JP4054445B2 - 荷電ビーム描画方法 - Google Patents

荷電ビーム描画方法 Download PDF

Info

Publication number
JP4054445B2
JP4054445B2 JP19951198A JP19951198A JP4054445B2 JP 4054445 B2 JP4054445 B2 JP 4054445B2 JP 19951198 A JP19951198 A JP 19951198A JP 19951198 A JP19951198 A JP 19951198A JP 4054445 B2 JP4054445 B2 JP 4054445B2
Authority
JP
Japan
Prior art keywords
block
area
small
small area
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19951198A
Other languages
English (en)
Other versions
JP2000021747A (ja
Inventor
上 英 司 村
重 博 原
暮 等 日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19951198A priority Critical patent/JP4054445B2/ja
Priority to US09/343,508 priority patent/US6566662B1/en
Publication of JP2000021747A publication Critical patent/JP2000021747A/ja
Application granted granted Critical
Publication of JP4054445B2 publication Critical patent/JP4054445B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31766Continuous moving of wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LSI等の半導体集積回路のパターンをウエハやマスク等の試料に高速・高精度に描画するための電子ビーム等を用いた荷電ビーム描画方法に関わり、特にステージ移動速度の最適化により描画スループットの向上を図った荷電ビーム描画方法に関する。
【0002】
【従来の技術】
半導体集積回路の大規模化並びに素子の微細化に伴い、描画装置をウエハまたはマスク上に電子等の荷電粒子のビームにより直接パターンを描画する荷電ビーム描画技術が広く採用されている。
【0003】
このような荷電ビーム描画技術においては、荷電ビームを偏向できる領域(範囲)は限定されており、ビームを偏向させながら試料であるマスクを載せたステージを連続的に移動して描画を行うことになる。図16に示すように例えばチップ領域を主偏向ビーム偏向幅で決まるフレーム領域に分割し、このフレーム領域単位に描画を行う。このようなフレーム領域単位にパターンを一度だけ描画する方法は通常描画と称される。。
【0004】
一方、パターンの寸法精度向上の目的から荷電ビームのビーム照射量を制御しながら同一パターンを複数回描画する描画方法も行われており、多重描画と称される。多重描画では、通常描画におけるフレームに相当するストライプ領域を描画し、ステージ移動方向と直交する方向(Y方向)にスナップ移動し、上記処理を繰り返すことにより全ストライプ領域を描画する。このスナップ移動はフレーム幅の多重回数分の1の幅に相当する。
【0005】
図17はこのような多重描画の概念を示しており、この例では2重描画となっており、ストライプ領域の移動はフレーム領域幅の半分ずつ行われる。
【0006】
また、フレーム領域もしくはストライプ領域内をさらに分割するときには、図18に示すように、副偏向ビーム偏向器でビーム偏向可能な副偏向領域(サブフィールド)に分割する。
【0007】
以上の荷電ビーム描画方法において、描画速度はフレーム領域あるいはストライプ領域中では一定であり、また、フレーム領域あるいはストライプ領域を描画する時のステージ移動速度はフレーム領域、若しくはストライプ領域の中に定義されるパターンの描画時間(ビーム位置、及びビーム形状を制御して所望のパターンを描画する時間)はステージ移動速度に十分追従し得る値でなければならない。
【0008】
この条件を満足するステージ移動速度を決定するには従来以下の様な手法が提案されている。
【0009】
(i) フレーム領域に包含される総ショット数と総副偏向領域数より、該フレーム領域の描画処理を行うステージ移動速度を決定する(特開平1−152726号公報参照)。
【0010】
(ii) フレーム領域に包含されるパターンの総面積を1ショットの平均的な面積により除算することにより得られる仮想的なショット数と総副偏向領域数により、該フレームの描画処理を行うステージ移動速度を決定する(特開平1−243520号公報参照)。
【0011】
(iii) フレーム領域を所定の長さの領域に仮想的に分割し、分割した領域毎にショット数を算出し、このショット数が最も多い分割領域の描画時間を求め、この時間を分割領域の長さで除算した値を該フレーム領域の描画処理を行うステージ移動速度と決定する(特開平2−5406号公報)。
【0012】
【発明が解決しようとする課題】
しかし、従来の速度決定方法には次のような問題点があった。
従来方法(i)(ii) では、パターンがフレーム領域に均一に配置されているという前提に基づいて、フレーム領域内の平均的なステージ移動速度を決定している。しかしながら、実際のLSIデバイスパターンにおいては、フレーム領域内のパターン配置は均一ではなくパターン密度の高い領域と低い領域が交互に混在するようなパターン密度の疎密がある。一般にパターン密度が高い領域を描画するには、より長い描画時間を必要とする。
【0013】
よって従来方法(i)(ii) により算出した速度ではパターン密度が疎の領域では描画エラー(描画処理がステージ移動速度に追従できなくなって発生するエラー)は生じないが、パターン密度が密の領域では描画エラーが生じてしまい、ステージ移動速度を低く(遅く)して再度そのフレーム領域の描画処理を行わなければならないという問題があった。
【0014】
一方、(iii) の方法にあっては、フレーム領域をブロック領域に仮想的に分割し、ブロック領域に対して速度決定することで、従来方法(i)(ii) では解決不能であったパターンの疎密に伴う問題を考慮してはいるが、結果的にはブロック領域における平均的な速度を求めているにすぎない。
【0015】
例えば、図19に示すように、フレームが幅Wの5つのブロックに分けられ仮想的に定義されていおり、パターン密度の濃い領域Aがブロック3と4にまたがっているような例を考えると、従来方法(iii) ではブロック4の描画もブロック3で決まるステージ移動速度(V3=W/T)で描画を行うことになる。
【0016】
しかし、この速度V3はブロック3のみを描画するのであれば最適な速度であるが、実際はブロック3、ブロック4と連続的に描画処理を行うため、ブロック3とブロック4に跨る領域Aの描画を行うのに最適なステージ移動速度は、V34=W/2Tである。したがって、V3>V34の関係から描画処理がステージ移動に追従できなくなって描画エラーが発生する可能性がある。このため、上記(i)(ii) の方法と同じようにステージ移動速度を低く(遅く)して再度そのフレーム領域の描画処理を行わなければならないという問題があった。
【0017】
また、多重描画におけるストライプ領域のステージ移動速度の決定においても、従来方法(i)(ii)(iii)を用いることにより算出できるが、例えば、図20に示すフレーム領域数5からなるチップを多重描画回数4で多重描画を行うと以下の式からストライプ領域数は23となる。
【0018】
ストライプ領域数=フレーム領域数+(多重描画回数−1)×(フレーム領域+1)
したがって、この場合、通常描画のN倍以上のストライプ領域全て(23領域)に対して処理を行うことになる。
【0019】
以上のように、従来の方法で求めたステージ移動速度で描画すると、描画エラーが発生する可能性があり、また、N回の多重描画においては通常描画のN倍以上のステージ速度算出処理時間を要する。これら問題により描画時間の増大、即ち、描画装置システム全体のスループットの低下を招くという問題があった。
【0020】
