from the lower outlet of the hot water storage tank to the secondary flow path, and a control unit.
  • the temperature of the secondary side flow path outlet is changed to the primary side flow for the purpose of reducing the temperature drop of the secondary side flow path outlet in a predetermined period after the defrosting operation of the heat pump water heater is completed.
  • the circulation flow rate supplied to the secondary side flow path is controlled so as to maintain a constant set temperature without following the temperature at the entrance of the road.
  • the present invention has been made to solve the above-mentioned problems, and provides a hot water supply system that is advantageous in reducing a decrease in hot water temperature in a hot water storage tank when returning from a defrosting operation to a heat storage operation.
  • the purpose is to do.
  • the hot water supply system of the present invention includes a compressor that compresses a refrigerant, an air heat exchanger that exchanges heat between the refrigerant and air, and a first heat exchange that exchanges heat between the refrigerant and a heat medium. Switch between the first refrigerant circuit in which the refrigerant compressed by the compressor flows into the first heat exchanger and the second refrigerant circuit in which the refrigerant compressed by the compressor flows into the air heat exchanger.
  • a second heat exchanger that exchanges heat between a valve, a heat medium, and water, a heat medium circuit that connects the first heat exchanger to the second heat exchanger, and a heat medium in the heat medium circuit.
  • a hot water storage tank having a heat medium pump to circulate, a lower part having a water outlet, and an upper part having a hot water inlet located higher than the water outlet, a water feeding passage connecting the water outlet to the second heat exchanger, and the first A water return passage connecting the two heat exchangers to the hot water inlet, a water feed passage, a second heat exchanger, a water pump for flowing water in a water circuit formed by the water return passage, and a second heat exchange.
  • a control circuit for controlling a heat storage operation in which the hot water flowing out of the vessel flows into the hot water storage tank and a defrosting operation in which the frost adhering to the air heat exchanger is melted is provided.
  • the control circuit is a compressor.
  • the heat medium pump and the water pump are operated and the refrigerant is circulated by the first refrigerant circuit.
  • the control circuit operates the compressor and the heat medium pump with the water pump stopped and the first.
  • the refrigerant is circulated by the refrigerant circuit, and the control circuit executes the return operation before restarting the heat storage operation after the defrosting operation.
  • the control circuit is the compressor with the water pump stopped.
  • the heat medium pump is operated and the refrigerant is circulated by the first refrigerant circuit.
  • a hot water supply system that is advantageous in reducing a decrease in hot water temperature in a hot water storage tank when returning from a defrosting operation to a heat storage operation.
  • FIG. It is a figure which shows the hot water supply system by Embodiment 1.
  • FIG. It is a functional block diagram of the hot water supply system 1 according to Embodiment 1.
  • It is a flowchart which shows the example of the process at the time of executing a defrost operation.
  • the detection temperature of the heat pump outlet temperature sensor, the detection temperature of the tank inflow temperature sensor, the rotation speed of the compressor, and the heat medium between the time when the heat storage operation is interrupted and the defrosting operation and the recovery operation are executed until the heat storage operation is restarted.
  • FIG. 1 is a diagram showing a hot water supply system according to the first embodiment.
  • the hot water supply system 1 of the present embodiment includes a heat pump unit 2 and a tank unit 3.
  • the heat pump unit 2 is arranged outdoors.
  • the tank unit 3 is arranged outdoors or indoors.
  • the heat pump unit 2 and the tank unit 3 are separate bodies, but the hot water supply system according to the present disclosure may have a structure in which the heat pump unit 2 and the tank unit 3 are integrated.
  • the heat pump unit 2 includes a compressor 4 for compressing the refrigerant, a first heat exchanger 5, an expansion valve 6, an air heat exchanger 7, a four-way valve 8, and a heat pump controller 9.
  • the substance used as the refrigerant is not particularly limited, but for example, CO 2 , HFC, HC, HFO and the like can be used.
  • the first heat exchanger 5 includes a primary flow path 5a and a secondary flow path 5b. Heat is exchanged between the refrigerant passing through the primary flow path 5a and the heat medium passing through the secondary flow path 5b.
  • the substance used as a heat medium may be liquid water or brine other than water.
  • a refrigerant circuit is formed by connecting the compressor 4, the primary flow path 5a, the expansion valve 6, the air heat exchanger 7, and the four-way valve 8 via the refrigerant pipe.
  • the expansion valve 6 corresponds to a decompression device that decompresses and expands the high-pressure refrigerant.
  • the air heat exchanger 7 exchanges heat between the outdoor air taken in from the outside of the heat pump unit 2 and the refrigerant.
  • the air heat exchanger 7 can function as an evaporator that evaporates the refrigerant by the heat of the outside air.
  • the heat pump unit 2 may include a blower 10 for allowing outside air to flow through the air heat exchanger 7.
  • the four-way valve 8 includes a port, b port, c port, and d port.
  • the a port of the four-way valve 8 is connected to the discharge port of the compressor 4 via a refrigerant pipe.
  • the b port of the four-way valve 8 is connected to the suction port of the compressor 4 via a refrigerant pipe.
  • the c port of the four-way valve 8 is connected to the primary flow path 5a of the first heat exchanger 5 via a refrigerant pipe.
  • the d port of the four-way valve 8 is connected to the air heat exchanger 7 via a refrigerant pipe.
  • the four-way valve 8 switches the refrigerant flow path, for example, by moving the valve body.
  • the four-way valve 8 in the present embodiment corresponds to a refrigerant circuit switching valve that switches between the first refrigerant circuit and the second refrigerant circuit.
  • the first refrigerant circuit is a circuit in which the refrigerant compressed by the compressor 4 flows into the first heat exchanger 5.
  • FIG. 1 shows a state in which the first refrigerant circuit is formed. In this state, the four-way valve 8 communicates the a port with the c port and the b port with the d port.
  • the state is switched so that the a port communicates with the d port and the b port communicates with the c port.
  • a second refrigerant circuit is formed in which the refrigerant compressed by the compressor 4 flows into the air heat exchanger 7.
  • the tank unit 3 includes a hot water storage tank 11, a second heat exchanger 12, a heat medium pump 13, a water pump 14, a flow path switching valve 15, and a tank unit controller 16.
  • the hot water storage tank 11 stores hot water heated by the heat pump unit 2.
  • a temperature stratification is formed in which the upper side is high temperature and the lower side is low temperature due to the difference in the specific gravity of water due to the difference in temperature.
  • the hot water storage tank 11 is covered with a heat insulating material (not shown).
  • a water outlet 17 is provided at the bottom of the hot water storage tank 11.
  • a hot water inlet 18 is provided above the hot water storage tank 11.
  • the second heat exchanger 12 includes a primary flow path 12a and a secondary flow path 12b. Heat is exchanged between the heat medium passing through the primary flow path 12a and the water passing through the secondary flow path 12b.
  • the water feed passage 19 connects the water outlet 17 to the inlet of the secondary flow path 12b.
  • a water pump 14 is provided in the middle of the water feeding passage 19.
  • the water return passage 20 connects the outlet of the secondary flow path 12b to the hot water inlet 18.
  • the water circuit 21 is formed by the water feed passage 19, the secondary flow path 12b, and the water return passage 20. When the water pump 14 operates, the water in the water circuit 21 flows.
  • the water supply pipe 22 is connected to the lower part of the hot water storage tank 11.
  • the water supply pipe 22 extends to the outside of the tank unit 3.
  • water supplied from a water source such as a water supply flows into a hot water storage tank 11 through a water supply pipe 22.
  • the hot water supply pipe 23 is connected to the upper part of the hot water storage tank 11.
  • the hot water supply pipe 23 extends to the outside of the tank unit 3.
  • the hot water stored in the hot water storage tank 11 is supplied to a hot water supply end such as a shower, a faucet, or a bathtub through a hot water supply pipe 23.
  • the hot water supply system 1 of the present embodiment can perform a heating operation in which a heat medium is circulated in the heating device 24.
  • the heating device 24 is installed in the room.
  • the heating device 24 may include, for example, at least one of a floor heating panel installed under the floor, a radiator installed on an indoor wall surface, a panel heater, and a fan convector.
  • the hot water supply system according to the present disclosure may not have a function of performing heating operation. That is, the heating device 24 may be omitted.
  • a branch portion 25 is formed in a passage on the upstream side of the suction port of the heat medium pump 13.
  • the passage 26 connects the outlet of the primary flow path 12a to the branch portion 25.
  • the flow path switching valve 15 is a valve for switching a circuit through which a heat medium flows.
  • the flow path switching valve 15 has an a port which is an inflow port, a b port which is an outflow port, and a c port which is an outflow port.
  • the heat pump unit 2 and the tank unit 3 are connected to each other by a passage 27 and a passage 28.
  • the passage 27 connects the discharge port of the heat medium pump 13 to the inlet of the secondary flow path 5b.
  • the passage 28 connects the outlet of the secondary flow path 5b to the a port of the flow path switching valve 15.
  • the passage 27 and the passage 28 have a portion arranged outside the heat pump unit 2 and the tank unit 3. When the installation location of the heat pump unit 2 and the installation location of the tank unit 3 are separated, long passages 27 and 28 are used.
  • the passage 29 connects the b port of the flow path switching valve 15 to the inlet of the primary flow path 12a.
  • the tank unit 3 and the heating device 24 are connected to each other by a passage 30 and a passage 31.
  • the passage 30 connects the c port of the flow path switching valve 15 to the inlet of the heat medium of the heating device 24.
  • the passage 31 connects the outlet of the heat medium of the heating device 24 to the branch portion 25.
  • the refrigerant temperature sensor 32 is arranged in the refrigerant pipe between the discharge port of the compressor 4 and the a port of the four-way valve 8. In the first refrigerant circuit, the refrigerant temperature sensor 32 can detect the discharged refrigerant temperature, which is the temperature of the refrigerant discharged from the compressor 4.
  • the refrigerant temperature sensor 33 is arranged in the refrigerant pipe between the expansion valve 6 and the air heat exchanger 7. In the first refrigerant circuit, the refrigerant temperature sensor 33 can detect the refrigerant inlet temperature, which is the temperature of the refrigerant flowing into the air heat exchanger 7 from the expansion valve 6.
  • the hot water storage tank 11 is provided with a plurality of tank temperature sensors 34, 35, 36 arranged at positions at different heights from each other.
  • the tank temperature sensors 34, 35, 36 detect the water temperature in the hot water storage tank 11.
  • the tank temperature sensor 34 is arranged at the same height as the hot water inlet 18.
  • the tank temperature sensor 36 is arranged at the same height as the water outlet 17.
  • the tank temperature sensor 35 is arranged at a position higher than the water outlet 17 and lower than the hot water inlet 18.
  • the temperature of the water in the upper part of the hot water storage tank 11 is referred to as "upper tank temperature”.
  • the tank temperature sensor 34 in this embodiment corresponds to an upper tank temperature sensor that detects the upper tank temperature.
  • the temperature of the heat medium flowing into the secondary flow path 5b is referred to as “heat pump inlet temperature”, and the temperature of the heat medium flowing out of the secondary flow path 5b is referred to as “heat pump outlet temperature”.
  • the heat pump inlet temperature sensor 37 installed in the passage 27 detects the heat pump inlet temperature.
  • the heat pump outlet temperature sensor 38 installed in the passage 28 detects the heat pump outlet temperature.
  • the heat pump inlet temperature sensor 37 and the heat pump outlet temperature sensor 38 are arranged in the tank unit 3, but the heat pump inlet temperature sensor 37 and the heat pump outlet temperature sensor 38 may be arranged in the heat pump unit 2. ..
  • the temperature of the water flowing from the hot water storage tank 11 into the second heat exchanger 12 is referred to as the "incoming water temperature".
  • the entry temperature can be detected by the entry temperature sensor 39 installed in the water feed passage 19.
  • the tank inflow temperature sensor 40 installed in the water return passage 20 can detect the temperature of the hot water flowing into the hot water storage tank 11 from the second heat exchanger 12.
  • the temperature detected by the tank inflow temperature sensor 40 will be referred to as “tank inflow temperature”.
  • An outside air temperature sensor 41 that detects the outside air temperature is installed in the heat pump unit 2.
  • the hot water storage tank 11 has an uppermost portion 42 for storing hot water at a position higher than the hot water inlet 18.
  • the entrance of the hot water supply pipe 23 is located in the uppermost portion 42.
  • the hot water supply pipe 23 is configured to take out the hot water in the uppermost portion 42.
  • the hot water in the uppermost portion 42 is supplied to the outside through the hot water supply pipe 23.
