JP4049191B2 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
JP4049191B2
JP4049191B2 JP2006146041A JP2006146041A JP4049191B2 JP 4049191 B2 JP4049191 B2 JP 4049191B2 JP 2006146041 A JP2006146041 A JP 2006146041A JP 2006146041 A JP2006146041 A JP 2006146041A JP 4049191 B2 JP4049191 B2 JP 4049191B2
Authority
JP
Japan
Prior art keywords
pixel
light emitting
emitting element
luminance information
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006146041A
Other languages
Japanese (ja)
Other versions
JP2006285267A (en
Inventor
光信 関谷
昭 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006146041A priority Critical patent/JP4049191B2/en
Publication of JP2006285267A publication Critical patent/JP2006285267A/en
Application granted granted Critical
Publication of JP4049191B2 publication Critical patent/JP4049191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02B20/36

Description

本発明は、信号によって輝度が制御される画素を備えた画像表示装置に関する。例えば、有機エレクトロルミネッセンス(EL)素子等の、電流によって輝度が制御される発光素子を各画素毎に備えた画像表示装置に関する。より詳しくは、各画素内に設けられた絶縁ゲート型電界効果トランジスタ等の能動素子によって発光素子に供給する電流量が制御される、所謂アクティブマトリクス型の画像表示装置に関する。   The present invention relates to an image display device including pixels whose luminance is controlled by signals. For example, the present invention relates to an image display device including a light-emitting element whose luminance is controlled by current, such as an organic electroluminescence (EL) element, for each pixel. More specifically, the present invention relates to a so-called active matrix image display device in which the amount of current supplied to a light emitting element is controlled by an active element such as an insulated gate field effect transistor provided in each pixel.

一般に、アクティブマトリクス型の画像表示装置では、多数の画素をマトリクス状に並べ、与えられた輝度情報に応じて画素毎に光強度を制御することによって画像を表示する。電気光学物質として液晶を用いた場合には、各画素に書き込まれる電圧に応じて画素の透過率が変化する。電気光学物質として有機エレクトロルミネッセンス材料を用いたアクティブマトリクス型の画像表示装置でも、基本的な動作は液晶を用いた場合と同様である。しかし液晶ディスプレイと異なり、有機ELディスプレイは各画素に発光素子を有する、所謂自発光型であり、液晶ディスプレイに比べて画像の視認性が高い、バックライトが不要、応答速度が速い等の利点を有する。個々の発光素子の輝度は電流量によって制御される。即ち、発光素子が電流駆動型或いは電流制御型であるという点で液晶ディスプレイ等とは大きく異なる。
特開平04−328791号公報 特開平05−074569号公報 特開平10−319908号公報 国際公開第98/048403号 特開平09−281925号公報 特開平10−293558号公報 特開平08−234683号公報
In general, in an active matrix image display device, a large number of pixels are arranged in a matrix, and an image is displayed by controlling the light intensity for each pixel in accordance with given luminance information. When liquid crystal is used as the electro-optical material, the transmittance of the pixel changes according to the voltage written to each pixel. Even in an active matrix type image display device using an organic electroluminescence material as an electro-optical material, the basic operation is the same as in the case of using liquid crystal. However, unlike a liquid crystal display, an organic EL display is a so-called self-luminous type having a light emitting element in each pixel, and has advantages such as higher image visibility, no backlight, and faster response speed than a liquid crystal display. Have. The luminance of each light emitting element is controlled by the amount of current. That is, it differs greatly from a liquid crystal display or the like in that the light emitting element is a current drive type or a current control type.
Japanese Patent Laid-Open No. 04-328791 Japanese Patent Laid-Open No. 05-074569 Japanese Patent Laid-Open No. 10-319908 International Publication No. 98/040403 JP 09-281925 A Japanese Patent Laid-Open No. 10-293558 Japanese Patent Laid-Open No. 08-234683

液晶ディスプレイと同様、有機ELディスプレイもその駆動方式として単純マトリクス方式とアクティブマトリクス方式とが可能である。前者は構造が単純であるものの大型且つ高精細のディスプレイの実現が困難であるため、アクティブマトリクス方式の開発が盛んに行われている。アクティブマトリクス方式は、各画素に設けた発光素子に流れる電流を画素内部に設けた能動素子(一般には、絶縁ゲート型電界効果トランジスタの一種である薄膜トランジスタ、以下TFTと呼ぶ場合がある)によって制御する。このアクティブマトリクス方式の有機ELディスプレイは例えば特許文献7に開示されており、一画素分の等価回路を図10に示す。画素PXLは発光素子OLED、第一の薄膜トランジスタTFT1、第二の薄膜トランジスタTFT2及び保持容量Csからなる。発光素子は有機エレクトロルミネッセンス(EL)素子である。有機EL素子は多くの場合整流性があるため、OLED(有機発光ダイオード)と呼ばれることがあり、図では発光素子OLEDとしてダイオードの記号を用いている。但し、発光素子は必ずしもOLEDに限るものではなく、素子に流れる電流量によって輝度が制御されるものであればよい。また、発光素子に必ずしも整流性が要求されるものではない。図示の例では、TFT2のソースSを基準電位(接地電位)とし、発光素子OLEDのアノードA(陽極)はVdd(電源電位)に接続される一方、カソードK(陰極)はTFT2のドレインDに接続されている。一方、TFT1のゲートGは走査線Xに接続され、ソースSはデータ線Yに接続され、ドレインDは保持容量Cs及びTFT2のゲートGに接続されている。   Similar to the liquid crystal display, the organic EL display can be driven by a simple matrix system or an active matrix system. Although the former has a simple structure, it is difficult to realize a large-sized and high-definition display. Therefore, active matrix systems have been actively developed. In the active matrix method, a current flowing through a light-emitting element provided in each pixel is controlled by an active element provided in the pixel (generally, a thin film transistor which is a kind of insulated gate field effect transistor, hereinafter sometimes referred to as a TFT). . This active matrix type organic EL display is disclosed in, for example, Patent Document 7, and an equivalent circuit for one pixel is shown in FIG. The pixel PXL includes a light emitting element OLED, a first thin film transistor TFT1, a second thin film transistor TFT2, and a storage capacitor Cs. The light emitting element is an organic electroluminescence (EL) element. Since organic EL elements often have rectifying properties, they are sometimes referred to as OLEDs (organic light emitting diodes). In the drawing, a diode symbol is used as the light emitting element OLED. However, the light emitting element is not necessarily limited to the OLED, and may be any element whose luminance is controlled by the amount of current flowing through the element. Further, the light emitting element is not necessarily required to have rectification. In the illustrated example, the source S of the TFT 2 is set to a reference potential (ground potential), and the anode A (anode) of the light emitting element OLED is connected to Vdd (power supply potential), while the cathode K (cathode) is connected to the drain D of the TFT 2. It is connected. On the other hand, the gate G of the TFT 1 is connected to the scanning line X, the source S is connected to the data line Y, and the drain D is connected to the storage capacitor Cs and the gate G of the TFT 2.

PXLを動作させるために、まず、走査線Xを選択状態とし、データ線Yに輝度情報を表すデータ電位Vdataを印加すると、TFT1が導通し、保持容量Csが充電又は放電され、TFT2のゲート電位はデータ電位Vdataに一致する。走査線Xを非選択状態とすると、TFT1がオフになり、TFT2は電気的にデータ線Yから切り離されるが、TFT2のゲート電位は保持容量Csによって安定に保持される。TFT2を介して発光素子OLEDに流れる電流は、TFT2のゲート/ソース間電圧Vgsに応じた値となり、発光素子OLEDはTFT2から供給される電流量に応じた輝度で発光し続ける。   In order to operate PXL, first, when the scanning line X is selected and the data potential Vdata representing luminance information is applied to the data line Y, the TFT 1 becomes conductive, the storage capacitor Cs is charged or discharged, and the gate potential of the TFT 2 Corresponds to the data potential Vdata. When the scanning line X is in a non-selected state, the TFT 1 is turned off and the TFT 2 is electrically disconnected from the data line Y, but the gate potential of the TFT 2 is stably held by the holding capacitor Cs. The current flowing through the TFT 2 to the light emitting element OLED has a value corresponding to the gate / source voltage Vgs of the TFT 2, and the light emitting element OLED continues to emit light with a luminance corresponding to the amount of current supplied from the TFT 2.

本明細書では、走査線Xを選択してデータ線Yの電位を画素内部に伝える操作を、以下「書き込み」と呼ぶ。さて、TFT2のドレイン/ソース間に流れる電流をIdsとすると、これがOLEDに流れる駆動電流である。TFT2が飽和領域で動作するものとすると、Idsは以下の式で表される。
Ids=(1/2)・μ・Cox・(W/L)・(Vgs−Vth)2
=(1/2)・μ・Cox・(W/L)・(Vdata−Vth)2 …(1)
ここでCoxは単位面積辺りのゲート容量であり、以下の式で与えられる。
Cox=ε0・εr/d…(2)
式(1)及び(2)中、VthはTFT2の閾値を示し、μはキャリアの移動度を示し、Wはチャネル幅を示し、Lはチャネル長を示し、ε0は真空の誘電率を示し、εrはゲート絶縁膜の比誘電率を示し、dはゲート絶縁膜の厚みである。
In this specification, an operation of selecting the scanning line X and transmitting the potential of the data line Y to the inside of the pixel is hereinafter referred to as “writing”. Now, assuming that the current flowing between the drain / source of the TFT 2 is Ids, this is the driving current flowing in the OLED. Assuming that the TFT 2 operates in the saturation region, Ids is expressed by the following equation.
Ids = (1/2) · μ · Cox · (W / L) · (Vgs−Vth) 2
= (1/2) · μ · Cox · (W / L) · (Vdata−Vth) 2 (1)
Here, Cox is a gate capacitance per unit area and is given by the following equation.
Cox = ε0 · εr / d (2)
In formulas (1) and (2), Vth represents the threshold value of TFT2, μ represents carrier mobility, W represents channel width, L represents channel length, ε0 represents vacuum dielectric constant, εr represents the relative dielectric constant of the gate insulating film, and d is the thickness of the gate insulating film.

