JP4039441B2 - Electro-optical device and electronic apparatus - Google Patents

Electro-optical device and electronic apparatus Download PDF

Info

Publication number
JP4039441B2
JP4039441B2 JP2005356337A JP2005356337A JP4039441B2 JP 4039441 B2 JP4039441 B2 JP 4039441B2 JP 2005356337 A JP2005356337 A JP 2005356337A JP 2005356337 A JP2005356337 A JP 2005356337A JP 4039441 B2 JP4039441 B2 JP 4039441B2
Authority
JP
Japan
Prior art keywords
electro
transistor
optical device
electrode
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005356337A
Other languages
Japanese (ja)
Other versions
JP2006091923A (en
Inventor
陽一 今村
利幸 河西
徳郎 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005356337A priority Critical patent/JP4039441B2/en
Publication of JP2006091923A publication Critical patent/JP2006091923A/en
Application granted granted Critical
Publication of JP4039441B2 publication Critical patent/JP4039441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0254Control of polarity reversal in general, other than for liquid crystal displays

Landscapes

  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

本発明は、例えばテレビやコンピュータなどの情報機器の表示等を行う電気光学装置に関し、特に有機EL(Electro Luminescence)素子のような電気光学素子を用いた電気光学装置および電子機器に関する。   The present invention relates to an electro-optical device that performs display of information equipment such as a television and a computer, and more particularly to an electro-optical device and an electronic device using an electro-optical element such as an organic EL (Electro Luminescence) element.

近年では、有機EL表示装置が軽量、薄型、高輝度、広視野角という特徴を持つことから携帯電話のような携帯用情報機器のモニタディスプレイとして注目されている。典型的なアクティブマトリクス有機EL表示装置は、マトリクス状に配列される複数の表示画素により画像を表示するように構成される。表示画素には、表示の最小単位となる画素ごとに画素回路を備えている。この画素回路は、電気光学素子に供給される電流または電圧を制御するための回路である。   In recent years, organic EL display devices have attracted attention as monitor displays for portable information devices such as mobile phones because of their characteristics of light weight, thinness, high brightness, and wide viewing angle. A typical active matrix organic EL display device is configured to display an image by a plurality of display pixels arranged in a matrix. The display pixel includes a pixel circuit for each pixel that is a minimum unit of display. This pixel circuit is a circuit for controlling the current or voltage supplied to the electro-optical element.

このような有機EL表示装置では、複数の走査線がこれら表示画素の行に沿って配置され、複数のデータ線がこれら表示画素の列に沿って配置され、複数の画素スイッチがこれら走査線およびデータ線の交差位置近傍に配置される。各表示画素は少なくとも有機EL素子、一対の電源端子間でこの有機EL素子に直列に接続される駆動トランジスタ、およびこの駆動トランジスタのゲート電圧を保持する保持キャパシタにより構成される。各画素の選択スイッチは対応走査線から供給される走査信号に応答して導通し、対応データ線から供給される映像信号(電圧もしくは電流)を直接もしくは画素回路特性のバラツキ補正処理した結果としての階調電圧を駆動トランジスタのゲートに印加する。駆動トランジスタはこの階調電圧に応じた駆動電流を有機EL素子に供給する。   In such an organic EL display device, a plurality of scanning lines are arranged along the rows of these display pixels, a plurality of data lines are arranged along the columns of these display pixels, and a plurality of pixel switches are connected to these scanning lines and It is arranged near the intersection of the data lines. Each display pixel includes at least an organic EL element, a driving transistor connected in series to the organic EL element between a pair of power supply terminals, and a holding capacitor that holds the gate voltage of the driving transistor. The selection switch of each pixel is turned on in response to the scanning signal supplied from the corresponding scanning line, and the video signal (voltage or current) supplied from the corresponding data line is directly or as a result of correcting the variation in pixel circuit characteristics. A gradation voltage is applied to the gate of the driving transistor. The drive transistor supplies a drive current corresponding to the gradation voltage to the organic EL element.

有機EL素子は赤、緑、または青の蛍光性有機化合物を含む薄膜である発光層を共通電極(カソード)および画素電極(アノード)間に挟持した構造を有し、発光層に電子および正孔を注入しこれらを再結合させることにより励起子を生成させ、この励起子の失活時に生じる光放出により発光する。ボトムエミッション型の有機EL素子の場合は、電極はITO等で構成される透明電極であり、共通電極(カソード)電極はアルカリ金属等をアルミニウム等の金属で低抵抗化した反射電極で構成される。この構成により、有機EL素子単独では10V以下の印加電圧で100〜100000cd/m 2 程度の輝度を得ることができる。 An organic EL element has a structure in which a light-emitting layer, which is a thin film containing a fluorescent organic compound of red, green, or blue, is sandwiched between a common electrode (cathode) and a pixel electrode (anode). Are excited and recombined to generate excitons, which emit light by light emission generated when the excitons are deactivated. In the case of a bottom emission type organic EL element, the electrode is a transparent electrode made of ITO or the like, and the common electrode (cathode) electrode is made of a reflective electrode obtained by reducing the resistance of an alkali metal or the like with a metal such as aluminum. . With this configuration, with an organic EL element alone, a luminance of about 100 to 100,000 cd / m 2 can be obtained with an applied voltage of 10 V or less.

上記の有機EL表示装置の各画素回路は、特許文献1に開示されているように、能動素子として薄膜トランジスタ(TFT)を含む。この薄膜トランジスタは、例えば低温ポリシリコンTFTによって形成される。   As disclosed in Patent Document 1, each pixel circuit of the organic EL display device includes a thin film transistor (TFT) as an active element. This thin film transistor is formed by, for example, a low-temperature polysilicon TFT.

特開平5−107561号公報Japanese Patent Laid-Open No. 5-107561

この種の表示装置において表示品位を向上させるためには、画素回路の電気的な特性がすべての画素にわたって均一であることが望ましい。しかしながら、低温ポリシリコンTFTは、その再結晶化に際して特性のバラツキが生じやすく、また、結晶欠陥が発生する場合もある。このため、低温ポリシリコンTFTからなる薄膜トランジスタを用いた表示装置においては、画素回路の電気的な特性をすべての画素にわたって均一化することが極めて困難であった。特に、表示画像の高精細化や大画面化のために画素数が増加すると、各画素回路の特性のバラツキが生じる可能性は更に高くなるから、表示品位の低下の問題はいっそう顕著となる。また再結晶化のためのレーザーアニール装置の制約から基板サイズをアモルファスTFT(α−TFT)のように大サイズ化し、生産性を向上させることが困難であった。   In order to improve display quality in this type of display device, it is desirable that the electrical characteristics of the pixel circuit be uniform across all pixels. However, low-temperature polysilicon TFTs tend to have characteristic variations during recrystallization, and crystal defects may occur. For this reason, in a display device using a thin film transistor made of a low-temperature polysilicon TFT, it is extremely difficult to make the electrical characteristics of the pixel circuit uniform over all pixels. In particular, when the number of pixels is increased to increase the definition of the display image or to increase the screen size, the possibility of variations in the characteristics of each pixel circuit is further increased, and the problem of deterioration in display quality becomes even more pronounced. In addition, due to the limitations of the laser annealing apparatus for recrystallization, it has been difficult to increase the substrate size like an amorphous TFT (α-TFT) and improve productivity.

一方α−TFTは、トランジスタのバラツキは比較的少なく交流駆動を行うLCDにおいて大基板サイズ化の量産実績があるものの、一方向に定常的にゲート電圧を印加し続けると、閾値電圧がシフトする結果、電流値が変わり、輝度が低下する等の画質に悪影響を及ぼす。しかもα−TFTでは移動度が小さいため、高速応答でドライブできる電流にも限界があり、nチャネルTFTだけで構成されたものが実用になっているだけであった。   On the other hand, α-TFT has relatively few transistor variations, and has a track record of mass production of large-sized substrates in LCDs driven by alternating current. However, if gate voltage is constantly applied in one direction, the threshold voltage shifts. This adversely affects the image quality, such as the current value changes and the brightness decreases. Moreover, since the mobility of the α-TFT is small, there is a limit to the current that can be driven with a high-speed response, and only an n-channel TFT has been put into practical use.

さらに現在までのところ有機EL素子は、その使用材料からくる有機EL製作技術の制限により、その構造はTFT基板側を画素電極(アノード)に、共通電極(カソード)を素子の表面側にせざるを得ない。したがって図9に示す従来の画素回路において、共通電極電源38と有機EL素子16の画素電極(アノード)とPチャネル駆動TFT61の関係は、図9に示すように駆動トランジスタを飽和領域で動作可能な接続関係に限られる。さらに一般に有機EL素子の輝度を一定に保とうとした場合、時間の経過につれ有機EL素子の高抵抗化が起こるため、一定電流で駆動しなければならない。このため駆動回路は3つ以上のTFTから構成され、その駆動TFTは負荷変動に関係なく一定電流を流せる低温ポリシリコンのPチャネルTFTが用いられてきた。ちなみに図9において駆動トランジスタ61がnチャネルTFTの場合、駆動トランジスタ61のソース電極が有機EL素子側(ソースフォロア)になり、負荷変動に対し電流値が変わってしまう。   Further, to date, the organic EL element has a structure in which the TFT substrate side is the pixel electrode (anode) and the common electrode (cathode) is the surface side of the element due to limitations of the organic EL manufacturing technology that comes from the materials used. I don't get it. Therefore, in the conventional pixel circuit shown in FIG. 9, the relationship between the common electrode power supply 38, the pixel electrode (anode) of the organic EL element 16 and the P-channel drive TFT 61 is such that the drive transistor can operate in the saturation region as shown in FIG. Limited to connection relationships. Further, generally, when it is attempted to keep the luminance of the organic EL element constant, the resistance of the organic EL element increases with the passage of time. Therefore, the organic EL element must be driven with a constant current. For this reason, the drive circuit is composed of three or more TFTs, and a low-temperature polysilicon P-channel TFT capable of supplying a constant current regardless of load variation has been used as the drive TFT. Incidentally, in FIG. 9, when the drive transistor 61 is an n-channel TFT, the source electrode of the drive transistor 61 is on the organic EL element side (source follower), and the current value changes with load fluctuation.