  • the heat pump controller 9 and the tank unit controller 16 are connected by wire or wireless so that data communication is possible in both directions.
  • the heat pump controller 9 and the tank unit controller 16 correspond to a control circuit that controls the operation of the hot water supply system 1.
  • At least one of the heat pump controller 9 and the tank unit controller 16 may have a timer function for managing the time.
  • At least one of the heat pump controller 9 and the tank unit controller 16 may have a calendar function for managing the date.
  • the heat pump controller 9 and the tank unit controller 16 cooperate to control the operation of the hot water supply system 1.
  • the present disclosure is not limited to a configuration in which a plurality of controllers cooperate to control the operation of the hot water supply system 1 as in the illustrated example, but a configuration in which the operation of the hot water supply system 1 is controlled by a single controller. You may.
  • the hot water supply system 1 of the present embodiment includes a remote controller 50.
  • the remote controller 50 and the tank unit controller 16 are connected by wire or wireless so that data communication is possible in both directions.
  • the remote controller 50 may be installed in the room.
  • the remote controller 50 has a function of accepting a user's operation regarding an operation operation command, a change of a set value, and the like.
  • the remote controller 50 corresponds to a user interface.
  • the remote controller 50 may be equipped with a display for displaying information regarding the state of the hot water supply system 1, an operation unit such as a switch operated by the user, a speaker, a microphone, and the like.
  • the hot water supply system 1 may include a plurality of remote controllers 50 installed at different locations. Further, instead of the remote controller 50, or in addition to the remote controller 50, a mobile terminal such as a smartphone or a tablet terminal may be used as a user interface of the hot water supply system 1.
  • FIG. 2 is a functional block diagram of the hot water supply system 1 according to the first embodiment.
  • each of the compressor 4, the expansion valve 6, the four-way valve 8, the refrigerant temperature sensor 32, the refrigerant temperature sensor 33, and the outside air temperature sensor 41 is electrically connected to the heat pump controller 9.
  • Each of the heat medium pump 13, the water pump 14, the flow path switching valve 15, the tank temperature sensors 34, 35, 36, the heat pump inlet temperature sensor 37, the heat pump outlet temperature sensor 38, the water inlet temperature sensor 39, and the tank inflow temperature sensor 40 Electrically connected to the tank unit controller 16.
  • Each function of the heat pump controller 9 may be realized by a processing circuit.
  • the processing circuit of the heat pump controller 9 may include at least one processor 9a and at least one memory 9b. At least one processor 9a may realize each function of the heat pump controller 9 by reading and executing a program stored in at least one memory 9b.
  • the processing circuit of the heat pump controller 9 may include at least one dedicated hardware.
  • Each function of the tank unit controller 16 may be realized by a processing circuit.
  • the processing circuit of the tank unit controller 16 may include at least one processor 16a and at least one memory 16b. At least one processor 16a may realize each function of the tank unit controller 16 by reading and executing a program stored in at least one memory 16b.
  • the processing circuit of the tank unit controller 16 may include at least one dedicated hardware.
  • the heat pump controller 9 can be controlled so that the rotation speed of the compressor 4 becomes variable, for example, by inverter control.
  • the tank unit controller 16 can be controlled so that the rotation speed of the heat medium pump 13 and the rotation speed of the water pump 14 are variable, for example, by inverter control.
  • the hot water supply system 1 can execute the heat storage operation.
  • the heat storage operation is an operation in which the hot water flowing out of the second heat exchanger 12 flows into the hot water storage tank 11.
  • the heat pump controller 9 and the tank unit controller 16 control the heat storage operation.
  • the heat pump controller 9 and the tank unit controller 16 control the operation during the heat storage operation as follows.
  • the compressor 4, the heat medium pump 13, and the water pump 14 are driven.
  • the first refrigerant circuit is formed by the four-way valve 8. In the flow path switching valve 15, the a port communicates with the b port and the c port closes.
  • the refrigerant which has become high temperature and high pressure by being compressed by the compressor 4, passes through the a port and the c port of the four-way valve 8 and flows into the primary flow path 5a of the first heat exchanger 5.
  • the refrigerant flowing through the primary flow path 5a is cooled by the heat medium flowing through the secondary flow path 5b.
  • the refrigerant that has passed through the primary flow path 5a becomes a low-temperature low-pressure refrigerant by being depressurized by the expansion valve 6.
  • This low-temperature low-pressure refrigerant flows into the air heat exchanger 7. In the air heat exchanger 7, heat is exchanged between the outside air guided by the blower 10 and the low-temperature low-pressure refrigerant.
  • the refrigerant evaporates when heated by the outside air in the air heat exchanger 7.
  • the evaporated refrigerant passes through the d port and b port of the four-way valve 8 and is sucked into the compressor 4.
  • the refrigeration cycle in which the refrigerant is circulated by the first refrigerant circuit in this way is hereinafter referred to as a “positive cycle”.
  • the first heat exchanger 5 functions as a condenser or gas cooler and the air heat exchanger 7 functions as an evaporator.
  • the heat medium heated by the refrigerant in the first heat exchanger 5 flows into the primary flow path 12a of the second heat exchanger 12 through the passage 28, the flow path switching valve 15, and the passage 29.
  • the heat medium that has passed through the primary flow path 12a returns to the first heat exchanger 5 through the passage 26, the branch portion 25, the heat medium pump 13, and the passage 27.
  • the circuit in which the heat medium circulates through the first heat exchanger 5 and the second heat exchanger 12 in this way is hereinafter referred to as a “heat medium circuit”.
  • the water at the bottom of the hot water storage tank 11 flows into the secondary flow path 12b through the water outlet 17 and the water feed passage 19.
  • the water flowing through the secondary flow path 12b is heated by the heat medium flowing through the primary flow path 12a.
  • the heated hot water flows into the upper part of the hot water storage tank 11 through the water return passage 20 and the hot water inlet 18.
  • the target value of the temperature of the hot water flowing into the hot water storage tank 11 in the heat storage operation is hereinafter referred to as "target hot water storage temperature".
  • the tank unit controller 16 may determine the target hot water storage temperature according to the hot water supply set temperature set by the user using the remote controller 50. For example, the tank unit controller 16 may set a temperature equal to the hot water supply set temperature or a temperature higher than the hot water supply set temperature as the target hot water storage temperature.
  • the target hot water storage temperature may be, for example, 65 ° C.
  • the tank unit controller 16 can calculate the amount of hot water stored or the amount of heat stored in the hot water storage tank 11 by using the temperature distribution along the vertical direction in the hot water storage tank 11 detected by the tank temperature sensors 34, 35, 36. ..
  • the tank unit controller 16 calculates the current amount of hot water or the amount of heat stored at regular intervals. When the current amount of hot water or heat storage falls below the standard, the heat pump controller 9 and the tank unit controller 16 start the heat storage operation. When the amount of hot water stored or the amount of heat stored during the heat storage operation reaches the target value, the heat pump controller 9 and the tank unit controller 16 end the heat storage operation.
  • the tank unit controller 16 may detect the hot water supply load by detecting the temperature and amount of hot water flowing through the hot water supply pipe 23 with a sensor (not shown). The tank unit controller 16 may set a target value of the amount of hot water stored or the amount of heat stored based on the learning result obtained by statistically processing the hot water supply load for the past plurality of days.
  • the heating capacity [W] of the heat pump unit 2 is the amount of heat given to the heat medium by the heat pump unit 2 per unit time.
  • the heat pump controller 9 can adjust the rotation speed of the compressor 4 so as to obtain a predetermined heating capacity.
  • the degree of superheat of the refrigerant sucked into the compressor 4 is hereinafter referred to as "suction superheat".
  • the heat pump controller 9 may adjust the opening degree of the expansion valve 6 so that the suction superheat degree or the discharged refrigerant temperature detected by the refrigerant temperature sensor 32 becomes equal to the target value. As the opening degree of the expansion valve 6 increases, the refrigerant flow rate increases, and the discharge refrigerant temperature and the suction superheat degree decrease.
  • the hot water supply system 1 can execute the heating operation.
  • the heat pump controller 9 and the tank unit controller 16 control the heating operation.
  • the heat pump controller 9 and the tank unit controller 16 control the operation during the heating operation as follows.
  • the compressor 4 and the heat medium pump 13 are driven.
  • the water pump 14 is stopped.
  • the a port communicates with the c port and the b port closes.
  • the heat pump unit 2 operates in a positive cycle in the same manner as in the heat storage operation.
  • the heat medium heated by the refrigerant in the first heat exchanger 5 flows into the heating device 24 through the passage 28, the flow path switching valve 15, and the passage 30.
  • the heating device 24 uses the heat of the heat medium to heat the room.
  • the temperature of the heat medium drops while passing through the heating device 24.
  • the heat medium whose temperature has dropped returns to the first heat exchanger 5 through the passage 31, the branch portion 25, the heat medium pump 13, and the passage 27.
  • the circuit in which the heat medium circulates through the first heat exchanger 5 and the heating device 24 in this way is hereinafter referred to as a "heating circuit".
  • the heating operation and the heat storage operation can be switched by switching between the heating circuit and the heat medium circuit by the flow path switching valve 15. Therefore, the flow path switching valve 15 corresponds to a switching means for switching between the heating operation and the heat storage operation.
  • the hot water supply system 1 can perform a defrosting operation for melting the frost adhering to the air heat exchanger 7.
  • the heat pump controller 9 and the tank unit controller 16 control the defrosting operation.
  • the heat pump controller 9 and the tank unit controller 16 control the operation during the defrosting operation as follows. In the defrosting operation, the heat pump controller 9 and the tank unit controller 16 operate the compressor 4 and the heat medium pump 13 with the water pump 14 and the blower 10 stopped, and circulate the refrigerant by the second refrigerant circuit.
  • the refrigerant which has become high temperature and high pressure by being compressed by the compressor 4, passes through the a port and d port of the four-way valve 8 and flows into the air heat exchanger 7.
  • the air heat exchanger 7 is heated from the inside by the heat of the refrigerant. As a result, the frost adhering to the surface of the air heat exchanger 7 melts.
  • the refrigerant is cooled while passing through the air heat exchanger 7.
  • the cooled refrigerant passes through the expansion valve 6 and flows into the first heat exchanger 5. While passing through the primary flow path 5a, the refrigerant receives the heat of the heat medium flowing through the secondary flow path 5b and is heated.
  • the heated refrigerant passes through the c port and b port of the four-way valve 8 and is sucked into the compressor 4.
  • the air heat exchanger 7 functions as a condenser or a gas cooler
  • the first heat exchanger 5 functions as an evaporator.
  • the refrigeration cycle in which the refrigerant is circulated by the second refrigerant circuit described above is hereinafter referred to as “reverse cycle”.
  • the heat pump controller 9 and the tank unit controller 16 temporarily suspend the heat storage operation and execute the defrosting operation. After the frost is removed by the defrosting operation, the heat pump controller 9 and the tank unit controller 16 restart the heat storage operation.
  • the heat medium is cooled by the evaporation of the refrigerant in the first heat exchanger 5.
  • the heat storage operation is executed, so that the heat medium is hot.
  • the heat medium circulates in the heat medium circuit while being cooled by the first heat exchanger 5, so that the temperature gradually decreases.
  • the refrigerant can collect the heat of the heat medium circulating in the heat medium circuit in the first heat exchanger 5 during the defrosting operation. As a result, the amount of heat of the refrigerant flowing into the air heat exchanger 7 becomes large, so that the frost of the air heat exchanger 7 can be quickly melted. Therefore, the defrosting operation can be completed in a short time.
  • the heat medium is cooled by the first heat exchanger 5, so the heat pump outlet temperature drops. Therefore, if the heat storage operation is restarted immediately after the defrosting operation is completed, the tank inflow temperature is unlikely to rise. As a result, a large amount of hot water having a temperature lower than the upper tank temperature may flow from the second heat exchanger 12 into the hot water storage tank 11, and the upper tank temperature may drop significantly. When the temperature of the upper tank decreases, the temperature of the hot water supplied through the hot water supply pipe 23 decreases, which is not preferable.
  • the heat pump controller 9 and the tank unit controller 16 execute the return operation after the defrosting operation is completed and before the heat storage operation is restarted.