式(1)によれば、画素PXLへ書き込む電位VdataによってIdsを制御でき、結果として発光素子OLEDの輝度を制御できることになる。ここで、TFT2を飽和領域で動作させる理由は次の通りである。即ち、飽和領域においてはIdsはVgsのみによって制御され、ドレイン/ソース間電圧Vdsには依存しないため、OLEDの特性ばらつきによりVdsが変動しても、所定量の電流IdsをOLEDに流すことができるからである。   According to Expression (1), Ids can be controlled by the potential Vdata written to the pixel PXL, and as a result, the luminance of the light emitting element OLED can be controlled. Here, the reason for operating the TFT 2 in the saturation region is as follows. That is, in the saturation region, Ids is controlled only by Vgs and does not depend on the drain-source voltage Vds. Therefore, even if Vds fluctuates due to variations in characteristics of the OLED, a predetermined amount of current Ids can flow through the OLED. Because.

上述したように、図10に示した画素PXLの回路構成では、一度Vdataの書き込みを行えば、次に書き換えられるまで一走査サイクル(一フレーム)の間、OLEDは一定の輝度で発光を継続する。このような画素PXLを図11のようにマトリクス状に多数配列すると、アクティブマトリクス型画像表示装置を構成することができる。図11に示すように、従来の画像表示装置は、所定の走査サイクル(例えばNTSC規格に従ったフレーム周期)で画素PXLを選択するための走査線X1乃至XNと、画素PXLを駆動するための輝度情報(データ電位Vdata)を与えるデータ線Yとがマトリクス状に配設されている。走査線X1乃至XNは走査線駆動回路21に接続される一方、データ線Yはデータ線駆動回路22に接続される。走査線駆動回路21によって走査線X1乃至XNを順次選択しながら、データ線駆動回路22によってデータ線YからVdataの書き込みを繰り返すことにより、所望の画像を表示することができる。単純マトリクス型の画像表示装置では、各画素PXLに含まれる発光素子は、選択された瞬間にのみ発光するのに対し、図11に示したアクティブマトリクス型画像表示装置では、書き込み終了後も各画素PXLの発光素子が発光を継続するため、単純マトリクス型に比べ発光素子のピーク輝度(ピーク電流)を下げられるなどの点で、取り分け大型高精細のディスプレイでは有利となる。   As described above, in the circuit configuration of the pixel PXL shown in FIG. 10, once Vdata is written, the OLED continues to emit light at a constant luminance for one scanning cycle (one frame) until the next rewriting. . When a large number of such pixels PXL are arranged in a matrix as shown in FIG. 11, an active matrix image display device can be configured. As shown in FIG. 11, the conventional image display apparatus drives scanning lines X1 to XN for selecting a pixel PXL and a pixel PXL in a predetermined scanning cycle (for example, a frame cycle according to the NTSC standard). Data lines Y for providing luminance information (data potential Vdata) are arranged in a matrix. The scanning lines X 1 to XN are connected to the scanning line driving circuit 21, while the data line Y is connected to the data line driving circuit 22. A desired image can be displayed by repeating the writing of Vdata from the data line Y by the data line driving circuit 22 while the scanning line driving circuit 21 sequentially selects the scanning lines X1 to XN. In the simple matrix type image display device, the light emitting element included in each pixel PXL emits light only at the selected moment, whereas in the active matrix type image display device shown in FIG. Since the PXL light emitting element continues to emit light, it is particularly advantageous in a large high-definition display in that the peak luminance (peak current) of the light emitting element can be lowered as compared with the simple matrix type.

図12は、従来の画素構造の他の例を示す等価回路図であり、図10に示した先の従来例と対応する部分には対応する参照番号を付して理解を容易にしている。先の従来例がTFT1及びTFT2としてNチャネル型の電界効果トランジスタを使っていたのに対し、この従来例ではPチャネル型の電界効果トランジスタを使っている。従って、図10の回路構成とは逆に、OLEDのカソードKが負電位のVddに接続し、アノードAがTFT2のドレインDに接続している。   FIG. 12 is an equivalent circuit diagram showing another example of a conventional pixel structure, and parts corresponding to those of the prior art shown in FIG. 10 are given corresponding reference numerals for easy understanding. The conventional example uses N-channel field effect transistors as TFT1 and TFT2, whereas this conventional example uses P-channel field effect transistors. Therefore, contrary to the circuit configuration of FIG. 10, the cathode K of the OLED is connected to the negative potential Vdd, and the anode A is connected to the drain D of the TFT 2.

図13は、図12に示した画素PXLの断面構造を模式的に表している。但し、図示を容易にするため、OLEDとTFT2のみを表している。OLEDは、透明電極10、有機EL層11及び金属電極12を順に重ねたものである。透明電極10は画素毎に分離しておりOLEDのアノードAとして機能し、例えばITO等の透明導電膜からなる。金属電極12は画素間で共通接続されており、OLEDのカソードKとして機能する。即ち、金属電極12は所定の電源電位Vddに共通接続されている。有機EL層11は例えば正孔輸送層と電子輸送層とを重ねた複合膜となっている。例えば、アノードA(正孔注入電極)として機能する透明電極10の上に正孔輸送層としてDiamyneを蒸着し、その上に電子輸送層としてAlq3を蒸着し、更にその上にカソードK(電子注入電極)として機能する金属電極12を成膜する。尚、Alq3は、8−hydroxy quinoline aluminumを表している。このような積層構造を有するOLEDは一例に過ぎない。かかる構成を有するOLEDのアノード/カソード間に順方向の電圧(10V程度)を印加すると、電子や正孔等キャリアの注入が起こり、発光が観測される。OLEDの動作は、正孔輸送層から注入された正孔と電子輸送層から注入された電子より形成された励起子による発光と考えられる。   FIG. 13 schematically shows a cross-sectional structure of the pixel PXL shown in FIG. However, for ease of illustration, only OLED and TFT 2 are shown. In the OLED, a transparent electrode 10, an organic EL layer 11, and a metal electrode 12 are sequentially stacked. The transparent electrode 10 is separated for each pixel, functions as an anode A of the OLED, and is made of a transparent conductive film such as ITO. The metal electrode 12 is commonly connected between the pixels and functions as the cathode K of the OLED. That is, the metal electrode 12 is commonly connected to a predetermined power supply potential Vdd. The organic EL layer 11 is, for example, a composite film in which a hole transport layer and an electron transport layer are stacked. For example, on the transparent electrode 10 functioning as the anode A (hole injection electrode), Diamond is deposited as a hole transport layer, Alq3 is deposited thereon as an electron transport layer, and further a cathode K (electron injection) is deposited thereon. A metal electrode 12 functioning as an electrode is formed. In addition, Alq3 represents 8-hydroxy quinoline aluminum. An OLED having such a laminated structure is only an example. When a forward voltage (about 10 V) is applied between the anode / cathode of the OLED having such a configuration, carriers such as electrons and holes are injected, and light emission is observed. The operation of the OLED is considered to be light emission by excitons formed from holes injected from the hole transport layer and electrons injected from the electron transport layer.

一方、TFT2はガラス等からなる基板1の上に形成されたゲート電極2と、その上面に重ねられたゲート絶縁膜3と、このゲート絶縁膜3を介してゲート電極2の上方に重ねられた半導体薄膜4とからなる。この半導体薄膜4は例えば多結晶シリコン薄膜からなる。TFT2はOLEDに供給される電流の通路となるソースS、チャネルCh及びドレインDを備えている。チャネルChは丁度ゲート電極2の直上に位置する。このボトムゲート構造のTFT2は層間絶縁膜5により被覆されており、その上にはソース電極6及びドレイン電極7が形成されている。これらの上には別の層間絶縁膜9を介して前述したOLEDが成膜されている。   On the other hand, the TFT 2 is stacked on the gate electrode 2 formed on the substrate 1 made of glass or the like, the gate insulating film 3 stacked on the upper surface thereof, and the gate electrode 2 via the gate insulating film 3. It consists of a semiconductor thin film 4. The semiconductor thin film 4 is made of, for example, a polycrystalline silicon thin film. The TFT 2 includes a source S, a channel Ch, and a drain D, which are paths for current supplied to the OLED. The channel Ch is located just above the gate electrode 2. The bottom gate TFT 2 is covered with an interlayer insulating film 5 on which a source electrode 6 and a drain electrode 7 are formed. On top of these, the aforementioned OLED is deposited via another interlayer insulating film 9.