よって本発明は、通常描画におけるフレーム領域、若しくは多重描画におけるストライプ領域内のパターン密度の疎密を考慮し、描画エラーが生じない最適なステージ移動速度を各フレーム領域毎、若しくは各ストライプ領域毎に決定することができ、スループットを向上させることのできる荷電ビーム描画方法を提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明にかかる荷電ビーム描画方法によれば、ステージ上に支持された試料に対し、荷電ビームを主偏向、副偏向で偏向させるとともるに、主偏向幅で決まるフレーム領域を単位としてパターンを描画する荷電ビーム描画方法において、前記フレームを前記走査方向に分割した小領域ごとの描画時間を求め、開始小領域より所定数連続する前記小領域を抽出してブロックを作成し、前記開始小領域を順次移動させることにより求められたブロック単位毎のブロック描画速度を求め、求められたブロック描画速度のうち最も遅い速度をフレーム領域描画用ステージ移動速度として描画を行うことを特徴とする。
【0022】
前記ブロック描画速度を求める過程が、当該ブロックに含まれる前記小領域の描画時間の合計からブロック単位毎のブロック描画時間を求め、前記ブロックの幅を前記ブロック描画時間中最も長いブロック描画時間で除算して得るものであると良い。
【0023】
本発明は多重描画にも適用でき、ステージ上に支持された試料に対し、荷電ビームを主偏向、副偏向で偏向させるとともに、主偏向幅で決まるフレーム領域に対して、前記ステージの移動毎に多重描画回数により決まる所定幅のストライプ領域を単位とした移動量だけ前記ステージ移動方向と直交する方向に移動させてパターンを描画する荷電ビーム描画方法において、前記フレームを前記走査方向に分割するとともに前記主偏向方向で前記多重描画回数に応じて分割した小領域ごとの描画時間を求め、開始小領域より連続する所定数の前記小領域を前記ストライプ領域中で抽出してブロックを作成し、前記開始小領域を順次移動させることによりブロック単位毎のブロック描画速度を求め、求められたブロック描画速度のうち最も遅い速度をストライプ領域描画用ステージ移動速度として描画を行うことを特徴とする。
【0024】
前記ブロック描画速度を求める過程が、当該ブロックに含まれる前記小領域の描画時間の合計からブロック単位毎のブロック描画時間を求め、前記ブロックの幅を前記ブロック描画時間中最も長いブロック描画時間で除算して得るものであると良い。
【0025】
前記小領域は所定幅あるいは任意の幅を有するものとすることができる。
【0026】
前記描画時間は、荷電ビーム描画装置を構成する各種装置の動作時間から算出されることができる。
【0027】
本発明においては、フレームを構成するブロックを固定的に決められた小領域あるいは任意に決定される小領域に分け、この小領域での描画時間あるいは移動速度からブロック描画速度を決定するようにしているので、フレーム領域、若しくはストライプ領域内のパターン密度の疎密を考慮し、描画エラーが生じない最適なステージ移動速度を各フレーム領域毎、若しくは各ストライプ領域毎に決定し、また、多重描画におけるストライプ領域のステージ移動速度を高速に算出することにより、荷電ビーム描画装置のスループットを向上させることができる。
【0028】
【発明の実施の形態】
図1は本発明にかかる描画方法が適用される電子ビーム描画システムの概略構成を示すブロック図である。
【0029】
この電子描画システムは、主副二段偏向方式の電子ビーム描画装置30とその制御のための要素を備えており、試料室10内には半導体ウエハもしくはマスク等の試料11を載置したステージ12が収容されている。ステージ12は、ステージ駆動回路13によりX方向(紙面左右方向)、及びY方向(紙面垂直方向)に駆動される。そして、ステージ12の移動位置はレーザー測長計等を用いた位置回路14により測定される。ステージ駆動回路13および位置回路14は制御計算機40により制御され、位置回路14の位置計測出力信号は制御回路40に送られる。
【0030】
試料室10の上方には電子ビーム光学系20が配設されている。この電子ビーム光学系20は電子銃21、レンズ22〜26、ブランキング用偏向器31、ビーム寸法可変用偏向器32、ビーム走査用の主偏向ビーム偏向器33、ビーム走査用の副偏向ビーム偏向器34およびビーム成形アパーチャ35,36等から構成されている。
【0031】
一方、制御計算機40には磁気ディスク装置41等の記憶装置が接続されており、この磁気ディスク装置41にはLSIの描画データが格納されている。磁気ディスク装置41から読み出された描画データはフレーム領域(多重描画の場合はストライプ領域)毎にパターンメモリ(データバッファ部)42に一時的に格納される。パターンメモリ42に格納されたフレーム(ストライプ)領域毎の描画データ、つまり描画位置および図形データ(図形形状、図形サイズ)等で構成されるフレームデータ(ストライプデータ)は、描画データ解析部である描画図形データデコーダ43および描画位置データデコーダ44により解析され、描画図形データデコーダ43でのデコードデータはブランキング回路45およびビーム成形器ドライバ46に送られ、描画位置データデコーダ44でのデコードデータは主偏向器ドライバ47および副偏向器ドライバ48に送られる。即ち、描画図形データデコーダ43では、フレームデータ(ストライプデータ)として定義されている図形データを前記成形アパーチャ35,36の組み合わせによりビーム形成可能なショット単位に図形分割して、このデータに基づいてブランキングデータが作成され、ブランキング回路45に送られる。そして、更に希望するビーム寸法データが作成され、このビーム寸法データがビーム成形器ドライバ46に送られる。次にビーム成形器ドライバ46から前記光学系20のビーム寸法可変用偏向器32に所定の偏向信号が送られ、これにより電子ビームの寸法が制御される。
【0032】
また、描画位置データデコーダ44ではフレーム(ストライプ)データに基づいてサブフィールドの位置決めのデータが作成され、このデータが主偏向器ドライバ47に送られる。そして、主偏向器ドライバ47から前記光学系の主偏向ビーム偏向器33に所定の信号が送られ、これにより電子ビームは指定のサブフィールド位置に偏向走査される。さらに、描画位置データデコーダ44では副偏向器走査のコントロール信号が発生され、この信号が副偏向器ドライバ48に送られる。そして、副偏向器ドライバ48から副偏向ビーム偏向器34に所定の副偏向信号が送られ、これによりサブフィールド毎の描画が行われる。
【0033】
この電子ビーム描画装置で描画を行うには、主偏向ビーム偏向器33により所定の副偏向走査領域(以降、サブフィールドと呼ぶ)に位置決めし、副偏向ビーム偏向器34によりサブフィールド内でのショットの位置決めを行なうと共に、ビーム寸法可変用偏向器32、及びビーム成形アパーチャ35,36によりビーム形状を制御し、ステージ12を一方向に連続移動しながら、LSIチップを主偏向ビームの偏向幅に応じて短冊状に分割したフレーム領域(多重描画の場合はストライプ領域)を描画処理する。この描画処理が終了後、ステージ12を連続移動方向と直交する方向にステップ移動させ、次のフレーム領域(あるいはストライプ領域)について上述した処理を繰り返し、以下同様にして所望の範囲を順次描画する。
【0034】
図2はLSIパターンの描画処理を行なうためのデータ作成工程におけるデータの流れを示す模式図である。
【0035】
LSI設計パターンデータ51は設計者が操作するCADシステム50により作成され、データ変換用計算機60で描画データ61に変換され、その描画データは制御計算機40の指令に基づいて電子ビーム描画装置30に送られるて電子ビーム描画処理が行われる。
【0036】
ここで、データ変換用計算機60により行われる変換処理について説明する。
【0037】
荷電ビームによる描画は微小幅の偏向を繰り返すことにより行われるものであるため、論理設計、回路設計及びレイアウト設計によって作成されたLSIの設計パターンデータを荷電ビームの制御によって描くことができるように描画データに変換しなければならない。すなわち、多階層のセル階層構造の設計パターンデータを描画データ用の1階層のセル階層構造に変換する必要がある。
【0038】
この1階層セル階層構造への変換の際には種々の処理が行われる。その主なものは、図形の重なりによる多重露光によって描画精度が低下しないようにするための図形の重なり除去、設計パターンデータの拡大・縮小を行う寸法補正、また寸法補正されたパターンを描画装置にとって描画可能な図形(矩形、台形、三角形等)に分割する処理等である。
【0039】