  • the heat pump controller 9 and the tank unit controller 16 operate the compressor 4, the heat medium pump 13, and the blower 10 with the water pump 14 stopped, and circulate the refrigerant by the first refrigerant circuit. ..
  • the heat medium can be heated by the first heat exchanger 5 to raise the heat pump outlet temperature. Since the water pump 14 is stopped during the return operation, the low temperature water does not flow into the upper part of the hot water storage tank 11. Therefore, the temperature of the upper tank does not drop.
  • the heat pump outlet temperature can be quickly raised.
  • the heat pump controller 9 and the tank unit controller 16 start the water pump 14 and restart the heat storage operation.
  • the water can be sufficiently heated by the second heat exchanger 12 immediately after the resumption of the heat storage operation, so that the tank inflow temperature can be sufficiently raised.
  • the tank unit controller 16 may start the water pump 14 on the condition that the heat pump outlet temperature detected by the heat pump outlet temperature sensor 38 reaches the first reference temperature during the execution of the return operation. That is, when the heat pump outlet temperature reaches the first reference temperature, the tank unit controller 16 may end the return operation and restart the heat storage operation.
  • the tank unit controller 16 may determine the first reference temperature according to the upper tank temperature detected by the tank temperature sensor 34.
  • the tank unit controller 16 may determine a temperature equal to the upper tank temperature as the first reference temperature.
  • the tank unit controller 16 may determine a temperature slightly higher than the upper tank temperature as the first reference temperature. That is, the first reference temperature is a temperature equal to or higher than the upper tank temperature.
  • the second heat exchanger 12 can heat water until the tank inflow temperature becomes a little lower than the heat pump outlet temperature. If the water pump 14 is started after the heat pump outlet temperature during the return operation reaches the first reference temperature equal to or higher than the upper tank temperature, the tank inflow temperature immediately after the restart of the heat storage operation becomes a temperature close to the upper tank temperature. Therefore, it is possible to more reliably prevent the temperature of the upper tank from dropping.
  • the heat of the hot water may be dissipated and the upper tank temperature may become lower than the hot water supply set temperature. Further, when the amount of hot water in the hot water storage tank 11 becomes small, the temperature of the upper tank may become lower than the set temperature for hot water supply. Since the first reference temperature is determined according to the upper tank temperature, when the upper tank temperature is low, the first reference temperature is also low. Therefore, when the upper tank temperature is low, the first reference temperature is also low, so that the return operation is shifted to the heat storage operation at an earlier timing than when the upper tank temperature is high. That is, when the upper tank temperature is low, the transition time from the return operation to the heat storage operation is earlier. As a result, the heat storage operation can be restarted earlier. That is, when the upper tank temperature is low, it is possible to reliably prevent the transition time from the return operation to the heat storage operation from being delayed more than necessary.
  • the present embodiment has the following advantages.
  • the hot water inlet 18 and the tank temperature sensor 34 are located lower than the uppermost portion 42. Therefore, the detection temperature of the tank temperature sensor 34 may be lower than the temperature of the hot water in the uppermost portion 42.
  • the tank unit controller 16 determines the first reference temperature according to the upper tank temperature detected by the tank temperature sensor 34. Therefore, even when the detection temperature of the tank temperature sensor 34 is lower than the temperature of the hot water in the uppermost portion 42, the first reference temperature is determined according to the detection temperature of the tank temperature sensor 34. Therefore, when the detection temperature of the tank temperature sensor 34 is lower than the temperature of the hot water in the uppermost portion 42, the tank inflow temperature immediately after the restart of the heat storage operation becomes lower than the temperature of the hot water in the uppermost portion 42.
  • the hot water flowing into the hot water storage tank 11 diffuses horizontally or downward from the hot water inlet 18 and mixes due to the difference in specific gravity. Therefore, the hot water flowing into the hot water storage tank 11 is difficult to mix with the hot water in the uppermost portion 42.
  • the detection temperature of the tank temperature sensor 34 is lower than the temperature of the hot water in the uppermost portion 42, there is an advantage that the transition time from the return operation to the heat storage operation can be reliably prevented from being delayed more than necessary.
  • FIG. 3 is a flowchart showing an example of processing when the defrosting operation is executed.
  • FIG. 4 shows the detection temperature of the heat pump outlet temperature sensor 38, the detection temperature of the tank inflow temperature sensor 40, and the compressor 4 between the time when the heat storage operation is interrupted and the defrosting operation and the recovery operation are executed until the heat storage operation is restarted. It is a figure which shows the example of each time-dependent change of the rotation speed of, the rotation speed of a heat medium pump 13, and the rotation speed of a water pump 14.
  • the present embodiment will be further described with reference to the examples shown in FIGS. 3 and 4.
  • the heat pump controller 9 determines whether or not the air heat exchanger 7 is frosted. For example, in the heat pump controller 9, the refrigerant inlet temperature Te of the air heat exchanger 7 detected by the refrigerant temperature sensor 33 is equal to or less than the first reference value, and the outside air temperature Ta detected by the outside air temperature sensor 41 and the refrigerant. When the difference from the inlet temperature Te becomes equal to or greater than the second reference value, it may be determined that the air heat exchanger 7 is frosted. When it is determined that the air heat exchanger 7 is frosted, the heat pump controller 9 and the tank unit controller 16 execute the defrosting operation by the processing of the flowchart of FIG. In FIG. 4, the defrosting operation starts at time t1.
  • step S101 of FIG. 3 the heat pump controller 9 sets the rotation speed of the compressor 4 to the minimum speed in preparation for switching the four-way valve 8.
  • step S102 the heat pump controller 9 switches the four-way valve 8 from the first refrigerant circuit of the forward cycle to the second refrigerant circuit of the reverse cycle. Further, the heat pump controller 9 stops the blower 10.
  • the heat pump controller 9 and the tank unit controller 16 execute the defrosting operation.
  • the heat pump controller 9 may operate the compressor 4 so that the rotation speed Fc-2 of the compressor 4 during the defrosting operation is higher than the rotation speed Fc-1 during the heat storage operation.
  • the tank unit controller 16 preferably operates the heat medium pump 13 so that the rotation speed Fp1-2 of the heat medium pump 13 during the defrosting operation is higher than the rotation speed Fp1-1 during the heat storage operation.
  • the tank unit controller 16 operates the heat medium pump 13 at the maximum rotation speed during the defrosting operation.
  • the water pump 14 is stopped and the water in the water circuit 21 does not flow. Therefore, the heat is naturally dissipated to the surroundings, so that the water temperature in the secondary flow path 12b and the water return passage 20 The water temperature inside gradually decreases.
  • step S104 the heat pump controller 9 determines whether or not the defrosting end condition is satisfied. When the defrosting end condition is satisfied, the defrosting operation is terminated. If the defrosting end condition is not satisfied, the heat pump controller 9 continues the defrosting operation and repeats the process of step S104. For example, the heat pump controller 9 detects the temperature Tf of the refrigerant flowing out from the air heat exchanger 7 by the refrigerant temperature sensor 33, and when the temperature Tf becomes equal to or higher than the third reference value, the defrosting end condition is satisfied. You may judge.
  • step S105 the heat pump controller 9 sets the rotation speed of the compressor 4 to the minimum speed in preparation for switching the four-way valve 8. Then, in step S106, the heat pump controller 9 switches the four-way valve 8 from the reverse cycle second refrigerant circuit to the forward cycle first refrigerant circuit. Further, the heat pump controller 9 activates the blower 10.
  • step S107 the heat pump controller 9 and the tank unit controller 16 execute a return operation.
  • the return operation starts at time t2.
  • the heat pump controller 9 may operate the compressor 4 so that the rotation speed of the compressor 4 during the return operation is equal to the rotation speed Fc-1 during the heat storage operation.
  • the tank unit controller 16 preferably operates the heat medium pump 13 so that the rotation speed Fp1-2 of the heat medium pump 13 during the return operation is higher than the rotation speed Fp1-1 during the heat storage operation.
  • the temperature of the heat medium of the heat medium circuit can be raised more quickly.
  • the tank unit controller 16 operates the heat medium pump 13 at the maximum rotation speed during the return operation.
  • the tank unit controller 16 determines the first reference temperature Tw1 according to the upper tank temperature detected by the tank temperature sensor 34. During the execution of the return operation, as step S108, the tank unit controller 16 compares the heat pump outlet temperature detected by the heat pump outlet temperature sensor 38 with the first reference temperature Tw1. If the heat pump outlet temperature has not reached the first reference temperature Tw1, the return operation in step S107 is continued. When the heat pump outlet temperature reaches the first reference temperature Tw1, the tank unit controller 16 starts the water pump 14 and restarts the heat storage operation in step S109. In FIG. 4, the heat storage operation resumes at time t3.
  • the tank unit controller 16 When the heat storage operation is resumed, the tank unit controller 16 operates the heat medium pump 13 at a rotation speed Fp1-1 lower than the rotation speed Fp1-2 during the defrosting operation and the return operation. Further, it is preferable that the tank unit controller 16 operates the water pump 14 at the minimum rotation speed Fp2-3 when the return operation is completed and the heat storage operation is restarted. As a result, the tank inflow temperature can be raised more quickly, and the amount of low-temperature water flowing into the hot water storage tank 11 from the water return passage 20 immediately after the water pump 14 is started can be reduced more reliably. As a result, it is possible to more reliably prevent the temperature of the hot water in the hot water storage tank 11 from dropping.
  • the tank unit controller 16 may set the second reference temperature Tw2 as a reference for releasing the fixation. Good.
  • the tank unit controller 16 may set a temperature equal to the first reference temperature Tw1 as the second reference temperature Tw2, or set a temperature higher than the first reference temperature Tw1 as the second reference temperature Tw2.
  • the second reference temperature Tw2 may be a temperature equal to the target hot water storage temperature.
  • the tank unit controller 16 compares the tank inflow temperature detected by the tank inflow temperature sensor 40 with the second reference temperature Tw2. When the tank inflow temperature reaches the second reference temperature Tw2, the tank unit controller 16 releases the above-mentioned fixing and increases the rotation speed of the water pump 14. As a result, the heat storage operation shifts to the steady state.
  • the tank unit controller 16 controls the rotation speed of the heat medium pump 13 so that the difference between the heat pump outlet temperature and the heat pump inlet temperature becomes equal to a certain target value. .. As a result, the flow rate of the heat medium becomes more reliable and appropriate, so that more efficient operation becomes possible. Further, during the heat storage operation in the steady state, the tank unit controller 16 controls the rotation speed of the water pump 14 so that the tank inflow temperature becomes equal to the target hot water storage temperature Twt.
  • the rotation speed of the heat medium pump 13 during the execution of the return operation is constant, but the tank unit controller 16 uses the heat medium pump 13 as the heat pump outlet temperature rises during the execution of the return operation.
  • the rotation speed of the pump may be continuously or gradually reduced.
  • the hot water supply system 1 shifts from the return operation to the heat storage operation according to the result of the tank unit controller 16 comparing the heat pump outlet temperature with the first reference temperature Tw1.
  • the hot water supply system 1 may end the return operation and restart the heat storage operation when, for example, the time for continuing the return operation reaches the reference time. As a result, it is possible to more reliably prevent the delay in restarting the heat storage operation.
  • 1 hot water supply system 2 heat pump unit, 3 tank unit, 4 compressor, 5 first heat exchanger, 6 expansion valve, 7 air heat exchanger, 8 four-way valve, 9 heat pump controller, 10 blower, 11 hot water storage tank, 12th Two heat exchangers, 13 heat medium pumps, 14 water pumps, 15 flow path switching valves, 16 tank unit controllers, 17 water outlets, 18 hot water inlets, 21 water circuits, 22 water supply pipes, 23 hot water supply pipes, 24 heating devices, 32 Refrigerant temperature sensor, 33 refrigerant temperature sensor, 34, 35, 36 tank temperature sensor, 37 heat pump inlet temperature sensor, 38 heat pump outlet temperature sensor, 39 inlet water temperature sensor, 40 tank inflow temperature sensor, 41 outside air temperature sensor, 42 top, 50 remote control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