さらに駆動回路は、電源配線や走査線の他に画素への表示データ書込み準備信号や強制オフ信号を必要とし、これらを外部ドライバICから供給することは、接続端子の接続ピッチの制約があり、困難であった。一画素当り1〜2本が限度であった。
このため有機EL素子の駆動にα−TFTを使うことは、これまで不可能であると考えられてきた。
Furthermore, the drive circuit requires a display data write preparation signal and a forced off signal in addition to the power supply wiring and the scanning line, and supplying these from the external driver IC is limited by the connection pitch of the connection terminals, It was difficult. There was a limit of 1 to 2 per pixel.
For this reason, it has been considered impossible to use an α-TFT for driving an organic EL element.

本発明は、このような事情に鑑みてなされたものであり、その目的は、電気光学素子などの被駆動素子を駆動する回路においてα−TFTのような駆動能力の低い駆動素子でも構成可能な駆動回路および駆動方法およびそれを用いた電気光学装置を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof can be configured by a drive element having a low driving capability such as an α-TFT in a circuit for driving a driven element such as an electro-optical element. It is an object to provide a drive circuit, a drive method, and an electro-optical device using the same.

上記課題を解決するために、本発明に係る電気光学装置は、複数の走査線と、複数のデータ線と、前記複数の走査線と前記複数のデータ線との交差部に対応して配置された複数の画素と、複数の第1の電源配線と、を含み、前記複数の画素の各々は、電気光学素子と、前記電気光学素子に接続された駆動トランジスタと、前記複数の走査線のうち対応する走査線を介して供給される走査信号により導通が制御される第1のスイッチトランジスタと、前記第1のスイッチトランジスタに接続された第2のスイッチトランジスタと、第1の電極と第2の電極とにより容量を形成するキャパシタであって、前記第1の電極を介して前記駆動トランジスタのゲートとソースとの間に接続された第1のキャパシタと、前記第1のスイッチトランジスタと前記駆動トランジスタのゲートとの間に直列に接続された第2のキャパシタと、前記駆動トランジスタのゲートとドレインとの間に接続されたバイアストランジスタと、前記第2の電極と第1の所定電位との電気的接続を制御するスイッチ手段と、を含み、前記第2のスイッチトランジスタおよび前記バイアストランジスタの導通状態は、前記対応する走査線を介して供給される走査信号とは別の周期信号により制御されることを特徴とする。   In order to solve the above problems, an electro-optical device according to the present invention is arranged corresponding to a plurality of scanning lines, a plurality of data lines, and an intersection of the plurality of scanning lines and the plurality of data lines. A plurality of pixels and a plurality of first power supply wirings, wherein each of the plurality of pixels includes an electro-optic element, a drive transistor connected to the electro-optic element, and the plurality of scanning lines. A first switch transistor whose conduction is controlled by a scanning signal supplied through a corresponding scanning line; a second switch transistor connected to the first switch transistor; a first electrode; A capacitor that forms a capacitance with an electrode, the first capacitor being connected between the gate and the source of the driving transistor via the first electrode; and the first switch transistor; A second capacitor connected in series between the gate of the driving transistor, a bias transistor connected between the gate and drain of the driving transistor, the second electrode, and a first predetermined potential; Switching means for controlling the electrical connection of the second switching transistor, and the conduction state of the second switching transistor and the bias transistor is controlled by a periodic signal different from the scanning signal supplied via the corresponding scanning line It is characterized by being.

この構成においては、駆動トランジスタのソース電極とゲート電極との間に電荷保持用のキャパシタが設けられているため、電気光学素子が駆動トランジスタにソースフォロワ接続されていても、駆動トランジスタのソースとゲート間電圧VGSはソース電圧が変化しても維持される。これによりデータ線を介して供給されるデータ信号に応じた駆動電流が電気光学素子に供給されることになり、電気光学素子を所定の特性で動作させることができる。 In this configuration, since the charge holding capacitor is provided between the source electrode and the gate electrode of the driving transistor, the source and gate of the driving transistor are connected even if the electro-optic element is connected to the driving transistor as a source follower. The inter-voltage V GS is maintained even if the source voltage changes. As a result, a drive current corresponding to the data signal supplied via the data line is supplied to the electro-optical element, and the electro-optical element can be operated with predetermined characteristics.

なお、本発明における電気光学装置に適用される電気光学素子は、電流の供給や電圧の印加といった電気的な作用を、輝度や透過率の変化といった光学的な作用に変換し、または光学的な作用を電気的な作用に変換する。このような電気光学素子の典型的な例は、画素回路から供給される電流に応じた輝度にて発光する有機EL素子である。もっとも、これ以外の電気光学素子を用いた装置にも本発明は適用され得る。   Note that the electro-optical element applied to the electro-optical device according to the present invention converts an electrical action such as supply of current or application of voltage into an optical action such as change in luminance or transmittance, or an optical effect. The action is converted into an electric action. A typical example of such an electro-optical element is an organic EL element that emits light with luminance corresponding to a current supplied from a pixel circuit. However, the present invention can be applied to apparatuses using other electro-optical elements.

また、好ましい態様において、複数の電気光学素子の各々は平面内の異なる位置に配置される。例えば、複数の電気光学素子は、行方向および列方向にわたってマトリクス状に配置される。   In a preferred embodiment, each of the plurality of electro-optic elements is disposed at a different position in the plane. For example, the plurality of electro-optical elements are arranged in a matrix over the row direction and the column direction.

さらに、上述した電気光学装置において、前記第1のキャパシタは、前記第1のスイッチトランジスタ及び前記複数のデータ線のうち対応するデータ線を介して供給されるデータ信号を電荷量として保持し、前記第2の電極は、前記駆動トランジスタと前記電気光学素子との間で接続され、前記スイッチ手段を導通することにより前記第1の所定電位に設定され、前記複数のデータ線のうち対応するデータ線を介してデータ信号が供給される以前に前記第1のスイッチトランジスタのデータ信号を保持する側の電極は、前記第2のスイッチトランジスタを導通することにより第2の所定電位に設定されることが好ましい。   Further, in the above-described electro-optical device, the first capacitor holds a data signal supplied via a corresponding data line among the first switch transistor and the plurality of data lines as a charge amount, and The second electrode is connected between the driving transistor and the electro-optic element, and is set to the first predetermined potential by conducting the switch means, and the corresponding data line among the plurality of data lines Before the data signal is supplied via the first switch transistor, the electrode on the side holding the data signal of the first switch transistor may be set to a second predetermined potential by conducting the second switch transistor. preferable.

この構成によれば、前記電荷保持用の第1のキャパシタの第2の電極が接続される前記駆動トランジスタのソース電極は、データ線を介して供給されるデータ信号が駆動トランジスタを駆動制御するように書き込まれるときに、スイッチ手段により接地電位もしくは所定の電位に設定される。これによりソース電極と第2の電源の間に電気光学素子が接続されていても、データ信号は常に一定の電位に対して書き込みがされるので、駆動トランジスタの駆動電流はデータ信号に1対1に対応した値にすることができる。よって電気光学素子を所定の特性で動作させることができる。   According to this configuration, the source electrode of the driving transistor to which the second electrode of the first capacitor for holding electric charge is connected is configured such that the data signal supplied via the data line drives and controls the driving transistor. Is set to the ground potential or a predetermined potential by the switch means. As a result, even when an electro-optic element is connected between the source electrode and the second power supply, the data signal is always written to a constant potential, so that the drive current of the drive transistor is 1: 1 to the data signal. Can be set to a value corresponding to. Therefore, the electro-optical element can be operated with predetermined characteristics.

本発明における電気光学装置におけるより具体的な態様において、前記所定電位は前記接地電位と同一である。この構成によれば、電気光学装置の電源数を増やさずに接地電位を用いることができ、電源コストの削減につながる。   In a more specific aspect of the electro-optical device according to the invention, the predetermined potential is the same as the ground potential. According to this configuration, the ground potential can be used without increasing the number of power supplies of the electro-optical device, which leads to a reduction in power supply cost.

本発明における電気光学装置におけるさらに具体的な態様において、前記駆動トランジスタはnチャネルトランジスタである。この態様によれば、有機EL素子の従来の製造方法を変更せずにTFT基板を構成するトランジスタの性能やTFT基板の生産性を考慮して最も最適なトランジスタを使って駆動回路の高性能化を図ることができる。   In a more specific aspect of the electro-optical device according to the invention, the driving transistor is an n-channel transistor. According to this aspect, the performance of the drive circuit is improved by using the most suitable transistor in consideration of the performance of the transistor constituting the TFT substrate and the productivity of the TFT substrate without changing the conventional manufacturing method of the organic EL element. Can be achieved.

さらに好ましい態様において、前記駆動トランジスタは、アモルファス薄膜トランジスタ(α−TFT)である。この構成によれば、駆動基板の大部分の面積を占める画素部分を同一種のチャネルトランジスタで構成できるためTFT基板製造が容易となる。マトリクス状に電気光学素子を多数配置した大型の電気光学パネルを大サイズ技術の確立したアモルファスTFT技術を用いて早期に実現することができる。またポリシリコンTFTを用いた場合にも、画素部分を同一種のチャネルトランジスタで構成することは、TFTの製造条件を最適化しやすく好ましい。   In a further preferred embodiment, the driving transistor is an amorphous thin film transistor (α-TFT). According to this configuration, the pixel portion that occupies most of the area of the drive substrate can be configured with the same type of channel transistor, and thus the TFT substrate can be easily manufactured. A large electro-optical panel in which a large number of electro-optical elements are arranged in a matrix can be realized at an early stage by using an amorphous TFT technology that has established a large-size technology. Even when a polysilicon TFT is used, it is preferable that the pixel portion is composed of the same type of channel transistor because it is easy to optimize the TFT manufacturing conditions.

他の態様において、前記複数の画素の各々に、前記複数のデータ線のうち対応するデータ線を介してデータ信号が供給される以前に、前記第1のスイッチトランジスタのデータ信号を保持する側の電極は、前記第1の所定電位とは別電位である第2の所定電位に設定されている。この構成によれば、前記駆動制御手段へデータ信号を書き込む前に所定の電位に初期化がされるので、駆動トランジスタのゲート電圧が交流化できること、あるいは駆動トランジスタの閾値補償検出をデータ信号の値に影響されずに行うことができることで、駆動トランジスタの閾値変動を抑制することができる。   In another aspect, before the data signal is supplied to each of the plurality of pixels via the corresponding data line among the plurality of data lines, the data signal of the first switch transistor is held on the side that holds the data signal The electrode is set to a second predetermined potential that is different from the first predetermined potential. According to this configuration, the data is initialized to a predetermined potential before the data signal is written to the drive control means, so that the gate voltage of the drive transistor can be changed to AC or the threshold compensation detection of the drive transistor can be detected as the value of the data signal. Since this can be performed without being influenced by the threshold voltage fluctuation of the driving transistor can be suppressed.