このような処理や変換を経て作成された描画データは、描画装置の主偏向ビーム偏向器のビーム偏向幅で決まる横長帯状のフレーム領域単位で構成されている。そして、描画装置でのショットを決定するには、フレーム領域毎に描画データを読み出して、ビーム成形可能なショットの集まりである矩形、台形等のパターンに分割されたに再度パターンを分割することにより行う。
【0040】
図3は以上のような設計データから描画データへのデータ変換およびショット分割を示す概念図であり、設計データに含まれるパターンの重なりの除去および台形(矩形)への分割の処理をデータ変換として行い、これを描画図形データデコーダ43によりショット分割処理することが示されている。
【0041】
このようなデータ生成工程により得た描画データをパターン形状、位置、サイズで表現し、サブフィールド並びにフレーム(ストライプ)領域単位のパターンデータ群として定義され、前述した図1の磁気ディスク41に格納される。
【0042】
以下、描画時のステージ移動速度の決定に関する本発明にかかる荷電ビーム描画方法の実施の形態のいくつかを図面を参照して説明する。
(実施の形態1)
この実施の形態は通常描画において、図4に示すように、ブロックを一定幅Lの小領域に分割し、この小領域での描画時間をもとにブロック毎の描画時間を求めるものであり、図5のフローチャートにしたがって説明する。
【0043】
まず、Tmax=0とし、1フレーム領域におけるブロック単位毎の最も長い(最大)描画時間(Tmax)の初期値(0)を設定する(ステップ1)。
【0044】
次に、フレーム領域をフレーム原点から所定の幅Lからなる小領域毎(小領域1〜小領域Z)に描画時間(t1〜tz)を求める(ステップ2)。なお、最終小領域Zとなる領域の幅は必ずしもLにはならない。
【0045】
続いて開始小領域から連続する小領域をブロック単位(ブロック幅W)から所定数抽出し、ブロックを作成する(ステップ3)。最初のブロックはフレーム原点を有する小領域を小領域1として、小領域1から開始するようにする。例えば、この実施の形態では1ブロックは4つの小領域で構成しており、ブロック1はフレーム原点のある小領域1から小領域4で構成されており、他のブロックについても同様である。なお、ブロック幅Wは主偏向器のビーム偏向幅としている。
【0046】
次に、ステップ3で作成したブロック毎に、描画時間を求め、この時間をこのブロックの描画時間Tとする(ステップ4)。例えば、この実施の形態では、ブロック1の描画時間T1=t1+t2+t3+t4となり、ブロック2では開始小領域は小領域2であるので、その描画時間はT2=t2+t3+t4+t5=T1−t1+t5となる。
【0047】
このようにブロックの描画時間はそこに含まれる小領域の描画時間を単純に加算しても、算出対象のブロックの前ブロックとの差分に注目して求めてもいずれでも良い。
【0048】
次に、これまでの過程における最大描画時間Tmaxとステップ4で求めた描画時間Tを比較し、Tmax<Tならば、次のステップ6へ移行し(ステップ5)、ステップ4で求めた描画時間Tを1フレームにおける最大描画時間Tmaxとする。なお、ブロック1においては、ステップ1でTmax=0としているので、ブロック1でのTが自動的にTmaxとなる(ステップ6)。
【0049】
次のステップ7ではフレーム内の最終小領域Zに達したかどうかが判断される。なお、ステップ5でTmax≧Tと判断されたときにも、ステップ7の判断が行われる。
【0050】
ステップ7でフレームの最終小領域Zがブロック単位で抽出されないときには、ステップ8に移行し、開始小領域をシフトさせ、ステップ3からステップ7までを繰り返す。本実施の形態の場合、ブロック毎の描画時間を算出ごとに小領域1,2,3…というように1小領域ずつ開始小領域をシフトすることになる。
【0051】
ステップ7で最終小領域Zが抽出されたなら、ステップ9へ移行し、速度算出が行われる。この速度算出はブロック毎の描画時間の中で最も長い時間Tmaxでブロック幅Wを除算して速度Vmin(Vmin=W/Tmax)を求める。この算出した速度Vminをこのフレーム領域を描画処理するステージ移動速度とする。最終ブロックZのブロック幅は必ずしもWにはならない。
【0052】
以上の処理は前描画範囲のうちの1フレームについて最大描画時間およびこれに対応する速度を求めているが、この演算はすべてのフレームについて行われる。ステップ10において、全フレーム領域について速度算出を行ったかを判定し、残りフレーム領域がある場合は次のフレーム領域の対して、抽出開始小領域を小領域1にし、ステップ1からの処理を繰り返し行い、全フレームについて速度算出が行われた場合には終了する。
【0053】
上述の処理では、ステップ4でブロック毎に描画時間Tを求め、ステップ5の判定において最大描画時間Tmaxを求めていたが、はじめに各ブロックの描画時間Tを求めて記憶しておき、各ブロックの描画時間Tの中から最大値であるTmaxを求めるようにしても良い。また、各ブロック毎に描画時間Tとブロック幅Wよりブロック毎の速度V(V:W/T)を求め、フレームに属する各ブロックのVの中から最も遅い速度を求め、この速度をVminとしても良い。
【0054】
図6は本発明による効果を示す説明図であって、図19に対応するものである。図19において二つのブロック3および4にまたがっていた高密度の領域Aは図6では小領域6と小領域7に分かれてそれぞれの速度を求めることになる。したがって、図19においてはブロック3で決まるステージ移動速度(V3=W/T)で描画を行わざるを得なかったものが、領域Aに対応するブロックの描画時間は、Pb6を開始点とした小領域6、小領域7で機成されるブロック6の描画時間から算出され、V6=W/(T6 +T7 )となるため、描画処理がステージ移動に追従できなくなり、描画エラーが発生するようなことはない。
(実施の形態2)
この実施の形態は、多重描画におけるステージ移動速度の最適値を決定するもので、図7および図8を参照して説明する。
【0055】
この多重描画は、図7に示すように、描画領域がフレーム領域1〜Nによりカバーされ、各フレーム領域はステージ移動方向と直交する方向に対して4分割されて高さHとされるとともに、フレームを構成するブロックは4分割されて幅Lの小領域を構成している。図7においては、左下の点Pf1をフレーム領域1のフレーム原点とし、このフレーム原点を含む小領域を11とし、X方向に21,31・・・y1,z1、Y方向に12,13・・・1y,1zとマトリクス状に小領域の参照番号を定めている。なお、ステージ移動方向の最終小領域z*となる領域の幅は必ずしもLにはならず、また、最終フレーム領域のステージ移動方向と直交する方向の最終小領域*zとなる領域の高さは必ずしもHにはならない。
【0056】
以下、ステージ移動速度の最適値を決定手順を図8のフローチャートを参照して説明する。
【0057】
最初にすべての小領域11〜小領域zzについて描画時間(t11〜tzz)を求める(ステップ101)。
【0058】
次に全フレーム領域に対して、小領域毎の描画時間算出を行ったかを判定し、残りフレーム領域がある場合は次のフレーム領域に対してステップ101の処理を繰り返し行う(ステップ102)。全フレーム領域に対して、ステップ101の処理が終了したならば、次のステップ103へ進む。
【0059】
ステップ103では、1ストライプ領域におけるブロック単位毎の最も長い(最大)描画時間(Tmax)の初期値(0)を設定する。すなわち、Tmax=0とする。
【0060】
次に、ストライプ領域(はじめはストライプ領域1)に対応する領域に対して、開始小領域から連続する小領域を所定数抽出し、ブロックを作成する(ステップ104)。
【0061】
このブロックの高さは、多重描画回数と同じストライプ領域まで(例えば多重描画回数が4であれば、ストライプ領域4まで)は、Wにならない。このため、開始小領域は小領域11から行い、ブロックの高さは多重描画回数と同じストライプ領域まで、(W/多重回数)×ストライプ領域番号として求める。例えば、多重描画回数が4でストライプ領域3の場合、ブロックの高さは(W/4)×3となる。
【0062】
なお、本実施の形態では、ブロックの幅、ブロックの高さのWは主偏向器のビーム偏向幅としている。また、フレーム領域1のフレーム原点を有する小領域を小領域11とし、ストライプ領域1のブロック1の開始小領域は小領域11としている。
【0063】
次に、作成したブロックに対して、描画時間を求め、この時間をこのブロックの描画時間Tとする(ステップ105)。
【0064】
図7における各ストライプのそれぞれのブロック単位の描画時間は以下のようになる。
・ストライプ領域1のブロック1(開始小領域11から)の描画時間Ts11
t11+t21+t31+t41