上述したアクティブマトリクス型のELディスプレイを構成する上で、解決すべき第一の課題は、OLEDに流れる電流量を制御する能動素子であるTFT2の設計自由度が小さく、場合によっては画素寸法に合わせた実用的な設計が困難になる。又、解決すべき第二の課題は画面全体の表示輝度を自在に調整することが困難であることである。これらの課題を、図10乃至13に示した従来例について具体的な設計パラメータを挙げながら説明する。典型的な設計例では、画面寸法が20cm×20cm、行の数(走査線本数)が1000、列の数(データ線の本数)が1000、画素寸法がS=200μm×200μm、ピーク輝度がBp=200cd/m2 、発光素子の効率がE=10cd/A、TFT2のゲート絶縁膜の厚みがd=100nm、ゲート絶縁膜の比誘電率がεr=3.9、キャリア移動度がμ=100cm2 /V・s、画素当たりのピーク電流がIp=Bp/E×S=0.8μA、|Vgs−Vth|(駆動電圧)のピーク値がVp=5Vである。このような設計例でピーク電流Ipを供給するため、TFT2の設計例としては、前述した式(1)及び(2)から、以下のようになる。
チャネル幅:W=5μm
チャネル長:L={W・/(2・Ip)}・μ・Cox・Vp2 =270μm(3)
In constructing the above-described active matrix EL display, the first problem to be solved is that the TFT 2 which is an active element for controlling the amount of current flowing through the OLED has a low degree of design freedom, and in some cases it is adjusted to the pixel size. Practical design becomes difficult. The second problem to be solved is that it is difficult to freely adjust the display luminance of the entire screen. These problems will be described with reference to specific design parameters for the conventional example shown in FIGS. In a typical design example, the screen size is 20 cm × 20 cm, the number of rows (number of scanning lines) is 1000, the number of columns (number of data lines) is 1000, the pixel size is S = 200 μm × 200 μm, and the peak luminance is Bp. = 200 cd / m 2 , the efficiency of the light emitting element is E = 10 cd / A, the thickness of the gate insulating film of TFT 2 is d = 100 nm, the relative dielectric constant of the gate insulating film is εr = 3.9, and the carrier mobility is μ = 100 cm. 2 / V · s, the peak current per pixel is Ip = Bp / E × S = 0.8 μA, and the peak value of | Vgs−Vth | (drive voltage) is Vp = 5V. In order to supply the peak current Ip in such a design example, the design example of the TFT 2 is as follows from the above-described equations (1) and (2).
Channel width: W = 5μm
Channel length: L = {W · (2 · Ip)} · μ · Cox · Vp 2 = 270 μm (3)

ここでまず問題なのは、式(3)で与えられるチャネル長Lが、画素サイズ(S=200μm×200μm)に匹敵するか乃至はこれを上回る寸法であるということである。式(3)に示すように、ピーク電流Ipはチャネル長Lに反比例する。上記例ではピーク電流Ipを動作に必要十分な0.8μA程度に抑えるため、チャネル長Lを270μmまで長くしなければならない。これでは、画素内におけるTFT2の占有面積が大きくなり、発光領域を狭める結果となるため好ましくないばかりでなく、画素の微細化が困難になる。本質的な問題は、要求される輝度(ピーク電流)と半導体プロセスのパラメータ等が与えられると、TFT2の設計自由度は殆ど無いということである。即ち、上記例でチャネル長Lを小さくするためには、式(3)から明らかなようにまずチャネル幅Wを小さくすることが考えられる。しかし、プロセス上チャネル幅Wの微細化に限界があり、現在の薄膜トランジスタプロセスにおいては上記程度より大幅に微細化することが困難である。別の方法として、駆動電圧のピーク値Vpを小さくすることが考えられる。しかし、その場合、階調制御を行うためには、OLEDの発光強度を極めて小さな駆動電圧幅で制御する必要が生じる。例えばVp=5Vの場合においても、発光強度を64階調で制御しようとすれば、1階調当たりの電圧ステップは平均で5V/64=80mV程度となる。これを更に小さくすることは、僅かなノイズやTFT特性のばらつきによって、画像の表示品質が影響される結果となる。従って、駆動電圧のピーク値Vpを小さくすることにも限界がある。別の解決法としては、式(3)に表れるキャリア移動度μ等のプロセスパラメータを適当な値に設定することが考えられる。しかし、プロセスパラメータを都合のよい値に精度よく制御することは一般に困難であり、そもそも設計しようとする画像表示装置の仕様に合わせて製造プロセスを構築することは経済的に全く現実的でない。このように、従来のアクティブマトリクス型ELディスプレイでは、画素設計の自由度が乏しく、実用的な設計を行うことが困難である。   The first problem here is that the channel length L given by Equation (3) is comparable to or larger than the pixel size (S = 200 μm × 200 μm). As shown in Expression (3), the peak current Ip is inversely proportional to the channel length L. In the above example, the channel length L must be increased to 270 μm in order to suppress the peak current Ip to about 0.8 μA necessary and sufficient for operation. This undesirably increases the area occupied by the TFT 2 in the pixel and results in narrowing the light emitting region, and makes it difficult to miniaturize the pixel. The essential problem is that given the required luminance (peak current), semiconductor process parameters, and the like, there is almost no design freedom for the TFT2. That is, in order to reduce the channel length L in the above example, it is conceivable that the channel width W is first reduced as apparent from the equation (3). However, there is a limit to the miniaturization of the channel width W in the process, and it is difficult to miniaturize significantly in the current thin film transistor process. As another method, the peak value Vp of the drive voltage can be reduced. However, in that case, in order to perform gradation control, it is necessary to control the emission intensity of the OLED with an extremely small driving voltage width. For example, even when Vp = 5 V, if the emission intensity is controlled with 64 gradations, the voltage step per gradation is about 5 V / 64 = 80 mV on average. Making this even smaller results in the image display quality being affected by slight noise and variations in TFT characteristics. Therefore, there is a limit to reducing the peak value Vp of the drive voltage. As another solution, it is conceivable to set process parameters such as the carrier mobility μ shown in the equation (3) to an appropriate value. However, it is generally difficult to accurately control the process parameters to a convenient value, and it is not economically practical to construct a manufacturing process according to the specifications of the image display device to be designed. Thus, the conventional active matrix EL display has a low degree of freedom in pixel design, and it is difficult to perform a practical design.

上述した第一の問題点とも関連するが、第二の問題点として、アクティブマトリクス型のELディスプレイでは画面全体の表示輝度を任意に制御することが困難である。一般に、テレビジョン等の画像表示装置においては画面全体の表示輝度を自在に調整し得るということが、実用上欠くことのできない要件である。例えば周囲が明るい状況下で画像表示装置を使用する場合には画面輝度を高くし、逆に暗い状況下で画像表示装置を使用する場合には画面輝度を低く抑えることが自然である。このような画面輝度の調節は、例えば液晶ディスプレイにおいてはバックライトの電力を変化させることにより容易に実現できる。又、単純マトリクス型のELディスプレイにおいては、アドレス時の駆動電流を調整することにより、比較的簡単に画面輝度を調節可能である。   Although related to the first problem described above, as a second problem, it is difficult to arbitrarily control the display luminance of the entire screen in an active matrix EL display. In general, in an image display device such as a television, it is an essential requirement for practical use that the display luminance of the entire screen can be freely adjusted. For example, it is natural to increase the screen brightness when the image display apparatus is used in a bright environment, and to keep the screen brightness low when the image display apparatus is used in a dark condition. Such adjustment of the screen brightness can be easily realized by changing the power of the backlight in a liquid crystal display, for example. In a simple matrix EL display, the screen brightness can be adjusted relatively easily by adjusting the drive current at the time of addressing.

ところが、アクティブマトリクス型の有機ディスプレイにおいては、画面全体としての表示輝度を任意に調節することは困難である。前述したように、表示輝度はピーク電流Ipに比例し、IpはTFT2のチャネル長Lに反比例する。従って、表示輝度を下げるためにはチャネル長Lを大きくすればよいが、これは使用者が任意に表示輝度を選ぶ手段とはなりえない。実現可能な方法として、輝度を下げるために駆動電圧のピーク値Vpを小さくすることが考えられる。しかし、Vpを下げるとノイズ等の原因で画質の劣化を招く。逆に輝度を上げたい場合に、駆動電圧のピーク値Vpを大きくしようとしても、TFT2の耐圧等による上限があることは言うまでもない。   However, in an active matrix organic display, it is difficult to arbitrarily adjust the display luminance of the entire screen. As described above, the display luminance is proportional to the peak current Ip, and Ip is inversely proportional to the channel length L of the TFT2. Therefore, in order to lower the display brightness, the channel length L may be increased, but this cannot be a means for the user to arbitrarily select the display brightness. As a feasible method, it is conceivable to reduce the peak value Vp of the drive voltage in order to reduce the luminance. However, when Vp is lowered, image quality is degraded due to noise or the like. On the other hand, when it is desired to increase the luminance, it goes without saying that there is an upper limit due to the breakdown voltage of the TFT 2 even if the peak value Vp of the drive voltage is increased.

上述した従来の技術の課題に鑑み、本発明は画素内部の能動素子の設計自由度を増して良好な設計を可能たらしめるとともに、画面輝度を自在且つ簡便に調整することが可能な画像表示装置を提供することを目的とする。かかる目的を達成するために以下の手段を講じた。即ち、所定の走査サイクルで画素を選択するための走査線と、画素を駆動するための輝度情報を与えるデータ線とがマトリクス状に配設され、各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、各画素への輝度情報の書き込みは、走査線が選択された状態で、データ線に発光素子の輝度の階調に応じた大きさの電気信号を印加することによって行われ、各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持された輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることによって、該発光素子の時間平均輝度を制御する。ここで、同一の走査線に赤、緑、青の各画素を共通に接続する一方、前記制御手段は、赤、緑、青の各画素に含まれる発光素子を別々の時点で消灯する。前記制御手段は、該発光素子と直列に接続された第三の能動素子を含み、該第三の能動素子に与える制御信号に応じて該発光素子に流れる電流を遮断することが可能であり、該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えられることを特徴とする。
In view of the above-described problems of the conventional technology, the present invention increases the degree of freedom of design of active elements in a pixel to enable a good design, and allows image brightness to be adjusted freely and easily. The purpose is to provide. In order to achieve this purpose, the following measures were taken. That is, scanning lines for selecting pixels in a predetermined scanning cycle and data lines for supplying luminance information for driving the pixels are arranged in a matrix, and each pixel has a luminance depending on the amount of current supplied. A light-emitting element that changes, a first active element that is controlled by a scanning line and has a function of writing luminance information applied from a data line to a pixel, and a current supplied to the light-emitting element in accordance with the written luminance information The luminance information is written to each pixel in accordance with the luminance gradation of the light emitting element on the data line while the scanning line is selected. The luminance information written in each pixel is held in each pixel even after the scanning line is deselected, and the light emitting element of each pixel corresponds to the held luminance information. Lights up with brightness In a possible image display device, the image display device includes a control unit for forcibly turning off the light emitting elements of each pixel connected to the same scanning line at least in units of scanning lines, and after the luminance information is written in each pixel, By switching the light emitting element from the lighting state to the extinguishing state during one scanning cycle in which various luminance information is written, the time average luminance of the light emitting element is controlled. Here, while the red, green, and blue pixels are commonly connected to the same scanning line, the control unit turns off the light emitting elements included in the red, green, and blue pixels at different points in time. The control means includes a third active element connected in series with the light emitting element, and can cut off a current flowing through the light emitting element according to a control signal applied to the third active element. The control signal is provided to a third active element included in each pixel on the same scanning line via a stop control line provided in parallel with each scanning line.