給湯システムは、圧縮機により圧縮された冷媒が第一熱交換器に流入する第一冷媒回路と、圧縮機により圧縮された冷媒が空気熱交換器に流入する第二冷媒回路とを切り替える冷媒回路切替弁と、第一熱交換器を第二熱交換器に接続する熱媒体回路内の熱媒体を循環させる熱媒体ポンプと、水回路内の水を流れさせる水ポンプと、第二熱交換器から流出する湯を貯湯タンクに流入させる蓄熱運転と、空気熱交換器に付着した霜を融かす除霜運転とを制御する制御回路とを備える。除霜運転において、制御回路は、水ポンプを停止させた状態で圧縮機及び熱媒体ポンプを作動させるとともに第二冷媒回路により冷媒を循環させる。除霜運転の後に蓄熱運転を再開する前に、制御回路は、水ポンプを停止させた状態で圧縮機及び熱媒体ポンプを作動させるとともに第一冷媒回路により冷媒を循環させる復帰運転を実行する。

Description

給湯システム
 本発明は、給湯システムに関する。
 ヒートポンプ式の給湯システムにおいて、空気熱交換器に付着した霜を融かすための除霜運転を行う技術が知られている。下記特許文献1に開示された給湯システムは、ヒートポンプ給湯機と、熱交換器と、熱交換器の二次側流路の出口から供給される温水を貯える貯湯タンクと、熱交換器の一次側入口の水温と熱交換器の二次側出口の水温を夫々検出する温度センサと、貯湯タンクの下部出水口から冷水を二次側流路に供給する循環ポンプと、制御部とを備える。制御部は、ヒートポンプ給湯機の除霜運転が完了した後の所定期間において、二次側流路出口の温度の低下を軽減することを目的として、二次側流路出口の温度が一次側流路入口の温度に追随せず一定の設定温度を維持するように、二次側流路に供給される循環流量を制御する。
日本特開2016-075425号公報
 上述した従来の給湯システムにおける除霜運転の完了後は、熱交換器の一次側の水温が低下している。このため、二次側流路の循環流量を低くしても、二次側流路出口の温度を十分に高くすることは困難である。それゆえ、低い温度の水が貯湯タンクの上部に流入するので、貯湯タンク内の湯の温度の低下を十分に軽減することは困難である。
 本発明は、上述のような課題を解決するためになされたもので、除霜運転から蓄熱運転に復帰したときの貯湯タンク内の湯温の低下を軽減する上で有利になる給湯システムを提供することを目的とする。
 本発明の給湯システムは、冷媒を圧縮する圧縮機と、冷媒と、空気との間で熱を交換する空気熱交換器と、冷媒と、熱媒体との間で熱を交換する第一熱交換器と、圧縮機により圧縮された冷媒が第一熱交換器に流入する第一冷媒回路と、圧縮機により圧縮された冷媒が空気熱交換器に流入する第二冷媒回路とを切り替える冷媒回路切替弁と、熱媒体と、水との間で熱を交換する第二熱交換器と、第一熱交換器を第二熱交換器に接続する熱媒体回路と、熱媒体回路内の熱媒体を循環させる熱媒体ポンプと、水出口を有する下部と、水出口よりも高い位置にある湯入口を有する上部とを備える貯湯タンクと、水出口を第二熱交換器につなぐ水送り通路と、第二熱交換器を湯入口につなぐ水戻り通路と、水送り通路と、第二熱交換器と、水戻り通路とにより形成される水回路内の水を流れさせる水ポンプと、第二熱交換器から流出する湯を貯湯タンクに流入させる蓄熱運転と、空気熱交換器に付着した霜を融かす除霜運転とを制御する制御回路と、を備え、蓄熱運転において、制御回路は、圧縮機、熱媒体ポンプ、及び水ポンプを作動させるとともに第一冷媒回路により冷媒を循環させ、除霜運転において、制御回路は、水ポンプを停止させた状態で圧縮機及び熱媒体ポンプを作動させるとともに第二冷媒回路により冷媒を循環させ、除霜運転の後に蓄熱運転を再開する前に、制御回路は、復帰運転を実行し、復帰運転において、制御回路は、水ポンプを停止させた状態で圧縮機及び熱媒体ポンプを作動させるとともに第一冷媒回路により冷媒を循環させるものである。
 本発明によれば、除霜運転から蓄熱運転に復帰したときの貯湯タンク内の湯温の低下を軽減する上で有利になる給湯システムを提供することが可能となる。
実施の形態1による給湯システムを示す図である。 実施の形態1による給湯システム1の機能ブロック図である。 除霜運転を実行するときの処理の例を示すフローチャートである。 蓄熱運転を中断して除霜運転及び復帰運転を実行した後に蓄熱運転を再開するまでの間の、ヒートポンプ出口温度センサの検出温度、タンク流入温度センサの検出温度、圧縮機の回転速度、熱媒体ポンプの回転速度、及び水ポンプの回転速度のそれぞれの経時変化の例を示す図である。
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、重複する説明を簡略化または省略する。
実施の形態1.
 図1は、実施の形態1による給湯システムを示す図である。図1に示すように、本実施の形態の給湯システム1は、ヒートポンプユニット2とタンクユニット3とを備える。ヒートポンプユニット2は、室外に配置される。タンクユニット3は、室外または室内に配置される。本実施の形態ではヒートポンプユニット2とタンクユニット3とが別体となっているが、本開示による給湯システムは、ヒートポンプユニット2及びタンクユニット3が一体となった構造を有するものでもよい。
 ヒートポンプユニット2は、冷媒を圧縮する圧縮機4と、第一熱交換器5と、膨張弁6と、空気熱交換器7と、四方弁8と、ヒートポンプコントローラ9とを備える。冷媒として使用される物質は、特に限定されないが、例えばCO、HFC、HC、HFO等を使用可能である。第一熱交換器5は、一次流路5a及び二次流路5bを備える。一次流路5aを通る冷媒と、二次流路5bを通る熱媒体との間で熱が交換される。熱媒体として使用される物質は、液体の水でもよいし、水以外のブラインでもよい。圧縮機4、一次流路5a、膨張弁6、空気熱交換器7、及び四方弁8が冷媒管を介して接続されることにより、冷媒回路が形成されている。
 膨張弁6は、高圧冷媒を減圧及び膨張させる減圧装置に相当する。空気熱交換器7は、ヒートポンプユニット2の外部から取り込まれる室外の空気と、冷媒との間で熱を交換させる。空気熱交換器7は、外気の熱によって冷媒を蒸発させる蒸発器として機能することができる。ヒートポンプユニット2は、外気が空気熱交換器7を通過して流れるようにするための送風機10を備えていてもよい。
 四方弁8は、aポート、bポート、cポート、及びdポートを備える。四方弁8のaポートは、冷媒管を介して圧縮機4の吐出口に接続されている。四方弁8のbポートは、冷媒管を介して圧縮機4の吸入口に接続されている。四方弁8のcポートは、冷媒管を介して第一熱交換器5の一次流路5aに接続されている。四方弁8のdポートは、冷媒管を介して空気熱交換器7に接続されている。
 四方弁8は、例えば弁体を移動させることにより、冷媒流路を切り替える。本実施の形態における四方弁8は、第一冷媒回路と第二冷媒回路とを切り替える冷媒回路切替弁に相当している。第一冷媒回路は、圧縮機4により圧縮された冷媒が第一熱交換器5に流入する回路である。図1は、第一冷媒回路が形成された状態を示している。この状態では、四方弁8は、aポートをcポートに連通させ、bポートをdポートに連通させている。この状態から、四方弁8の弁体を移動させると、aポートをdポートに連通させ、bポートをcポートに連通させる状態に切り替わる。その切り替わった状態では、圧縮機4により圧縮された冷媒が空気熱交換器7に流入する第二冷媒回路が形成される。
 タンクユニット3は、貯湯タンク11と、第二熱交換器12と、熱媒体ポンプ13と、水ポンプ14と、流路切替弁15と、タンクユニットコントローラ16とを備える。
 貯湯タンク11は、ヒートポンプユニット2により加熱された湯を貯留する。貯湯タンク11内では、温度の違いによる水の比重の違いにより、上側が高温で下側が低温になる温度成層が形成される。貯湯タンク11は、図示しない断熱材により覆われている。水出口17が貯湯タンク11の下部に設けられている。湯入口18が貯湯タンク11の上部に設けられている。
 第二熱交換器12は、一次流路12a及び二次流路12bを備える。一次流路12aを通る熱媒体と、二次流路12bを通る水との間で熱が交換される。水送り通路19は、水出口17を二次流路12bの入口につなぐ。水送り通路19の途中に水ポンプ14が設けられている。水戻り通路20は、二次流路12bの出口を湯入口18につなぐ。水送り通路19と、二次流路12bと、水戻り通路20とにより水回路21が形成される。水ポンプ14が作動すると、水回路21内の水が流れる。
 給水管22が貯湯タンク11の下部に接続されている。給水管22は、タンクユニット3の外部へ延びている。例えば上水道のような水源から供給される水が給水管22を通って貯湯タンク11に流入する。給湯管23が貯湯タンク11の上部に接続されている。給湯管23は、タンクユニット3の外部へ延びている。貯湯タンク11に貯留された湯は、給湯管23を通って、例えばシャワー、蛇口、浴槽のような給湯端に供給される。貯湯タンク11から給湯管23を通って湯が流出すると、同量の水が給水管22から貯湯タンク11に流入する。その結果、貯湯タンク11は、満水状態に維持される。
 本実施の形態の給湯システム1は、暖房装置24に熱媒体を循環させる暖房運転を行うことができる。暖房装置24は、部屋に設置されている。暖房装置24は、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータ、パネルヒーター、及び、ファンコンベクターのうちの少なくとも一つを備えていてもよい。なお、本開示による給湯システムは、暖房運転を行う機能を有しないものでもよい。すなわち、暖房装置24は、無くてもよい。
 熱媒体ポンプ13の吸入口よりも上流側の通路に分岐部25が形成されている。通路26は、一次流路12aの出口を分岐部25につなぐ。流路切替弁15は、熱媒体が流れる回路を切り替えるための弁である。流路切替弁15は、流入口であるaポートと、流出口であるbポートと、流出口であるcポートとを有する。