・ストライプ領域1のブロック2(開始小領域21から)の描画時間Ts12
Ts11−t11+t51
・ストライプ領域2のブロック1(開始小領域11から)の描画時間Ts21
Ts11+t12+t22+t32+t42
・ストライプ領域2のブロック2(開始小領域21から)の描画時間Ts22
Ts12+t22+t32+t42+t52
・ストライプ領域3のブロック1(開始小領域11から)の描画時間Ts31
Ts21+t13+t23+t33+t43
・ストライプ領域3のブロック2(開始小領域21から)の描画時間Ts32
Ts22+t23+t33+t43+t53
・ストライプ領域4のブロック1(開始小領域11から)の描画時間Ts41
Ts31+t14+t24+t34+t44
・ストライプ領域4のブロック2(開始小領域21から)の描画時間Ts42
Ts32+t24+t34+t44+t45
・ストライプ領域5のブロック1(開始小領域12から)の描画時間Ts51
Ts41−t11−t21−t31−t41+t15+t25+t35+t45
・ストライプ領域5のブロック2(開始小領域22から)の描画時間Ts52
Ts42−t21−t31−t41−t51+t25+t35+t45+t55
なお、以上のブロック毎の描画時間算出においては、算出対象のブロックの前ストライプ領域の同ブロックとの差分に注目して求めているが、小領域の描画時間を単純に加算して求めてもよい。例えば、上記ストライプ領域5のブロック2を例にとると、
Ts52=t22+t32+t42+t52+t23+t33+t43+t53+t24+t34+t44+t54+t25+t35+t45+t55
としても良い。
【0065】
次に1ストライプ領域における最大描画時間Tmaxとステップ105で求めた描画時間Tを比較し(ステップ106)、Tmax<Tならば、1フレームにおける最大描画時間Tmaxをステップ104で求めた描画時間Tとする(ステップ107)。
【0066】
次にストライプ領域のステージ移動方向の最終小領域Z*がブロック単位で抽出されたかどうかを確認する(ステップ108)。なお、ステップ106でTmax≧Tの場合もステップ108の処理が行われる。
【0067】
最終小領域が抽出されていないときには、ブロック単位で抽出する小領域の開始小領域をシフトさせ(ステップ109)、ステップ104からステップ108までの処理を繰り返す。
【0068】
例えば、図7の例の場合、ステージ移動方向に小領域11,21,31…というように1小領域ずつ開始小領域をシフトさせる。
【0069】
ステップ108で最終小領域z*が抽出されたなら、最小速度を算出する(ステップ110)。すなわち、ブロック毎の描画時間の中で最も長い時間Tmaxでブロック幅Wを除算して速度Vmin(Vmin=W/Tmax)を求める。この算出した速度Vminをこのストライプ領域を描画処理するステージ移動速度とする。なお、最終ブロックのブロック幅は必ずしもWにはならない。
【0070】
次に全ストライプ領域について速度算出を行ったかを判定し、残りのストライプ領域がある場合は次のストライプ領域に対して、抽出開始小領域をストライプ原点が存在する小領域に移動させ、ステップ103からステップ110までの処理を繰り返し行う。なお、最初の一連のストライプ領域のうち、多重描画回数と同じストライプ領域までは、開始小領域は小領域11から行うことは前述したとおりである。
【0071】
上述の処理では、ステップ105でブロック毎に描画時間Tを求め、ステップ106の判定において最大描画時間Tmaxを求めていたが、はじめに各ブロックの描画時間Tを求め、この処理の直前に各ブロックの描画時間Tの中から最大値であるTmaxを求めても良い。
【0072】
また、各ブロック毎に描画時間Tとブロック幅Wよりこのブロックの速度V(V:W/T)を求め、各ブロックのVの中から最も遅い速度を求め、この速度をVminとしても良い。
【0073】
以上のような多重描画におけるステージ移動速度の最適値の算出の効果を図20を参照して説明する。
従来は、前述したようにストライプ領域数は23であり、このストライプ領域全て(23領域)に対して処理を行うことになり、1パターンあたり多重描画回数(4回)分の描画時間算出のための処理を行う必要があった。
これに対し、本発明によれば、フレーム領域(5領域)に対する処理のみでよく、1パターンあたりの描画処理時間算出のための処理は1回で済む。
よって、従来方法では多重描画回数に比例して、ステージ移動速度の算出時間が増大するが、本発明を適用すれば、多重描画回数に関係なくステージ移動速度を算出することができ、従来方法に比べ、高速に算出することができる。
(実施の形態3)
実施の形態1、実施の形態2における「描画時間の算出」処理において、描画時間は、一般的にショット数(Ns)、1ショットあたりのビーム照射時間(Tb)、各ショットへのビーム整定時間(Ts)から、総パターン描画に要する時間(Ns×(Tb+Ts))を求め、サブフィールド数(Nf)とサブフィールドヘのビーム偏向時間(Tm)からサブフィールドヘの総位置決め時間(Nf×Tm)を求め、これら値を加算することで求められる。すなわち、
描画時間=Ns×(Tb+Ts)+Ns×Tm
よって、小領域毎にショット数、サブフィールド数を求め、主偏向、副偏向のビーム整定時間から描画時間を算出してもよい。
【0074】
また、ショット毎にビーム照射時間を制御しながら描画を行う描画装置を使用する場合、ショット毎のビーム照射量を考慮すれば、より実際の描画に近い描画時間を算出することができる。
【0075】
さらに、サブフィールドへビーム偏向を行う主偏向ビーム整定装置とサブフィールド内で各ショットへのビーム偏向を行う副偏向ビーム整定装置とパターンを描画可能なショット単位に分割する装置と各ショットのビーム照射時間を算出する装置の各動作時間の総和を描画時間としてもよい。
【0076】
以上のように、従来例の処理では、フレーム領域のパターン疎密を考慮していなかったり、疎密を考慮していてもその基準がショット数の最も多いものと限定しており、必ずしも描画時間を最も要する領域でステージ移動速度算出が行われていなかったのに対し、実施の形態1〜3では、フレーム領域、若しくはストライプ領域内のパターン密度の疎密を考慮し、描画エラーが生じない最適なステージ移動速度を各フレーム領域毎に決定でき、また、多重描画におけるストライプ領域のステージ移動速度を高速に算出することができ、荷電ビーム描画装置のスループットを向上させることができた。
【0077】
これまでの実施の形態では小領域幅、ブロック幅は固定されていたが、その必要は必ずしもなく、以下の実施の形態ではこれらは可変としている。
(実施の形態4)
この実施の形態は、通常描画において小領域幅、ブロック幅を可変とした場合である。
【0078】
図9は後述する処理により得られる1フレームにおける小領域とブロックの関係を示す模式図であり、フレーム領域Nf はそれぞれL1,L2,・・Lx,・Lzの小領域幅を有するブロック1,2,・・・X,・Zとなっている。以下、図10および図11のフローチャートを参照して説明する。
【0079】
まず、処理を行うフレーム領域Nfの初期値(Nf=1)を設定し、1フレーム領域内の小領域のインデックスNaを初期値(Na=0)を設定する(ステップ201)。
【0080】
次に、フレーム領域Nfを読み込む(ステップ202)。
【0081】
次に、小領域の開始点Pの初期値をフレーム原点とする(ステップ203)。この実施の形態では図9より明らかなように、フレーム原点はフレーム領域の左下点としている。
【0082】
続いて1フレーム領域内の小領域のインデックスNaをNa+1とする(ステップ204)。
【0083】
次に小領域幅LNaを決定する(ステップ205)。この小領域幅LNaは任意の値(幅)で良く、全小領域の幅LNaは必ずしも同一でなくても良い。
【0084】
次に開始点Pと幅LNaより小領域Naを作成する(ステップ206)。例えば、図9の実施の形態では、
小領域開始点P1、小領域幅L1により小領域1、
小領域開始点P2、小領域幅L2により小領域2、
以下同様に
小領域開始点Px、小領域幅Lxにより小領域X
が作成される。なお、最終小領域(図9では小領域Z)の小領域幅Lzは必ずしも設定した値になるとは限らない。
【0085】
次に、ステップ6で作成した小領域Naの描画時間tNaを算出する(ステップ207)。
【0086】
次にフレーム領域の終わりまで小領域を作成したかどうかを判定し(ステップ208)、フレーム領域の終わりまで小領域を作成した場合は次のステップ210へ進むが、フレーム領域の終わりまで達していないときには、ステップ209へ進み、小領域の開始点Pを小領域幅LNaだけ移動させる。例えば、最初の小領域1が作成できたときは、P1にL1を加えて、開始小領域をP2に移し、小領域2を作成する処理に移行することになる。