さらに他の態様において、前記複数の画素の各々は、前記第1のスイッチトランジスタのデータ信号を保持する側の電極と前記第2の所定電位との接続を制御する第2のスイッチトランジスタをさらに含み、前記第2のスイッチトランジスタの導通状態は、前記第1のスイッチトランジスタの導通状態を制御する走査信号が供給される以前に供給される周期信号により制御される。この構成によれば、前記駆動制御手段へデータ信号を書き込む前に初期化が必要な場合において、データ信号の書込みタイミングに影響を与えない他の期間を使って駆動制御手段の初期化が可能である。またこの初期化期間では有機EL素子は発光しないので、この初期化期間を動画ボケ対策としての消灯期間として用いてもよい。   In still another aspect, each of the plurality of pixels further includes a second switch transistor that controls a connection between an electrode on the data holding side of the first switch transistor and the second predetermined potential. The conduction state of the second switch transistor is controlled by a periodic signal supplied before the scanning signal for controlling the conduction state of the first switch transistor is supplied. According to this configuration, when initialization is required before writing a data signal to the drive control unit, the drive control unit can be initialized using another period that does not affect the data signal write timing. is there. Further, since the organic EL element does not emit light during this initialization period, this initialization period may be used as a light extinguishing period as a countermeasure against moving image blur.

さらに他の態様において、前記第2のスイッチトランジスタの導通状態を制御する前記周期信号は、前記第1のスイッチトランジスタの導通状態を制御する走査信号が供給される以前に前記複数ある走査線のうちのいずれかを介して供給される。この構成によれば、前記駆動制御手段へデータ信号を書き込む前に初期化が必要な場合において、周期的な書込み準備信号を走査信号で兼用することができる。これによって走査ドライバの内部回路規模や走査ドライバと有機ELパネルとの接続端子数の増加を抑制し、また駆動制御手段のサンプリング入力時間に影響を与えずに初期化できる。このことは、α−TFTのような駆動能力の低いトランジスタを用いても大規模でLCDより複雑なマトリクス駆動回路の実現が容易になる。   In yet another aspect, the periodic signal for controlling the conduction state of the second switch transistor is the scanning signal before the scan signal for controlling the conduction state of the first switch transistor is supplied. Supplied through either According to this configuration, when initialization is required before writing a data signal to the drive control means, a periodic write preparation signal can be used as a scanning signal. As a result, an increase in the internal circuit scale of the scan driver and the number of connection terminals between the scan driver and the organic EL panel can be suppressed, and initialization can be performed without affecting the sampling input time of the drive control means. This makes it easy to realize a large-scale and more complex matrix driving circuit than an LCD even when a transistor with low driving capability such as an α-TFT is used.

さらにリセット状態は、次のデータ信号の画素への書き込み時まで保持されるので、この期間を表示オフ状態(駆動オフ状態)にできる。この表示オフ期間の長さは、どの走査信号を書込み準備信号として使うかで決められる。よってアクティブ型ディスプレイにおいては、動画ボケ対策の必要度に合わせて電気光学素子の動作時間デューティを適宜変更できる。動作時間デューティは60〜10%が好ましい。   Further, since the reset state is held until the next data signal is written to the pixel, this period can be set to the display-off state (drive-off state). The length of this display off period is determined by which scanning signal is used as the write preparation signal. Therefore, in the active display, the operation time duty of the electro-optic element can be changed as appropriate in accordance with the necessity of countermeasures against moving image blur. The operating time duty is preferably 60 to 10%.

他の好ましい態様として、前記第2の電極は、前記駆動トランジスタのソースに接続され、少なくとも前記第1のキャパシタが前記データ信号に対応する電荷量を保持している期間は、前記駆動トランジスタの前記ソースと前記ゲートとの電位差は一定に保たれる。この構成によれば、前記キャパシタに保持された電荷量が保持され、駆動トランジスタのソースに対するゲートとの電位差が不変である。このため電気光学素子に対して駆動トランジスタがソースフォロア接続されてもデータ信号に対応する駆動電流を流すことができる。   In another preferred embodiment, the second electrode is connected to a source of the drive transistor, and at least during the period in which the first capacitor holds a charge amount corresponding to the data signal, The potential difference between the source and the gate is kept constant. According to this configuration, the amount of charge held in the capacitor is held, and the potential difference between the source and the gate of the driving transistor is unchanged. For this reason, even if the drive transistor is connected to the electro-optical element as a source follower, a drive current corresponding to the data signal can flow.

本発明の好ましい態様において、前記複数の画素の各々に、前記複数のデータ線のうち対応するデータ線を介して供給されるデータ信号が、遅くとも前記第1のスイッチトランジスタにより供給遮断される時までは、前記第2の電極は前記第1の所定電位に設定されている。この態様によれば、前記駆動トランジスタが有機EL素子をソース側に接続した場合であっても、データ信号の書込みが終了するタイミングまでには、前記駆動トランジスタの駆動電流を制御するゲート電圧の基準となるソース電圧が所定電位に設定されるので、前記キャパシタには前記所定電位を基準としてデータ信号に対応する電荷を蓄積することができる。これによって駆動トランジスタの駆動電流は、データ信号に1対1に対応した値にすることができる。よって有機EL素子を所定の輝度で発光させることができる。   In a preferred aspect of the present invention, a data signal supplied to each of the plurality of pixels via a corresponding data line among the plurality of data lines is not supplied by the first switch transistor at the latest. The second electrode is set to the first predetermined potential. According to this aspect, even when the driving transistor connects the organic EL element to the source side, the gate voltage reference for controlling the driving current of the driving transistor is reached by the time when the writing of the data signal is completed. Since the source voltage is set to a predetermined potential, the capacitor can store charges corresponding to the data signal with the predetermined potential as a reference. As a result, the drive current of the drive transistor can be set to a value corresponding to the data signal on a one-to-one basis. Therefore, the organic EL element can emit light with a predetermined luminance.

より好ましい態様において、前記複数の画素の各々は、前記第1の所定電位を前記複数の画素の各々に含まれる前記第2の電極に供給するための複数の第2の電源配線をさらに含む。この構成によれば、第1の所定電位を独立して前記各々の画素に供給できる。   In a more preferred aspect, each of the plurality of pixels further includes a plurality of second power supply lines for supplying the first predetermined potential to the second electrode included in each of the plurality of pixels. According to this configuration, the first predetermined potential can be independently supplied to each of the pixels.

他の態様において、前記複数の第1の電源配線と前記複数の第2の電源配線とは同一メタル配線層部分を有し、互いに交差して設けられている。この構成によれば、第1の電源配線を他の信号線や電源配線に優先して配置できるので、第1の電源配線を低インピーダンスおよび低クロストークで電源供給できる。またTFTの遮光層をメタル配線を使って効率よく形成することができる。   In another aspect, the plurality of first power supply lines and the plurality of second power supply lines have the same metal wiring layer portion and are provided so as to cross each other. According to this configuration, since the first power supply wiring can be arranged with priority over other signal lines and power supply wiring, the first power supply wiring can be supplied with low impedance and low crosstalk. Further, the light shielding layer of the TFT can be efficiently formed using metal wiring.

さらに他の態様において、前記電気光学素子は、有機EL素子である。この構成によれば、有機EL素子は駆動電圧が低く発光材料等の進歩によって次第に少ない駆動電流で高輝度の発光が可能になってきているので、大サイズのディスプレイを比較的低消費電力で実現できる。   In still another aspect, the electro-optical element is an organic EL element. According to this configuration, the organic EL element has a low driving voltage, and with the progress of light emitting materials, etc., it has become possible to emit light with a high luminance with a gradually decreasing driving current, so a large-sized display can be realized with relatively low power consumption. it can.

より具体的な態様において、前記第2のスイッチトランジスタ、前記バイアストランジスタ及び前記スイッチ手段は、共に共通の信号により制御される。この構成によれば、前記第2のスイッチトランジスタ及び前記スイッチ手段を制御する信号線数を最少化できるとともに、前記駆動トランジスタのゲートに接続されたキャパシタに正確にデータ信号を蓄積することができる。   In a more specific aspect, the second switch transistor, the bias transistor, and the switch means are all controlled by a common signal. According to this configuration, the number of signal lines for controlling the second switch transistor and the switch means can be minimized, and a data signal can be accurately stored in the capacitor connected to the gate of the drive transistor.

本発明によれば、従来の製法を用いた電気光学素子をα−TFTなどのモノチャネルTFTで構成された駆動回路で駆動できるので、従来不可能であった大サイズの電気光学装置を実現できる。特に有機ELディスプレイに適用した場合、極めて薄く高画質な大画面ディスプレイを実現するアクティブ基板を得ることができる。また輪郭のシャープな動画や表示の明るさを広い範囲に調節するために、各画素駆動回路に複数の異なる種類の周期的制御線が走査線方向に必要な場合でも、接続端子数を増やさずに走査線の組み合わせで制御できるので、より高精細で表現力の優れたディスプレイを実現できる。   According to the present invention, since an electro-optic element using a conventional manufacturing method can be driven by a drive circuit composed of a mono-channel TFT such as an α-TFT, a large-size electro-optic device that has been impossible in the past can be realized. . In particular, when applied to an organic EL display, it is possible to obtain an active substrate that realizes a very thin and high-quality large-screen display. Also, in order to adjust the video with sharp outlines and display brightness over a wide range, even if multiple different types of periodic control lines are required in the scan line direction for each pixel drive circuit, the number of connection terminals is not increased. In addition, since it can be controlled by a combination of scanning lines, a display with higher definition and superior expressive power can be realized.