 ヒートポンプユニット2及びタンクユニット3は、通路27及び通路28により、互いに接続されている。通路27は、熱媒体ポンプ13の吐出口を二次流路5bの入口につなぐ。通路28は、二次流路5bの出口を流路切替弁15のaポートにつなぐ。通路27及び通路28は、ヒートポンプユニット2及びタンクユニット3の外部に配置された部分を有している。ヒートポンプユニット2の設置場所とタンクユニット3の設置場所とが離れている場合には、通路27及び通路28は、長いものが使用される。通路29は、流路切替弁15のbポートを一次流路12aの入口につなぐ。
 タンクユニット3及び暖房装置24は、通路30及び通路31により、互いに接続されている。通路30は、流路切替弁15のcポートを暖房装置24の熱媒体の入口につなぐ。通路31は、暖房装置24の熱媒体の出口を分岐部25につなぐ。
 冷媒温度センサ32は、圧縮機4の吐出口と、四方弁8のaポートとの間の冷媒管に配置されている。第一冷媒回路において、冷媒温度センサ32は、圧縮機4から吐出される冷媒の温度である吐出冷媒温度を検出することができる。冷媒温度センサ33は、膨張弁6と空気熱交換器7との間の冷媒管に配置されている。第一冷媒回路において、冷媒温度センサ33は、膨張弁6から空気熱交換器7に流入する冷媒の温度である冷媒入口温度を検出することができる。
 貯湯タンク11には、互いに異なる高さの位置に配置された複数のタンク温度センサ34,35,36が設けられている。タンク温度センサ34,35,36は、貯湯タンク11内の水温を検出する。タンク温度センサ34は、湯入口18と同じ高さの位置に配置されている。タンク温度センサ36は、水出口17と同じ高さの位置に配置されている。タンク温度センサ35は、水出口17よりも高く、かつ湯入口18よりも低い高さの位置に配置されている。以下の説明では、貯湯タンク11の上部内の水の温度を「上部タンク温度」と称する。本実施の形態におけるタンク温度センサ34は、上部タンク温度を検出する上部タンク温度センサに相当する。
 以下の説明では、二次流路5bに流入する熱媒体の温度を「ヒートポンプ入口温度」と称し、二次流路5bから流出する熱媒体の温度を「ヒートポンプ出口温度」と称する。通路27に設置されたヒートポンプ入口温度センサ37は、ヒートポンプ入口温度を検出する。通路28に設置されたヒートポンプ出口温度センサ38は、ヒートポンプ出口温度を検出する。図示の例では、タンクユニット3内にヒートポンプ入口温度センサ37及びヒートポンプ出口温度センサ38が配置されているが、ヒートポンプユニット2内にヒートポンプ入口温度センサ37及びヒートポンプ出口温度センサ38が配置されてもよい。
 以下の説明では、貯湯タンク11から第二熱交換器12に流入する水の温度を「入水温度」と称する。水送り通路19に設置された入水温度センサ39により、入水温度を検出することができる。水戻り通路20に設置されたタンク流入温度センサ40は、第二熱交換器12から貯湯タンク11に流入する湯の温度を検出することができる。以下の説明では、タンク流入温度センサ40により検出される温度を「タンク流入温度」と称する。ヒートポンプユニット2に、外気温度を検出する外気温度センサ41が設置されている。
 本実施の形態において、貯湯タンク11は、湯入口18よりも高い位置に湯を貯留する最上部42を有する。給湯管23の入口は、最上部42内に位置する。給湯管23は、最上部42内の湯を取り出すように構成されている。最上部42内の湯が給湯管23を通って外部へ供給される。
 ヒートポンプコントローラ9とタンクユニットコントローラ16とは、有線または無線により、双方向にデータ通信可能に接続されている。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、給湯システム1の動作を制御する制御回路に相当する。ヒートポンプコントローラ9及びタンクユニットコントローラ16の少なくとも一方は、時刻を管理するタイマー機能を有していてもよい。ヒートポンプコントローラ9及びタンクユニットコントローラ16の少なくとも一方は、年月日を管理するカレンダー機能を有していてもよい。
 本実施の形態では、ヒートポンプコントローラ9とタンクユニットコントローラ16とが連携して、給湯システム1の動作を制御する。本開示では、図示の例のように複数のコントローラが連携して給湯システム1の動作を制御する構成に限定されるものではなく、単一のコントローラにより給湯システム1の動作が制御される構成にしてもよい。
 本実施の形態の給湯システム1は、リモコン50を備える。リモコン50とタンクユニットコントローラ16とは、有線または無線により、双方向にデータ通信可能に接続されている。リモコン50は、部屋に設置されてもよい。リモコン50は、運転動作指令、設定値の変更、その他に関する使用者の操作を受け付ける機能を有する。リモコン50は、ユーザーインターフェースに相当する。図示を省略するが、リモコン50には、給湯システム1の状態に関する情報を表示するディスプレイ、使用者が操作するスイッチ等の操作部、スピーカ、マイク等が搭載されていてもよい。給湯システム1は、異なる場所に設置される複数台のリモコン50を備えてもよい。また、リモコン50に代えて、またはリモコン50に加えて、例えばスマートフォンまたはタブレット端末のような携帯端末を給湯システム1のユーザーインターフェースとして使用可能であってもよい。
 図2は、実施の形態1による給湯システム1の機能ブロック図である。図2に示すように、圧縮機4、膨張弁6、四方弁8、冷媒温度センサ32、冷媒温度センサ33、及び外気温度センサ41のそれぞれは、ヒートポンプコントローラ9に対して電気的に接続されている。熱媒体ポンプ13、水ポンプ14、流路切替弁15、タンク温度センサ34,35,36、ヒートポンプ入口温度センサ37、ヒートポンプ出口温度センサ38、入水温度センサ39、及びタンク流入温度センサ40のそれぞれは、タンクユニットコントローラ16に対して電気的に接続されている。
 ヒートポンプコントローラ9の各機能は、処理回路により実現されてもよい。ヒートポンプコントローラ9の処理回路は、少なくとも1つのプロセッサ9aと少なくとも1つのメモリ9bとを備えてもよい。少なくとも1つのプロセッサ9aは、少なくとも1つのメモリ9bに記憶されたプログラムを読み出して実行することにより、ヒートポンプコントローラ9のそれぞれの各機能を実現してもよい。ヒートポンプコントローラ9の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。
 タンクユニットコントローラ16の各機能は、処理回路により実現されてもよい。タンクユニットコントローラ16の処理回路は、少なくとも1つのプロセッサ16aと少なくとも1つのメモリ16bとを備えてもよい。少なくとも1つのプロセッサ16aは、少なくとも1つのメモリ16bに記憶されたプログラムを読み出して実行することにより、タンクユニットコントローラ16のそれぞれの各機能を実現してもよい。タンクユニットコントローラ16の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。
 ヒートポンプコントローラ9は、例えばインバータ制御により、圧縮機4の回転速度が可変となるように制御することができる。タンクユニットコントローラ16は、例えばインバータ制御により、熱媒体ポンプ13の回転速度及び水ポンプ14の回転速度のそれぞれが可変となるように制御することができる。
 給湯システム1は、蓄熱運転を実行できる。蓄熱運転は、第二熱交換器12から流出する湯を貯湯タンク11に流入させる運転である。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、蓄熱運転を制御する。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、蓄熱運転のときの動作を以下のように制御する。圧縮機4、熱媒体ポンプ13、及び水ポンプ14が駆動される。四方弁8により第一冷媒回路が形成される。流路切替弁15では、aポートがbポートに連通し、cポートが閉じる。圧縮機4により圧縮されることで高温高圧となった冷媒は、四方弁8のaポート及びcポートを通過して、第一熱交換器5の一次流路5aに流入する。一次流路5aを流れる冷媒は、二次流路5bを流れる熱媒体により冷却される。一次流路5aを通過した冷媒は、膨張弁6により減圧されることで低温低圧の冷媒となる。この低温低圧冷媒は、空気熱交換器7に流入する。空気熱交換器7では、送風機10によって導かれた外気と、低温低圧冷媒との間で熱を交換する。空気熱交換器7にて外気により加熱されることで冷媒が蒸発する。蒸発した冷媒は、四方弁8のdポート及びbポートを通過して、圧縮機4に吸入される。このようにして第一冷媒回路により冷媒を循環させる冷凍サイクルを以下「正サイクル」と称する。正サイクルにおいては、第一熱交換器5が凝縮器またはガスクーラーとして機能し、空気熱交換器7が蒸発器として機能する。
 第一熱交換器5にて冷媒により加熱された熱媒体は、通路28、流路切替弁15、及び通路29を通って、第二熱交換器12の一次流路12aに流入する。一次流路12aを通過した熱媒体は、通路26、分岐部25、熱媒体ポンプ13、及び通路27を通って、第一熱交換器5に戻る。このようにして熱媒体が第一熱交換器5及び第二熱交換器12を通って循環する回路を以下「熱媒体回路」と称する。
 貯湯タンク11の下部にある水は、水出口17及び水送り通路19を通って二次流路12bに流入する。第二熱交換器12では、一次流路12aを流れる熱媒体により、二次流路12bを流れる水が加熱される。その加熱された湯は、水戻り通路20及び湯入口18を通って、貯湯タンク11の上部に流入する。このような蓄熱運転により貯湯タンク11内に湯を貯めることで、貯湯タンク11内の蓄熱量が増加する。
 蓄熱運転において貯湯タンク11に流入させる湯の温度の目標値を以下「目標貯湯温度」と称する。タンクユニットコントローラ16は、使用者がリモコン50を用いて設定した給湯設定温度に応じて、目標貯湯温度を決定してもよい。例えば、タンクユニットコントローラ16は、給湯設定温度に等しい温度または給湯設定温度よりも高い温度を目標貯湯温度として設定してもよい。目標貯湯温度は、例えば65℃でもよい。