好ましくは、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間で、発光素子を点灯状態から消灯状態に切り換える時点を調整可能である。一実施形態では、前記制御手段は、各画素に輝度情報が書き込まれた後一走査サイクル内で、各画素に含まれる発光素子の点灯時点及び消灯時点を少なくとも走査線単位で制御する。なお好ましくは、前記発光素子は、有機エレクトロルミネッセンス素子である。 Preferably, the time point at which the light emitting element is switched from the on state to the off state can be adjusted during one scanning cycle in which the luminance information is written to each pixel and then new luminance information is written. In one embodiment, the control unit controls at least a scanning line unit for lighting and extinguishing points of a light emitting element included in each pixel within one scanning cycle after luminance information is written in each pixel . Is a Contact Preferably, the light emitting element is an organic electroluminescence element.

本発明によれば、画像表示装置は走査線単位で輝度情報を各画素に書き込んだあと、次の走査線サイクル(フレーム)の輝度情報が新たに書き込まれる以前に、走査線単位で各画素に含まれる発光素子を一括して消灯する。これによれば、輝度情報の書き込み後発光素子の点灯から消灯するまでの時間を調整できることになる。即ち、一走査サイクルにおける発光時間の割合(デューティー)を調整できることになる。発光時間(デューティー)の調整は等価的に各発光素子のピーク電流Ipを調整することに相当する。よって、デューティーを調節することにより簡便且つ自在に表示輝度を調整することが可能である。更に重要な点は、デューティーを適切に設定することで、等価的にIpを大きくすることができる。例えば、デューティーを1/10にすると、Ipを10倍にしても同等の輝度が得られる。Ipを10倍にすればTFTのチャネル長Lを1/10にすることができる。このように、デューティーを適当に選ぶことで画素に含まれるTFTの設計自由度が増し、実用的な設計を行うことが可能になる。   According to the present invention, the image display apparatus writes luminance information to each pixel in units of scanning lines, and then writes the luminance information to each pixel in units of scanning lines before newly writing luminance information in the next scanning line cycle (frame). The included light emitting elements are turned off collectively. According to this, it is possible to adjust the time from when the light emitting element is turned on to when it is turned off after the luminance information is written. That is, the ratio (duty) of the light emission time in one scanning cycle can be adjusted. The adjustment of the light emission time (duty) is equivalent to adjusting the peak current Ip of each light emitting element equivalently. Therefore, it is possible to easily and freely adjust the display brightness by adjusting the duty. More importantly, Ip can be increased equivalently by appropriately setting the duty. For example, when the duty is set to 1/10, the same luminance can be obtained even if Ip is increased 10 times. If Ip is increased 10 times, the channel length L of the TFT can be reduced to 1/10. As described above, by appropriately selecting the duty, the degree of freedom in designing the TFT included in the pixel is increased, and a practical design can be performed.

以上説明したように、本発明によれば、各画素に輝度情報が書き込まれて発光が開始したあと、次のフレームの書き込みが行われる前に画素の発光を停止できるので、一フレーム内での発光時間の割合(デューティー)を変えることができ、これにより時間平均の表示輝度を簡便に調節することが可能である。更に重要なことは、デューティーを自由に設定できることにより、時間平均の表示輝度を同じに保ったまま、発光時に発光素子に流れる電流量を適宜に設定する自由度が生じるため、発光素子に流れる電流量を制御する能動素子の設計に自由度が生ずる。この結果、より高品位な画像を提供可能な画像表示装置や、より小さな画素サイズの画像表示装置を設計することが可能になる。   As described above, according to the present invention, after the luminance information is written to each pixel and the light emission starts, the light emission of the pixel can be stopped before the next frame is written. The ratio (duty) of the light emission time can be changed, whereby the time average display luminance can be easily adjusted. More importantly, since the duty can be set freely, the degree of freedom to appropriately set the amount of current flowing through the light emitting element during light emission while maintaining the same time-average display luminance is generated. There is a degree of freedom in the design of the active element that controls the quantity. As a result, it is possible to design an image display device that can provide a higher-quality image and an image display device with a smaller pixel size.

以下図面を参照して本発明の実施の形態を詳細に説明する。図1は、本発明にかかる画像表示装置の第一実施形態の一例を表しており、一画素分の等価回路図である。尚、図10に示した従来の画素構造と対応する部分には対応する参照番号を付して理解を容易にしている。図示するように、本画像表示装置は、所定の走査サイクル(フレーム)で画素PXLを選択するための走査線Xと、画素PXLを駆動するための輝度情報を与えるデータ線Yとがマトリクス状に配設されている。走査線Xとデータ線Yの交差部に形成された画素PXLは、発光素子OLEDと、第一の能動素子であるTFT1と、第二の能動素子であるTFT2と、保持容量Csとを含む。発光素子OLEDは供給される電流量によって輝度が変化する。TFT1は走査線Xによって制御され且つデータ線Yから与えられた輝度情報を画素PXLに含まれた保持容量Csに書き込む。TFT2はCsに書き込まれた輝度情報に応じて発光素子OLEDに供給する電流量を制御する。PXLへの輝度情報の書き込みは、走査線Xが選択された状態で、データ線Yに輝度情報に応じた電気信号(データ電位Vdata)を印加することによって行われる。画素PXLに書き込まれた輝度情報は走査線Xが非選択となったあとも保持容量Csに保持され、発光素子OLEDは保持された輝度情報に応じた輝度で点灯を維持可能である。本発明の特徴事項として、同一の走査線Xに接続された各画素PXLの発光素子OLEDを少なくとも走査線単位で強制的に消灯する制御手段を有し、各画素PXLに輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にする。本実施形態では制御手段が、TFT2のゲートGに接続されたTFT3(第三の能動素子)を含み、TFT3のゲートGに与える制御信号によりTFT2のゲート電位を制御して、OLEDを消灯することが可能である。この制御信号は、走査線Xと平行に設けた停止制御線Zを介して対応する走査線上の各画素PXLに含まれるTFT3に与えられる。制御信号に応じてTFT3をオン状態にすることにより、保持容量Csが放電されて、TFT2のVgsが0Vとなり、OLEDに流れる電流を遮断することができる。TFT3のゲートGは走査線Xに対応した停止制御線Zに共通接続されており、停止制御線Z単位で発光停止制御を行うことができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a first embodiment of an image display device according to the present invention, and is an equivalent circuit diagram for one pixel. Note that parts corresponding to those of the conventional pixel structure shown in FIG. 10 are given corresponding reference numerals for easy understanding. As shown in the figure, in the present image display device, scanning lines X for selecting the pixels PXL in a predetermined scanning cycle (frame) and data lines Y for providing luminance information for driving the pixels PXL are arranged in a matrix. It is arranged. The pixel PXL formed at the intersection of the scanning line X and the data line Y includes a light emitting element OLED, a first active element TFT1, a second active element TFT2, and a storage capacitor Cs. The luminance of the light emitting element OLED varies depending on the amount of current supplied. The TFT 1 is controlled by the scanning line X and writes the luminance information given from the data line Y to the holding capacitor Cs included in the pixel PXL. The TFT 2 controls the amount of current supplied to the light emitting element OLED according to the luminance information written in Cs. Luminance information is written to the PXL by applying an electric signal (data potential Vdata) corresponding to the luminance information to the data line Y while the scanning line X is selected. The luminance information written in the pixel PXL is held in the holding capacitor Cs even after the scanning line X is not selected, and the light emitting element OLED can be kept lit at the luminance according to the held luminance information. As a feature of the present invention, there is a control means for forcibly turning off the light emitting element OLED of each pixel PXL connected to the same scanning line X at least in scanning line units, and luminance information is written in each pixel PXL. Then, the light emitting element is changed from the on state to the off state during one scanning cycle in which new luminance information is written. In this embodiment, the control means includes a TFT 3 (third active element) connected to the gate G of the TFT 2, and controls the gate potential of the TFT 2 by a control signal applied to the gate G of the TFT 3 to turn off the OLED. Is possible. This control signal is given to the TFT 3 included in each pixel PXL on the corresponding scanning line via a stop control line Z provided in parallel with the scanning line X. By turning on the TFT 3 in accordance with the control signal, the storage capacitor Cs is discharged, the Vgs of the TFT 2 becomes 0 V, and the current flowing through the OLED can be cut off. The gate G of the TFT 3 is commonly connected to a stop control line Z corresponding to the scanning line X, and light emission stop control can be performed in units of the stop control line Z.