(実施例1)
以下、図面を参照して、本発明の実施形態について説明する。以下に示す形態は本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更可能である。また、以下に示す各図においては、各構成要素を図面上で認識され得る程度の大きさとするため、各構成要素の寸法や比率などを実際のものとは適宜に異ならせてある。
Example 1
Embodiments of the present invention will be described below with reference to the drawings. The form shown below shows one mode of the present invention, does not limit the present invention, and can be arbitrarily changed within the scope of the present invention. Further, in the respective drawings shown below, the dimensions and ratios of the respective constituent elements are appropriately changed from the actual ones in order to make the respective constituent elements large enough to be recognized on the drawings.

まず、画像を表示するための装置として本発明に係る電気光学装置を有機EL表示装置に適用した形態を説明する。図6は、この有機EL表示装置110の構成を示す。有機EL表示装置110は、有機ELパネル111および有機ELパネル111を駆動する外部駆動回路を含む表示モジュール100、さらに周辺制御部により構成される。   First, a mode in which the electro-optical device according to the present invention is applied to an organic EL display device as a device for displaying an image will be described. FIG. 6 shows a configuration of the organic EL display device 110. The organic EL display device 110 includes an organic EL panel 111, a display module 100 including an external drive circuit that drives the organic EL panel 111, and a peripheral control unit.

この表示モジュール100は、有機ELパネル111と外部駆動回路から構成される。有機ELパネル111は、ガラス基板上において画像を表示するためにマトリクス状に配置される複数の表示画素PX、これら表示画素PXの行に沿って配置される複数の走査線11、これら表示画素PXの列に沿って配置される複数のデータ線12、および複数の画素電源線35を備える。また外部駆動回路は、複数の走査線を駆動する走査線ドライバ14、表示画素PX内の有機EL素子に駆動電流を供給する画素電源供給回路19およびデータ線に画素駆動信号を出力するデータ線ドライバ15よりなる。画素電源供給回路19は、表示画素PXの構成の違いによっては必要のない場合がある。   The display module 100 includes an organic EL panel 111 and an external drive circuit. The organic EL panel 111 includes a plurality of display pixels PX arranged in a matrix to display an image on a glass substrate, a plurality of scanning lines 11 arranged along the rows of the display pixels PX, and the display pixels PX. A plurality of data lines 12 and a plurality of pixel power supply lines 35 are provided along the column. The external driving circuit includes a scanning line driver 14 that drives a plurality of scanning lines, a pixel power supply circuit 19 that supplies a driving current to the organic EL elements in the display pixel PX, and a data line driver that outputs a pixel driving signal to the data lines. 15. The pixel power supply circuit 19 may not be necessary depending on the configuration of the display pixel PX.

第1の実施例である図1の表示画素回路においては、各表示画素PXは有機EL素子16、一対の第1と第2の電源端子VEと接地電源端子GND間で、この有機EL素子16に直列に接続されたnチャネル薄膜トランジスタ(TFT)である駆動トランジスタ17、この駆動トランジスタ17のゲート電圧を保持する保持キャパシタ18、有機EL素子16の端子間を略同電位とするnチャネルの導通トランジスタ22、データ線12から映像信号を選択的に駆動トランジスタ17のゲートに印加する画素選択スイッチ13、駆動トランジスタ17のゲート電位を所定電位(Vee)に初期化するリセットトランジスタ23により構成される。 In the display pixel circuit of FIG. 1 which is the first embodiment, each display pixel PX has an organic EL element 16 between the pair of first and second power supply terminals V E and the ground power supply terminal GND. Drive transistor 17 that is an n-channel thin film transistor (TFT) connected in series to 16, a holding capacitor 18 that holds the gate voltage of the drive transistor 17, and an n-channel continuity in which the terminals of the organic EL element 16 have substantially the same potential. The transistor 22 includes a pixel selection switch 13 that selectively applies a video signal from the data line 12 to the gate of the driving transistor 17, and a reset transistor 23 that initializes the gate potential of the driving transistor 17 to a predetermined potential (Vee).

電源端子VEは例えば+28Vの所定電位に設定され、接地電源端子GNDは所定電位より低い例えば0Vの電位に設定される。画素回路を構成するすべてのトランジスタはnチャネルTFTからなる。各画素選択スイッチ13は、対応走査線11から供給される走査信号により駆動されたときに対応データ線12から供給される映像信号の階調電圧Vsigを駆動トランジスタ17のゲートに印加する。駆動トランジスタ17はこの階調電圧Vsigに応じた駆動電流Idを有機EL素子16に供給する。有機EL素子16は、駆動電流Idに応じた輝度で発光する。 The power supply terminal V E is set to a predetermined potential of + 28V, for example, and the ground power supply terminal GND is set to a potential of 0V that is lower than the predetermined potential, for example. All the transistors constituting the pixel circuit are n-channel TFTs. Each pixel selection switch 13 applies the gradation voltage Vsig of the video signal supplied from the corresponding data line 12 to the gate of the driving transistor 17 when driven by the scanning signal supplied from the corresponding scanning line 11. The drive transistor 17 supplies a drive current Id corresponding to the gradation voltage Vsig to the organic EL element 16. The organic EL element 16 emits light with a luminance corresponding to the drive current Id.

データ線ドライバ15は、各水平走査期間において表示コントローラ103から出力される映像信号をデジタル形式からアナログ形式に変換して映像信号の電圧を複数のデータ線12に並列的に供給する。走査線ドライバ14は各垂直走査期間において順次複数の走査線11に走査信号を供給する。各行の画素選択スイッチ13は、これら走査線11のうちの対応する1本から共通に供給される走査信号により1水平走査期間だけ導通し、走査信号が再び1垂直走査期間後に供給されるまでの期間(1フレーム)非導通となる。1行分の駆動トランジスタ17は、これら画素選択スイッチ13の導通により、それぞれが接続するデータ線12から供給される映像信号の電圧に対応した駆動電流を有機EL素子16にそれぞれ供給する。   The data line driver 15 converts the video signal output from the display controller 103 in each horizontal scanning period from a digital format to an analog format, and supplies the voltage of the video signal to the plurality of data lines 12 in parallel. The scanning line driver 14 sequentially supplies scanning signals to the plurality of scanning lines 11 in each vertical scanning period. The pixel selection switches 13 in each row are turned on for one horizontal scanning period by a scanning signal supplied in common from one of these scanning lines 11 until the scanning signal is supplied again after one vertical scanning period. Period (one frame) becomes non-conductive. The drive transistors 17 for one row supply drive currents corresponding to the voltages of the video signals supplied from the data lines 12 to which the pixel selection switches 13 are connected to the organic EL elements 16, respectively.

また、走査線ドライバ14は、各走査信号の出力に先だって駆動トランジスタ17のゲートと電源Vee間に接続されたリセットトランジスタ23を導通させ、一時的に駆動トランジスタのゲート電位を所定の電圧Veeにして有機EL素子に駆動電流が流れないように、周期的な書き込み準備信号Rを出力するよう構成される。書き込み準備信号Rは、図6に示すように各走査線より一行分もしくは特定行分前段の画素回路に対して出力される走査線の信号を用いてもよい。これは走査線の配線追加で実現でき、有機ELパネル111と走査線ドライバとの接続端子数を増加させない。ちなみに初段画素回路に接続される書き込み準備信号線36は、走査線ドライバ14の後段から出力される走査線を用いればよい。このリセット状態は、次のデータ信号の画素への書き込み時まで保持されるので、この期間を強制的な表示オフ期間(駆動オフ期間)にできる。この表示オフ期間の長さは、どの走査信号を書き込み準備信号として使うかで決められる。よってアクティブ型ディスプレイにおいては、動画ボケ対策の必要度に合わせて有機EL素子16の発光時間デューティを適宜変更できる。発光時間デューティは60〜10%が好ましい。   Further, the scanning line driver 14 conducts the reset transistor 23 connected between the gate of the driving transistor 17 and the power source Vee prior to the output of each scanning signal, and temporarily sets the gate potential of the driving transistor to a predetermined voltage Vee. A periodic write preparation signal R is output so that a drive current does not flow through the organic EL element. As the write preparation signal R, as shown in FIG. 6, a signal of a scanning line that is output from each scanning line to the pixel circuit of one row or a specific row before the scanning line may be used. This can be realized by adding scanning lines, and does not increase the number of connection terminals between the organic EL panel 111 and the scanning line driver. Incidentally, the write preparation signal line 36 connected to the first stage pixel circuit may be a scan line output from the subsequent stage of the scan line driver 14. Since this reset state is held until the next data signal is written to the pixel, this period can be set as a forced display off period (drive off period). The length of this display off period is determined by which scanning signal is used as the write preparation signal. Therefore, in the active display, the light emission time duty of the organic EL element 16 can be changed as appropriate in accordance with the necessity of countermeasures against moving image blur. The light emission time duty is preferably 60 to 10%.

表示画素PXは、さらに駆動トランジスタ17のゲート電極とソース電極間に接続される保持キャパシタ18、および駆動トランジスタ17のソース電極およびGND電極間に接続される導通トランジスタ22を含む。導通トランジスタ22のゲート電極には、走査線11が接続され、画素選択スイッチ13の導通と同時に導通する。これによって有機EL素子16の端子間電圧に影響されずに、保持キャパシタ18には対応データ線12から供給される映像信号の階調電圧Vsigが蓄積される。この導通トランジスタ22が導通している間は有機EL素子16に電流が流れないので、有機EL素子16は発光しない。なお導通トランジスタ22が導通するときと同期して、電源VEと駆動トランジスタ17の間に非導通にするためのスイッチを設けてもよい。   The display pixel PX further includes a holding capacitor 18 connected between the gate electrode and the source electrode of the drive transistor 17 and a conduction transistor 22 connected between the source electrode and the GND electrode of the drive transistor 17. The scanning line 11 is connected to the gate electrode of the conduction transistor 22 and is turned on simultaneously with the conduction of the pixel selection switch 13. Thus, the gradation voltage Vsig of the video signal supplied from the corresponding data line 12 is accumulated in the holding capacitor 18 without being affected by the voltage between the terminals of the organic EL element 16. While the conducting transistor 22 is conducting, no current flows through the organic EL element 16, so the organic EL element 16 does not emit light. In synchronization with the conduction of the conducting transistor 22, a switch for making it non-conductive may be provided between the power source VE and the driving transistor 17.