 タンクユニットコントローラ16は、タンク温度センサ34,35,36により検出される貯湯タンク11内の鉛直方向に沿った温度分布を用いて、貯湯タンク11内の貯湯量または蓄熱量を計算することができる。タンクユニットコントローラ16は、一定時間ごとに現在の貯湯量または蓄熱量を算出する。現在の貯湯量または蓄熱量が基準を下回ると、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、蓄熱運転を開始する。蓄熱運転の実行中の貯湯量または蓄熱量が目標値に達すると、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、蓄熱運転を終了する。
 タンクユニットコントローラ16は、給湯管23を流れる湯の温度及び量をセンサ(図示省略)により検出することで、給湯負荷を検出してもよい。タンクユニットコントローラ16は、過去複数日間の給湯負荷を統計的に処理して得た学習結果に基づいて、貯湯量または蓄熱量の目標値を定めてもよい。
 ヒートポンプユニット2の加熱能力[W]は、単位時間当たりにヒートポンプユニット2が熱媒体に与える熱量である。ヒートポンプコントローラ9は、所定の加熱能力が得られるように圧縮機4の回転速度を調整することができる。圧縮機4に吸入される冷媒の過熱度を以下「吸入過熱度」と称する。ヒートポンプコントローラ9は、吸入過熱度、または冷媒温度センサ32により検出される吐出冷媒温度が、目標値に等しくなるように、膨張弁6の開度を調整してもよい。膨張弁6の開度が大きいほど、冷媒流量が増加し、吐出冷媒温度及び吸入過熱度が低下する。
 給湯システム1は、暖房運転を実行できる。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、暖房運転を制御する。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、暖房運転のときの動作を以下のように制御する。圧縮機4及び熱媒体ポンプ13が駆動される。水ポンプ14は、停止される。流路切替弁15では、aポートがcポートに連通し、bポートが閉じる。ヒートポンプユニット2は、蓄熱運転のときと同じように、正サイクルの運転を行う。第一熱交換器5にて冷媒により加熱された熱媒体は、通路28、流路切替弁15、及び通路30を通って、暖房装置24に流入する。暖房装置24は、熱媒体の熱を用いて部屋を加熱する。暖房装置24を通過する間に熱媒体の温度が低下する。温度低下した熱媒体は、通路31、分岐部25、熱媒体ポンプ13、及び通路27を通って、第一熱交換器5に戻る。このようにして熱媒体が第一熱交換器5及び暖房装置24を通って循環する回路を以下「暖房回路」と称する。
 本実施の形態では、流路切替弁15により暖房回路と熱媒体回路とを切り替えることで、暖房運転と蓄熱運転とを切り替えることができる。よって、流路切替弁15は、暖房運転と蓄熱運転とを切り替える切替手段に相当する。
 外気温度が低いときにヒートポンプユニット2が正サイクルの運転を行っていると、空気熱交換器7に霜が付着する場合がある。給湯システム1は、空気熱交換器7に付着した霜を融かすための除霜運転を実行できる。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、除霜運転を制御する。ヒートポンプコントローラ9及びタンクユニットコントローラ16は、除霜運転のときの動作を以下のように制御する。除霜運転において、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、水ポンプ14及び送風機10を停止させた状態で圧縮機4及び熱媒体ポンプ13を作動させるとともに第二冷媒回路により冷媒を循環させる。圧縮機4により圧縮されることで高温高圧となった冷媒は、四方弁8のaポート及びdポートを通過して、空気熱交換器7に流入する。空気熱交換器7は、冷媒の熱で内部から加熱される。その結果、空気熱交換器7の表面に付着した霜が融ける。冷媒は、空気熱交換器7を通過する間に冷却される。冷却された冷媒は、膨張弁6を通過して、第一熱交換器5に流入する。冷媒は、一次流路5aを通過する間に、二次流路5bを流れる熱媒体の熱を受けて加熱される。加熱された冷媒は、四方弁8のcポート及びbポートを通過して、圧縮機4に吸入される。このような除霜運転においては、空気熱交換器7が凝縮器またはガスクーラーとして機能し、第一熱交換器5が蒸発器として機能する。上記の第二冷媒回路により冷媒を循環させる冷凍サイクルを以下「逆サイクル」と称する。
 蓄熱運転の実行中に空気熱交換器7に霜が付着すると、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、蓄熱運転を一時的に中断して除霜運転を実行する。除霜運転により霜が除去された後、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、蓄熱運転を再開する。
 除霜運転のとき、第一熱交換器5において、冷媒が蒸発することによって熱媒体が冷却される。除霜運転の開始前は、蓄熱運転が実行されているので、熱媒体は高温になっている。除霜運転の実行中、熱媒体は、第一熱交換器5により冷却されながら熱媒体回路を循環するため、徐々にその温度が低下する。本実施の形態であれば、除霜運転のときに、熱媒体回路を循環する熱媒体の熱を第一熱交換器5において冷媒が採取することができる。その結果、空気熱交換器7に流入する冷媒の熱量が大きくなるので、空気熱交換器7の霜を速やかに融かすことができる。それゆえ、除霜運転を短時間で終了することができる。
 除霜運転中は、第一熱交換器5にて熱媒体が冷却されるので、ヒートポンプ出口温度が低下する。このため、除霜運転の終了後に直ちに蓄熱運転を再開すると、タンク流入温度が上昇しにくい。その結果、上部タンク温度よりも低い温度を有する湯が第二熱交換器12から貯湯タンク11に大量に流入して、上部タンク温度が大きく低下する可能性がある。上部タンク温度が低下すると、給湯管23を通って供給される湯の温度が低下するので、好ましくない。
 上記のような上部タンク温度の低下を防止するため、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、除霜運転の終了後に蓄熱運転を再開する前に、復帰運転を実行する。復帰運転において、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、水ポンプ14を停止させた状態で、圧縮機4、熱媒体ポンプ13、及び送風機10を作動させるとともに、第一冷媒回路により冷媒を循環させる。復帰運転によれば、第一熱交換器5により熱媒体を加熱し、ヒートポンプ出口温度を上昇させることができる。復帰運転中は水ポンプ14が停止しているので、低温水が貯湯タンク11の上部に流入することはない。このため、上部タンク温度が低下することはない。また、復帰運転中は、二次流路5bに水が流れないので、ヒートポンプ出口温度を速やかに上昇させることができる。復帰運転によってヒートポンプ出口温度が上昇した後、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、水ポンプ14を起動し、蓄熱運転を再開する。以上のようにすることで、蓄熱運転の再開直後から、第二熱交換器12にて水を十分に加熱することができるので、タンク流入温度を十分に高くすることができる。これにより、本実施の形態であれば、除霜運転から蓄熱運転に復帰したときの貯湯タンク内の湯の温度の低下を確実に軽減することができる。
 タンクユニットコントローラ16は、復帰運転の実行中に、ヒートポンプ出口温度センサ38により検出されるヒートポンプ出口温度が第一基準温度に達したことを条件として水ポンプ14を起動してもよい。すなわち、タンクユニットコントローラ16は、ヒートポンプ出口温度が第一基準温度に達すると、復帰運転を終了して蓄熱運転を再開してもよい。
 タンクユニットコントローラ16は、タンク温度センサ34により検出される上部タンク温度に応じて第一基準温度を決定してもよい。タンクユニットコントローラ16は、上部タンク温度に等しい温度を第一基準温度として決定してもよい。あるいは、タンクユニットコントローラ16は、上部タンク温度よりも少し高い温度を第一基準温度として決定してもよい。すなわち、第一基準温度は、上部タンク温度以上の温度である。
 第二熱交換器12は、タンク流入温度がヒートポンプ出口温度よりも少し低い温度になるまで、水を加熱可能である。復帰運転中のヒートポンプ出口温度が、上部タンク温度以上の第一基準温度に達した後に水ポンプ14を起動すれば、蓄熱運転の再開直後のタンク流入温度は、上部タンク温度に近い温度になる。それゆえ、上部タンク温度の低下をより確実に防止することができる。
 貯湯タンク11内に湯が長時間貯留されると、湯の熱が散逸することで、上部タンク温度が給湯設定温度よりも低くなる可能性がある。また、貯湯タンク11内の湯が僅少になると、上部タンク温度が給湯設定温度よりも低くなる場合がある。第一基準温度は上部タンク温度に応じて決定されるので、上部タンク温度が低い場合には第一基準温度も低くなる。したがって、上部タンク温度が低い場合には、第一基準温度も低いので、上部タンク温度が高い場合よりも早いタイミングで復帰運転から蓄熱運転へ移行する。すなわち、上部タンク温度が低い場合には、復帰運転から蓄熱運転への移行時期が早くなる。その結果、蓄熱運転をより早期に再開できる。すなわち、上部タンク温度が低い場合に、復帰運転から蓄熱運転への移行時期が必要以上に遅くなることを確実に防止できる。