【0087】
ステップ208でフレーム領域の終わりまで小領域が作成されたときには、1ブロックにおける最も遅いステージ移動速度Vminの初期値を描画装置における最高速ステージ移動速度Vmaxとする(ステップ210)。
【0088】
次に、ブロックの開始小領域の初期値(M=1)を設定する(ステップ211)。
【0089】
そして、ブロックの開始小領域Qを小領域Mとし(ステップ212)、1ブロックを構成する小領域の抽出数を決定する(ステップ213)。この抽出する小領域数は任意数で良い。従って、各ブロックについて同一数抽出しても良いし、異なる数を抽出しても良い。
【0090】
次に、ブロック開始小領域Qと小領域抽出数から該当する小領域を抽出し、1ブロックMを構成する(ステップ214)。例えば、図9の例では、
ブロック開始領域1、抽出小領域2から
小領域1、小領域2を抽出し、ブロック1を構成
ブロック開始領域2、抽出小領域4から
小領域2から小領域5を抽出し、ブロック2を構成
することとなる。
【0091】
このように構成されたブロックMの描画時間TMを算出する(ステップ215)。例えば、図9の例では、
T1(ブロック1のT)=t1+t2
T2(ブロック2のT)=t2+t3+t4+t5
TX(ブロックXのT)=tx+ty+tz
となる。T2は前のブロックの描画時間に差分を加えることによっても求めることができ、例えば、T2は
T2=T1−t1+t3+t4+t5
としても求めることができる。
【0092】
次に抽出した小領域の幅LNaを総和し、ブロック幅Wを算出する(ステップ16)。例えば、図9の例では
ブロック1のブロック幅W1=L1+L2
ブロック2のブロック幅W2=L2+L3+L4+L5
ブロックXのブロック幅WX=LX+LY+LZ
として求めることができる。
【0093】
続いてステップ216で算出されたブロック幅WMとステップ215で算出された描画時間TMから、構成した1ブロックのステージ移動速度VM(VM=WM/TM)を算出する。例えば、図9の例では、
ブロック1の描画時間(V1)
=W1/T1=(L1+L2)/(t1+t2)
ブロック2の描画時間(V2)
=W2/T2=(L2+L3+L4+L5)/(t2+t3+t4+t5)
ブロックXの描画時間(VX)
=WX/TX=(LX+LY+LZ)/(tx+ty+tz)
となる。
【0094】
次に、1ブロックにおける最も遅いステージ移動速度Vminとステップ216で求めたステージ移動速度VMを比較する(ステップ218)
この比較結果が、Vmin>VMならば、ステップ219へ進み、1ブロックにおける量も遅いステージ移動速度Vminをステップ217で求めたステージ移動速度VMとする。
Vmin≦VMならば、ステージ移動速度を変更することなくステップ220へ進む。
【0095】
ステップ220では、ブロックが全小領域Naから開始されたか判定し、Q≠Naならば、ステップ221へ進み、ブロックの開始小領域Mを1つ加算してM+1とし、ステップ212へ戻り、ステップ212から220までの処理を繰り返す。
【0096】
一方、Q=Naならば、次のステップ222へ進み、このフレーム領域Nfのステージ移動速度をVminに決定する。
【0097】
以上のステージ移動速度算出は全フレームについて行われるが、全フレームについて算出したかどうかをステップ223で確認し、完了していれば終了し、まだ残りのフレーム領域がある場合にはステップ224へ進み、ここで、処理を行うフレーム領域Nfを1つ加算してNf+1とするとともに、1フレーム領域内の小領域数Naの初期値(Na=0)を設定してステップ202からの処理を繰り返す。
【0098】
この実施形態においても、第1の実施形態で用いた図6に示された効果が得られる。すなわち、この実施形態は、第1の実施の形態で小領域幅およびブロック幅が固定であったのに対し、両者とも自由に選択できるように一般化したものであるので、高密度パターンの存在する領域Aに対して最適なステージ移動速度を与えることができる。すなわち、この実施形態では小領域の開始点を変えながら、連続する小領域をブロックとして構成することができ、領域Aに対応するブロックの描画時間は、Pb6を開始点とした小領域6、小領域7で構成されるブロック6の描画時間から算出されるので、描画処理がステージ移動に追従できなくなり、描画エラーが発生するようなことはない。
(実施の形態5)
この実施の形態は、実施の形態4で実現した通常描画における小領域幅およびブロック幅を任意に選べるようにしたものを多重描画に適用したものである。
【0099】
図12は図13〜15のフローチャートにより求められるステージ移動速度の最適値の決定処理における多重描画におけるフレーム領域、ストライプ領域、小領域の関係を示す模式図であって、多重描画回数を4とした場合を示している。
【0100】
まず、fwに1フレーム領域のステージ移動方向と直交する方向の長さ(幅)、flに1フレーム領域のステージ移動方向の長さ、Nfallに総フレーム数、Ndに多重描画回数、Nfに処理開始フレーム番号1をそれぞれ設定する(ステップ301)
次に、小領域高Hを算出する。フレーム幅fwと多重描画回数Ndにより小領域の高さH(H=fw/Nd)を算出する(ステップ302)。この実施の形態では多重描画回数Nd=4であるので、H=fw/4となる。
【0101】
続いてフレーム領域Nfを読み込む(ステップ303)
次に、小領域のインデックスNf(Nax,Nay)に初期値(Nax=1,Nay=1)を設定する(ステップ304):Nax=1、Nay=1
次に、小領域の開始点としてのフレーム原点を設定する(ステップ305)。この実施の形態ではフレーム原点は各フレーム領域の左下点としており、小領域開始点(Px,Py)としてフレーム原点(0,0)を設定する。
【0102】
次に、処理中のフレーム領域がフレーム領域1であるかどうかを調べ(ステップ306)、Nf=1(処理中のフレーム領域がフレーム領域1)ならば、次のステップ307へ進み、小領域Nf(Nax,*)に対する小領域の幅LNaxを決定する。ここで*は任意の値を表す。この決定は例えば、
小領域1(1,1)、小領域1(1,2)・・・小領域Nf(1,*)・・小領域N(1,z)の小領域幅はL1
小領域1(2,1)、小領域1(2,2)・・・小領域Nf(2,*)・・小領域N(2,z)の小領域幅はL2
小領域1(x,1)、小領域1(x,2)・・・小領域Nf(x,*)・・小領域N(x,z)の小領域幅はLx
のように行われる。
【0103】
ステップ307終了後、あるいはステップ306でNf≠1(処理中のフレーム領域がフレーム領域1でない)であるときはステップ308へ進み、開始点(Px,Py)と小領域高H、小領域幅LNaxより小領域Nf(Nax,Nay)を作成する。例えば、
フレーム領域1において、
開始点(0,0)、小領域幅L1、小領域高Hより小領域1(1,1)。
フレーム領域1において、
開始点(0,H)、小領域幅L1、小領域高Hより小領域1(1,2)。
フレーム領域1において、
開始点(L1,2H)、小領域幅L2、小領域高Hより小領域1(2,3)。
をそれぞれ作成する。
【0104】
さらに、ステップ308で作成した小領域Nf(Nax,Nay)に対して、描画時間tNf(Nax,Nay)を算出する(ステップ309)。
【0105】
次に、開始点Pyをy方向(ステージ移動方向と直交する方向)に移動できるか判定する(ステップ310)。
【0106】
Py=fw−Hの関係にあるときは移動不可能であるので、次のステップ312へ進むが、py≠fw−Hであるときには移動可能であるので、ステップ311へ進み、ステージ移動方向と直交する方向(y方向)へ移動させた次の小領域を作成するため、
開始点Pyをy方向へ小領域高H分移動するためのPy=Py+Hおよび小領域のインデックスNayをNay+1とするためのNay=Nay+1の演算を行い、ステップ308に戻る。例えば、図12の例では小領域1(1,1)に対する処理が終わったら、
Py=0+H=H、
Nay=1+1=2、
として、ステップ308の処理により得られる小領域1(1,2)に対してステップ309の処理が行われる。
【0107】
ステップ312では開始点Pxを小領域幅LNax分移動させ、次のステップ313でフレームの最後まで小領域を作成したか判定する。
【0108】
小領域が全て作成済みのときはpx≧flであり、ステップ315に進み、全フレーム領域に対して、上述処理を行ったかを判定する。