次に走査線が非選択状態になり画素選択スイッチ13および導通トランジスタ22が非導通になると、保持キャパシタ18に蓄えられた電圧に対応する定電流が駆動トランジスタ17から有機EL素子16へ供給され、有機EL素子が発光する。この場合、駆動トランジスタ17のソース電位は有機EL素子16の電位の上昇に応じて上昇しソースフォロア様の状態になるが、保持キャパシタ18によって駆動トランジスタのソースおよびゲート電極間の電位は保持される。また電源端子VEは、駆動トランジスタ17が飽和領域で動作するに必要な電圧が供給されている。これにより駆動トランジスタ17は、ゲート電位に対応する定電流を有機EL素子16に供給し、次の書込み準備信号Rが入力されるまでの1フレーム期間、一定輝度で有機EL素子16が発光することになる。 Next, when the scanning line is in a non-selected state and the pixel selection switch 13 and the conducting transistor 22 are turned off, a constant current corresponding to the voltage stored in the holding capacitor 18 is supplied from the driving transistor 17 to the organic EL element 16. The organic EL element emits light. In this case, the source potential of the drive transistor 17 rises as the potential of the organic EL element 16 rises and becomes a source follower-like state, but the potential between the source and gate electrodes of the drive transistor is held by the holding capacitor 18. . The power supply terminal V E is supplied with a voltage necessary for the drive transistor 17 to operate in the saturation region. As a result, the drive transistor 17 supplies a constant current corresponding to the gate potential to the organic EL element 16, and the organic EL element 16 emits light with a constant luminance for one frame period until the next write preparation signal R is input. become.

この一連のタイミングチャートを示したのが図2である。図中、駆動トランジスタ17のドレインからみたゲート電圧VGDは、交流的に変化する。これにより画質を維持するために特性安定性が特に要求される駆動トランジスタ17の閾値変動が抑制される。またα−TFTの駆動能力が劣る面に関しては、低温ポリシリコンTFTの場合に比べて10数V電圧を高くすれば低温ポリシリコンと同等の駆動能力が得られる。 This series of timing charts is shown in FIG. In the figure, the gate voltage V GD as viewed from the drain of the drive transistor 17 changes in an alternating manner. As a result, fluctuations in the threshold value of the drive transistor 17 that particularly require characteristic stability in order to maintain image quality are suppressed. In terms of the inferior driving capability of the α-TFT, a driving capability equivalent to that of the low-temperature polysilicon can be obtained by increasing the voltage by several tens of V compared to the case of the low-temperature polysilicon TFT.

なお上記の説明では、導通トランジスタ22のソース電極は、有機EL素子16の共通電極(カソード)と接続したが、有機EL素子16が発光しない範囲の特定電圧供給線を設けて接続してもよい。この特定電圧値は、有機EL素子16の閾値電圧に近い値にしておけば、有機EL素子に寄生するキャパシタによる発光遅延を抑制する効果もある。また駆動トランジスタ17の特性バラツキを抑制するために、駆動トランジスタ17を複数のトランジスタを並列接続した構成としてもよい。
(実施例2)
In the above description, the source electrode of the conduction transistor 22 is connected to the common electrode (cathode) of the organic EL element 16, but may be connected by providing a specific voltage supply line in a range where the organic EL element 16 does not emit light. . If the specific voltage value is set to a value close to the threshold voltage of the organic EL element 16, there is also an effect of suppressing light emission delay due to a capacitor parasitic on the organic EL element. In order to suppress variation in characteristics of the drive transistor 17, the drive transistor 17 may be configured by connecting a plurality of transistors in parallel.
(Example 2)

図3は、本発明の第2の実施形態を示す表示画素回路である。この図の表示画素PXは、画素選択スイッチ13および駆動トランジスタ17のゲート電極間に直列に接続されるキックキャパシタ20、駆動トランジスタ17のゲート電極およびドレイン電極間に接続されるバイアストランジスタ21、駆動トランジスタ17のゲート電極およびソース電極間に接続される保持キャパシタ18、有機ELの画素電極および共通電極(カソード)間を短絡する導通トランジスタ22、および画素選択スイッチ13およびキックキャパシタ20の接続点と電源Vee間に接続されるリセットトランジスタ23で構成される駆動トランジスタ17の閾値補償回路を含む。   FIG. 3 is a display pixel circuit showing a second embodiment of the present invention. The display pixel PX in this figure includes a kick capacitor 20 connected in series between the pixel selection switch 13 and the gate electrode of the drive transistor 17, a bias transistor 21 connected between the gate electrode and the drain electrode of the drive transistor 17, and a drive transistor. The holding capacitor 18 connected between the gate electrode and the source electrode 17, the conduction transistor 22 that short-circuits between the pixel electrode and the common electrode (cathode) of the organic EL, and the connection point between the pixel selection switch 13 and the kick capacitor 20 and the power source Vee A threshold compensation circuit for the drive transistor 17 including the reset transistor 23 connected therebetween is included.

表示画素回路中の各トランジスタはnチャネルTFTで構成され、画素選択スイッチ13は外部からの走査信号SELで制御され、バイアストランジスタ21、導通トランジスタ22およびリセットトランジスタ23は外部からの書き込み準備信号Rで制御される。この制御により、バイアストランジスタ21は所定電圧Veeがリセットトランジスタ23を介して供給される間だけ導通し、同時に導通トランジスタ22が導通して接地電位GNDが駆動トランジスタ17のソース電極に供給される。このとき有機EL素子16は発光しない。   Each transistor in the display pixel circuit is composed of an n-channel TFT, the pixel selection switch 13 is controlled by a scanning signal SEL from the outside, and the bias transistor 21, the conduction transistor 22 and the reset transistor 23 are by a write preparation signal R from the outside. Be controlled. By this control, the bias transistor 21 is turned on only while the predetermined voltage Vee is supplied via the reset transistor 23, and at the same time, the conduction transistor 22 is turned on and the ground potential GND is supplied to the source electrode of the drive transistor 17. At this time, the organic EL element 16 does not emit light.

この閾値補償回路では、周期的に入来する走査信号SELに先立って書き込み準備信号Rがリセットトランジスタ23のゲート電極に与えられ、所定電圧Veeがリセットトランジスタ23を介して供給されると同時にバイアストランジスタ21および導通トランジスタ22が導通する。このとき電源VELはハイインピーダンス状態になっているが、電源線35にある残留電荷からバイアストランジスタ21を介して流れる電流により、ゲート電圧が駆動トランジスタ17の閾値電圧Vthに等しくなるまで駆動トランジスタ17のゲート電極およびキックキャパシタ20間のノード電位が上昇する。   In this threshold value compensation circuit, a write preparation signal R is applied to the gate electrode of the reset transistor 23 prior to the periodically coming scanning signal SEL, and at the same time a predetermined voltage Vee is supplied via the reset transistor 23, the bias transistor 21 and the conduction transistor 22 become conductive. At this time, the power source VEL is in a high impedance state, but the current of the drive transistor 17 is changed until the gate voltage becomes equal to the threshold voltage Vth of the drive transistor 17 due to the current flowing through the bias transistor 21 from the residual charge on the power line 35. The node potential between the gate electrode and the kick capacitor 20 rises.

ノード電位が安定した後、書き込み準備信号Rが非能動状態(“L”レベル)になることによって、リセットトランジスタ23、導通トランジスタ22およびバイアストランジスタ21が非導通となる。これによって保持キャパシタ18の第2電極はGND電位に設定され、有機EL素子16は非発光状態となる。この状態は、電源VELがハイインピーダンス状態の間保持される。即ち、書き込み準備信号Rと走査信号SELとの入力タイミングに時間差があっても前記の状態は保持され、有機EL素子16は発光しない。次に走査信号が画素選択スイッチ13のゲート電極に与えられて映像信号電圧が供給されると、これにより駆動トランジスタ17のゲート電極およびキックキャパシタ20間のノード電位VG2が、閾値電圧Vthを映像信号電圧に加えたレベルとなる。次に前記走査信号SELが非選択状態になり画素選択スイッチ13が非導通になってから電源VELが供給され、Vth補償された所定の駆動電流が電源VELから駆動トランジスタ17を介して有機EL素子16に流れる。ここで、実施例1で説明したように駆動トランジスタ17のソース電位は有機EL素子の電極間電位の上昇に応じて上昇しソースフォロア様の状態になるが、保持キャパシタ18によって駆動トランジスタのソースおよびゲート電極間の電位は保持される。これにより駆動電流は所定電圧Veeと映像信号電圧との電位差により決定されることになり、駆動トランジスタ17の閾値電圧Vthにバラツキがあっても、駆動電流は影響されなくなる。 After the node potential is stabilized, the write preparation signal R becomes inactive (“L” level), whereby the reset transistor 23, the conduction transistor 22, and the bias transistor 21 become non-conduction. As a result, the second electrode of the holding capacitor 18 is set to the GND potential, and the organic EL element 16 enters a non-light emitting state. This state is maintained while the power supply VEL is in a high impedance state. That is, even if there is a time difference between the input timings of the write preparation signal R and the scanning signal SEL, the above state is maintained and the organic EL element 16 does not emit light. Next, when the scanning signal is applied to the gate electrode of the pixel selection switch 13 and the video signal voltage is supplied, the node potential V G2 between the gate electrode of the driving transistor 17 and the kick capacitor 20 causes the threshold voltage Vth to be imaged. The level is added to the signal voltage. Next, after the scanning signal SEL is in a non-selected state and the pixel selection switch 13 becomes non-conductive, the power source VEL is supplied, and a predetermined driving current compensated for Vth is supplied from the power source VEL through the driving transistor 17 to the organic EL element. 16 flows. Here, as described in the first embodiment, the source potential of the drive transistor 17 increases in accordance with the increase in the interelectrode potential of the organic EL element, and becomes a source follower-like state. The potential between the gate electrodes is maintained. As a result, the drive current is determined by the potential difference between the predetermined voltage Vee and the video signal voltage, and the drive current is not affected even if the threshold voltage Vth of the drive transistor 17 varies.

この一連のタイミング動作を示したものが図4である。表示中は、この一連の動作が周期的に繰り返される。図中、駆動トランジスタ17のドレインからみたゲート電圧VG2Dは、GND電位を挟んで交流的に変化する。これにより画質を維持するために特性安定性が特に要求される駆動トランジスタ17の閾値変動が抑制される。 FIG. 4 shows this series of timing operations. During the display, this series of operations is periodically repeated. In the figure, the gate voltage V G2D viewed from the drain of the driving transistor 17 changes in an alternating manner with the GND potential interposed therebetween. As a result, fluctuations in the threshold value of the drive transistor 17 that particularly require characteristic stability in order to maintain image quality are suppressed.