図2は、図1に示したPXLをマトリクス上に配列した画像表示装置の全体構成を示す回路図である。図示するように、走査線X1,X2,…,XNが行状に配列され、データ線Yが列状に配列されている。各走査線Xとデータ線Yの交差部に画素PXLが形成されている。又、走査線X1,X2,…,XNと平行に、停止制御線Z1,Z2,…,ZNが形成されている。走査線Xは走査線駆動回路21に接続されている。走査線駆動回路21はシフトレジスタを含んでおり、垂直クロックVCKに同期して垂直スタートパルスVSP1を順次転送することにより、走査線X1,X2,…,XNを一走査サイクル内で順次選択する。一方、停止制御線Zは停止制御線駆動回路23に接続されている。この駆動回路23もシフトレジスタを含んでおり、VCKに同期して垂直スタートパルスVSP2を順次転送することにより、停止制御線Zに制御信号を出力する。尚、VSP2は遅延回路24により所定時間だけVSP1から遅延処理されている。データ線Yはデータ線駆動回路22に接続されており、走査線Xの線順次走査に同期して、各データ線Yに輝度情報に対応した電気信号を出力する。この場合、データ線駆動回路22は、いわゆる線順次駆動を行ない、選択された画素の行に対して一斉に電気信号を供給する。或いは、データ線駆動回路22は、いわゆる点順次駆動を行ない、選択された画素の行に対して順次電気信号を供給しても良い。いずれにしても、本発明は、線順次駆動と点順次駆動の両者を包含している。   FIG. 2 is a circuit diagram showing the overall configuration of the image display device in which the PXLs shown in FIG. 1 are arranged on a matrix. As shown, the scanning lines X1, X2,..., XN are arranged in rows, and the data lines Y are arranged in columns. Pixels PXL are formed at the intersections between the scanning lines X and the data lines Y. Further, stop control lines Z1, Z2,..., ZN are formed in parallel with the scanning lines X1, X2,. The scanning line X is connected to the scanning line driving circuit 21. The scanning line driving circuit 21 includes a shift register, and sequentially selects the scanning lines X1, X2,..., XN within one scanning cycle by sequentially transferring the vertical start pulse VSP1 in synchronization with the vertical clock VCK. On the other hand, the stop control line Z is connected to the stop control line drive circuit 23. The drive circuit 23 also includes a shift register, and outputs a control signal to the stop control line Z by sequentially transferring the vertical start pulse VSP2 in synchronization with VCK. VSP2 is delayed from VSP1 by a delay circuit 24 for a predetermined time. The data line Y is connected to the data line driving circuit 22 and outputs an electrical signal corresponding to the luminance information to each data line Y in synchronization with the line sequential scanning of the scanning line X. In this case, the data line driving circuit 22 performs so-called line-sequential driving and supplies electric signals all at once to the rows of selected pixels. Alternatively, the data line driving circuit 22 may perform so-called dot-sequential driving, and sequentially supply electric signals to selected pixel rows. In any case, the present invention includes both line-sequential driving and point-sequential driving.

図3は、図2に示した本発明の第一実施形態にかかる画像表示装置の動作説明に供するタイミングチャートである。まず、垂直スタートパルスVSP1が走査線駆動回路21及び遅延回路24に入力される。走査線駆動回路21はVSP1の入力を受けたあと、垂直クロックVCKに同期して走査線X1,X2,…,XNを順次選択し、走査線単位で輝度情報が画素PXLに書き込まれていく。各画素PXLは書き込まれた輝度情報に応じた強度で発光を開始する。VSP1は遅延回路24で遅延され、VSP2として停止制御線駆動回路23に入力される。停止制御線駆動回路23はVSP2を受けたあと、垂直クロックVCKに同期して停止制御線Z1,Z2,…,ZNを順次選択し、発光が走査線単位で停止していく。   FIG. 3 is a timing chart for explaining the operation of the image display apparatus according to the first embodiment of the present invention shown in FIG. First, the vertical start pulse VSP 1 is input to the scanning line driving circuit 21 and the delay circuit 24. After receiving the input of VSP1, the scanning line driving circuit 21 sequentially selects the scanning lines X1, X2,..., XN in synchronization with the vertical clock VCK, and luminance information is written to the pixels PXL in units of scanning lines. Each pixel PXL starts light emission at an intensity corresponding to the written luminance information. VSP1 is delayed by the delay circuit 24 and input to the stop control line drive circuit 23 as VSP2. After receiving VSP2, the stop control line drive circuit 23 sequentially selects stop control lines Z1, Z2,..., ZN in synchronization with the vertical clock VCK, and light emission stops in units of scanning lines.

図1乃至図3に示した第一実施形態によれば、各画素PXLが発光するのは輝度情報が書き込まれてから発光停止制御信号によって発光が停止するまでの間、即ち概ね遅延回路24によって設定された遅延時間分である。その遅延時間をτとし、一走査サイクル(一フレーム)の時間をTとすると、画素が発光している時間的割合即ちデューティーは概ねτ/Tとなる。発光素子の時間平均輝度はこのデューティーに比例して変化する。従って、遅延回路24を操作して遅延時間τを変更することにより、ELディスプレイの画面輝度を簡便且つ幅広い範囲で可変調整することができる。   According to the first embodiment shown in FIG. 1 to FIG. 3, each pixel PXL emits light after the luminance information is written until the light emission is stopped by the light emission stop control signal, that is, by the delay circuit 24. It is the set delay time. Assuming that the delay time is τ and the time of one scanning cycle (one frame) is T, the time ratio, that is, the duty in which the pixels emit light is approximately τ / T. The time average luminance of the light emitting element changes in proportion to the duty. Therefore, by operating the delay circuit 24 and changing the delay time τ, the screen brightness of the EL display can be variably adjusted in a simple and wide range.

更に、輝度の制御が容易になることは、画素回路の設計自由度を増し、より良好な設計を行うことが可能になる。図10に示した従来の画像表示装置の画素設計例では、TFT2のサイズを以下のように決めていた。
チャネル幅:W=5μm
チャネル長:L={W・/(2・Ip)}・μ・Cox・Vp2 =270μm
これらのTFT2のサイズは、発光素子のデューティーが1の場合に相当している。これに対し、本発明にかかる画像表示装置では上述したようにデューティーを予め所望の値に設定しておくことができる。例えば、デューティーを0.1とすることができる。この場合本発明による設計例として、図1に示したTFT2のサイズを以下のように縮小できる。
チャネル幅:W=5μm
チャネル長:L=270μm×0.1=27μm
その他のパラメータは図10に示した従来例と同一とする。この場合、発光時にOLEDに流れる電流は式(1)に従って10倍となるが、デューティーを0.1としているため、時間平均での駆動電流は、従来例と同じになる。有機EL素子では、電流と輝度とは通常比例関係にあるので、時間平均の発光輝度は、従来例と本発明とで同等になる。一方、本発明の設計例においては、TFT2のチャネル長Lが従来例の1/10と大幅に小型化されている。これにより、画素内部に於けるTFT2の占有率が大幅に下がり、その結果有機EL素子の占有面積(発光領域)を大きく取ることができるので、画像品位が向上する。又、画素の微細化も容易に実現可能となる。
Furthermore, the ease of controlling the luminance increases the degree of freedom in designing the pixel circuit and allows a better design. In the pixel design example of the conventional image display device shown in FIG. 10, the size of the TFT 2 is determined as follows.
Channel width: W = 5μm
Channel length: L = {W · / (2 · Ip)} · μ · Cox · Vp 2 = 270 μm
The sizes of these TFTs 2 correspond to the case where the duty of the light emitting element is 1. On the other hand, in the image display device according to the present invention, the duty can be set to a desired value in advance as described above. For example, the duty can be set to 0.1. In this case, as a design example according to the present invention, the size of the TFT 2 shown in FIG. 1 can be reduced as follows.
Channel width: W = 5μm
Channel length: L = 270 μm × 0.1 = 27 μm
Other parameters are the same as those of the conventional example shown in FIG. In this case, the current flowing through the OLED at the time of light emission is 10 times according to the equation (1). However, since the duty is set to 0.1, the time-average driving current is the same as in the conventional example. In the organic EL element, the current and the luminance are normally in a proportional relationship, so the time-averaged emission luminance is the same between the conventional example and the present invention. On the other hand, in the design example of the present invention, the channel length L of the TFT 2 is significantly reduced to 1/10 of the conventional example. As a result, the occupation ratio of the TFT 2 in the pixel is greatly reduced, and as a result, the occupation area (light emitting region) of the organic EL element can be increased, and the image quality is improved. Also, pixel miniaturization can be easily realized.

図4は、本発明にかかる画像表示装置の第二実施形態の一例を示す全体回路構成図である。図2に示した第一実施形態と対応する部分には対応する参照番号を付して理解を容易にしている。第一実施形態がモノクロの画像表示装置であるのに対し、本実施形態はカラーの画像表示装置であり、RGB三原色が割り当てられた画素PXLが集積形成されている。本実施形態では、同一の走査線Xに赤、緑、青の各画素PXLを共通に接続する一方、停止制御線ZR、ZG、及びZBに赤、緑、青の各画素を別々に接続している。これにより、赤、緑、青の各画素に含まれる発光素子を別々の時点で消灯できるようにしている。具体的には、RGB三色の画素PXLに対応して、三個の停止制御線駆動回路23R,23G,23Bが別々に設けられている。又、これらの停止制御線駆動回路23R,23G,23Bに対応して、夫々別々に遅延回路24R,24G,24Bが設けられている。従って、RGB別々に、VSP1の遅延時間を設定でき、VSP2R,VSP2G,VSP2Bを対応する停止制御線駆動回路23R,23G,23Bに供給可能である。停止制御線駆動回路23Rによって制御される停止制御線ZRには、赤色画素(R)が接続され、停止制御線駆動回路23Gによって制御される停止制御線ZGには、緑色画素(G)が接続され、停止制御線駆動回路23Bによって制御される停止制御線ZBには、青色画素(B)が接続される。かかる構成によれば、RGBの各色毎に、輝度を調節できる。従って、遅延回路24R,24G,24Bの遅延時間を適切に調整することで、カラー画像表示装置の色度調節が容易になり、カラーバランスを簡単にとることが可能である。即ち、画面を観察して赤み成分が強すぎる場合には、遅延回路24Rの遅延時間を調節し、赤色に対応するデューティーを相対的に小さくすることで、赤み成分を弱めることが可能である。   FIG. 4 is an overall circuit configuration diagram showing an example of the second embodiment of the image display apparatus according to the present invention. Portions corresponding to those of the first embodiment shown in FIG. 2 are given corresponding reference numbers for easy understanding. While the first embodiment is a monochrome image display device, the present embodiment is a color image display device in which pixels PXL to which the three primary colors of RGB are assigned are integrated. In the present embodiment, the red, green, and blue pixels PXL are commonly connected to the same scanning line X, while the red, green, and blue pixels are separately connected to the stop control lines ZR, ZG, and ZB. ing. Thus, the light emitting elements included in the red, green, and blue pixels can be turned off at different points in time. Specifically, three stop control line drive circuits 23R, 23G, and 23B are separately provided corresponding to the RGB three-color pixels PXL. In addition, delay circuits 24R, 24G, and 24B are separately provided corresponding to the stop control line drive circuits 23R, 23G, and 23B, respectively. Therefore, the delay time of VSP1 can be set separately for RGB, and VSP2R, VSP2G, and VSP2B can be supplied to the corresponding stop control line drive circuits 23R, 23G, and 23B. A red pixel (R) is connected to the stop control line ZR controlled by the stop control line drive circuit 23R, and a green pixel (G) is connected to the stop control line ZG controlled by the stop control line drive circuit 23G. The blue pixel (B) is connected to the stop control line ZB controlled by the stop control line drive circuit 23B. According to such a configuration, the luminance can be adjusted for each color of RGB. Accordingly, by appropriately adjusting the delay times of the delay circuits 24R, 24G, and 24B, the chromaticity adjustment of the color image display device is facilitated, and the color balance can be easily achieved. That is, when the red component is too strong by observing the screen, it is possible to weaken the red component by adjusting the delay time of the delay circuit 24R and relatively reducing the duty corresponding to red.