【0109】
小領域のすべてが作成済みではない場合には、ステップ314へ進み、ステージ移動方向(x方向)へ移動させた次の小領域を作成するために、開始点Py=0にし、小領域のインデックスNaxをNax+1とし、小領域のインデックスNay=1にする処理を行い、ステップ307へ戻る。
【0110】
ステップ315では全フレーム領域処理終了を表すNf=Nfallの関係が認められるときには次のステップ317に進み、全フレームが終了していないときにはフレーム領域Nfを次のフレーム処理に移すために1加算して(ステップ316)ステップ303に戻る。
【0111】
次に、1フレーム領域におけるx方向(ステージ移動方向)の小領域数(Nax)をZに代入する(ステップ317)。本実施の形態では、Z=zとなる。
【0112】
次に、Nfに処理開始フレーム番号1を設定し、小領域インデックス(Nax,Nay)=(1,0)とし、Vminに描画装置の最速ステージ移動速度Vmaxを設定し、Nsnに処理開始ストライプ番号1を設定する(ステップ318)。
【0113】
続いてストライプ数Nsを次の式により算出する(ステップ319)。
【0114】
ストライプ領域数=フレーム領域数+(多重描画回数−1)×(フレーム領域+1)
本実施の形態の場合、
ストライプ領域数Ns=N+(4−1)×(4+1)=N+15
となる。
【0115】
続いてブロックのインデックスBnを1とする(ステップ320)。
【0116】
次に処理ストライプ領域Nsnと多重描画回数Ndを比較し(ステップ321)、Nsn>Ndならば、ステップ322へ、Nsn≦Ndならば、ステップ326へそれぞれ進む。
【0117】
ステップ322では小領域インデックスNayと多重描画回数Ndとが同じ値であるかどうかを比較する。そして、Nay=Ndならば、ステップ323へ進み、Nay≠Ndならば、ステップ324へ進む。
【0118】
ステップ324ではNayを一つ進める。すなわち、Nay=Nay+1である。
【0119】
ステップ323では、フレーム領域Nfを一つ進めてフレーム領域Nf+1へ移すとともに、小領域インデックスNay=1とする。
【0120】
一方、ステップ322でNsn≦Ndのときにはステップ324により、フレームを進めることなく、小領域インデックスNayをNay+1とし、ステップ325へ進む。
【0121】
ステップ325では、y方向の小領域抽出数を多重描画回数Ndする。
【0122】
また、ステップ321でNsn≦Ndであったときには、フレーム領域Nfをフレーム領域1へ移し、小領域インデックスNax=1とし、小領域インデックスNayをNay+1とする(ステップ326)。
【0123】
そして、ステップ27において、Y方向の小領域抽出数を現在処理しているストライプ領域Nsnする。
【0124】
次に、ブロックBnにおけるX方向小領域抽出数を決定する(ステップ328)。なお、この際の抽出数は任意の数で良い。従って、全ブロック同じ抽出数でも良く、また全ブロック異なっても良い。
【0125】
次に、ブロックBnを構成する開始小領域を小領域Nf(Nax,Nay)とする(ステップ329)。
【0126】
次に、開始小領域qから抽出数XBn、抽出数YからブロックNfBnを構成する(ステップ30)
図12の場合に当てはめると、ブロック構成の一例は次の通りである。
【0127】
開始小領域Q=1(1,1)、抽出数X1=4、抽出数Y=1より、
小領域1(1,1)、小領域1(2,1)、
小領域1(3,1)、小領域1(4,1)を抽出し、ストライプ領域1のブロック1を構成する。
【0128】
開始小領域Q=1(2,1)、抽出数X1=4、抽出数Y=2より、
小領域1(2,1)、小領域1(2,2)、
小領域1(3,1)、小領域1(3,2)、
小領域1(4,1)、小領域1(4,2)、
小領域1(5,1)、小領域1(5,2)を抽出し、ストライプ領域2のブロック2を構成する。
【0129】
開始小領域Q=1(3,2)、抽出数X1=4、抽出数Y=4より、
小領域1(3,2)、小領域1(3,3)、
小領域1(3,4)、小領域2(3,1)、
小領域1(4,2)、小領域1(4,3)、
小領域1(4,4)、小領域2(4,1)、
小領域1(5,2)、小領域1(5,3)、
小領域1(5,4)、小領域2(5,1)、
小領域1(6,2)、小領域1(6,3)、
小領域1(6,4)、小領域2(6,1)を抽出し、ストライプ領域5のブロック3を構成する。
【0130】
続いて、ステップ330で構成したブロックの描画時間TNfBnを算出する(ブロック331)。この際、ステップ309で求めてある各小領域の描画時間を用いる。図12の場合、
ストライプ領域1のブロック1の描画時間T11=
t1(1,1)+t1(2,1)+t1(3,1)+t1(4,1)
ストライプ領域2のブロック2の描画時間T22=
t1(2,1)+t1(2,2)+t1(3,1)+t1(3,2)+
t1(4,1)+t1(4,2)+t1(5,1)+t1(5,2)
ストライプ領域5のブロック3の描画時間T53=
t1(3,2)+t1(3,3)+t1(3,4)+t2(3,1)+
t1(4,2)+t1(4,3)+t1(4,4)+t2(4,1)+
t1(5,2)+t1(5,3)+t1(5,4)+t2(5,1)+
t1(6,2)+t1(6,3)+t1(6,4)+t2(6,1)
となる。
【0131】
次に、抽出した小領域の幅LNaxを総和し、ブロック幅WBnを算出する(ステップ332)。この際、ステップ307で求められた小領域幅を用いる。例えば、図12の例では、
ストライプ領域1のブロック1のブロック幅W1=L1+L2+L3+L4
ストライプ領域2のブロック2のブロック幅W2=L2+L3+L4+L5
ストライプ領域5のブロック3のブロック幅W3=L3+L4+L5+L6
となる。
【0132】
次に、ステップ332で決めたブロック幅WBnとステップ331で算出した描画時間TNfBnから、構成した1ブロックのステージ移動速度V(V=WBn/TnfBn)を算出する(ステップ333)
そして、このステージ移動速度Vと1ブロックにおける最も遅いステージ移動速度Vminとを比較して(ステップ334)、Vmin>Vならば、ステップ335へ進み、1ブロックにおける最も遅いステージ移動速度Vminをステップ33で求めたステージ移動速度Vとして、ステップ336へ進み、一方、Vmin≦Vならば、そのままステップ36へ進む。
【0133】
ステップ336では小領域インデックスNaxがストライプ中の最後の小領域の1つ手前まで達しているかどうかをチェックし、達しているときにはステップ338に進んでこのストライプ領域Nsnのステージ移動速度をVminとし、達していないときにはステップ337に進んで小領域インデックスNaxを1加算してNax+1とするとともにブロックのインデックスを1加算してBn+1としてステップ328から335までの処理を繰り返す。
【0134】
次に、全ストライプ領域に対してステージ移動速度を算出したかどうかを判定する(ステップ339)。
【0135】
全ストライプ領域について算出が完了してNs=Nsnならば、本処理終了し、それ以外のときにはステップ40へ進み、算出対象を次のストライプ領域に移行させるためにストライプ領域のインデックスNsnを1加算してNsn+1にするとともに、小領域インデックスNayを0としてステップ321に戻り、ステップ338までを繰り返す。
【0136】
なお、小領域幅およびブロック幅を可変とした実施の形態4および5における「描画時間の算出」処理を、描画時間は、一般的にショット数(Ns)、1ショットあたりのビーム照射時間(Tb)、各ショットヘのビーム整定時間(Ts)から総パターン描画に要する時間(Nsx(Tb+Ts))を求め、サブフィールド数(Nf)とサブフィールドヘのビーム偏向時間(Tm)からサブフィールドヘの総位置決め時間(Nf×Tm)を求め、これら値を加算することでも求められる。すなわち、描画時間=Nsx(Tb+Ts)+Ns×Tmである。よって、小領域毎にショット数、サブフィールド数を求め、主偏向、副偏向のビーム整定時間から描画時間を算出してもよい。また、ショット毎にビーム照射時間を制御しながら描画を行う描画装置であるのならば、このショット毎のビーム照射量を考慮すれば、より実際の描画に近い描画時間を算出することができる。また、サブフィールドへビーム偏向を行う主偏向ビーム整定装置とサブフィールド内で各ショットヘのビーム偏向を行う副偏向ビーム整定装置とパターンを描画可能なショット単位に分割する装置と各ショットのビーム照射時間を算出する装置の各動作時間の総和を描画時間としてもよい。
【0137】
以上説明した小領域幅およびブロック幅を可変として多重描画を行った実施の形態5における効果について図20を参照して説明する。
【0138】
前述したように従来はストライプ領域数は23であり、このストライプ領域全て(23領域)に対して処理を行うことになり、1パターンあたり多重描画回数(4回)分の描画時間算出のための処理を行う必要があった。
これに対し、本発明によれば、フレーム領域(5領域)に対する処理のみでよく、1パターンあたりの描画処理時間算出のための処理は1回で済む。
よって、従来方法では多重描画回数に比例して、ステージ移動速度の算出時間が増大するが、本発明を適用すれば、多重描画回数に関係なくステージ移動速度を算出することができ、従来方法に比べ、高速に算出することができる。
【0139】
以上、本発明を実施の形態に基づいて説明したが、本発明はそれに限定されるものでなく、その趣旨を逸脱しない範囲において変更可能である。例えば、電子ビーム描画装置の構成は図1に限定されるものでなく適宜変更することが可能である。また、実施の形態では主副二段方式の電子ビーム描画装置を例にとり説明したが、多段偏向方式でもよく、電子ビーム以外の荷電ビームに対しても適用可能である。
【0140】
【発明の効果】
以上のように、本発明によれば、描画装置におけるステージ移動速度決定において、フレーム(ストライプ)領域内のパターン密度を考慮してブロックを固定または任意の小領域に分け、この小領域に対する描画時間から描画エラーが生じない最適なステージ移動速度を各フレーム領域毎に決定し、また、多重描画におけるストライプ領域のステージ移動速度を決定するようにしているので、フレームあるいはストライプに対するステージ移動速度を高速に算出することができ、荷電ビーム描画装置システム全体のスループットを向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施例に使用した電子ビーム描画装置を示す概略構成図。
【図2】描画装置周辺のデータの流れを示す模式図。
【図3】描画データの生成過程を示す図。
【図4】通常描画における小領域、ブロック、フレームの関係を示す図。
【図5】本発明による、所定幅の小領域を採用して通常描画の速度を決定する手順を示すフローチャート。
【図6】ブロックと小領域との関連ならびに従来の問題を解決した様子を示す図。
【図7】多重描画における小領域、ブロック、フレーム、ストライプの関係を示す図。
【図8】本発明による、所定幅の小領域を採用して多重描画における速度を決定する手順を示すフローチャート。
【図9】通常描画において任意幅に選択された小領域、ブロック、フレームの関係を示す図。
【図10】任意幅の小領域を採用して通常描画におけるステージ移動速度を決定する手順を示すフローチャート(1)。
【図11】任意幅の小領域を採用して通常描画におけるステージ移動速度を決定する手順を示すフローチャート(2)。
【図12】多重描画において任意幅に選択された小領域、ブロック、フレーム、ストライプの関係を示す図。
【図13】任意幅の小領域を採用して多重描画におけるステージ移動速度を決定する手順を示すフローチャート(1)。
【図14】任意幅の小領域を採用して多重描画におけるステージ移動速度を決定する手順を示すフローチャート(2)。
【図15】任意幅の小領域を採用して多重描画におけるステージ移動速度を決定する手順を示すフローチャート(3)。
【図16】描画対象チップ領域と通常描画における主偏向ビームによるフレーム領域との関係を示す図。
【図17】描画対象チップ領域と多重描画におけるストライプ領域との関係を示す図。
【図18】フレーム領域あるいはストライプ領域と副偏向領域との関係を示す図。
【図19】従来の通常描画における問題点を示す図。
【図20】従来の多重描画における演算量の多さを示す図。
【符号の説明】
10 試料室
11 試料
12 ステージ
13 ステージ駆動回路
14 位置回路
20 電子ビーム光学系
21 電子銃
22 レンズ
23 レンズ
24 レンズ
25 レンズ
26 レンズ
30 電子ビーム描画装置
31 ブランキング用偏光器
32 ビーム寸法可変用偏光器
33 主偏向ビーム偏光器
34 副偏向ビーム偏光器
35 ビーム成形アパーチャ
36 ビーム成形アパーチャ
40 制御計算機
41 磁気ディスク装置
42 パターンメモリ
43 描画図形データデコーダ
44 描画位置データデコーダ
45 ブランキング回路
46 ビーム成形器ドライバ
47 主偏光器ドライバ
48 副偏光器ドライバ
50 CAD
51 LSI設計データ
60 データ変換用計算機
61 描画データ