なお駆動トランジスタ17は、特性バラツキを抑制するために図7に示すように駆動トランジスタの配置を上下、左右の2方向もしくは複数トランジスタに分割し並列接続するようにしてもよい。あるいは電界が一様になりやすいリングゲート構造にしてもよい。(実施例3)   In order to suppress variation in characteristics, the drive transistor 17 may be arranged in parallel in the arrangement of the drive transistor in two directions, upper and lower, left and right, or a plurality of transistors as shown in FIG. Alternatively, a ring gate structure in which the electric field tends to be uniform may be used. (Example 3)

本発明の第3の実施形態を図5に示す表示画素回路および図10のタイミングチャートに基づき説明する。この図5の表示画素PXは、実施例1および2と異なる電流プログラム型の画素回路である。この図5の表示画素PXは、データ線58に接続される画素選択スイッチ50、画素選択スイッチ50および接地電源配線60(GND)に接続される変換トランジスタ52、変換トランジスタ52のゲート電極とドレイン電極間を接続するバイアストランジスタ51、変換トランジスタ52のゲート電極にゲート電極が接続され変換トランジスタ52とカレントミラー回路を構成する駆動トランジスタ53、駆動トランジスタ53のゲート電極と有機EL素子16の間に接続されるキャパシタ55、有機EL素子16の画素電極(アノード)と共通電極(カソード)間を接続する導通トランジスタ54、駆動トランジスタ53のドレイン電極に接続される電源VELから構成される。   A third embodiment of the present invention will be described based on the display pixel circuit shown in FIG. 5 and the timing chart of FIG. The display pixel PX of FIG. 5 is a current program type pixel circuit different from the first and second embodiments. The display pixel PX of FIG. 5 includes a pixel selection switch 50 connected to the data line 58, a conversion transistor 52 connected to the pixel selection switch 50 and the ground power supply wiring 60 (GND), and a gate electrode and a drain electrode of the conversion transistor 52. The gate electrode is connected to the gate electrode of the bias transistor 51 and the conversion transistor 52 connected between the conversion transistor 52 and the drive transistor 53 constituting the current mirror circuit, and is connected between the gate electrode of the drive transistor 53 and the organic EL element 16. A capacitor 55, a conduction transistor 54 connecting the pixel electrode (anode) and the common electrode (cathode) of the organic EL element 16, and a power source VEL connected to the drain electrode of the drive transistor 53.

表示画素回路中の各トランジスタはnチャネルTFTで構成され、画素選択スイッチ50および導通トランジスタ54は、外部からの走査信号SELで制御され、バイアストランジスタ51は、外部からの周期的なイレーズ信号ERで制御される。   Each transistor in the display pixel circuit is composed of an n-channel TFT, the pixel selection switch 50 and the conduction transistor 54 are controlled by a scanning signal SEL from the outside, and the bias transistor 51 is a periodic erase signal ER from the outside. Be controlled.

先ず、電流プログラム時には走査信号SELおよびイレーズ信号ERを選択状態にする。ただしイレーズ信号ERは、図10に示すように走査信号SELに先行して選択状態にしバイアストランジスタ51を導通させ駆動トランジスタ53のゲート電極をほぼオフ電位にしてもよい。この場合イレーズ信号ERは、走査信号SELおよび前記走査信号SELより前に供給される複数の走査線出力のうちのいずれか一つを論理和(OR)して用いてもよい。これにより実施例1,2で説明した動画ボケ対策のための表示オフ期間を設定できる。これにより各画素の1フレーム期間のうち非発光期間が周期的に必ず挿入され、動画像の輪郭がボケて見える現象を防止できる。動画ボケ対策のための発光時間の割合は、全期間の60〜10%が好ましい。   First, at the time of current programming, the scanning signal SEL and the erase signal ER are selected. However, the erase signal ER may be selected prior to the scanning signal SEL, as shown in FIG. 10, so that the bias transistor 51 is turned on and the gate electrode of the drive transistor 53 is substantially turned off. In this case, the erase signal ER may be used by ORing (ORing) any one of the scanning signal SEL and a plurality of scanning line outputs supplied before the scanning signal SEL. Thereby, the display off period for the moving image blur countermeasure described in the first and second embodiments can be set. As a result, a non-light emission period is always periodically inserted in one frame period of each pixel, and a phenomenon in which the outline of a moving image is blurred can be prevented. The ratio of the light emission time for preventing moving image blur is preferably 60 to 10% of the entire period.

次いで走査信号SELが選択状態になると導通トランジスタ54は導通し、駆動トランジスタ53のソース電極の電位VELCは接地電源GNDと略同電位となる。またこのとき画素選択スイッチ50とバイアストランジスタ51は導通しているので、データ線58に映像信号に対応する電流源CSを接続することにより、変換トランジスタ52に映像信号の輝度情報に応じた信号電流Iwが流れる。電流源CSは、図6のデータ線ドライバ15内にあって輝度情報に応じて制御される可変電流源である。このとき変換トランジスタ52のゲート電極およびドレイン電極は、バイアストランジスタ51で短絡されているので、変換トランジスタ52は飽和領域で動作する。このときの変換トランジスタ52のゲート・ソース間電圧Vgsは、保持キャパシタ55に蓄積される。走査信号SELが選択状態の間、導通トランジスタ54が導通しているので、駆動トランジスタ53のゲート電極にバイアス電圧Vgsが印加されていても有機EL素子16には電流IELは流れない。   Next, when the scanning signal SEL is selected, the conducting transistor 54 is turned on, and the potential VELC of the source electrode of the driving transistor 53 becomes substantially the same potential as the ground power supply GND. At this time, since the pixel selection switch 50 and the bias transistor 51 are conductive, by connecting the current source CS corresponding to the video signal to the data line 58, the signal current corresponding to the luminance information of the video signal is connected to the conversion transistor 52. Iw flows. The current source CS is a variable current source that is in the data line driver 15 of FIG. 6 and is controlled according to luminance information. At this time, since the gate electrode and the drain electrode of the conversion transistor 52 are short-circuited by the bias transistor 51, the conversion transistor 52 operates in a saturation region. At this time, the gate-source voltage Vgs of the conversion transistor 52 is stored in the holding capacitor 55. Since the conducting transistor 54 is conducting while the scanning signal SEL is in the selected state, the current IEL does not flow through the organic EL element 16 even when the bias voltage Vgs is applied to the gate electrode of the driving transistor 53.

次に走査信号SELおよびイレーズ信号ERが非選択状態になる。これによって画素選択スイッチ(トランジスタ)50、バイアストランジスタ51および導通トランジスタ54は非導通となり、キャパシタ55に蓄積されたゲート・ソース間電圧Vgsは、保持される。よって変換トランジスタ52とカレントミラーの関係にある駆動トランジスタ53は、変換トランジスタ52と駆動トランジスタ53のサイズ比で減流された駆動電流を電源VELから有機EL素子16に流し込む。以上の動作が1フレーム毎に周期的に繰り返され、表示が行われる。   Next, the scanning signal SEL and the erase signal ER are not selected. As a result, the pixel selection switch (transistor) 50, the bias transistor 51, and the conduction transistor 54 are rendered non-conductive, and the gate-source voltage Vgs stored in the capacitor 55 is maintained. Therefore, the drive transistor 53 in a current mirror relationship with the conversion transistor 52 flows the drive current reduced by the size ratio of the conversion transistor 52 and the drive transistor 53 from the power supply VEL to the organic EL element 16. The above operation is periodically repeated for each frame, and display is performed.

ここで、実施例1で説明したように駆動トランジスタ53のソース電位VELCは有機EL素子16の電位の上昇に応じて上昇しソースフォロア様の状態になるが、保持キャパシタ55によって駆動トランジスタ53のソースおよびゲート電極間の電位は、電流プログラム時の値が保持される。これによって有機EL素子16には、映像信号の輝度情報に応じた定電流が流れ、次の電流プログラムがされるまでの期間(1フレーム)発光輝度を維持するように駆動される。変換トランジスタ52および駆動トランジスタ53のゲート電位は、一方向のバイアスが印加され閾値変動が起き易いが、電流プログラム時に閾値変動を吸収するように補償される。   Here, as described in the first embodiment, the source potential VELC of the drive transistor 53 increases in accordance with the increase of the potential of the organic EL element 16 and becomes a source follower-like state. As for the potential between the gate electrode and the gate electrode, the value at the time of current programming is maintained. As a result, a constant current corresponding to the luminance information of the video signal flows through the organic EL element 16, and the organic EL element 16 is driven so as to maintain the light emission luminance during a period (one frame) until the next current program is performed. The gate potentials of the conversion transistor 52 and the drive transistor 53 are biased in one direction and are subject to threshold fluctuations, but are compensated to absorb the threshold fluctuations during current programming.

なお電流プログラム時の保持電圧Vgsの精度を上げるために、駆動トランジスタ53と電源VELの間にスイッチトランジスタを設けるか、あるいは実施例2のように電源VELをハイインピーダンスにして有機EL素子16に電流を流さないようにしてもよい。また、有機EL素子の製造方法が進歩し、アノードコモン型の有機EL素子が容易に製造可能になり、有機EL素子16を駆動トランジスタ53のドレイン側に接続できるようになれば、有機EL素子16と並列に接続される導通トランジスタ54は不要としてもよい。だだし、画素回路への電流プログラム時に有機EL素子16を非発光にする場合には必要である。また、電流プログラム時に導通トタンジスタ54のソース電極を接地電源GNDとは別電源に接続し、ドレイン電極を有機EL素子16と駆動トランジスタ53の接続点に接続して有機EL素子16や駆動トランジスタ53に逆バイアスを印加するようにしてもよい。   In order to increase the accuracy of the holding voltage Vgs at the time of current programming, a switch transistor is provided between the driving transistor 53 and the power source VEL, or the power source VEL is set to a high impedance as in the second embodiment to supply current to the organic EL element 16. You may make it not flow. Further, if the manufacturing method of the organic EL element advances and the anode common type organic EL element can be easily manufactured and the organic EL element 16 can be connected to the drain side of the driving transistor 53, the organic EL element 16 And the conduction transistor 54 connected in parallel with each other may be unnecessary. However, it is necessary when the organic EL element 16 is made to emit no light during current programming to the pixel circuit. Further, during current programming, the source electrode of the conduction transistor 54 is connected to a power supply different from the ground power supply GND, and the drain electrode is connected to the connection point between the organic EL element 16 and the driving transistor 53 to connect the organic EL element 16 and the driving transistor 53 to each other. A reverse bias may be applied.