図5は本発明にかかる画像表示装置の第三実施形態の一例を示す一画素分の等価回路図であり、図1に示した第一実施形態と対応する部分には対応する参照番号を付して理解を容易にしている。本実施形態は発光素子OLEDと直列に接続されたTFT3(第三の能動素子)を含み、TFT3に与える制御信号に応じて発光素子OLEDに流れる電流を遮断することが可能である。制御信号は、走査線Xと平行に設けた停止制御線Zを介して同一走査線上の各画素PXLに含まれるTFT3のゲートGに与えられる。本実施形態では、接地電位とTFT2との間にTFT3が挿入されており、TFT3のゲート電位の制御によって、OLEDに流れる電流をオン/オフすることができる。尚、TFT3を、TFT2とOLEDの間、或いはOLEDとVddとの間に挿入することも可能である。   FIG. 5 is an equivalent circuit diagram for one pixel showing an example of the third embodiment of the image display device according to the present invention. Parts corresponding to those in the first embodiment shown in FIG. And easy to understand. The present embodiment includes a TFT 3 (third active element) connected in series with the light emitting element OLED, and can interrupt a current flowing through the light emitting element OLED in accordance with a control signal applied to the TFT 3. The control signal is given to the gate G of the TFT 3 included in each pixel PXL on the same scanning line via a stop control line Z provided in parallel with the scanning line X. In this embodiment, the TFT 3 is inserted between the ground potential and the TFT 2, and the current flowing through the OLED can be turned on / off by controlling the gate potential of the TFT 3. It is also possible to insert the TFT 3 between the TFT 2 and the OLED or between the OLED and Vdd.

図6は、本発明にかかる画像表示装置の第四実施形態の一例を示す一画素分の等価回路図である。図10に示した従来例と対応する部分には対応する参照番号を付して理解を容易にしている。本実施形態では発光素子OLEDは整流作用を有する二端子素子からなり、一方の端子(カソードK)はTFT2に接続され、他方の端子(アノードA)は停止制御線Zに接続されている。同一走査線上の各画素では二端子素子のアノードAは停止制御線Zに共通接続され、異なる走査線間では電気的に分離されている。この場合、二端子素子の共通接続された他方の端子(アノードA)の電位を停止制御線Zにより制御して、各OLEDを消灯する。但し、OLEDのアノードAは従来のように一定電位のVddに接続されるのではなく、停止制御線Zを介して外部からその電位が制御される。アノード電位を十分高い値とすれば、OLEDにはTFT2によって制御される電流が流れるが、OLEDは二端子素子で整流作用があるため、アノード電位を十分低い電位(例えば接地電位)とすることにより、OLEDに流れる電流をオフすることができる。   FIG. 6 is an equivalent circuit diagram for one pixel showing an example of the fourth embodiment of the image display device according to the present invention. Portions corresponding to those of the conventional example shown in FIG. 10 are given corresponding reference numbers for easy understanding. In the present embodiment, the light emitting element OLED is composed of a two-terminal element having a rectifying action, and one terminal (cathode K) is connected to the TFT 2 and the other terminal (anode A) is connected to the stop control line Z. In each pixel on the same scanning line, the anode A of the two-terminal element is commonly connected to the stop control line Z, and is electrically separated between different scanning lines. In this case, the potential of the other terminal (anode A) connected in common between the two-terminal elements is controlled by the stop control line Z to turn off each OLED. However, the anode A of the OLED is not connected to a constant potential Vdd as in the prior art, but the potential is controlled from the outside via the stop control line Z. If the anode potential is set to a sufficiently high value, a current controlled by the TFT 2 flows in the OLED. However, since the OLED has a rectifying action by a two-terminal element, the anode potential is set to a sufficiently low potential (for example, ground potential). The current flowing through the OLED can be turned off.

図7は、図6に示した第四実施形態の制御例を示すタイミングチャートである。一走査サイクル(一フレーム)をTで表している。一走査サイクルTの先頭に位置する書き込み期間(RT)で、全画素に対する輝度情報の書き込みを線順次で行う。即ち、この例では、一走査サイクルの一部を利用して高速に輝度情報を全ての画素に書き込んでいる。書き込みが完了したあと、停止制御線Zを一斉に制御して、各画素に含まれるOLEDをオンする。これにより、各画素のOLEDは書き込まれた輝度情報に応じて夫々発光を開始する。そのあと所定の遅延時間τが経過すると、全ての停止制御線Zを介して全てのOLEDのアノードAを接地電位に落とす。これにより、発光がオフになる。以上のような制御により、全画素単位でデューティーτ/Tを調整可能である。尚、本発明はこれに限られるものではなく、少なくとも走査線単位で各画素のオン/オフを制御するようにしてもよい。以上のように、本制御例では、各画素に輝度情報が書き込まれたあと一走査サイクル内で、各画素に含まれる発光素子の点灯時点及び消灯時点を画面単位若しくは走査線単位で制御できる。   FIG. 7 is a timing chart showing a control example of the fourth embodiment shown in FIG. One scanning cycle (one frame) is represented by T. In the writing period (RT) positioned at the head of one scanning cycle T, writing of luminance information for all the pixels is performed line-sequentially. That is, in this example, luminance information is written to all the pixels at high speed using a part of one scanning cycle. After the writing is completed, the stop control line Z is simultaneously controlled to turn on the OLED included in each pixel. Thereby, the OLED of each pixel starts to emit light according to the written luminance information. Thereafter, when a predetermined delay time τ elapses, the anodes A of all the OLEDs are dropped to the ground potential via all the stop control lines Z. Thereby, the light emission is turned off. With the control as described above, the duty τ / T can be adjusted in units of all pixels. The present invention is not limited to this, and on / off of each pixel may be controlled at least in units of scanning lines. As described above, in this control example, the lighting time and the light-off time of the light-emitting elements included in each pixel can be controlled in units of screens or scanning lines within one scanning cycle after luminance information is written in each pixel.

図8は、本発明にかかる画像表示装置の第五実施形態の一例を示す全体回路構成図であり、図11に示した従来例と対応する部分には対応する参照番号を付して理解を容易にしている。本実施形態は先の実施形態と異なり、特別の停止制御線を設けること無く、走査線X1乃至XNを利用して各画素PXLのデューティー制御を行っている。このために、走査線駆動回路21とは別に制御回路23’を設けている。制御回路23’の各出力端子は対応する各アンドゲート回路28の一方の入力端子に接続されている。各アンドゲート回路28の出力端子は次段のオアゲート回路29の一方の入力端子を介して各走査線X1,X2,…,XNに接続している。各アンドゲート回路28の他方の端子にはVCKが供給されている。なお、走査線駆動回路21の各出力端子は対応する各オアゲート回路29の他方の入力端子を介して各走査線X1,X2,…,XNに接続している。又、VSP1は先の実施形態と同様に遅延回路24を介してVSP2となり、制御回路23’に供給される。一方、各データ線YはPチャネル型のTFT26を介してデータ線駆動回路22に接続されている。TFT26のゲートにはVCKが供給されている。又、各データ線Yの電位はNチャンネル型のTFT27によっても制御できる。TFT27のゲートにもVCKが供給されている。このように、本画像表示装置の周辺回路構成は図11に示した従来例と異なるが、個々の画素PXLの回路構成は、図10に示した従来の画素回路構成と同一である。かかる構成により、制御回路23’は、各画素PXLに輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に、再度走査線Xを選択して各画素PXLにデータ線Yから輝度0を表す情報を書き込んで各画素PXLの発光素子OLEDを消灯することができる。   FIG. 8 is an overall circuit configuration diagram showing an example of the fifth embodiment of the image display apparatus according to the present invention. Parts corresponding to those of the conventional example shown in FIG. Making it easy. In the present embodiment, unlike the previous embodiment, the duty control of each pixel PXL is performed using the scanning lines X1 to XN without providing a special stop control line. For this purpose, a control circuit 23 ′ is provided separately from the scanning line driving circuit 21. Each output terminal of the control circuit 23 ′ is connected to one input terminal of each corresponding AND gate circuit 28. The output terminal of each AND gate circuit 28 is connected to each scanning line X1, X2,..., XN via one input terminal of the next-stage OR gate circuit 29. VCK is supplied to the other terminal of each AND gate circuit 28. Each output terminal of the scanning line driving circuit 21 is connected to each scanning line X1, X2,..., XN via the other input terminal of each corresponding OR gate circuit 29. Also, VSP1 becomes VSP2 via the delay circuit 24 as in the previous embodiment, and is supplied to the control circuit 23 '. On the other hand, each data line Y is connected to the data line driving circuit 22 via a P-channel TFT 26. VCK is supplied to the gate of the TFT 26. The potential of each data line Y can also be controlled by the N-channel TFT 27. VCK is also supplied to the gate of the TFT 27. As described above, the peripheral circuit configuration of the image display apparatus is different from the conventional example shown in FIG. 11, but the circuit configuration of each pixel PXL is the same as the conventional pixel circuit configuration shown in FIG. With this configuration, the control circuit 23 ′ selects the scanning line X again during one scanning cycle in which the luminance information is written to each pixel PXL and then new luminance information is written, and data is stored in each pixel PXL. Information indicating luminance 0 can be written from the line Y to turn off the light emitting element OLED of each pixel PXL.