Claims (9)

  1. ステージ上に支持された試料に対し、荷電ビームを主偏向、副偏向で偏向させるとともるに、主偏向幅で決まるフレーム領域を単位としてパターンを描画する荷電ビーム描画方法において、
    前記フレームを前記走査方向に分割した小領域ごとの描画時間を求め、
    開始小領域より所定数連続する前記小領域を抽出してブロックを作成し、前記開始小領域を順次移動させることにより求められたブロック単位毎のブロック描画速度を求め、求められたブロック描画速度のうち最も遅い速度をフレーム領域描画用ステージ移動速度として描画を行うことを特徴とする荷電ビーム描画方法。
  2. 前記ブロック描画速度を求める過程が、当該ブロックに含まれる前記小領域の描画時間の合計からブロック単位毎のブロック描画時間を求め、前記ブロックの幅を前記ブロック描画時間中最も長いブロック描画時間で除算して得るものであることを特徴とする請求項1 に記載の荷電ビーム描画方法。
  3. 前記小領域は所定幅を有することを特徴とする請求項1または2 に記載の荷電ビーム描画方法。
  4. 前記小領域は任意の幅を有することを特徴とする請求項1または2に記載の荷電ビーム描画方法。
  5. ステージ上に支持された試料に対し、荷電ビームを主偏向、副偏向で偏向させるとともに、主偏向幅で決まるフレーム領域に対して、前記ステージの移動毎に多重描画回数により決まる所定幅のストライプ領域を単位とした移動量だけ前記ステージ移動方向と直交する方向に移動させてパターンを描画する荷電ビーム描画方法において、
    前記フレームを前記走査方向に分割するとともに前記主偏向方向で前記多重描画回数に応じて分割した小領域ごとの描画時間を求め、
    開始小領域より連続する所定数の前記小領域を前記ストライプ領域中で抽出してブロックを作成し、前記開始小領域を順次移動させることによりブロック単位毎のブロック描画速度を求め、求められたブロック描画速度のうち最も遅い速度をストライプ領域描画用ステージ移動速度として描画を行うことを特徴とする荷電ビーム描画方法。
  6. 前記ブロック描画速度を求める過程が、当該ブロックに含まれる前記小領域の描画時間の合計からブロック単位毎のブロック描画時間を求め、前記ブロックの幅を前記ブロック描画時間中最も長いブロック描画時間で除算して得るものであることを特徴とする請求項5 に記載の荷電ビーム描画方法。
  7. 前記小領域は所定幅を有することを特徴とする請求項5または6に記載の荷電ビーム描画方法。
  8. 前記小領域は任意の幅を有することを特徴とする請求項5または6に記載の荷電ビーム描画方法。
  9. 前記描画時間は、荷電ビーム描画装置を構成する各種装置の動作時間から算出されることを拶徴とする請求項1または5に記載の荷電ビーム描画方法。
JP19951198A 1998-06-30 1998-06-30 荷電ビーム描画方法 Expired - Fee Related JP4054445B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19951198A JP4054445B2 (ja) 1998-06-30 1998-06-30 荷電ビーム描画方法
US09/343,508 US6566662B1 (en) 1998-06-30 1999-06-30 Charged beam exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19951198A JP4054445B2 (ja) 1998-06-30 1998-06-30 荷電ビーム描画方法