図7は、図3の表示画素PX周辺の平面構造を示し、図8は図7に示すA−B線に沿った断面構造を示す。図8に示すメタル配線層35は表示画素PXの行毎に設けられる電源線VELであり、駆動トランジスタ17、導通トランジスタ22、画素選択スイッチ13およびバイアストランジスタ21の領域に配置され、図7および図8に示すようにトランジスタのチャネル領域を覆うように形成される。保持キャパシタ18はメタル配線層35およびゲート配線17G間の容量結合により形成され、キックキャパシタ20はゲート配線17Gおよび画素選択スイッチ13のソース電極メタル配線39間の容量結合により形成される。キックキャパシタ20および保持キャパシタ18の容量値は、ノードVG1およびノードVG2に寄生的に形成される容量値に比べて極めて大きな値を持つ。   7 shows a planar structure around the display pixel PX in FIG. 3, and FIG. 8 shows a cross-sectional structure along the line AB in FIG. The metal wiring layer 35 shown in FIG. 8 is a power supply line VEL provided for each row of the display pixels PX, and is disposed in the region of the drive transistor 17, the conduction transistor 22, the pixel selection switch 13, and the bias transistor 21, and FIG. As shown in FIG. 8, it is formed so as to cover the channel region of the transistor. The holding capacitor 18 is formed by capacitive coupling between the metal wiring layer 35 and the gate wiring 17G, and the kick capacitor 20 is formed by capacitive coupling between the gate wiring 17G and the source electrode metal wiring 39 of the pixel selection switch 13. The capacitance values of the kick capacitor 20 and the holding capacitor 18 have extremely large values compared to the capacitance values formed parasitically at the nodes VG1 and VG2.

図7では、ボトムエミッションを想定し有機EL素子16をTFT配置領域と分離して配置しているが、平坦化された層間膜44上に画素領域全面を使う形で有機EL素子を形成するトップエミッション構造とすることも可能である。この場合においても接地電源配線38(GND)および発光素子16の駆動電源配線であるVEL電源線35は、図8に示すメタル配線層(35や39等)と同一層内の部分をもち、接地電源配線38(GND)はVEL電源線35と交差して配置される。発光素子16の接地電源GNDである共通電極は、発光素子層の最上面電極として別に形成されるので、接地電源配線38(GND)には、直接発光素子16の駆動電流を流さなくともよい。このため半導体アイランドを使ってVEL電源線35と立体交差する部分を形成しても画素回路の動作特性に影響を与え難い。   In FIG. 7, the organic EL element 16 is arranged separately from the TFT arrangement region assuming bottom emission, but the top in which the organic EL element is formed using the entire pixel region on the planarized interlayer film 44. An emission structure is also possible. Also in this case, the ground power supply wiring 38 (GND) and the VEL power supply line 35 which is the drive power supply wiring of the light emitting element 16 have a portion in the same layer as the metal wiring layer (35, 39, etc.) shown in FIG. The power supply wiring 38 (GND) is arranged so as to cross the VEL power supply line 35. Since the common electrode which is the ground power supply GND of the light emitting element 16 is separately formed as the uppermost electrode of the light emitting element layer, the drive current for the light emitting element 16 does not have to flow directly to the ground power supply wiring 38 (GND). For this reason, even if a three-dimensional intersection with the VEL power supply line 35 is formed using a semiconductor island, it is difficult to affect the operation characteristics of the pixel circuit.

次に本発明に適用可能な発光素子について説明する。
本発明が適用可能な発光素子は、低分子、高分子もしくはデンドリマー等の発光有機材料を用いた有機EL素子、フィールドエミッション素子(FED)、表面伝導型エミッション素子(SED)、弾道電子放出素子(BSD)、発光ダイオード(LED)などの自発光素子が好適に挙げられる。
Next, a light-emitting element applicable to the present invention will be described.
The light-emitting element to which the present invention can be applied includes an organic EL element, a field emission element (FED), a surface conduction emission element (SED), a ballistic electron emission element (a light emitting organic material such as a low molecule, a polymer, or a dendrimer) ( Preferred examples include self-luminous elements such as BSD) and light-emitting diodes (LEDs).

なお、本発明が適用され得る駆動装置は、上記した発光素子を用いたディスプレイ、光書き込み型のプリンタや電子複写機などの書き込みヘッド、などが挙げられる。また本発明の電気光学装置は、大画面テレビ、コンピュータモニター、表示兼用照明装置、携帯電話機、ゲーム機、電子ペーパー、ビデオカメラ、デジタルスチルカメラ、カーナビゲーション装置、カーステレオ、運転操作パネル、プリンタ、スキャナ、複写機、ビデオプレーヤ、ページャ、電子手帳、電卓、ワードプロセッサなど、画像を表示する機能を備えた各種の電子機器に適用され得る。   Note that examples of a driving device to which the present invention can be applied include a display using the above-described light emitting element, a writing head such as an optical writing type printer or an electronic copying machine, and the like. The electro-optical device of the present invention includes a large-screen television, a computer monitor, a display / lighting device, a mobile phone, a game machine, electronic paper, a video camera, a digital still camera, a car navigation device, a car stereo, a driving operation panel, a printer, The present invention can be applied to various electronic devices having a function of displaying an image, such as a scanner, a copier, a video player, a pager, an electronic notebook, a calculator, and a word processor.

本発明の第1の実施形態に係る画素回路の構成を示す図である。1 is a diagram illustrating a configuration of a pixel circuit according to a first embodiment of the present invention. 図1の画素回路の動作を説明するためのタイミングチャートである。3 is a timing chart for explaining the operation of the pixel circuit of FIG. 1. 本発明の第2の実施形態に係る画素回路の構成を示す図である。It is a figure which shows the structure of the pixel circuit which concerns on the 2nd Embodiment of this invention. 図3の画素回路の動作を説明するためのタイミングチャートである。4 is a timing chart for explaining the operation of the pixel circuit of FIG. 3. 本発明の第3の実施形態に係る画素回路の構成を示す図である。It is a figure which shows the structure of the pixel circuit which concerns on the 3rd Embodiment of this invention. 本発明の実施形態に係る電気光学装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an electro-optical device according to an embodiment of the invention. FIG. 本発明の第2の実施形態に係る画素回路の平面レイアウト例を示す図である。It is a figure which shows the example of a plane layout of the pixel circuit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る画素回路の断面を示す図である。It is a figure which shows the cross section of the pixel circuit which concerns on the 2nd Embodiment of this invention. 従来の画素回路を示す図である。It is a figure which shows the conventional pixel circuit. 図5の画素回路の動作を説明するタイミングチャートである。6 is a timing chart for explaining the operation of the pixel circuit of FIG. 5.

符号の説明Explanation of symbols

PX…画素
11…走査線
12…データ線
13…画素選択スイッチ
14…走査線ドライバ
15…データ線ドライバ
16…発光素子(有機EL素子)
17……駆動トランジスタ
18……保持キャパシタ
19……画素電源供給回路
20……キックキャパシタ
21……バイアストランジスタ
22……導通トランジスタ
23……リセットトランジスタ
35……電源線(VEL)
36……書込み準備信号線
37……電源線(VE)
38……電源線(GND)
39……ソースメタル配線
70……電源線(Vee)
100……表示モジュール
101……電源
102……フレームメモリ
103……表示コントローラ
104……I/O
105……マイクロプロセッサ
110……有機EL表示装置
111……有機ELパネル
PX ... Pixel 11 ... Scanning line 12 ... Data line 13 ... Pixel selection switch 14 ... Scanning line driver 15 ... Data line driver 16 ... Light emitting element (organic EL element)
17... Drive transistor 18... Holding capacitor 19... Pixel power supply circuit 20... Kick capacitor 21... Bias transistor 22.
36 …… Write preparation signal line 37 …… Power supply line (VE)
38 …… Power supply line (GND)
39 …… Source metal wiring 70 …… Power supply line (Vee)
100 …… Display module 101 …… Power supply 102 …… Frame memory 103 …… Display controller 104 …… I / O
105 …… Microprocessor 110 …… Organic EL display device 111 …… Organic EL panel

Claims (15)