 また、本実施の形態であれば、以下のような利点がある。湯入口18及びタンク温度センサ34は、最上部42よりも低い位置にある。このため、タンク温度センサ34の検出温度は、最上部42内の湯の温度よりも低い場合がある。タンクユニットコントローラ16は、タンク温度センサ34により検出された上部タンク温度に応じて第一基準温度を決定する。このため、タンク温度センサ34の検出温度が最上部42内の湯の温度より低い場合であっても、タンク温度センサ34の検出温度に応じて第一基準温度が決定される。したがって、タンク温度センサ34の検出温度が最上部42内の湯の温度がよりも低い場合には、蓄熱運転の再開直後のタンク流入温度は、最上部42内の湯の温度よりも低くなる。このとき、貯湯タンク11に流入した湯は、比重の差により、湯入口18から水平方向または下方向へ拡散して混合する。それゆえ、貯湯タンク11に流入した湯は、最上部42内の湯に混合しにくい。その結果、最上部42内の湯の温度が低下することを確実に防止できるので、給湯管23へ供給される湯の温度が低下することを確実に防止できるという利点がある。また、タンク温度センサ34の検出温度が最上部42内の湯の温度よりも低い場合に、復帰運転から蓄熱運転への移行時期が必要以上に遅くなることを確実に防止できるという利点がある。
 図3は、除霜運転を実行するときの処理の例を示すフローチャートである。図4は、蓄熱運転を中断して除霜運転及び復帰運転を実行した後に蓄熱運転を再開するまで間の、ヒートポンプ出口温度センサ38の検出温度、タンク流入温度センサ40の検出温度、圧縮機4の回転速度、熱媒体ポンプ13の回転速度、及び水ポンプ14の回転速度のそれぞれの経時変化の例を示す図である。以下、図3及び図4に示す例に基づいて、本実施の形態をさらに説明する。
 蓄熱運転の実行中、ヒートポンプコントローラ9は、空気熱交換器7に着霜しているかどうかを判定する。例えば、ヒートポンプコントローラ9は、冷媒温度センサ33により検出される空気熱交換器7の冷媒入口温度Teが第一基準値以下になり、かつ、外気温度センサ41により検出される外気温度Taと、冷媒入口温度Teとの差が第二基準値以上になったときに、空気熱交換器7に着霜していると判定してもよい。空気熱交換器7に着霜していると判定されると、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、図3のフローチャートの処理により、除霜運転を実行する。図4では、時刻t1に除霜運転が開始する。
 図3のステップS101において、ヒートポンプコントローラ9は、四方弁8を切り替えるための準備として、圧縮機4の回転速度を最低速度に設定する。次いで、ステップS102として、ヒートポンプコントローラ9は、正サイクルの第一冷媒回路から、逆サイクルの第二冷媒回路へ、四方弁8を切り替える。また、ヒートポンプコントローラ9は、送風機10を停止する。
 続いて、ステップS103として、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、除霜運転を実行する。ヒートポンプコントローラ9は、除霜運転のときの圧縮機4の回転速度Fc-2が蓄熱運転のときの回転速度Fc-1よりも高くなるように圧縮機4を作動させてもよい。これにより、除霜運転のときの冷媒流量が高くなるので、除霜運転をより速やかに終了させることができる。タンクユニットコントローラ16は、除霜運転のときの熱媒体ポンプ13の回転速度Fp1-2が蓄熱運転のときの回転速度Fp1-1よりも高くなるように熱媒体ポンプ13を作動させることが好ましい。これにより、第一の利点として、第一熱交換器5における熱交換量がより大きくなるので、除霜運転をより速やかに終了させることができる。第二の利点として、蒸発器として作用する第一熱交換器5において熱媒体が凍結することをより確実に防止できる。同じ理由から、タンクユニットコントローラ16は、除霜運転のときに熱媒体ポンプ13を最高回転速度で作動させることがより好ましい。
 除霜運転中は、水ポンプ14が停止しており、水回路21内の水は流れないので、周囲へ自然に熱が散逸することにより、二次流路12b内の水温及び水戻り通路20内の水温は、徐々に低下する。
 除霜運転中、ステップS104として、ヒートポンプコントローラ9は、除霜終了条件が成立したかどうかを判定する。除霜終了条件が成立すると、除霜運転が終了される。除霜終了条件が未成立の場合には、ヒートポンプコントローラ9は、除霜運転を継続し、ステップS104の処理を繰り返す。ヒートポンプコントローラ9は、例えば、空気熱交換器7から流出する冷媒の温度Tfを冷媒温度センサ33により検出し、温度Tfが第三基準値以上になったときに、除霜終了条件が成立したと判定してもよい。
 除霜終了条件が成立した場合には、ステップS105において、ヒートポンプコントローラ9は、四方弁8を切り替えるための準備として、圧縮機4の回転速度を最低速度に設定する。次いで、ステップS106として、ヒートポンプコントローラ9は、逆サイクルの第二冷媒回路から、正サイクルの第一冷媒回路へ、四方弁8を切り替える。また、ヒートポンプコントローラ9は、送風機10を起動する。
 続いて、ステップS107として、ヒートポンプコントローラ9及びタンクユニットコントローラ16は、復帰運転を実行する。図4では、時刻t2に復帰運転が開始する。ヒートポンプコントローラ9は、復帰運転のときの圧縮機4の回転速度が蓄熱運転のときの回転速度Fc-1に等しくなるように圧縮機4を作動させてもよい。タンクユニットコントローラ16は、復帰運転のときの熱媒体ポンプ13の回転速度Fp1-2が蓄熱運転のときの回転速度Fp1-1よりも高くなるように熱媒体ポンプ13を作動させることが好ましい。これにより、熱媒体回路の熱媒体の温度をより速やかに上昇させることができる。特に、通路27及び通路28が長い場合であっても、ヒートポンプ出口温度を速やかに上昇させることができる。同じ理由から、タンクユニットコントローラ16は、復帰運転のときに熱媒体ポンプ13を最高回転速度で作動させることがより好ましい。
 タンクユニットコントローラ16は、タンク温度センサ34により検出される上部タンク温度に応じて第一基準温度Tw1を決定する。復帰運転の実行中、ステップS108として、タンクユニットコントローラ16は、ヒートポンプ出口温度センサ38により検出されるヒートポンプ出口温度を第一基準温度Tw1と比較する。ヒートポンプ出口温度が第一基準温度Tw1に達していない場合にはステップS107の復帰運転が継続される。ヒートポンプ出口温度が第一基準温度Tw1に達すると、タンクユニットコントローラ16は、水ポンプ14を起動し、ステップS109の蓄熱運転を再開する。図4では、時刻t3に蓄熱運転が再開する。
 蓄熱運転が再開すると、タンクユニットコントローラ16は、除霜運転及び復帰運転のときの回転速度Fp1-2よりも低い回転速度Fp1-1で熱媒体ポンプ13を作動させる。また、タンクユニットコントローラ16は、復帰運転を終了して蓄熱運転を再開したときに水ポンプ14を最低回転速度Fp2-3で作動させることが好ましい。これにより、タンク流入温度をより速やかに上昇させることができるとともに、水ポンプ14の起動直後に、水戻り通路20から低温水が貯湯タンク11に流入する量をより確実に低減できる。その結果、貯湯タンク11内の湯の温度が低下することをより確実に防止することができる。
 蓄熱運転の再開直後に水ポンプ14の回転速度を最低回転速度Fp2-3に固定した場合には、タンクユニットコントローラ16は、その固定を解除する基準としての第二基準温度Tw2を設定してもよい。例えば、タンクユニットコントローラ16は、第一基準温度Tw1に等しい温度を第二基準温度Tw2として設定してもよいし、第一基準温度Tw1よりも高い温度を第二基準温度Tw2として設定してもよい。第二基準温度Tw2は、目標貯湯温度に等しい温度でもよい。タンクユニットコントローラ16は、タンク流入温度センサ40により検出されるタンク流入温度を第二基準温度Tw2と比較する。タンク流入温度が第二基準温度Tw2に達すると、タンクユニットコントローラ16は、上記の固定を解除して、水ポンプ14の回転速度を上昇させる。これにより、蓄熱運転は、定常状態に移行する。
 定常状態の蓄熱運転のときに、タンクユニットコントローラ16は、ヒートポンプ出口温度とヒートポンプ入口温度との差が、一定の目標値に等しくなるように、熱媒体ポンプ13の回転速度を制御することが望ましい。これにより、熱媒体の流量がより確実に適正になるので、より効率の高い運転が可能となる。また、定常状態の蓄熱運転のときに、タンクユニットコントローラ16は、タンク流入温度が目標貯湯温度Twtに等しくなるように、水ポンプ14の回転速度を制御する。
 図4の例では、復帰運転の実行中の熱媒体ポンプ13の回転速度が一定であるが、タンクユニットコントローラ16は、復帰運転の実行中に、ヒートポンプ出口温度が上昇するにつれて、熱媒体ポンプ13の回転速度を連続的または段階的に低下させてもよい。
 図3及び図4に示す例では、給湯システム1は、タンクユニットコントローラ16がヒートポンプ出口温度を第一基準温度Tw1と比較した結果に応じて、復帰運転から蓄熱運転へ移行している。この例に限らず、給湯システム1は、例えば、復帰運転を継続した時間が基準時間に達すると、当該復帰運転を終了して蓄熱運転を再開するようにしてもよい。これにより、蓄熱運転の再開時期が遅延することをより確実に防止できる。
1 給湯システム、 2 ヒートポンプユニット、 3 タンクユニット、 4 圧縮機、 5 第一熱交換器、 6 膨張弁、 7 空気熱交換器、 8 四方弁、 9 ヒートポンプコントローラ、 10 送風機、 11 貯湯タンク、 12 第二熱交換器、 13 熱媒体ポンプ、 14 水ポンプ、 15 流路切替弁、 16 タンクユニットコントローラ、 17 水出口、 18 湯入口、 21 水回路、 22 給水管、 23 給湯管、 24 暖房装置、 32 冷媒温度センサ、 33 冷媒温度センサ、 34,35,36 タンク温度センサ、 37 ヒートポンプ入口温度センサ、 38 ヒートポンプ出口温度センサ、 39 入水温度センサ、 40 タンク流入温度センサ、 41 外気温度センサ、 42 最上部、 50 リモコン