図9は、図8に示した第五実施形態の動作説明に供するタイミングチャートである。図示するように、垂直スタートパルスVSP1は走査線駆動回路21及び遅延回路24に入力される。走査線駆動回路21はVSP1を受け入れたあと、垂直クロックVCKに同期して走査線X1,X2,…,XNを順次選択し、走査線単位で各画素PXLに輝度情報を書き込んでいく。各画素は書き込まれた輝度情報に応じた強度で発光を開始する。但し、本実施形態ではTFT26,27を設けたことにより、各データ線YはVCK=H(ハイレベル)の期間で輝度0に相当する電位(この例では接地電位)となり、VCK=L(ローレベル)の期間において本来の輝度情報が与えられるようになっている。この関係は図9のVCKの波形にL,Hを付し、データ線の波形にハッチングを付して模式的に表してある。VSP1は遅延回路24で遅延されたあと、VSP2として制御回路23’に入力される。制御回路23’はVSP2を受け入れたあと、垂直クロックVCKに同期して動作するが、その出力はアンドゲート回路28に入力される。各アンドゲート回路28にはVCKが同時に入力されているので、制御回路23’の出力がH(ハイレベル)で且つVCK=H(ハイレベル)の時に走査線Xが選択される。前述したように、VCK=Hの期間は各データ線Yに輝度0に相当する電位が与えられているので、制御回路23’によって選択された走査線Xに接続された画素は輝度0に相当する情報により発光が停止する。   FIG. 9 is a timing chart for explaining the operation of the fifth embodiment shown in FIG. As shown in the figure, the vertical start pulse VSP 1 is input to the scanning line driving circuit 21 and the delay circuit 24. After receiving VSP1, the scanning line driving circuit 21 sequentially selects the scanning lines X1, X2,..., XN in synchronization with the vertical clock VCK, and writes luminance information to each pixel PXL in units of scanning lines. Each pixel starts to emit light with an intensity corresponding to the written luminance information. However, in the present embodiment, since the TFTs 26 and 27 are provided, each data line Y becomes a potential corresponding to luminance 0 (ground potential in this example) in a period of VCK = H (high level), and VCK = L (low level). Original luminance information is given in the period of (level). This relationship is schematically represented by adding L and H to the waveform of VCK in FIG. 9 and hatching the waveform of the data line. VSP1 is delayed by the delay circuit 24 and then input to the control circuit 23 'as VSP2. The control circuit 23 ′ operates in synchronization with the vertical clock VCK after receiving VSP 2, but its output is input to the AND gate circuit 28. Since VCK is simultaneously input to each AND gate circuit 28, the scanning line X is selected when the output of the control circuit 23 'is H (high level) and VCK = H (high level). As described above, since the potential corresponding to the luminance 0 is applied to each data line Y during the period of VCK = H, the pixels connected to the scanning line X selected by the control circuit 23 ′ correspond to the luminance 0. The light emission is stopped by the information to be performed.

図14は本発明にかかる画像表示装置の第六実施形態の一例を示す一画素分の等価回路図であり、図1に示した第一実施形態と対応する部分には対応する参照番号を付して理解を容易にしている。先の各実施形態では、画素の消灯を行うためにトランジスタを追加する必要のあるものが多いが、本実施形態は、追加のトランジスタが不要で、より実用的な構成になっている。図示するように、発光素子OLEDに供給する電流量を制御するトランジスタTFT2のゲートGに接続された容量素子Csの他方の端子が発光停止制御線Zに接続される。書き込み終了後、発光停止線Zの電位を(この図の例では)下げる。例えば、容量素子Csの容量がTFT2のゲート容量等に比べ十分大きい場合は、発光停止制御線Zの電位変化がすなわちTFT2のゲート電位の変化となる。従って、書き込み時のTFT2のゲート電位の最大値をVgmaxとした場合、発光停止制御線Zの電位を、書き込み時よりVgmax−Vth以上下げることによって、TFT2のゲート電位をVth以下にすることができ、従って発光素子OLEDは消灯する。実際にはTFT2のゲート容量等を考慮し、もう少し大きな振幅で制御することが望ましい。   FIG. 14 is an equivalent circuit diagram for one pixel showing an example of the sixth embodiment of the image display device according to the present invention. Parts corresponding to those in the first embodiment shown in FIG. And easy to understand. In each of the previous embodiments, many transistors need to be added to turn off the pixels, but this embodiment does not require an additional transistor and has a more practical configuration. As shown in the figure, the other terminal of the capacitive element Cs connected to the gate G of the transistor TFT2 for controlling the amount of current supplied to the light emitting element OLED is connected to the light emission stop control line Z. After completion of writing, the potential of the light emission stop line Z is lowered (in the example of this figure). For example, when the capacitance of the capacitive element Cs is sufficiently larger than the gate capacitance or the like of the TFT 2, the potential change of the light emission stop control line Z becomes the change of the gate potential of the TFT 2. Therefore, when the maximum value of the gate potential of the TFT 2 at the time of writing is Vgmax, the gate potential of the TFT 2 can be made Vth or less by lowering the potential of the emission stop control line Z by Vgmax−Vth or more than at the time of writing. Therefore, the light emitting element OLED is turned off. Actually, it is desirable to control with a slightly larger amplitude in consideration of the gate capacitance of the TFT 2 and the like.

図15は、図14に示した第六実施形態の動作説明に供するタイミングチャートである。図示するように、停止制御線は、走査線選択と概ね同時に高レベルとされ、書き込み終了後高レベルが保たれている期間、発光素子は書き込まれた輝度情報に応じた輝度にて発光状態となる。次のフレームで新たなデータが書き込まれる以前に停止制御線を低レベルにすると、発光素子は消灯する。   FIG. 15 is a timing chart for explaining the operation of the sixth embodiment shown in FIG. As shown in the figure, the stop control line is set to the high level almost simultaneously with the scanning line selection, and during the period when the high level is maintained after the writing is finished, the light emitting element is in the light emitting state with the luminance according to the written luminance information. Become. If the stop control line is set to a low level before new data is written in the next frame, the light emitting element is turned off.

ところで、CRTにおいては表示画像はμsecオーダで輝度が減衰するのに対し、アクティブマトリクス型のディスプレイでは一フレームの間画像を表示し続ける保持型の表示原理となっている。この為、動画表示を行なう場合、動画の輪郭に沿った画素はフレームの切り換わる直前まで画像を表示しており、これが人間の目の残像効果と相まって、次のフレームでもそこに像が表示されているかの如く感知する。これが、アクティブマトリクス型ディスプレイにおける動画表示の画質がCRTに比較し低くなる根本原因である。この解決策として、本発明にかかる駆動方法が効果的であり、画素を強制的に消灯して人間の目で感ずる残像を断ち切る技術を導入することで、動画質の改善を図ることが出来る。具体的には、アクティブマトリクス型のディスプレイにおいて、一フレームの前半で画像を表示する一方、一フレームの後半はあたかもCRT輝度が減衰するかの如くに、画像を消灯する方法を採用している。動画質改善の為には、フレーム当たり、点灯と消灯のデューティーを50%程度に設定する。更に高い動画質改善の為には、フレーム当たり、点灯と消灯のデューティーを25%以下に設定すると良い。   By the way, in the CRT, the display image is attenuated in luminance on the order of μsec, whereas the active matrix display has a holding type display principle that continues to display an image for one frame. For this reason, when displaying a moving image, the pixels along the contour of the moving image are displayed until immediately before the frame is switched, and this is combined with the afterimage effect of the human eye, and the image is displayed there in the next frame. Sense as if you are. This is the root cause that the image quality of the moving image display in the active matrix display is lower than that of the CRT. As a solution to this problem, the driving method according to the present invention is effective, and it is possible to improve the quality of moving images by introducing a technique for forcibly turning off pixels and cutting off afterimages felt by human eyes. Specifically, an active matrix display employs a method in which an image is displayed in the first half of one frame while the image is turned off in the second half of one frame as if the CRT luminance is attenuated. In order to improve the moving image quality, the on / off duty per frame is set to about 50%. In order to further improve the moving image quality, it is preferable to set the duty of turning on and off per frame to 25% or less.

本発明にかかる画像表示装置の第一実施形態を示す画素回路図である。1 is a pixel circuit diagram showing a first embodiment of an image display device according to the present invention. 第一実施形態の全体回路構成図である。It is a whole circuit block diagram of 1st embodiment. 第一実施形態のタイミングチャートである。It is a timing chart of a first embodiment. 本発明にかかる画像表示装置の第二実施形態の全体回路構成図である。It is a whole circuit block diagram of 2nd embodiment of the image display apparatus concerning this invention. 本発明にかかる画像表示装置の第三実施形態を示す画素回路図である。It is a pixel circuit diagram showing a third embodiment of an image display device according to the present invention. 本発明にかかる画像表示装置の第四実施形態を示す画素回路図である。It is a pixel circuit diagram which shows 4th embodiment of the image display apparatus concerning this invention. 第四実施形態のタイミングチャートである。It is a timing chart of a fourth embodiment. 本発明にかかる画像表示装置の第五実施形態を示す全体回路構成図である。FIG. 6 is an overall circuit configuration diagram showing a fifth embodiment of an image display device according to the present invention. 第五実施形態のタイミングチャートである。It is a timing chart of a fifth embodiment. 従来の画像表示装置の一例を示す画素回路図である。It is a pixel circuit diagram which shows an example of the conventional image display apparatus. 従来の画像表示装置の全体回路構成図である。It is a whole circuit block diagram of the conventional image display apparatus. 従来の画像表示装置の他の例を示す画素回路図である。It is a pixel circuit diagram which shows the other example of the conventional image display apparatus. 従来の画像表示装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional image display apparatus. 本発明にかかる画像表示装置の第六実施形態の一例を示す一画素分の等価回路図である。It is the equivalent circuit schematic for one pixel which shows an example of 6th Embodiment of the image display apparatus concerning this invention. 図14に示した第六実施形態の動作説明に供するタイミングチャートである。It is a timing chart with which it uses for operation | movement description of 6th embodiment shown in FIG.

符号の説明Explanation of symbols

PXL・・・画素、OLED・・・発光素子、TFT1・・・第一能動素子、TFT2・・・第二能動素子、TFT3・・・第三能動素子、Cs・・・保持容量、X・・・走査線、Y・・・データ線、Z・・・停止制御線、21・・・走査線駆動回路、22・・・データ線駆動回路、23・・・停止制御線駆動回路、24・・・遅延回路 PXL ... Pixel, OLED ... Light emitting element, TFT1 ... First active element, TFT2 ... Second active element, TFT3 ... Third active element, Cs ... Retention capacitor, X ... Scan line, Y: data line, Z: stop control line, 21 ... scan line drive circuit, 22 ... data line drive circuit, 23 ... stop control line drive circuit, 24 ...・ Delay circuit

Claims (4)

所定の走査サイクルで画素を選択するための走査線と、画素を駆動するための輝度情報を与えるデータ線とがマトリクス状に配設され、
各画素は、供給される電流量によって輝度が変化する発光素子と、走査線によって制御され且つデータ線から与えられた輝度情報を画素に書き込む機能を有する第一の能動素子と、該書き込まれた輝度情報に応じて該発光素子に供給する電流量を制御する機能を有する第二の能動素子とを含み、
各画素への輝度情報の書き込みは、走査線が選択された状態で、データ線に発光素子の輝度の階調に応じた大きさの電気信号を印加することによって行われ、
各画素に書き込まれた輝度情報は走査線が非選択となった後も各画素に保持され、各画素の発光素子は保持された輝度情報に応じた輝度で点灯を維持可能な画像表示装置において、
同一の走査線に接続された各画素の発光素子を少なくとも走査線単位で強制的に消灯する制御手段を有し、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間に発光素子を点灯状態から消灯状態にすることによって、該発光素子の時間平均輝度を制御し、
同一の走査線に赤、緑、青の各画素を共通に接続する一方、前記制御手段は、赤、緑、青の各画素に含まれる発光素子を別々の時点で消灯し、
前記制御手段は、該発光素子と直列に接続された第三の能動素子を含み、該第三の能動素子に与える制御信号に応じて該発光素子に流れる電流を遮断することが可能であり、
該制御信号は、各走査線と平行に設けた停止制御線を介して同一走査線上の各画素に含まれる第三の能動素子に与えられることを特徴とする画像表示装置。
Scan lines for selecting pixels in a predetermined scan cycle and data lines for providing luminance information for driving the pixels are arranged in a matrix,
Each pixel has a light emitting element whose luminance changes depending on the amount of current supplied, a first active element which is controlled by a scanning line and has a function of writing luminance information given from a data line to the pixel, and the written A second active element having a function of controlling the amount of current supplied to the light emitting element according to luminance information,
The writing of luminance information to each pixel is performed by applying an electric signal having a magnitude corresponding to the luminance gradation of the light emitting element to the data line in a state where the scanning line is selected.
Luminance information written in each pixel is retained in each pixel even after the scanning line is deselected, and the light emitting element of each pixel is in an image display device capable of maintaining lighting at a luminance according to the retained luminance information. ,
Control means for forcibly turning off the light emitting elements of each pixel connected to the same scanning line at least in units of scanning lines, and luminance information is written to each pixel and then new luminance information is written. By controlling the light-emitting element time average brightness by switching the light-emitting element from a lighting state to a light-off state during a scanning cycle,
While the red, green and blue pixels are commonly connected to the same scanning line, the control means turns off the light emitting elements included in the red, green and blue pixels at different points in time,
The control means includes a third active element connected in series with the light emitting element, and can cut off a current flowing through the light emitting element according to a control signal applied to the third active element.
The image display apparatus, wherein the control signal is supplied to a third active element included in each pixel on the same scanning line via a stop control line provided in parallel with each scanning line.
前記制御手段は、各画素に輝度情報が書き込まれてから次に新たな輝度情報が書き込まれる一走査サイクルの間で、発光素子を点灯状態から消灯状態に切り換える時点を調整可能であることを特徴とする請求項1記載の画像表示装置。   The control means is capable of adjusting a time point at which the light emitting element is switched from a lighting state to a non-lighting state during one scanning cycle in which luminance information is written to each pixel and new luminance information is written next. The image display device according to claim 1. 前記制御手段は、各画素に輝度情報が書き込まれた後一走査サイクル内で、各画素に含まれる発光素子の点灯時点及び消灯時点を少なくとも走査線単位で制御することを特徴とする請求項1記載の画像表示装置。   The control means controls at least a scanning line unit of a lighting time and a lighting time point of a light emitting element included in each pixel within one scanning cycle after luminance information is written in each pixel. The image display device described. 前記発光素子は有機エレクトロルミネッセンス素子であることを特徴とする請求項1記載の画像表示装置。   The image display apparatus according to claim 1, wherein the light emitting element is an organic electroluminescence element.
JP2006146041A 1999-06-17 2006-05-26 Image display device Expired - Lifetime JP4049191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146041A JP4049191B2 (en) 1999-06-17 2006-05-26 Image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17057799 1999-06-17
JP2006146041A JP4049191B2 (en) 1999-06-17 2006-05-26 Image display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000166170A Division JP4092857B2 (en) 1999-06-17 2000-06-02 Image display device

Publications (2)

Publication Number Publication Date
JP2006285267A JP2006285267A (en) 2006-10-19
JP4049191B2 true JP4049191B2 (en) 2008-02-20

Family

ID=37407178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146041A Expired - Lifetime JP4049191B2 (en) 1999-06-17 2006-05-26 Image display device

Country Status (1)

Country Link
JP (1) JP4049191B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178492B2 (en) 2007-12-27 2013-04-10 株式会社半導体エネルギー研究所 Display device and electronic apparatus including the display device
JP6812760B2 (en) 2016-11-15 2021-01-13 セイコーエプソン株式会社 Electro-optics, electronic devices, and how to drive electro-optics

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430683A (en) * 1990-05-24 1992-02-03 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP3242941B2 (en) * 1991-04-30 2001-12-25 富士ゼロックス株式会社 Active EL matrix and driving method thereof
JPH0574569A (en) * 1991-09-09 1993-03-26 Fuji Xerox Co Ltd Driving device of thin film el and its driving method
JP2941704B2 (en) * 1996-04-16 1999-08-30 ローム株式会社 Light emitting element drive circuit
JP4114216B2 (en) * 1997-05-29 2008-07-09 カシオ計算機株式会社 Display device and driving method thereof
US5952789A (en) * 1997-04-14 1999-09-14 Sarnoff Corporation Active matrix organic light emitting diode (amoled) display pixel structure and data load/illuminate circuit therefor
JP3125711B2 (en) * 1997-04-22 2001-01-22 日亜化学工業株式会社 LED display unit and LED constant current driver circuit
KR100559078B1 (en) * 1997-04-23 2006-03-13 트랜스퍼시픽 아이피 리미티드 Active matrix light emitting diode pixel structure and method
JP3229250B2 (en) * 1997-09-12 2001-11-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Image display method in liquid crystal display device and liquid crystal display device
JP3252897B2 (en) * 1998-03-31 2002-02-04 日本電気株式会社 Element driving device and method, image display device
JP3686769B2 (en) * 1999-01-29 2005-08-24 日本電気株式会社 Organic EL element driving apparatus and driving method
JP2000347622A (en) * 1999-06-07 2000-12-15 Casio Comput Co Ltd Display device and its driving method
JP3259774B2 (en) * 1999-06-09 2002-02-25 日本電気株式会社 Image display method and apparatus

Also Published As

Publication number Publication date
JP2006285267A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4092857B2 (en) Image display device
US9047822B2 (en) Display device where supply of clock signal to driver circuit is controlled
US8174467B2 (en) Picture image display device and method of driving the same
JP4169031B2 (en) Display device and pixel circuit
CN1858838B (en) Display device and driving method thereof and electric device
JP4490404B2 (en) Organic electroluminescence display
JP3877049B2 (en) Image display apparatus and driving method thereof
JP3772889B2 (en) Electro-optical device and driving device thereof
JP4024557B2 (en) Light emitting device, electronic equipment
US7542018B2 (en) Light emitting device and drive method thereof
JP4891153B2 (en) Organic electroluminescent display device and driving method of organic electroluminescent display device using the same
CN112992049B (en) Electroluminescent display device with pixel driving circuit
KR102647169B1 (en) Display apparatus and method of driving display panel using the same
WO2002077958A1 (en) Circuit for driving active-matrix light-emitting element
JP2009009049A (en) Active matrix type organic el display and gradation control method thereof
JP4039441B2 (en) Electro-optical device and electronic apparatus
JP4999390B2 (en) Display device
JP2006106568A (en) Display apparatus
JP4049191B2 (en) Image display device
JP4049190B2 (en) Image display apparatus and driving method thereof
JP4079198B2 (en) Image display apparatus and driving method thereof
WO2021152823A1 (en) Pixel circuit, display device, and drive method therefor
JP4353300B2 (en) Image display apparatus and driving method thereof
KR20190013134A (en) Electroluminescent Display Device
JP2003076332A (en) Driving circuit of display panel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R151 Written notification of patent or utility model registration

Ref document number: 4049191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term