複数の走査線と、複数のデータ線と、前記複数の走査線と前記複数のデータ線との交差部に対応して配置された複数の画素と、複数の第1の電源配線と、を含み、
前記複数の画素の各々は、駆動トランジスタと、前記駆動トランジスタのソースと第1の所定電位との間に接続された電気光学素子と、前記複数の走査線のうち対応する走査線を介して供給される走査信号により導通が制御される第1のスイッチトランジスタと、第1の電極と第2の電極とにより容量を形成するキャパシタであって、前記第1の電極を前記駆動トランジスタのゲート側にして、前記駆動トランジスタのゲートとソースとの間に接続された第1のキャパシタと、前記第1のスイッチトランジスタと前記駆動トランジスタのゲートとの間に直列に接続された第2のキャパシタと、前記第1のスイッチトランジスタと前記第2のキャパシタとの接続点と第2の所定電位との間に接続された第2のスイッチトランジスタと、前記駆動トランジスタのゲートとドレインとの間に接続されたバイアストランジスタと、前記電気光学素子の両端の電極を短絡して、前記第2の電極と前記第1の所定電位との電気的接続を制御するスイッチ手段と、を含み、
前記第2のスイッチトランジスタおよび前記バイアストランジスタの導通状態は、前記対応する走査線を介して供給される走査信号とは別の周期信号により制御されることを特徴とする電気光学装置。
A plurality of scanning lines; a plurality of data lines; a plurality of pixels arranged corresponding to intersections of the plurality of scanning lines and the plurality of data lines; and a plurality of first power supply wirings. ,
Each of the plurality of pixels is supplied via a driving transistor, an electro-optical element connected between a source of the driving transistor and a first predetermined potential, and a corresponding scanning line among the plurality of scanning lines. A capacitor that forms a capacitance with the first switch transistor whose conduction is controlled by the scanning signal and the first electrode and the second electrode, and the first electrode is placed on the gate side of the driving transistor. A first capacitor connected between the gate and source of the drive transistor, a second capacitor connected in series between the first switch transistor and the gate of the drive transistor, a second switch transistor connected between the connection point and the second predetermined potential between said first switching transistor a second capacitor, the drive Switch and connected to bias transistor between the gate and drain of transistor, are short-circuited ends of the electrodes of the electro-optical element, to control the electrical connection between the first predetermined potential and said second electrode Means,
The electro-optical device, wherein conduction states of the second switch transistor and the bias transistor are controlled by a periodic signal different from a scanning signal supplied via the corresponding scanning line.
請求項1に記載の電気光学装置において、
前記第1のキャパシタは、前記第1のスイッチトランジスタ及び前記複数のデータ線のうち対応するデータ線を介して供給されるデータ信号を電荷量として保持し、
前記第2の電極は、前記駆動トランジスタと前記電気光学素子との間で接続され、前記スイッチ手段を導通することにより前記第1の所定電位に設定され、
前記複数のデータ線のうち対応するデータ線を介してデータ信号が供給される以前に前記第1のスイッチトランジスタのデータ信号を保持する側の電極は、前記第2のスイッチトランジスタを導通することにより前記第2の所定電位に設定されることを特徴とする電気光学装置。
The electro-optical device according to claim 1.
The first capacitor holds, as a charge amount, a data signal supplied via a corresponding data line among the first switch transistor and the plurality of data lines.
The second electrode is connected between the drive transistor and the electro-optic element, and is set to the first predetermined potential by conducting the switch means.
Before the data signal is supplied via the corresponding data line among the plurality of data lines, the electrode on the side of holding the data signal of the first switch transistor conducts the second switch transistor. electro-optical device characterized in that it is set to the second predetermined potential.
請求項1または2に記載の電気光学装置において、
前記第1の所定電位は接地電位と同一であることを特徴とする電気光学装置。
The electro-optical device according to claim 1,
The electro-optical device, wherein the first predetermined potential is the same as a ground potential.
請求項3に記載の電気光学装置において、
前記スイッチ手段は、前記周期信号により制御されることを特徴とする電気光学装置。
The electro-optical device according to claim 3.
The electro-optical device, wherein the switch unit is controlled by the periodic signal.
請求項1乃至4のいずれかに記載の電気光学装置において、
前記周期信号は、前記第1のスイッチトランジスタの導通状態を制御する走査信号が供給される以前に供給される走査信号とは別の信号であることを特徴とする電気光学装置。
The electro-optical device according to any one of claims 1 to 4,
The electro-optical device, wherein the periodic signal is a signal different from a scanning signal supplied before a scanning signal for controlling a conduction state of the first switch transistor is supplied.
請求項1乃至5のいずれかに記載の電気光学装置において、
前記周期信号により前記バイアストランジスタを導通させることにより、前記駆動トランジスタのゲート電圧を前記駆動トランジスタの閾値電圧まで上昇させることを特徴とする電気光学装置。
The electro-optical device according to any one of claims 1 to 5,
An electro-optical device, wherein the bias transistor is turned on by the periodic signal to raise the gate voltage of the driving transistor to a threshold voltage of the driving transistor.
請求項6に記載の電気光学装置において、
前記走査信号により前記第1のスイッチトランジスタを導通させ、前記データ信号を前記第2のキャパシタに供給することにより、前記駆動トランジスタのゲート電圧を調整することを特徴とする電気光学装置。
The electro-optical device according to claim 6.
An electro-optical device that adjusts a gate voltage of the drive transistor by making the first switch transistor conductive by the scanning signal and supplying the data signal to the second capacitor.
請求項7に記載の電気光学装置において、
前記第2の電極は、前記駆動トランジスタのソースに接続され、
少なくとも前記第1のキャパシタが前記データ信号に対応する電荷量を保持している期間は、前記駆動トランジスタの前記ソースと前記ゲートとの電位差は一定に保たれることを特徴とする電気光学装置。
The electro-optical device according to claim 7.
The second electrode is connected to a source of the driving transistor;
An electro-optical device, wherein a potential difference between the source and the gate of the driving transistor is kept constant at least during a period in which the first capacitor holds a charge amount corresponding to the data signal.
請求項1乃至8のいずれかに記載の電気光学装置において、
前記複数の画素の各々に、前記複数のデータ線のうち対応するデータ線を介して供給されるデータ信号が、前記第1のスイッチトランジスタにより供給遮断される時までは前記第2の電極は、前記第1の所定電位に設定されていることを特徴とする電気光学装置。
The electro-optical device according to claim 1,
Until the data signal supplied to each of the plurality of pixels via the corresponding data line among the plurality of data lines is cut off by the first switch transistor, the second electrode is The electro-optical device is set to the first predetermined potential.
請求項1乃至9のいずれかに記載の電気光学装置において、
前記複数の画素の各々を構成するすべてのトランジスタは同一の導電型であることを特徴とする電気光学装置。
The electro-optical device according to claim 1,
2. An electro-optical device, wherein all transistors constituting each of the plurality of pixels have the same conductivity type.
請求項1乃至9のいずれかに記載の電気光学装置において、
前記駆動トランジスタはnチャネルトランジスタであることを特徴とする電気光学装置。
The electro-optical device according to claim 1,
The electro-optical device, wherein the driving transistor is an n-channel transistor.
請求項1乃至11のいずれかに記載の電気光学装置において、
前記駆動トランジスタは、アモルファス薄膜トランジスタであることを特徴とする電気光学装置。
The electro-optical device according to any one of claims 1 to 11,
The electro-optical device, wherein the driving transistor is an amorphous thin film transistor.
請求項1乃至12のいずれかに記載の電気光学装置において、
前記複数の画素の各々は、前記第1の所定電位を前記複数の画素の各々に含まれる前記第2の電極に供給するための複数の第2の電源配線をさらに含むことを特徴とする電気光学装置。
The electro-optical device according to any one of claims 1 to 12,
Each of the plurality of pixels further includes a plurality of second power supply lines for supplying the first predetermined potential to the second electrode included in each of the plurality of pixels. Optical device.
請求項1乃至13のいずれかに記載の電気光学装置において、
前記電気光学素子は、有機EL素子であることを特徴とする電気光学装置。
The electro-optical device according to claim 1,
The electro-optical device is an organic EL element.
請求項1乃至14のいずれかに記載の電気光学装置を具備する電子機器。 An electronic apparatus comprising the electro-optical device according to claim 1.
JP2005356337A 2003-05-19 2005-12-09 Electro-optical device and electronic apparatus Expired - Fee Related JP4039441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356337A JP4039441B2 (en) 2003-05-19 2005-12-09 Electro-optical device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003140971 2003-05-19
JP2005356337A JP4039441B2 (en) 2003-05-19 2005-12-09 Electro-optical device and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004084650A Division JP3772889B2 (en) 2003-05-19 2004-03-23 Electro-optical device and driving device thereof

Publications (2)

Publication Number Publication Date
JP2006091923A JP2006091923A (en) 2006-04-06
JP4039441B2 true JP4039441B2 (en) 2008-01-30

Family

ID=36232881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356337A Expired - Fee Related JP4039441B2 (en) 2003-05-19 2005-12-09 Electro-optical device and electronic apparatus

Country Status (1)

Country Link
JP (1) JP4039441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871472A (en) * 2016-09-26 2018-04-03 株式会社日本显示器 Display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293076A (en) * 2006-04-26 2007-11-08 Seiko Epson Corp Electrooptical apparatus, electronic equipment, and method for manufacturing electrooptical apparatus
WO2007144976A1 (en) * 2006-06-15 2007-12-21 Sharp Kabushiki Kaisha Current drive type display and pixel circuit
JP5332109B2 (en) * 2007-02-06 2013-11-06 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP4751359B2 (en) * 2007-03-29 2011-08-17 東芝モバイルディスプレイ株式会社 EL display device
JP5148951B2 (en) * 2007-08-30 2013-02-20 エルジー ディスプレイ カンパニー リミテッド Image display device and driving method of image display device
JP5305242B2 (en) * 2009-06-09 2013-10-02 カシオ計算機株式会社 Pixel drive circuit, light emitting device, drive control method thereof, and electronic apparatus
KR101065419B1 (en) 2010-02-26 2011-09-16 삼성모바일디스플레이주식회사 OLED display and driving method thereof
CN114708825A (en) * 2022-04-22 2022-07-05 Tcl华星光电技术有限公司 Pixel circuit and display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871472A (en) * 2016-09-26 2018-04-03 株式会社日本显示器 Display device

Also Published As

Publication number Publication date
JP2006091923A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP3772889B2 (en) Electro-optical device and driving device thereof
JP5078236B2 (en) Display device and driving method thereof
JP5080733B2 (en) Display device and driving method thereof
JP4737221B2 (en) Display device
US7355459B2 (en) Electronic circuit, method of driving electronic circuit, electronic device, electro-optical device, method of driving electro-optical device, and electronic apparatus
JP5647757B2 (en) Semiconductor device, light emitting device, module, and electronic device
US7417607B2 (en) Electro-optical device and electronic apparatus
JP4039441B2 (en) Electro-optical device and electronic apparatus
JP2018036658A (en) Semiconductor device
KR100611292B1 (en) Pixel circuit and display device
JP6201465B2 (en) Display device, driving method of display device, and electronic apparatus
KR101325789B1 (en) Semiconductor device
WO2013171938A1 (en) Display device
US9024929B2 (en) Display device and electronic apparatus
JP2005134435A (en) Image display apparatus
JP2006300980A (en) Electronic circuit, and driving method, electrooptical device, and electronic apparatus thereof
JP2009099777A (en) Display unit, and electronic apparatus
JP2005181975A (en) Pixel circuit, electro-optical device and electronic apparatus
JP7362889B2 (en) display device
JP4112248B2 (en) Light emitting device, electronic equipment
JP4467900B2 (en) Driving method of light emitting device
WO2022124165A1 (en) Display device
JP2010191454A (en) Light emitting device, drive method and drive circuit therefor, and electronic equipment
KR20120107430A (en) Display device and driving method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350