Claims (9)

  1.  冷媒を圧縮する圧縮機と、
     前記冷媒と、空気との間で熱を交換する空気熱交換器と、
     前記冷媒と、熱媒体との間で熱を交換する第一熱交換器と、
     前記圧縮機により圧縮された前記冷媒が前記第一熱交換器に流入する第一冷媒回路と、前記圧縮機により圧縮された前記冷媒が前記空気熱交換器に流入する第二冷媒回路とを切り替える冷媒回路切替弁と、
     前記熱媒体と、水との間で熱を交換する第二熱交換器と、
     前記第一熱交換器を前記第二熱交換器に接続する熱媒体回路と、
     前記熱媒体回路内の前記熱媒体を循環させる熱媒体ポンプと、
     水出口を有する下部と、前記水出口よりも高い位置にある湯入口を有する上部とを備える貯湯タンクと、
     前記水出口を前記第二熱交換器につなぐ水送り通路と、
     前記第二熱交換器を前記湯入口につなぐ水戻り通路と、
     前記水送り通路と、前記第二熱交換器と、前記水戻り通路とにより形成される水回路内の前記水を流れさせる水ポンプと、
     前記第二熱交換器から流出する湯を前記貯湯タンクに流入させる蓄熱運転と、前記空気熱交換器に付着した霜を融かす除霜運転とを制御する制御回路と、
     を備え、
     前記蓄熱運転において、前記制御回路は、前記圧縮機、前記熱媒体ポンプ、及び前記水ポンプを作動させるとともに前記第一冷媒回路により前記冷媒を循環させ、
     前記除霜運転において、前記制御回路は、前記水ポンプを停止させた状態で前記圧縮機及び前記熱媒体ポンプを作動させるとともに前記第二冷媒回路により前記冷媒を循環させ、
     前記除霜運転の後に前記蓄熱運転を再開する前に、前記制御回路は、復帰運転を実行し、
     前記復帰運転において、前記制御回路は、前記水ポンプを停止させた状態で前記圧縮機及び前記熱媒体ポンプを作動させるとともに前記第一冷媒回路により前記冷媒を循環させる給湯システム。
  2.  前記第一熱交換器から流出する前記熱媒体の温度であるヒートポンプ出口温度を検出するヒートポンプ出口温度センサと、
     前記貯湯タンクの前記上部内の水温である上部タンク温度を検出する上部タンク温度センサと、
     を備え、
     前記制御回路は、前記上部タンク温度に応じて第一基準温度を決定し、
     前記第一基準温度は、前記上部タンク温度に等しいか前記上部タンク温度よりも高い温度であり、
     前記制御回路は、前記復帰運転の実行中に前記ヒートポンプ出口温度が前記第一基準温度に達すると、当該復帰運転を終了して前記蓄熱運転を再開する請求項1に記載の給湯システム。
  3.  前記制御回路は、前記復帰運転を継続した時間が基準時間に達すると、当該復帰運転を終了して前記蓄熱運転を再開する請求項1に記載の給湯システム。
  4.  前記貯湯タンクは、前記湯入口よりも高い位置に湯を貯留する最上部を有する請求項1から請求項3のいずれか一項に記載の給湯システム。
  5.  前記最上部にある湯を取り出す給湯管が前記貯湯タンクに接続されている請求項4に記載の給湯システム。
  6.  前記制御回路は、前記除霜運転のときの前記熱媒体ポンプの回転速度が前記蓄熱運転のときの前記熱媒体ポンプの回転速度よりも高くなるように前記熱媒体ポンプを作動させる請求項1から請求項5のいずれか一項に記載の給湯システム。
  7.  前記制御回路は、前記復帰運転のときの前記熱媒体ポンプの回転速度が前記蓄熱運転のときの前記熱媒体ポンプの回転速度よりも高くなるように前記熱媒体ポンプを作動させる請求項1から請求項6のいずれか一項に記載の給湯システム。
  8.  前記制御回路は、前記除霜運転及び前記復帰運転のときに前記熱媒体ポンプを最高回転速度で作動させる請求項1から請求項7のいずれか一項に記載の給湯システム。
  9.  前記制御回路は、前記復帰運転を終了して前記蓄熱運転を再開したときに前記水ポンプを最低回転速度で作動させる請求項1から請求項8のいずれか一項に記載の給湯システム。
PCT/JP2019/026670 2019-07-04 2019-07-04 給湯システム WO2021002003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021529665A JP7211512B2 (ja) 2019-07-04 2019-07-04 給湯システム
EP19936001.7A EP3995752B1 (en) 2019-07-04 2019-07-04 Hot water supply system
PCT/JP2019/026670 WO2021002003A1 (ja) 2019-07-04 2019-07-04 給湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026670 WO2021002003A1 (ja) 2019-07-04 2019-07-04 給湯システム

Publications (1)

Publication Number Publication Date
WO2021002003A1 true WO2021002003A1 (ja) 2021-01-07

Family

ID=74100305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026670 WO2021002003A1 (ja) 2019-07-04 2019-07-04 給湯システム

Country Status (3)

Country Link
EP (1) EP3995752B1 (ja)
JP (1) JP7211512B2 (ja)
WO (1) WO2021002003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117581065A (zh) * 2021-02-07 2024-02-20 八达通能源供暖有限公司 用于执行热泵除霜循环的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228258A (ja) * 2001-02-06 2002-08-14 Toshiba Kyaria Kk ヒートポンプ給湯器
JP3737357B2 (ja) * 2000-11-24 2006-01-18 株式会社デンソー 給湯装置
JP2008082653A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 給湯、冷温水空気調和装置
JP2012032053A (ja) * 2010-07-29 2012-02-16 Chofu Seisakusho Co Ltd 誤配管検出装置
JP2016075425A (ja) * 2014-10-06 2016-05-12 株式会社日本サーモエナー 給湯システム、及び、その運転制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100504256C (zh) * 2005-03-28 2009-06-24 东芝开利株式会社 热水供给装置
EP2657628B1 (en) * 2010-12-22 2023-07-05 Mitsubishi Electric Corporation Hot-water-supplying, air-conditioning composite device
CN103975204B (zh) * 2011-12-06 2016-02-24 三菱电机株式会社 热泵式制热和热水供给系统
GB2540518B (en) * 2014-06-09 2019-10-30 Mitsubishi Electric Corp Heating and hot water supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737357B2 (ja) * 2000-11-24 2006-01-18 株式会社デンソー 給湯装置
JP2002228258A (ja) * 2001-02-06 2002-08-14 Toshiba Kyaria Kk ヒートポンプ給湯器
JP2008082653A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 給湯、冷温水空気調和装置
JP2012032053A (ja) * 2010-07-29 2012-02-16 Chofu Seisakusho Co Ltd 誤配管検出装置
JP2016075425A (ja) * 2014-10-06 2016-05-12 株式会社日本サーモエナー 給湯システム、及び、その運転制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117581065A (zh) * 2021-02-07 2024-02-20 八达通能源供暖有限公司 用于执行热泵除霜循环的方法和系统

Also Published As

Publication number Publication date
EP3995752A1 (en) 2022-05-11
EP3995752B1 (en) 2023-09-27
EP3995752A4 (en) 2022-07-27
JPWO2021002003A1 (ja) 2021-01-07
JP7211512B2 (ja) 2023-01-24

Similar Documents

Publication Publication Date Title
US9829224B2 (en) Air-conditioning apparatus
JP2016205716A (ja) 温水暖房システム
JP2001059664A (ja) 空気調和機
WO2013088482A1 (ja) 空気調和装置
EP2522934A2 (en) Heat storing apparatus having cascade cycle and control process of the same
CN109716035B (zh) 用于空气调节和热水供给的系统
US11802702B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JPWO2014181559A1 (ja) 循環加温装置
CN111033152B (zh) 制冷机
US7475557B2 (en) Refrigerator
US10480837B2 (en) Refrigeration apparatus
EP3299734A1 (en) System for air-conditioning and hot-water supply
KR101203995B1 (ko) 공기조화기 및 그 제상운전방법
JP2012007851A (ja) ヒートポンプサイクル装置
WO2021002003A1 (ja) 給湯システム
JP7302659B2 (ja) 給湯システム
JP6105270B2 (ja) 空気調和機
JP2009264716A (ja) ヒートポンプ温水システム
US11209182B2 (en) System for air-conditioning and hot-water supply
JP6666803B2 (ja) 温水暖房システム
JP6251429B2 (ja) 空気調和機
JPH0921556A (ja) 空気調和機
JP7413782B2 (ja) 貯湯式給湯装置
JP7487805B1 (ja) ヒートポンプ式温水暖房装置
JP2021001718A (ja) ヒートポンプ式温水暖房システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019936001

Country of ref document: EP

Effective date: 20220204