Publications (2)

Publication Number Publication Date
JP2000021747A JP2000021747A (ja) 2000-01-21
JP4054445B2 true JP4054445B2 (ja) 2008-02-27

Family

ID=16409044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19951198A Expired - Fee Related JP4054445B2 (ja) 1998-06-30 1998-06-30 荷電ビーム描画方法

Country Status (2)

Country Link
US (1) US6566662B1 (ja)
JP (1) JP4054445B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667385B2 (en) * 2002-01-28 2003-12-23 Energenetics International, Inc. Method of producing aminium lactate salt as a feedstock for dilactic acid or dimer production
JP2004132867A (ja) * 2002-10-11 2004-04-30 Shimadzu Corp 基板検査装置
JP2005276869A (ja) * 2004-03-23 2005-10-06 Jeol Ltd 荷電粒子ビーム描画装置。
US20060183025A1 (en) * 2005-02-14 2006-08-17 Micron Technology, Inc. Methods of forming mask patterns, methods of correcting feature dimension variation, microlithography methods, recording medium and electron beam exposure system
JP4989158B2 (ja) * 2005-09-07 2012-08-01 株式会社ニューフレアテクノロジー 荷電粒子線描画データの作成方法及び荷電粒子線描画データの変換方法
JP2009038055A (ja) * 2007-07-31 2009-02-19 Nuflare Technology Inc 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
US8304750B2 (en) * 2007-12-17 2012-11-06 Carl Zeiss Nts Gmbh Scanning charged particle beams
JP5203995B2 (ja) * 2009-02-12 2013-06-05 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5204687B2 (ja) * 2009-02-18 2013-06-05 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP5567802B2 (ja) * 2009-08-19 2014-08-06 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置、荷電粒子ビーム描画方法、および、荷電粒子ビーム描画用データの処理装置
JP5697414B2 (ja) * 2010-11-19 2015-04-08 キヤノン株式会社 荷電粒子線描画装置、および、物品の製造方法
JP6128744B2 (ja) * 2012-04-04 2017-05-17 キヤノン株式会社 描画装置、描画方法、および、物品の製造方法
JP5945222B2 (ja) * 2012-12-20 2016-07-05 株式会社ニューフレアテクノロジー ドリフト補正方法および描画データの作成方法
JP6148970B2 (ja) * 2013-11-21 2017-06-14 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法
JP6350023B2 (ja) 2014-06-26 2018-07-04 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び方法
US10381196B2 (en) * 2015-03-23 2019-08-13 Nuflare Technology, Inc. Charged particle beam writing apparatus and method for calculating irradiation coefficient
JP6484491B2 (ja) * 2015-04-10 2019-03-13 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP7124763B2 (ja) * 2019-02-27 2022-08-24 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698509A (en) * 1985-02-14 1987-10-06 Varian Associates, Inc. High speed pattern generator for electron beam lithography
EP0289279B1 (en) * 1987-04-28 1994-08-10 Canon Kabushiki Kaisha A multi-electron-beam pattern drawing apparatus
JPH01152726A (ja) 1987-12-10 1989-06-15 Toshiba Corp 荷電ビーム描画方法
JPH01243520A (ja) 1988-03-25 1989-09-28 Toshiba Corp 荷電ビーム描画方法
JPH025406A (ja) 1988-06-23 1990-01-10 Toshiba Corp 荷電ビーム描画方法
JP2842737B2 (ja) * 1991-08-08 1999-01-06 富士通株式会社 電子ビーム露光方法
US5528048A (en) * 1994-03-15 1996-06-18 Fujitsu Limited Charged particle beam exposure system and method

Also Published As

Publication number Publication date
JP2000021747A (ja) 2000-01-21
US6566662B1 (en) 2003-05-20

Similar Documents

Publication Publication Date Title
JP4054445B2 (ja) 荷電ビーム描画方法
JPS63199421A (ja) 荷電ビ−ム描画方法
JP5020745B2 (ja) 描画データの作成方法及び荷電粒子ビーム描画装置
US6313476B1 (en) Charged beam lithography system
JP4208283B2 (ja) 荷電ビーム描画装置
JPH0357608B2 (ja)
JP4801982B2 (ja) 荷電ビーム描画方法及び描画装置
JP3964606B2 (ja) 荷電ビーム描画装置、荷電ビーム描画方法、およびコンピュータ読み取り可能な記録媒体
JP3454974B2 (ja) 荷電ビーム描画方法
JP3004034B2 (ja) 荷電ビーム描画方法
JP3274149B2 (ja) 荷電ビーム描画方法
JP2664732B2 (ja) 荷電ビーム描画方法
JPH03283423A (ja) 荷電ビーム描画方法
JPS63127532A (ja) 荷電ビ−ム描画方法
JPH0574693A (ja) 荷電ビーム描画方法
JP3422948B2 (ja) 荷電ビーム描画方法
JP2786671B2 (ja) 荷電ビーム描画方法
JPH01152726A (ja) 荷電ビーム描画方法
JP3353766B2 (ja) パターンデータ処理方法及びプログラムを記憶した記憶媒体
JP2839587B2 (ja) 荷電ビーム描画方法
JP3319519B2 (ja) 荷電ビーム描画方法
JP2010267723A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JPH025406A (ja) 荷電ビーム描画方法
JPH01243520A (ja) 荷電ビーム描画方法
JPS63199422A (ja) 荷電ビ−ム描画方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees